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Abstract In this paper we construct explicit examples of both closed and
non-compact finite volume hyperbolic manifolds which provide counterex-
amples to the conjecture that the co-rank of a 3-manifold group (also known
as the cut number) is bounded below by one-third the first Betti number.
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1 Introduction

The co-rank of a group G, which we denote by c1(G), is the maximal rank
of a free group homomorphically surjected by G. Clearly, c1(G) ≤ b1(G) =
dim(Gab⊗Q), where Gab=(G/[G,G]). If M is a manifold, c1(M) = c1(π1(M)).
If M is a compact 3-manifold, c1(M) is also called the cut number of M , and
is equal to the maximal number of components of a surface F embedded in M
for which M \ F is connected.

The free Abelian groups Zn show that, in general, there is no lower bound for
c1(G) in terms of b1(G). For a genus g surface group it is well-known that
c1(Σg) = g (as is proved below). In his talk [18], J Stallings discussed the
following conjecture on a lower bound for c1(M) for M a compact 3-manifold,
which has recently received some attention. According to A Sikora this con-
jecture has its origins in work of T Kerler connected to quantum invariants of
3-manifolds.

Conjecture 1.1 If M is a 3-manifold, then c1(M) ≥ b1(M)
3 .

Notice that as particular cases, if b1(M) = 4 or 5, Conjecture 1.1 would im-
ply c1(M) ≥ 2. In this note we construct explicit counterexamples to this
conjecture. In particular, we prove:
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38 Christopher J. Leininger and Alan W. Reid

Theorem 1.2 (1) There exist closed hyperbolic 3-manifolds M such that
b1(M) = 5 and c1(M) = 1.

(2) There exist compact 3-manifolds M with toroidal boundary so that b1(M)
= 4 and c1(M) = 1.

Remark A Sikora [17] has also recently proved the existence of counterexam-
ples to this conjecture with b1 ≥ 7 and c1 ≤ 2. Moreover, S. Harvey [8] has
recently constructed examples of closed hyperbolic 3-manifolds with b1 arbi-
trarily large, yet c1 = 1.

The rest of the paper is organized as follows. In section 2 we fix some notation
and make a few elementary observations about co-rank and surface groups. In
section 3 we discuss automorphisms of surfaces and when they extend over a
handlebody. This is needed to prove Theorem 1.2. We discuss the contents of
section 3 further in section 6. Parts (1) and (2) of Theorem 1.2 are proved in
sections 4 and 5.

Acknowledgement The authors wish to thank C McA Gordon and D D Long
for useful conversations regarding this work, K Johannson for providing us a
copy of his unpublished manuscript [10], and particularly the organizers of
the Workshop in Groups and 3-Manifolds, CRM Montreal, June/July 2001 for
support, where they first became aware of this problem.

This work was partially supported by the NSF.

2 Background and notation: Co-rank and surfaces

2.1 Notation

Throughout the rest of this paper Fk will denote a free group of rank k , Σg

will denote a closed, oriented surface of genus g , and Mod(Σg) will denote
its mapping class group. That is, Mod(Σg) is the group of isotopy classes of
orientation preserving diffeomorphisms of Σg . We will refer to an element of
Mod(Σg), or any representative of that element, as an automorphism of Σg .

The canonical homomorphism Mod(Σg)→ Aut(H1(Σg)) has a non-trivial ker-
nel which is called the Torelli group. We will denote it by

I(Σg) /Mod(Σg).

An automorphism f is in I(Σg) if and only if f∗ : H1(Σg) → H1(Σg) is the
identity.
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2.2 Surfaces

In this section we record some lemmas concerning epimorphisms from surface
groups to free groups. Since we shall make use of it, we give the proof that
c1(Σg) = g , although this is well-known.

Lemma 2.1 c1(Σg) = g .

