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1 Introduction

The groups HF± introduced by Ozsváth and Szabó in [6], [7] have shed new
light on our understanding of Floer homology for three-manifolds. Conjectured
to be equal to the equivariant Seiberg-Witten Floer groups, the Ozsváth-Szabó
groups have most of the known properties of these groups, as well as some
(such as the exact triangle) which were only conjectured. In addition, they
appear to be more computable than the Seiberg-Witten Floer groups; at the
least, there is an algorithmic procedure to find the generators for the chain
complex associated to a given three-manifold. On the other hand, there are
some potential stumbling blocks: the size of the chain complex is typically
much larger than that of the associated homology groups, and the differentials
in the complex can be difficult to determine.

In this paper, we compute the Ozsváth-Szabó Floer homology for integral surg-
eries on two-bridge knots. Although these are some of the simplest available
three-manifolds, the fact that the corresponding Seiberg-Witten Floer groups
are still unknown indicates the computational effectiveness of the Ozsváth-
Szabó groups. Moreover, the method of calculation provides some grounds for
optimism: the formal properties of their chain complex enable us to compute
its homology without having to understand all of its differentials.

The result of our computation may be summarized as follows: all the Floer
homologies associated to a two-bridge knot K are determined by two classical
invariants of the knot — the Alexander polynomial and the signature σ(K).
For the moment, we restrict ourselves to describing some interesting special
cases.
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Theorem 1 Let K be a two-bridge knot and T the (2, 2n+ 1) torus knot of
the same signature. Let K0 and T 0 be their 0-surgeries. Denote by sk the Spinc

structure on K0 with c1(sk) = 2k . Then HF+(K0, sk) ∼= Q ⊕ HF+(T 0, sk),
where Q is a free Z module concentrated in a single grading.

As a corollary, we find that the Ozsváth-Szabó analogue of Frøyshov’s h-inv-
ariant is determined by the signature:

Corollary 1 Let K be a two-bridge knot and K1 the manifold obtained by
1-surgery on it. Then d(K1) = min(0,−2dσ(K)/4e).

We now give a quick overview of the calculation. The first two sections of the
paper are an elaboration of section 8 of [6], which computes HF± and ĤF for
the simplest two-bridge knots — the (2, n) torus knots. First, any surgery on
a two-bridge knot K admits a natural Heegaard splitting of genus 2. This is
described in section 2. In section 3, we consider n surgery on K for n� 0. In
this case, the generators of the chain complex ĈF (Kn) are particularly easy to
write down. Using certain “annular differentials” described in [6], we compute
the grading in this complex. In section 4, we use these annular differentials
to compute ĤF (Kn) for a particular Spinc structure. We next consider the
complex CF+ . Although we do not know what most of the differentials in this
complex are, its symmetries allow us to compute HF+ in every Spinc structure,
using only the one group we computed directly. In section 5 we apply the exact
triangle of [7] to get HF+(Kn) for any n ∈ Z. Finally, in section 6 we briefly
discuss the extent to which the methods of this paper apply to other knots.

The author would like to thank Peter Kronheimer for his advice and sup-
port, Kim Frøyshov for helpful discussions regarding the h-invariant, and Peter
Ozsváth and Zoltán Szabó for their interest in the subject.

2 Two-bridge knots

We begin by reviewing some classical facts about two-bridge knots. Good ref-
erences for this material are [5] and [1]. First, the definition: a two-bridge knot
is any knot K which admits a presentation of the form shown in Figure 1:
two maxima, two minima, and a braid BK in between. If we split S3 along
a horizontal plane, we can write the pair (S3,K) as the union of two copies
of (B3, `1 ∪ `2), where `1 and `2 are a pair of parallel line segments. The two
pieces are glued together by the element of the mapping class group of S2 with
four marked points which corresponds to the braid BK .
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Figure 1: A two-bridge knot

Since the double cover of B3 branched along `1 ∪ `2 is a solid torus, the double
cover of S3 branched along K is a lens space. The basic fact about two bridge
knots is that they are classified by their branched double covers.

Proposition 2.1 (Schubert) For every oriented lens space L(p, q) with p
odd, there is a unique two-bridge knot K(p, q) with branched double cover
L(p, q).

Remarks

(1) The spaces L(p, q) with p even are obtained as branched double covers
of two-bridge links.

(2) Lens spaces which are orientation preserving diffeomorphic have the same
knot, so that e.g. K(p, q) = K(p, q′) if q′ ≡ q−1 mod p. Lens spaces
which are orientation reversing diffeomorphic correspond to mirror image
knots. In particular, K(p, q) is amphichiral if and only if q2 ≡ −1 mod p.

(3) The braid BK(p,q) can be obtained from a continued fraction expansion
of p/q , as explained in [5].

Some simple examples of two-bridge knots include the left-hand (2, p) torus
knots, which are K(p, 1) in our notation, and the twist knots K(p, 2) = K(p,
(p+ 1)/2).

2.1 Schubert normal form

The knot K(p, q) admits a canonical projection known as the Schubert normal
form, which is particularly well-adapted to our purposes. In this section, we
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Figure 2: The Schubert normal form of K(7, 3)

describe this form and its relevant properties. Proofs may be found in [1] or
[9].

Consider the knot K(p, q). Without loss of generality, we can assume −p <
q < p and that q is odd. The normal form of K(p, q) is a projection of the sort
shown in Figure 2. We break K(p, q) into 4 segments: two underbridges U1 and
U2 (drawn horizontally) and two overbridges O1 and O2 . If we travel along
one of the Ui , we go through p − 1 undercrossings, which alternate between
O1 and O2 . Similarly, if we travel along one of the Oi , we go through p − 1
overcrossings, alternating between U1 and U2 .