Proof Let φ : π1(Σg) → Fk be a surjective homomorphism and let f : Σg →
Xk be a map where Xk is a wedge of k circles with π1(Xk) identified with Fk
so that f∗ = φ. Making f transverse to k points (one in each circle, each differ-
ent than the wedge point), the preimage is a disjoint union of k 1-submanifolds
γ1, ..., γk . It is easy to see that [γ1], ..., [γk ] must represent k linearly indepen-
dent elements of H1(Σg;Z) (with a pull-back orientation). Since the curves
γ1, ..., γk are pairwise disjoint, the intersection form on H1(Σg;Z) is trivial on
the span < [γ1], ..., [γk ] >. This is a non-degenerate, skew-symmetric form, so
that k ≤ 1

2b1(Σg) = g .

Clearly c1(Σg) ≥ g , so c1(Σg) = g .

We will also need the following well-known fact, whose proof we sketch.

Lemma 2.2 Suppose φ : π1(Σg) → Fg is an epimorphism. Then there exists
a handlebody H with π1(H) identified to Fg , and a homeomorphism τ : Σg →
∂H , such that if i : ∂H → H is the inclusion map, then (i ◦ τ)∗ = φ.

Proof Given φ : π1(Σg) → Fg , let f : Σg → Xg and γ1, ..., γg be as in the
previous proof. We may homotope f so that no component of γj is homotopi-
cally trivial for any j = 1, ..., g . We construct a compression body H by first
thickening Σg to Σg × [−1, 1], then attaching 2-handles along the curves on
Σg×{−1} corresponding to ∪gj=1γj on Σg , and finally capping off all 2−sphere
boundary components with 3−handles.

It must be that H is a handlebody. If this were not the case, one could find
an (oriented) curve γ on Σg , disjoint from γ1, ..., γg with [γ], [γ1], ..., [γg ] being
linearly independent. As in the previous proof, this is impossible by dimension
considerations.

Let τ : Σg → Σg × {1} = ∂H be the obvious homeomorphism. By construc-
tion, we can extend f to f̃ : H → Xg (that is, f̃ ◦ τ = f ). Moreover, the
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induced homomorphism f̃∗ : π1(H) → π1(Xg) = Fg must then be surjective.
It follows from the Hopfian property for free groups (see [14]) that f̃∗ must be
an isomorphism. Therefore f̃∗ identifies π1(H) with Fk and (i ◦ τ)∗ = f∗ = φ,
where i : ∂H → H is the inclusion.

3 Extending automorphisms of surfaces

Recall that an automorphism f : Σg → Σg extends over a handlebody H if
there exists a homeomorphism τ : Σg → ∂H and a homeomorphism f̃ : H → H
such that τ−1 ◦ f̃ |∂H ◦ τ = f .

Lemma 3.1 For f ∈ Mod(Σg), f extends over a handlebody H if and only
if for every simple closed curve γ ⊂ Σg for which τ(γ) bounds a disk in H ,
τ(f(γ)) also bounds a disk in H .

Proof If f extends over a handlebody, then clearly τ(γ) bounds a disk if and
only if τ(f(γ)) does.

Suppose that for every simple closed curve γ ⊂ Σg for which τ(γ) bounds a disk
in H , τ(f(γ)) also bounds a disk. Choose a complete set of (pairwise disjoint)
meridional disks D1, ...,Dg for H . The images τ ◦ f ◦ τ−1(∂(D1)), ..., τ ◦ f ◦
τ−1(∂(Dg)) bound disks D′1, ...,D

′
g which we may assume are pairwise disjoint.

We now extend f to f̃ : H → H . This is done by first extending over the
disks Dj , mapping these to D′j by any homeomorphism which extends (τ ◦ f ◦
τ−1)|∂Dj , and then extending over a regular neighborhood of ∂H ∪

⋃g
j=1Dj .

What is left is a 3-ball, and we may extend over this in any fashion.

The important point for us is existence of certain types of automorphisms that
do not extend. The following theorem was proven independently by Johannson
and Johnson [10] and Casson [3]. Neither of these works were ever published, so
we include in section 6 a sketch of the proof (as given in [10]) for completeness.

Theorem 3.2 For every g ≥ 2, there exists f ∈ I(Σg) which does not extend
over any handlebody. Furthermore, for every odd integer n, fn does not extend.

Indeed, using Thurston’s classification of automorphisms of surfaces [20], the
automorphism f can be chosen to be pseudo-Anosov. We state this below and
prove this in section 6, since we make use of some of the notation developed in
proving Theorem 3.2.
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Theorem 3.3 For any g ≥ 2, there exists pseudo-Anosov mapping classes
f ∈ I(Σg) so that no odd power of f extends over any handlebody.

Remark In the genus 2 case, every automorphism f ∈ I(Σ2) which does not
extend over a handlebody is pseudo-Anosov. To see this, first note that by
Thurston’s classification of automorphisms of surfaces, and because I(Σ2) is
torsion free, f is either reducible or pseudo-Anosov. If f ∈ I(Σ2) is reducible,
we can extend f to f̃ : H → H where H is a compression body defined by
the reducing curves of f with upper boundary, ∂+H , identified to Σ2 . The
lower boundary of the compression body, ∂−H , must be a (possibly empty)
disjoint union of tori. Since the map induced by inclusion i∗ : H1(∂−H) →
H1(H) is injective and f̃ acts trivially on H1(H), it follows that (f̃ |∂−H)∗ :
H1(∂−H)→ H1(∂−H) must be the identity. An automorphism acting trivially
on the homology of a torus is trivial, and so we can compress away the lower
boundary completely and extend. It follows that if f ∈ I(Σ2) does not extend
over any handlebody, then it must be pseudo-Anosov.

4 Examples: Closed 3-manifolds

Let Mf be the mapping torus of a pseudo-Anosov automorphism f ∈ I(Σ2)
that does not extend over any handlebody (by Theorem 3.3, such an f exists).

Theorem 4.1 Mf is hyperbolic, b1(Mf ) = 5, and c1(Mf ) = 1

Proof Since f is pseudo-Anosov, Mf is hyperbolic by Thurston’s Geometer-
ization Theorem for Haken Manifolds [19]. An elementary calculation shows
that b1(Mf ) = 1+ rk(fix(f∗)) where fix(f∗) is the fixed subgroup of H1(Σ2;Z).
So, b1(Mf ) = 5.

Suppose c1(Mf ) > 1. Then there exists an epimorphism φ : π1(Mf )→ F2 . Let
Σ2 ⊂ Mf denote the fiber, and note that π1(Σ2) / π1(Mf ). This implies that
φ(π1(Σ2)) / F2 is a finitely generated normal subgroup, which must therefore
be either trivial or of finite index. Now φ(π1(Σ2)) cannot be trivial since this
would imply F2 is the image of π1(Mf )/π1(Σ2) ∼= Z. It follows that φ(π1(Σ2))
must have finite index. Note that rk(φ(π1(Σ2))) = 1 + [F2 : φ(π1(Σ2))]. By
Lemma 2.1, c1(Σ2) = 2, so that [F2 : φ(π1(Σ2))] = 1 and φ|π1(Σ2) must be
surjective.

By Lemma 2.2, there exists a handlebody H with Σ2 = ∂H such that the
inclusion i : Σ2 → H has i∗ = φ|π1(Σ2) . Since f does not extend over any
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handlebody, Lemma 3.1 implies the existence of a simple closed curve γ ⊂ Σ2

such that γ bounds a disk in H , but f(γ) does not. By Dehn’s Lemma and
the Loop Theorem (see eg [16]), f(γ) is homotopically non-trivial in H . Rep-
resenting these curves by based loops of the same name in Σ2 (with basepoint
fixed by f ), this says i∗([γ]) = 1, while i∗(f∗([γ])) = i∗([f(γ)]) 6= 1. That is,
φ([γ]) = 1 while φ(f∗([γ])) 6= 1.