To give a precise description, we consider small neighborhoods of the under-
bridges. One such neighborhood is shown in Figure 3. Abstractly, it is a
disk with marked points a0, a1, . . . a2p−1 on its boundary. To get the Schubert
normal form, we glue these two disks together by an orientation reversing dif-
feomorphism of S1 which identifies the point ai on one disk with the point aq−i
on the other. (All the labeling is modulo 2p.) The resulting diagram is most
naturally thought of as living on a sphere, but if we want to draw it, we project
onto a plane.

The Schubert normal form is not quite unique, since K(p, q) = K(p, q−1). For
most knots (those with q2 6≡ ±1 mod p), there are two potential choices of
normal form, which are related as follows. Suppose we start with the diagram
for K(p, q), which we think of as living in a plane. We can straighten out the
overbridges by a plane isotopy, but at the cost of twisting up the underbridges.
Flipping the resulting diagram over gives the normal form for K(p, q−1).
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Figure 3: A neighborhood of an underbridge

2.2 A Heegard splitting for S3 −K(p, q)

The complement of a two-bridge knot admits a nice handle decomposition:

Proposition 2.2 S3 −K(p, q) is the union of a genus two handlebody and a
two-handle attached along a curve βp,q . This curve is the boundary of a regular
neighborhood of an overbridge in the Schubert normal form of K(p, q).

Proof To obtain the desired decomposition, we start with the Schubert normal
form of K(p, q). The overbridges lie in a plane and the underbridges dip down
below them. Split S3 along this plane, and remove tubular neighborhoods of the
underbridges. The part of S3 which remains below the plane is a handlebody of
genus 2. To get the part of S3−K(p, q) above the plane, we must separate the
overbridges by adding a two-handle along βp,q . Note that βp,q does not depend
on which overbridge we choose, since the complement of a regular neighborhood
of one overbridge is a regular neighborhood of the other.

A sample handle decomposition is shown in Figure 4, following the conventions
of [6], Section 8. The region shown is part of the genus 2 surface Σ2 which
bounds the handlebody. The remainder of Σ2 consists of two tubes below the
plane of the picture, joining A1 to A2 and B1 to B2 . The attaching circles
of the handlebody are the two horizontal lines α1 and α2 . The curve βp,q is
shown in bold. It intersects each αi p times.

3 The generators of ĈF (Kn)

From now on, we suppose that K is a two-bridge knot and drop the (p, q)
when they are not relevant. We want to compute the various Ozsvath-Szabo
Floer homologies for the three-manifold obtained by n surgery on K , which we
denote by Kn . Until the last section, we will consider only the case n� 0.
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Figure 4: The Heegaard splitting for the complement of K(5, 3) (the figure-eight knot.)
The longitude and meridian are shown by dashed lines. In a general knot, the longitude
will spiral around the hole labeled A1 , so that it has intersection number zero with the
class of α1 − α2 .

Our aim in this section is to write down generators for the complex ĈF (Kn)
and describe their relative gradings. Of course, these gradings will vary with
the choice of Spinc structure on Kn . There is a natural way to label these
Spinc structures as sk , with respect to which we have the following result.

Proposition 3.1 For n sufficiently large, ĈF (Kn(p, q), sk) (q odd) admits a
presentation with p generators x1, x2, . . . xp . This presentation is independent

of the value of n. For k ≥ g(K), the complexes ĈF (Kn, sk) are all identical to

a single complex which we refer to as ĈF s(K). The grading in this complex is
given by

gr(xi+1)− gr(xi) = (−1)b
iq
p
c

and there is a unique differential between x2i and x2i+1 . In general, the complex
ĈF (Kn, sk) is obtained by reflecting the complex ĈF s(K) at level k .

The process of reflection will be described in section 3.3.
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3.1 The Heegaard splitting

Our first order of business is to construct a Heegaard splitting for Kn . We
start with the handlebody decomposition of S3−K(p, q−1) described in Propo-
sition 2.2. (The reason for our choice of q−1 rather than q will be apparent in
3.2.) When we do surgery, we attach a two-handle along a curve in the knot
complement, and then fill in with a three-ball. Alternately, we can just think of
attaching the two-handle to Σ2 − βp,q . From this point of view, the homology
classes of the longitude and meridian are represented by the curves ` and m
shown in Figure 4.

To do n-surgery, we attach the two-handle along the curve β2 = ` + nm.
The resulting three-manifold has a Heegaard diagram with attaching circles
α1, α2, β2 , and β1 = βp,q . An example is shown in Figure 5. There are several
general features worth noting. First, the curve β1 separates the four-times
punctured sphere into two components: the exterior, which contains the point
at infinity, and the interior. We orient the αi so that they both point out of
the exterior region and into the interior. Thus β1 has the same intersection
number with each of the αi . For n� 0, the curve β2 always has a region with
a large number of clockwise spirals, which we draw in the exterior.

β2

α 2 α 1

wk wk−1 w2 w1
y5

v4 3

y4 y3

v v2

y2

v1
y1 x5

u4

β1

x4

u3

x3

u2

x2

u1

x1

Figure 5: The Heegaard splitting for large n surgery on K(5, 3). Note that for for
large n , β2 always has many clockwise spirals, although the exact number depends on
the knot.

Recall that ĈF is generated by the intersection points of the totally real tori
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Tα , Tβ in s2Σ2 , or, equivalently, by unordered pairs of intersection points {x, y}
between the αi and the βi . We distinguish five kinds of such intersection points:
between α1 and β1 , α2 and β1 , α1 and β2 , α2 and β2 (not in the spiral), and
α2 and β2 (in the spiral). We label these points by xi, yj , uk, vl, wm respectively,
as shown in Figure 5. (The convention is that the segment of α1 between x1

and the hole lies in the interior region.) A priori, we are concerned with pairs
of intersection points of the form {xi, vl}, {xi, wm} and {yj, uk}.

3.2 ε–grading and basepoints

Recall from [6] that there is an affine grading

ε : Tα ∩ Tβ → Affine(H1(Kn)).

If we fix a basepoint z ∈ Σ2 , this grading corresponds to the usual grading of
Seiberg-Witten Floer homology by Spinc structures. Often, however, it is more
convenient to fix an ε–equivalence class and vary the basepoint to get all Spinc

structures. This is the approach we will take.

Our first observation is that we need only consider the pairs {xi, wm}:

Lemma 3.1 For n sufficiently large, there is an ε–equivalence class which
contains only points of the form {xi, wm}.

Proof There are n equivalence classes, but the number of pairs {xi, vl} and
{yj, uk} is bounded independent of n.

To describe ε explicitly, we need to discuss H1(Kn). We start with H1(Σ2),
which is a free abelian group generated by elements A1, A2, B1, B2 , where Ai is
the class represented by the curve αi , and the Bi link the “holes” in Figure 5,
so that Ai ·Bj = δij . We have

H1(Kn) ∼= H1(Σ2)/〈α1, α2, β1, β2〉
∼= Z〈B1〉 ⊕ Z〈B2〉/〈B1 +B2, β2〉
∼= Z〈B2〉/〈nB2〉.

It follows that the quotient map H1(Σ2)→ H1(Kn) is given by
x→ [x · (A1 −A2)]B2 .

Lemma 3.2 There are affine gradings

εx : {xi} → Affine(Z)
εw : {wm} → Affine(Z/n)

so that ε({xi, wl})− ε({xj , wm}) = ([εx(xi)− εx(xj)] + [εw(wl)− εw(wm)])B2 .
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Proof (Following Lemma 8.3 of [6].) To define εx(xi)−εx(xj), join xi to xj by
a path a along α1 and a path b along β1 . Then for any l , ε{xi, wl}− ε{xj , wl}
is the homology class of the path a− b, i.e. [(a− b) · (A1 −A2)]B2 . We set

εx(xi)− εx(xj) = (a− b) · (A1 −A2).

Note that the right-hand side is independent of our choice of a and b, since

α1 · (A1 −A2) = β1 · (A1 −A2) = 0.

The definition of εw is analogous, but β2 · (A1 −A2) = n, so εw is only defined
modulo n. The lemma now follows from the additivity of ε.

Lemma 3.3 εw(wm+1)− εw(wm) ≡ 1 mod n.

Proof This is obvious from Figure 5.

Lemma 3.4 εx(xi+1)− εx(xi) = (−1)b
iq
p
c
.

Proof Suppose that i is even, so that the segment of α1 between xi and
xi+1 lies in the interior region, which is essentially a regular neighborhood of
an overbridge. If we straighten this region out, we get a diagram that looks
like Figure 6. We choose paths a and b as shown. All the contributions to
the intersection number (a− b) · (A1 −A2) cancel in pairs, with the exception
of the single point marked with a star. Thus εx(xi+1) − εx(xi) is +1 if xi is
above xi+1 in the diagram, and −1 otherwise. To see which case holds, recall
from section 2 that straightening out the overbridges in the normal form for
K(p, q−1) gives us the normal form for K(p, q), with α1 playing the role of an
overbridge O1 . The segment of α1 between xi and xi+1 corresponds to O1 ’s
ith intersection with an underbridge. If we label the intersection points on β1

as in Figure 3, xi will correspond to the point aiq , which is in the top half of
the diagram if and only if 0 < iq < p mod 2p. This proves the result when i
is even. When i is odd, we argue similarly using the exterior region.

Using the formula of Lemma 3.4, it is not difficult to see that

εx(xi+1)− εx(xi) = εx(xp+1−i)− εx(xp−i).

It follows that εx is symmetric under the involution ι which sends xi 7→ xp+1−i ,
in the sense that

εx(xi)− εx(xj) = −[εx(ι(xi))− εx(ι(xj))].

Algebraic & Geometric Topology, Volume 2 (2002)
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Figure 6: The interior region. We have drawn the case when xi is above xi+1 , but the
reverse may also be true.

As a result, there is a natural lift of εx to a Z valued map (rather than just
Affine(Z) valued), namely the one which has εx(xi) = −εx(ι(xi)). We call
this lift the Alexander grading on the xi . (The name is explained by Proposi-
tion 3.5.)

Putting Lemmas 3.1 to 3.3 together, we get the following corollary, which is an
exact analogue of Proposition 8.3 of [6].

Corollary 3.1 For n sufficiently large and an appropriate choice of M , there
is an ε–equivalence class containing only the pairs {xi, wM−εx(xi)}.

From now on, we choose one such equivalence class and work with it. In this
case, we can drop the w ’s and refer to the generators as xi without ambiguity.
To get different Spinc structures, we vary the basepoint. As in [6], we consider
choices of basepoint which lie inside the spiral region. Denote by zi a point
lying in the rectangular region with corners at wi+1 , wi , wi−1 , and wi again.
(See Figure 7). We will call the Spinc structure determined by the basepoint
zM−k and our fixed ε–equivalence class sk . It follows from Lemma 2.12 of [6]
that sk is independent of which ε–equivalence class we took. Although the
sk may not represent every Spinc structure on Kn , we we will see that they
include all of the interesting ones.