Now we note that π1(Mf ) is an HNN extension of π1(Σ2) with conjugation by
the stable letter, t, acting by f∗ . It follows that

1 = φ(t)φ(t−1) = φ(t)φ([γ])φ(t−1) = φ(t[γ]t−1) = φ(f∗[γ]) 6= 1.

This contradiction proves that c1(Mf ) = 1.

Corollary 4.2 There are infinitely many closed hyperbolic 3-manifolds M
with b1(M) = 5 and c1(M) = 1.

Proof Given Mf as above, with f as in Theorem 3.3, the cyclic covers Mfn ,
for odd n, provide infinitely many such manifolds.

Using the nature of the construction of the automorphism f in Theorem 4.1
we can extend Corollary 4.2 to the following; a proof is given in section 6.

Corollary 4.3 There are infinitely many non-commensurable closed hyper-
bolic 3-manifolds M with b1(M) = 5 and c1(M) = 1.

A similar argument can be made to work for genus 3 bundles. In this case if we
consider an f ∈ I(Σ3) as in Theorem 3.3, then b1(Mf ) = 7, so that Conjecture
1.1 would predict c1(Mf ) = 3.

Theorem 4.4 There are infinitely many closed hyperbolic 3-manifolds M
with b1(M) = 7 and c1(M) ≤ 2.

Proof Let f ∈ I(Σ3) be as in Theorem 3.3. The proof of Theorem 4.1 applies
verbatim to the bundle Mf . The only point to remark being that if π1(Mf )
surjects a free group of rank 3, then the fiber group must also surject.

Remark Notice that the argument breaks down for genus 4 bundles. In this
case, b1(Mf ) = 9 so that a counterexample to Conjecture 1.1 requires c1(Mf ) ≤
2. The argument above only guarantees c1(Mf ) ≤ 3.
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5 Examples: Bounded 3-manifolds

Here we sketch the proof of the second part of Theorem 1.2.

Theorem 5.1 There exists compact 3-manifolds M with toroidal boundary
so that b1(M) = 4 and c1(M) = 1.

Remark In fact, the manifolds we construct below can be shown to be hyper-
bolic using Thurston’s Geometerization Theorem for Haken manifolds (see [15]
for example), and a variant of [7] (see [4] for a proof that M is irreducible).

Sketch of proof Let α, β, γ, δ, and ε be the simple closed curves shown on
the surface Σ2 , and let a, b, c, and d be the generators for π1(Σ2) shown (see
Figure 1).

α

β

γ

δ

ε

a

b

c

d

Figure 1

We denote the Dehn twist in α, β, γ, δ, and ε by Tα, Tβ, Tγ , Tδ , and Tε respec-
tively. Let C1 denote the separating simple closed curve on Σ2 represented by
[a, b] = aba−1b−1 , and set

C2 = T−1
α ◦ (Tα ◦ Tε ◦ T 2

γ ◦ T−1
β ◦ T−1

δ )3(C1)

Now construct a 3-manifold M by attaching 2-handles to Σ2× [−1, 1] along C1

in Σ2×{−1} and along C2 in Σ2×{1}. Since both C1 and C2 are separating
curves, b1(M) = b1(Σ2) = 4. We claim that c1(M) = 1.

We begin by finding a presentation for π1(M). By considering the action of
each of the Dehn twists above on π1(Σ), we can explicitly write down a word
w = w(a, b, c, d) representing C2 . It is given by

w = ac−1abc−1adc−3ac−1abc−1abac−1abc−1adc−3ac−1ab

c−1adc−3adc−4adc−4adc−3ac−1abc−1adc−3ac−1aba−1b−1a−1cb−1a−1ca−1

c3d−1a−1cb−1a−1ca−1b−1a−1cb−1a−1ca−1c3d−1a−1cb−1a−1ca−1

c3d−1a−1c4d−1a−1c4d−1a−1c3d−1a−1cb−1a−1ca−1c3d−1a−1c.
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An application of Van Kampen’s Theorem implies

π1(M) =< a, b, c, d | [a, b], [c, d], w > .