3.3 Annular differentials

In this section, we describe certain differentials in the chain complex CF+ . As
a corollary, we obtain the grading in ĈF (Kn, sk) for every sk . The key tool is
the following proposition.
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Proposition 3.2 (Lemma 8.4 of [6]) Suppose we are given x,y ∈ Tα ∩ Tβ ⊂
s2Σ2 , and an element φ ∈ π2(x,y) whose domain is an annulus with one
270◦ corner. Then µ(x,y) = 1 and the class φ has a unique holomorphic
representative.

We refer to such a class as an annular differential from x to y , or, if we wish
to allow either φ ∈ π2(x,y) or φ ∈ π2(y,x), as an annular differential between
x and y . This definition is useful to us because there is an obvious annular
differential φi between xi and xi+1 . Its domain can roughly be described as
the region bounded by the curves a and b in Figure 6. More precisely, if i is
even, the segment of α1 joining xi to xi+1 divides the interior region into 2
components. The domain of φi consists of one of these components, together
with a portion of the spiral like that shown in Figure 7 and the tube joining
them. We call φi an interior differential. Similarly, if i is odd, the segment
of α1 joining xi to xi+1 divides the exterior region into 2 components. The
domain of the exterior differential φi is the one which contains the spiral, but
with the shaded region of Figure 7 removed.

z m

z m+1

wm+1 wm
wm−1

m−1z

Figure 7: A neighborhood of the spiral. The shaded region is part of the domain of an
interior differential from {xi, wm−1} to {xj , wm} .

To describe how the annular differentials fit into the complex ĈF , we need to
fix a Spinc structure. Initially, we choose one whose associated basepoint is in
the outer part of the spiral. More specifically, let G = maxi{εx(xi)}. (We will
show in 3.4 that G = g(K).) Then if k ≥ G, the point zM−k is further out in
the spiral than all of the wM−εx(xi) .
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Proposition 3.3 If k ≥ G, gr(xi) = εx(xi) in ĈF (Kn, sk). There is a unique
differential between x2j and x2j+1 .

Proof To check the statement about the grading, it suffices to show that

gr(xi+1)− gr(xi) = εx(xi+1)− εx(xi).

Suppose i is even, so that we have an interior differential φi between xi and
xi+1 . Now since k ≥ G, we have nzM−k(φi) = 0, so gr(xi+1) − gr(xi) =
±µ(φi) = ±1, depending on whether φi is a differential from xi+1 to xi or
the other way around. To tell, we give the boundary of the domain of φi its
standard orientation and see which way the α segments point. Looking at
Figure 7, we see that the differential goes from the point with larger εx to the
one with smaller εx . This proves the claim.

For i odd, the argument is similar, except that we now have nzM−k(φi) = 1, and
the boundary circle in Figure 7 is oriented clockwise. Thus the differential goes
to the point with larger εx . Without loss of generality, we assume εx(xi+1) <
εx(xi) and compute

gr(xi+1)− gr(xi) = µ(φi)− 2nzM−k(φi)
= 1− 2
= εx(xi+1)− εx(xi).

To get the last statement, note that nxM−k(φ2j) = 0, so the interior differential
is “turned on” in ĈF (Kn, sk). By Proposition 3.2, there is a unique element
in M(φ2j).

We now know that the complexes ĈF (Kn, sk) have the same generators and
grading for k ≥ G. We wish to show that they have the same differentials as
well. To do so, we use the following result.

Lemma 3.5 Assume n� G, and suppose φ ∈ π2(xi, xj) has µ(φ) = 1. Then
one boundary component of D(φ) consists of the segments of α1 and β2 which
join wM−εx(xi) and wM−εx(xj) and which lie inside the spiral.

Proof Since µ(φ) = 1, we have

nzM−k(φ) = [gr(xi)− gr(xj)− 1]/2

where the grading is taken with respect to the complex ĤF (Kn, sk). Since the
gradings are constant for k ≥ G, nzM−k(φ) is constant as well. But this can
only happen if ∂D(φ) is disjoint from the outer part of the spiral, and thus
from the inner part too. Given this, it is easy to see that ∂D(φ) must have a
component as described.

Algebraic & Geometric Topology, Volume 2 (2002)
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b)

a)

Figure 8: The stable complexes of (a) K(11, 5) and (b) K(13, 5). The generators
x1, x2, . . . , xp are represented by dots, running from left to right. The grading of each
generator is shown by its height, and interior differentials are indicated by arrows.

Thus for any differential φ, we have nzk(φ) = nzl(φ) if k, l ≥ G. It follows that
for n sufficiently large and k ≥ G, the complexes ĈF (Kn, sk) are all isomorphic
to a single complex, which we call the stable complex of Kn (written ĈF s(Kn).)
Although its cohomology is basically trivial, ĈF s(Kn) turns out to be a very
useful object. In particular, if we combine Lemma 3.4 with Proposition 3.3,
we see that the grading in ĈF s(Kn) is very easy to compute. A few examples
of stable complexes are shown in Figure 8. The reader is encouraged to draw
some others and familiarize himself with their behavior.

Warning Like the Schubert normal form, the stable complex is not quite
canonical: thinking of K(p, q) as K(p, q−1) gives a different complex.

We now consider what happens to the complex ĈF if we choose a Spinc struc-
ture sk with k < G. We still have the same interior and exterior differentials
φi , but the value of nzM−k(φi) will change. More precisely, suppose that φ is
an interior differential from xi to xj . Looking at Figure 7, we see that we have

nzk(φ) =

{
0 if k < M − εx(xj)
1 if k > M − εx(xi).