To prove that c1(M) = 1, we suppose there exists an epimorphism φ : π1(M)→
F2 , and find a contradiction. The idea of the proof is as follows. Since [a, b] = 1
and [c, d] = 1 and maximal Abelian subgroups of free groups are cyclic, there
exists g, h ∈ F2 such that φ(a), φ(b) ∈< g > and φ(c), φ(d) ∈< h >. We let
m,n, j, k ∈ Z be such that

φ(a) = gm , φ(b) = gn , φ(c) = hk and φ(d) = hj .

The subgroup of F2 generated by g and h contains the subgroup generated by
φ(a), φ(b), φ(c), and φ(d), but φ is surjective, so g and h must generate all of
F2 . By the Hopfian property for free groups, we see that g and h form a basis
for F2 . Since φ is a homomorphism, we have

1 = φ(w(a, b, c, d)) = w(φ(a), φ(b), φ(c), φ(d)) = w(gm, gn, hk, hj).

This imposes restrictions on the integers m,n, j, and k . There are then several
cases to analyze, each of which results in a contradiction to the surjectivity of
φ. It follows that there is no such epimorphism φ, and hence c1(M) = 1.

Remark Another proof of this theorem goes as follows. Choose two separat-
ing curves C1 and C2 on Σ2 so that (a) C1 ∪ C2 fills Σ2 , and (b) for every
handlebody H with ∂H = Σ2 , at most one of C1 and C2 bounds a disk. If
one constructs M as in the above proof, then M would provide an example
proving the theorem. To see this, note that any epimorphism from π1(M) onto
F2 would induces a epimorphism from π1(Σ2) onto F2 in which C1 and C2 are
both mapped to 1. By applying Dehn’s Lemma and the Loop Theorem along
with Lemma 2.2 above, we would have a contradiction.

Of course, the difficulty is in finding two curves satisfying (a) and (b). The
two curves C1 and C2 in the given proof do satisfy (a) and (b)–condition (b)
is essentially what is shown in the proof (which we only sketched). In fact,
Lemma 2.2 of [5] describes an algorithm to decide if two curves can both bound
disks in any handlebody, so it should possible to implement this to give another
proof that C1 and C2 satisfy (b). This algorithm is based on analyzing the
intersections of the pair of curves, and it seems that likely that this could be
computationally more difficult than the given proof (the geometric intersection
number of C1 and C2 is 72).
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6 The proof of Theorem 3.2

In this section we sketch the proof of Theorem 3.2 following [10]. We include
this sketch since [10] did not appear, and although examples as in Theorem
3.2 appear to be well-known, no explicit example appears to be recorded in the
literature.

We begin by considering a Heegaard embedding h : Σg → S3 (ie, an embedding
such that h(Σg) bounds handlebodies on both sides). We perturb this Heegaard
splitting using an automorphism f ∈ I(Σg) to give a Heegaard splitting of a
new manifold Mh,f as follows.

We let H+ and H− be the handlebodies on the positive and negative sides of
h(Σg) respectively (so the positive unit normal to h(Σg) points into H+). The
manifold Mh,f is constructed by gluing ∂H− to ∂H+ by

h ◦ f ◦ h−1 : ∂H− → ∂H+.