Likewise, if φ is an exterior differential from xi to xj , we have

nzk(φ) =

{
1 if k < M − εx(xj)
0 if k > M − εx(xi).

Applying this to our differentials φi , we obtain:

Algebraic & Geometric Topology, Volume 2 (2002)
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Proposition 3.4 In ĈF (Kn, sk), we have the following proposition.

gr(xi+1)− gr(xi) =

{
εx(xi+1)− εx(xi) if min{εx(xi), εx(xi+1)} < k

−[εx(xi+1)− εx(xi)] if min{εx(xi), εx(xi+1)} ≥ k.

Proof If min{εx(xi), εx(xi+1)} < k , then the value of nzM−k(φi) is the same as
in the stable case, so the difference in gradings is the same as well. Otherwise, it
is the reverse of the stable case (0 for an exterior differential, 1 for an interior),
and we argue as in the proof of Proposition 3.3.

The content of this proposition is best understood pictorially: to obtain
ĈF (Kn, sk), we start with the stable complex and reflect all the points that lie
above level k , as illustrated in Figure 9. Note that in the reflected portion the
exterior differentials have been “turned on” and the interior differentials are
“turned off”.

s1

s
0

Figure 9: ĈF (K(13, 5), s1) and ĈF (K(13, 5), s0). Exterior differentials are shown by
dashed lines. In each case, the line of reflection is drawn in. (Compare with Figure
8b.)

At this point, we have more or less completed the proof of Proposition 3.1.
The only thing which remains to be proved is the statement that ĈF (Kn, sk)
is independent of n for n sufficiently large. To see this, we use Lemma 3.5
again. Indeed, the lemma implies that the domains of potential differentials are
independent of n. From this, it is not difficult to conclude that the differentials
themselves are independent of n, and thus that the complexes ĈF (Kn, sk) and
CF±(Kn, sk) are as well. When n � 0, we are thus justified in dropping it
from our notation and simply writing ĈF (K, sk) and CF±(K, sk).

3.4 Knot invariants and the stable complex

We end this section by describing some relations between ĈF s(K) and classi-
cal knot invariants. Unsurprisingly, there is a connection with the Alexander
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polynomial:

Proposition 3.5 Let nk denote the number of xi in the stable complex of K
with εx(xi) = k . Then the normalized, symmetrized Alexander polynomial of
K is given by

∆K(t) = (−1)εx(x1)
∑
k

nk(−t)k.

Proof From the Heegard splitting of section 2.1, we see that π1(S3−K) has a
presentation 〈a1, a2 | wβ1〉, where wβ1 is the image of β1 in π1(H1) = 〈a1, a2〉.
wβ1 admits the following concrete description: let w be the empty word. Start
anywhere on β1 and travel along it in either direction. Every time you cross
α1 , append a±1

1 to the end of w (+1 if you go up through α1 as determined
by the orientation, −1 if you go down.) Similarly, append a±1

2 to w every time
you pass through α2 . When you get back your starting point, w will be wβ1 .
We use the orientation convention of section 3.1, according to which the αi are
oriented so that [a1] = −[a2] = t in H1(S3−K), but any choice of orientations
would work just as well.

We now observe that the Alexander grading is just a geometrical interpretation
of the free differential, so that∑

(−t)εx(xi) = ±tkda1wβ1

for some k . Indeed, each term in da1wβ1 corresponds to an intersection point
of α1 and β1 . If u and v are two such points, we claim that εx(u) − εx(v)
is the difference between the corresponding exponents of t in da1wβ1 . To see
this, recall that εx(u)− εx(v) is the homology class in H1(S3 −K) of a loop γ
which goes from u to v along β1 , and then from v to u along α1 . The class
of γ can be determined by counting (with sign) its intersections with α1 and
subtracting off its intersections with α2 . The difference in the exponents of
t in da1wβ1 counts exactly the same quantity. To check that the signs agree,
note that the sign of a term in the free differential is the sign of the associated
intersection point u, which is (−1)gr(u) = (−1)εx(u) .

Strictly speaking, the Alexander polynomial is the gcd of da1wβ1 and da2wβ1 ,
but an argument of McMullen (Theorem 5.1 of [4]) shows that when the pre-
sentation of π1 comes from a Heegard splitting, da1wβ1 and da2wβ1 agree up
to a unit. Thus ∑

(−t)εx(xi)
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represents ∆K(t). It is symmetric, so it must be the symmetrized Alexander
polynomial. Finally, it is easy to check that our choice of the sign (−1)εx(x1)

normalizes ∆K to have ∆K(1) = 1.

Corollary 3.2 The genus of K is the maximum value assumed by εx .

Proof All two-bridge knots are alternating. For such knots, it is well-known
that the genus is the highest power of t appearing in the symmetrized Alexander
polynomial.

Interestingly, there is also a relationship with the signature.

Proposition 3.6 σ(K) = εx(x1)− εx(xp)

Proof This is a restatement of Theorem 9.3.6 of [5].

4 Computing the homology

We now turn to our main task, which is to compute the homology of ĈF (K, sk)
and CF±(K, sk). As described in the introduction, the Floer homology of the
zero surgery splits naturally into two parts: a group V which looks like the
Floer homology for a torus knot of the same signature, and a group Q which is
concentrated in a single grading. In ĈF (K, sk), there will be a third summand
Z[u−1]. If σ(K) > 0, V will be absorbed into the Z[u−1] summand, while if
σ(K) < 0, it will not.

To describe Q and V precisely, we need some notation. Let ak be the coefficient
of tk in the symmetrized Alexander polynomial of K , and set

uk =
∑
i>k

(i− k)ai.

uk is a familiar quantity: it is just the Seiberg-Witten invariant associated to
the kth Spinc structure on K0 . We let σ be the signature of the two-bridge
knot K , and set

σ′ = σ/2

hk = max(d|σ
′| − k
2
e, 0)

bk = uk + (−1)k−σ
′
hk.

Then we have the following:
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Theorem 4.1 For k ≥ 0, there is an isomorphism of Z[u] modules

HF+(K, sk) ∼= HF+(K, s−k) ∼=
{
Qk ⊕ Z[u−1] if σ ≥ 0
Qk ⊕ Vk ⊕ Z[u−1] if σ ≤ 0

where Qk ∼= Z|bk| and Vk ∼= Z[u−1]/u−hk . All the elements of Qk have grading
k − 1, and 1 ∈ Vk has grading k − 2hk if k ≡ σ′ mod 2 and k + 1 − 2hk
otherwise. Finally, 1 ∈ Z[u−1] has grading σ′ if σ ≤ 0, or σ′ − 2hk if σ ≥ 0.

Warning For ease of expression, we have chosen to state the gradings in
absolute terms, although they are only meaningful relative to each other. They
do not correspond to the absolute gradings discussed in [8].

Corollary 4.1

ĤF (K, sk) ∼=
{
Q̂k ⊕ Z if σ ≥ 0
Q̂k ⊕ V̂k ⊕ Z if σ ≤ 0

where Q̂k ∼= Qk⊗H∗(S1) and V̂k ∼= H∗(S2hk−1). The grading of 1 ∈ H∗(S2hk−1)
is the same as that of 1 ∈ Vk , and the grading of 1 ∈ Z is the same as that of
1 ∈ Z[u−1].

Corollary 4.2

HF−(Kn, sk) ∼=
{
Qk ⊕ Z[u] if σ ≥ 0
Qk ⊕ Vk ⊕ Z[u] if σ ≤ 0

The gradings are shifted from those in HF+ . More precisely, the grading of
1 ∈ Z[u] is 2 less than that of 1 ∈ Z[u−1] ⊂ HF+(Kn, sk), while the gradings
of Vk and Qk are 1 less than those of their counterparts in HF+(Kn, sk).

4.1 CF∞(K) and CF±(K)

Until now, we have only discussed the complex ĈF (K). We will need to use
CF∞(K), CF+(K), and CF−(K) as well, so we collect some basic facts about
them from [6], [7] here.

We begin with CF∞ . Visually, this complex may be obtained by stacking
copies of ĈF together, each two units apart from the next. The stack extends
infinitely in both directions. As observed in Theorem 8.9 of [6], the complex we
get is independent of our choice of Spinc structure. Depending on the situation,
we will use one of two different conventions to label the generators of CF∞ . If

Algebraic & Geometric Topology, Volume 2 (2002)



774 Jacob Rasmussen

we have fixed a Spinc structure s, we follow the notation of [6] and consider
the generators as pairs [x, j]. On the other hand, if we want to avoid specifying
a Spinc structure, it is often convenient to choose a zero level for the grading
on CF∞ and let (x, j) denote the generator above x with grading j .

For any choice of Spinc structure s, CF∞(M) has a filtration by subcomplexes
. . . ⊂ F s

−1 ⊂ F s
0 ⊂ F s

1 ⊂ . . . , where F s
i = {[x, j] | j < i}. For each i, we have

CF−(M, s) ∼=F s
i

CF+(M, s) ∼=CF∞(M)/F s
i

ĈF (M, s) ∼=F s
i /F

s
i−1.

Frequently, we wish to relate HF± to ĤF . In one direction, this is accom-
plished by the following Gysin sequence:

Lemma 4.1 There is a long exact sequence:

−→ ĤF i(M, s) −→ HF+
i (M, s) u−→ HF+

i−2(M, s) −→ ĤF i−1(M, s)

Proof At the chain level, the map u : CF+(M, s) → CF+(M, s) is clearly a
surjection with kernel ĈF (M, s). Thus we have a short exact sequence

0 −→ ĈF ∗(M, s) −→ CF+
∗ (M, s) u−→ CF+

∗−2(M, s) −→ 0

Conversely, to go from ĤF to HF+ , we can sometimes use the following:

Lemma 4.2 There is a spectral sequence with E2 term ĤF (M, s) ⊗ Z[u−1]
which converges to HF+(M, s).

Proof We have a filtration F
s
0 ⊂ F

s
1 ⊂ . . . of CF+(M, s), where F

s
i is the

image of F s
i under the quotient map. The quotient F s

i+1/F
s
i
∼= ĈF (M, s), and

the usual arguments show that the first differential is just the differential in
ĈF .

4.2 Conjugation symmetry and the antistable complex

It is well known that there is a conjugation symmetry

HF±(K, sk) ∼= HF±(K, s−k).

In our case, this symmetry is explicitly realized on the chain level by the map ι
described in section 3.2. To see this, we observe that there is an exact symmetry
between the interior and exterior regions of our Heegard diagram.
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Lemma 4.3 There is an involution j : Σ2 → Σ2 which preserves the αi and
the βi . j reverses the interior and exterior regions, and j(xi) = xp+1−i .