If h ◦ f ◦ h−1 extended over the handlebody H+ , then one can check that
Mh,f

∼= S3 . In particular, suppose f extends over some handlebody f̃ : H →
H . Then if H+ and H− are the positive and negative handlebodies in a genus
g Heegaard splitting of S3 , any diffeomorphism h̃ : H → H+ restricts to
a Heegaard embedding h : Σg → S3 , and h ◦ f ◦ h−1 extends over H+ by
h̃ ◦ f̃ ◦ h̃−1 . So to prove that an automorphism f does not extend over any
handlebody, it suffices to show that for any Heegaard embedding h : Σg → S3 ,
the manifold Mh,f is not diffeomorphic to S3 .

Next we note that since f ∈ I(Σg), Mh,f will be an integral homology 3-sphere.
We let µ(Mh,f ) ∈ Z/2Z denote the Rohlin invariant of Mh,f (see eg [6]). Since
µ(S3) = 0, we wish to find f ∈ I(Σg) such that for every Heegaard embedding
h, µ(Mh,f ) = 1. In [11], Johnson studies the Birman-Craggs homomorphisms
(see [1]) and gives a very effective way of finding such f .

In what follows, the main ideas and relevant theorems of [11] necessary for
our purpose are stated without proofs (see [11] for the proofs and complete
references).

A symplectic quadratic form (Sp-form for short) on H1(Σg;Z/2Z) is a function

ω : H1(Σg;Z/2Z)→ Z/2Z

such that
ω(a+ b) = ω(a) + ω(b) + a · b

where a·b is the symplectic bilinear form given by the mod 2 intersection number
of a and b. We denote the set of Sp-forms on H1(Σg;Z/2Z) by Ω = Ω(Σg).
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Given an element a ∈ H1(Σg;Z/2Z), we obtain a function a : Ω → Z/2Z de-
fined by a(ω)=ω(a). If {a1, b1, ..., ag , bg} is a symplectic basis for H1(Σg;Z/2Z)
(with respect to ·), then the Arf-invariant of a form ω ∈ Ω is defined to be
Arf(ω) =

(∑g
i=1 aibi

)
(ω). We denote the set of Sp-forms with zero Arf-

invariant by Ψ = Ψ(Σg) ⊂ Ω(Σg).

Now let h : Σg → S3 be a Heegaard embedding. Seifert’s linking form defines
an Sp-form by setting

ωh(a) = λ(h(γa), h(γa)+)

where γa is a simple closed curve representing the class a ∈ H1(Σg;Z/2Z) and
λ(h(γa), h(γa)+) is the mod 2 linking number of h(γa) and its push off in the
positive normal direction, h(γa)+ . The form ωh lies in Ψ, and furthermore,
any ω ∈ Ψ can be realized by some Heegaard embedding of Σg .

The following facts from [11] will essentially complete the proof (labellings below
are those of [11]).

• Corollary 1 to Theorem 1 µ(Mh,f ) depends only on ωh and f .

• Lemma 11 If we denote the Abelian group of functions from Ψ into
Z/2Z by Z/2ZΨ , then there is a homomorphism

σ : I(Σg)→ Z/2ZΨ

such that if we denote the image of f under σ by σf , then σf (ωh) =
µ(Mh,f ).

• Consequence of Theorem 4 The constant function 1 is in the image
of σ for every g ≥ 2.

It now follows that if we let f ∈ I(Σg) be such that σf = 1, then for any
Heegaard embedding h, µ(Mh,k) = 1, and hence f cannot extend over any
handlebody. This completes the proof of the first statement of Theorem 3.2

For the second, note the following consequence of the proof of the first statement
in Theorem 3.2, which gives the second statement of Theorem 3.2.

Scholium 6.1 If f ∈ I(Σg) satisfies σf = 1, then for any odd integer n, fn

does not extend over any handlebody.

Proof Note that for any odd n,

σfn = nσf = σf = 1

so fn cannot extend over any handlebody.
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6.1

Here we extend Theorem 3.2 to obtain pseudo-Anosov maps for all genera ≥ 2.
In the notation developed above, Theorem 3.3 follows from Scholium 6.1 and

Theorem 6.2 For any g ≥ 2, there exists pseudo-Anosov mapping classes
f ∈ I(Σg) for which σf = 1.