Proof We begin by defining j on the punctured S2 of our usual diagram. The
circle β1 divides S2−4D2 into the interior and exterior regions, each of which is
homeomorphic to the punctured disk of Figures 6 and 3. To obtain S2−4D2 , we
identify 2 copies of this disk along their boundary by an orientation reversing
diffeomorphism which sends the point ai to aq−i . Let j be the map which
interchanges the two copies. Since i → q − i is an involution, j respects the
gluing, and thus defines an orientation preserving involution of S2 − 4D2 . It is
easy to see that j preserves α1, α2 and β1 , and it would preserve β2 if there we
no spiral. We solve this problem by pushing the spiral onto the adjacent tube,
and extend j to Σ2 by an orientation preserving involution which switches the
ends of the tubes and is chosen to preserve the spiral. Since j reverses the ends
of α1 in S2 − 4D2 , it must send xi to xp+1−i .

It follows that ι induces an isomorphism CF±(K, sk) ∼= CF±(K, s−k). (Note,
however, that we have made different choices of complex structure, etc. on the
two sides of the equation. Since we are mostly interested in the homology, this
will not be an issue.) When k � 0, the complex CF±(K, sk) is independent
of k , and we refer to it as the antistable complex CF±a (K) of K . It is obvious
from the discussion above that HF±a (K) ∼= HF±s(K).

4.3 The homology of the stable complex

We need one more result before we can work out HF+(Kn):

Proposition 4.1 The homology of ĈF s(K) is a single copy of Z with the
same grading as x1 .

At first glance, this seems like a very modest statement. In fact, it follows
easily from the general results of [7] that the homology of the stable complex
must be Z, so only real content of the proposition is to tell us the grading
of the generator. Nonetheless, this result is a key step in the calculation. In
particular, it is the only place at which the differentials make an appearance.

As is usual with Floer homology, the proof of Proposition 4.1 should be thought
of in terms of Morse theory. For ĤF , the difference in the value of the “Morse
function” between two critical points is given by the area of the Whitney disk
joining them, or equivalently by the area of the associated domain in Σ2 .
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Consider the generators x2i and x2i+1 in ĈF s(K). By Proposition 3.3, we
know that there is an interior differential, which goes either from x2i to x2i+1

or from x2i+1 to x2i . To avoid repeatedly stating both possibilities, we intro-
duce alternate names x̂2i and x̂2i+1 for x2i and x2i+1 , arranged so that the
differential is always from x̂2i to x̂2i+1 .

Suppose we choose the metric on Σ2 so that the interior region is very thin,and
thus that the drop in the value of the “Morse function” between x̂2i and x̂2i+1

is quite small. Now if we were really doing Morse theory, the logical conclusion
would be that x̂2i and x̂2i+1 are a pair of critical points created by some small
perturbation, and we should just cancel them. If we could do this to all the
pairs, we would be left with nothing but x1 , and the result would be obvious.
To prove proposition 4.1, we need to translate this Morse-theoretic intuition
over to the formal setup of ĤF .

The first thing to observe is that canceling critical points is not specific to
Morse functions: we can do it in any chain complex. More precisely, we have
the following lemma.

Lemma 4.4 Suppose (C∗, d) is a chain complex with Ci freely generated by
x1, x2, . . . xji and Ci−1 freely generated by y1, y2, . . . yji−1 . Denote the yj th
component of d(xk) by d(xk, yj). Then if d(x1, y1) = 1, (C∗, d) is chain ho-
motopy equivalent to a new complex (C∗, d). The generators of C

∗
are the

generators of C∗ , but with x1 and y1 omitted, and d agrees with d except on

C
i
, where we have

d(xi) = d(xi) + d(xi, y1)d(x1)

This is most likely a folk theorem. A detailed proof may be found in Lemmas
3.7–3.9 of [2].

To prove the proposition, we want to apply this lemma repeatedly to ĈF s(K).
To do so, we need to show that we still have d(x̂2i, x̂2i+1) = ±1 in the new
complex. This follows from the fact that we have a “Morse function.”

Suppose we have chosen a metric g and a basepoint zk on Σ2 . Then for
any i and j , there is a unique class φij ∈ π2(x̂i, x̂j) whose domain misses the
basepoint. Since

D(φik) = D(φij) +D(φjk),

we can choose a function A : {x̂i} → R with A(x̂i)−A(x̂j) equal to the signed
area of D(φij). Holomorphic disks always have positive domains, so d(x̂i, x̂j) = 0
unless A(x̂i) > A(x̂j).
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Lemma 4.5 For an appropriate choice of metric on Σ2 the intervals

Ij = [A(x̂2j+1), A(x̂2j)]

are disjoint.

Proof Since we are working with the stable complex, our basepoint is in the
outer part of the spiral. We think of the surface Σ2 as divided into components
by the αi and βi and vary the area of each component. Choose the area of the
interior region and the spiral to be some very small number ε. Thus the length
of the interval Ij is less than ε. If we choose tj ∈ Ij , it suffices to show that
we can vary the areas of the exterior components so none of the tj are within
2ε of each other.

To do this, we consider the exterior region, which is divided into (p + 1)/2
components by α1 . We label these components Ci (starting with the one
nearest to the spiral), and take the area of Ci to be M + ηi − ηi−1 , where
M � ηi � ε (except for η0 = η(p+1)/2 = 0.) Now the domain of φ2k

2k−1 is the
complement of the domain of an exterior differential, so the area of D(φ2k

2k−1)
is a constant plus or minus ηjk for some jk which is uniquely associated to k .
Thus if we vary a single ηj while holding the other ηi fixed, we vary one of the
tk− tk+1 by ±ηj while holding the other such differences fixed. By varying first
the difference t2− t1 , then the difference t3− t2 , and so forth, we can make sure
all the ti differ by more than ε. (This method also shows that we can assume
A(x1) is not in any of the Ij .)