Proof We use the notation of the proof of Theorem 3.2. Let h ∈ I(Σg) be
such that σh = 1, and let φ ∈ ker(σ) be a pseudo-Anosov mapping class with
stable and unstable laminations [λs], [λu] ∈ PML(Σg). By choosing a different
h if necessary, we may assume that h([λs]) = [µ] 6= [λu].

Let n be a positive integer and Vs, Vu, and Vµ be neighborhoods in PML(Σg)
of [λs], [λu], and [µ], respectively, so that

• For all [ν] ∈ V µ and [η] ∈ V u , ν t η and ν∪η fills Σg (so, V µ∩V u = ∅).
• φn(PML(Σg) \ Vu) ⊂ V s , φ−n(PML(Σg) \ Vs) ⊂ V u , and V s ∩ V u = ∅
• h(V s) = V µ

• V s
∼= V u

∼= V µ
∼= Bn

The first property is possible to arrange since µ t λu and µ∪λu fills Σg implies
the existence of disjoint neighborhoods with the same property. The second
follows from standard properties of the dynamical behavior of the action of φ
on PML(Σg) (see for example [9], Chapter 8). The third is possible because
h([λs]) = [µ] and h acts by a homeomorphism on PML(Σg). The last property
is possible because PML(Σg) is a manifold.

We let f = hφn ∈ I(Σg) and note that

f(PML(Σg) \ Vu) = h(φn(PML(Σg) \ Vu)) ⊂ h(V s) = V µ

and

f−1(PML(Σg)\Vµ) = φ−n(h−1(PML(Σg)\Vµ)) = φ−n(PML(Σg)\Vs) ⊂ V u

In particular, f(V µ) ⊂ V µ and f−1(V u) ⊂ V u . By the Brouwer Fixed Point
Theorem, f has fixed points [νs] ∈ V µ and [νu] ∈ V u . Since f is clearly not
periodic, and because νs t νu and νs ∪ νu fill Σg , it follows that f must be
pseudo-Anosov with stable and unstable laminations [νs] and [νu] respectively.
Since σ is a homomorphism, σf = 1.
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6.2

Following [10], we construct some explicit examples of f ∈ I(Σ2) which do not
extend over any handlebody.

Example 6.3 If a, b ∈ H1(Σ2;Z/2Z) satisfy a · b = 1, we can find a pair of
transversely intersecting simple closed curves α and β representing a and b
respectively such that α ∩ β is exactly 1 point. The regular neighborhood,
N(α ∪ β) is homeomorphic to a torus-minus-disk embedded in Σ2 and γ =
∂N(α ∪ β) is a separating essential simple closed curve. If we denote a Dehn
twist about γ by Tγ (note that Tγ ∈ I(Σ2)) then according to [11] (Lemma
12a)

σTγ = ab.

Now fix a symplectic basis a1, b1, a2, b2 for H1(Σ2;Z/2Z), and let γ1, ..., γ10 be
separating essential simple closed curves associated, as above, to the following
10 pairs of elements a, b ∈ H1(Σ2;Z/2Z) (with a · b = 1).

a1, b1 ; γ1 , a1, b1 + a2 ; γ2 , a1, b1 + b2 ; γ3 ,
b1, a1 + a2 ; γ4 , a1, b1 + a2 + b2 ; γ5 , b1, a1 + b2 ; γ6 ,
b1, a1 + a2 + b2 ; γ7 , a1 + b1, a1 + a2 ; γ8 , a1 + b1, a1 + b2 ; γ9 ,
a1 + b1, a1 + a2 + b2 ; γ10.

To compute σTγj for each j = 1, ..., 10, we note first that the defining character-
istic of Sp-forms implies a+ b = a+b+a·b. We also note that if φ : Ψ→ Z/2Z,
then φ2 = φ. It then follows that

σTγ1 = a1b1 , σTγ2 = a1b1 + a1a2 ,

σTγ3 = a1b1 + a1b2 , σTγ4 = b1a1 + b1a2 ,

σTγ5 = a1b1 + a1a2 + a1b2 + a1 , σTγ6 = b1a1 + b1b2 ,

σTγ7 = b1a1 + b1a2 + b1b2 + b1 , σTγ8 = a1b1 + a1a2 + b1a2 + a2 ,

σTγ9 = a1b1 + a1b2 + b1b2 + b2 , σTγ10
= a1b1 + a1a2 + a1b2 + b1a2 + b1b2

+a1 + b1 + a2 + b2 + 1.

Any word in Tγ1 , ..., Tγ10 such that the total exponent of each Tγj is odd provides
an automorphism in I(Σ2) which does not extend over any handlebody.

6.3 Proof of Corollary 4.3

Let θ be any word in Tγ1 , ..., Tγ10 such that the total exponent of each Tγj is
odd. Let n ≥ 1 be an integer, define θn = T 2n

γ1
θ , and let Mn denote the map-

ping torus of θn . By the remarks in section 6.2, θn does not extend over any
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handlebody. Note that by the Remark at the end of section 3, θn is pseudo-
Anosov, however we require the following description to gain extra control of
commensurability. By Lemma 1.1 of [12] the manifolds Mn can be described as
surgeries on a 1 cusped hyperbolic 3-manifold. Since the degree of the invariant
trace-field gets arbitrarily large on such a sequence of surgeries (see [13]) and
the invariant trace-field is an invariant of the commensurability class, by sub-
sequencing if necessary we obtain the set of non-commensurable manifolds.
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Sup.(4) 16 (1983) 237–270

[3] A J Casson, Notes from a lecture given at U.C. Santa Barbara, Dec. (1979)

[4] A J Casson, C McA Gordon, Reducing Heegaard Splittings, Topology Appl.
27 (1987) 275–283

[5] A J Casson, D D Long, Algorithmic compressions of surface automorphisms,
Invent. Math. 81 (1985) 295–303

[6] R E Gompf, A I Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Stud-
ies in Mathematics Series 20 American Mathematical Society, Providence, RI
(1999)

[7] J Hempel, Three-manifolds as viewed from the curve complex, Topology 40
(2001) 631–657

[8] S L Harvey, On the cut number of a 3-manifold, Preprint

[9] N V. Ivanov, Subgroups of Teichmüller Modular Groups, Translations of Math.
Monographs 115 American Math. Society Publications (1992)

[10] K Johannson, D Johnson, Non-bording diffeomorphisms of surfaces which
act trivially on homology, Preprint

[11] D Johnson, Quadratic forms and the Birman-Craggs homomorphisms, Trans.
Amer. Math. Soc. 261 (1980) 235–254

[12] D D Long, H R Morton, Hyperbolic 3-manifolds and surface automorphisms,
Topology 25 (1986) 575–583

[13] D D Long, A W Reid, Integral points on character varieties, Preprint

[14] W Magnus, A Karrass, D Solitar, Combinatorial Group Theory, Dover
Publications, Inc. (1976)

[15] J-P Otal, Thurston’s hyperbolization of Haken manifolds, Surveys in differential
geometry Vol. III (Cambridge, MA, 1996) 77–194, Int. Press, Boston, MA (1998)

Algebraic & Geometric Topology, Volume 2 (2002)



50 Christopher J. Leininger and Alan W. Reid

[16] D Rolfsen, Knots and Links, Publish or Perish, Inc. (1990)

[17] A Sikora, Cut numbers of 3-manifolds, Preprint

[18] J Stallings, Geometric ideas about the corank of a group, Lecture given at
the “Groups and Low-Dimensional Topology Conference”, CRM, Université de
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