Proof of Proposition 4.1 We start with the complex ĈF s(K), which we
label (C∗0 , d0). By Lemma 4.4, we can cancel x̂2 and x̂3 to obtain a new
complex (C∗1 , d1). We claim that we still have d1(x̂2i, x̂2i+1) = ±1 for i > 1.
Clearly, it suffices to show that either d0(x̂2i, x̂3) = 0 or d0(x̂2, x̂2i+1) = 0. But
since d0(x, y) = 0 if A(y) > A(x), this follows from the fact that the intervals
I1 and Ii are disjoint.

Moreover, we claim that we still have d1(x, y) = 0 if A(y) > A(x). To see this,
suppose the contrary. Then since d0(x, y) = 0, we must have d0(x, x̂3) 6= 0 6=
d0(x̂2, y), so A(x) > A(x̂3). In fact A(x) > A(x̂2), since the intervals Ij are all
disjoint. Similarly, we have A(x̂3) > A(y), so

A(x) > A(x̂2) > A(x̂3) > A(y)

which contradicts our assumption that A(y) > A(x).

To finish the proof, we simply repeat this process, cancelling x̂4 and x̂5 to
obtain a complex C∗2 , and so on until we reach C∗(p−1)/2 , which has x1 as its
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only generator. Since all the C∗i are chain homotopy equivalent, the result
follows.

Corollary 4.3 HF+
s (K) ∼= Z[u−1], where the homology class 1 ∈ Z[u−1] has

the same grading as [x1, 0] ∈ CF+
s (K).

Proof Follows immediately from the spectral sequence of Lemma 4.2.

Corollary 4.4 HF−s (K) ∼= Z[u], where the homology class 1 has the same
grading as [x1,−1] ∈ CF−s (K).

4.4 Computing HF+(K)

To prove Theorem 1, we consider ĈF s(K) and CF+
s (K) as subsets of CF∞(K).

Throughout this section, we describe elements of CF∞(K) using the bracket
notation with respect to a stable Spinc structure. With this convention, the
generators of ĈF s(K) are the points [xi, 0], and the generators of CF+

s (K)
are the points [xi, j] with j ≥ 0. We choose an absolute grading on CF∞(K)
which agrees with εx on ĈF s(K). From Lemma 3.6, we see that the grading
of [x1, 0] is σ′ .

Let us now put CF+(K, sk) into the picture as well. Recall that to get the
generators of ĈF (K, sk), we reflect the generators of ĈF s(K) at level k . We
view the former complex as a subset of CF∞(K), positioned so that the unre-
flected generators (those with εx ≤ k) agree with the corresponding generators
of ĈF s(K). The generators of CF+(K, sk) correspond to those generators
of CF∞(K) lying on or above ĈF (K, sk). In particular, they include all the
generators of CF+

s (K). This situation is illustrated in Figure 10.

Figure 10: The generators of CF+(K(13, 5), s0). The subcomplex C0 lies below the
line, and the quotient complex CF+

s is above it.
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Let Ck = CF+(K, sk) ∩ CF−s (K). Then Ck is a subcomplex of CF+(K, sk),
since CF−s (K) is a subcomplex of CF∞(K). Moreover, if we discard the
generators of Ck from CF+(K, sk), we are left with CF+

s (K). Thus we have
a short exact sequence of chain complexes

0 −−−→ Ck −−−→ CF+(K, sk) −−−→ CF+
s (K) −−−→ 0.

We will compute the homology of Ck by comparing it to CF−s (K) and CF+
a (K).

Since all of the indices in the argument can get a bit confusing, we first describe
a specific example. Suppose we wish to compute HF+(K(13, 5), s0), so the sit-
uation is as shown in Figure 10. C0 has generators in three rows, with gradings
0, −1, and −2. As shown in Figure 11a, the upper two rows are identical to
the top two rows of the complex CF−s (K). Thus to compute the homology in
the top row, it suffices to know HF−s (K). Similarly the bottom two rows of
Ck are the same as the bottom two rows of CF+

a (K), and we can compute the
homology of the bottom row of Ck in terms of HF+

a (K).

We now consider the general situation.

Lemma 4.6 The set of generators of Ck is {[xi, j] | 0 > j ≥ k − εx(xi)}.

Proof We get the complex ĈF (K, sk) by reflecting the complex for ĈF s(K)
at level k . Thus the generators of ĈF (K, sk) ⊂ CF∞(K) are of the form

[xi, k − εx(xi)] if k ≤ εx(xi)
[xi, 0] if k ≥ εx(xi)

Since Ck is generated by those [xi, j] ∈ CF+(K, sk) with j < 0, the result
follows.

Visually, we can restate this result as follows: to get the complex Ck , start
with the complex CF−s (K), truncate everything below the horizontal line with
grading k − 1, and then add in the reflection about this line, as illustrated in
Figure 11. Indeed, truncating at grading k − 1 gives all the points of the form
[xi, j] with j < 0 and

gr([xi, j]) = εx(xi) + 2j ≥ k − 1

or equivalently

0 > 2j ≥ k − 1− εx(xi).

Adding in the reflection gives us all the points [xi, j] with

0 > 2j ≥ k − 1− εx(xi)− (−2− [k − 1− εx(xi)]) = 2(k − εx(xi)).
But this is precisely the condition of the lemma.
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b)

a)

Figure 11: To obtain C0 for K(13, 5), we (a) truncate CF−s at grading −1 and (b)
take the union of this set and its reflection.

Corollary 4.5 Hi(Ck) ∼= HF−s i(K) for i ≥ k .

Proof For i in this range we are in the top half of Ck , where the complexes
Ck and CF−s (K) are identical.

On the other hand, the reflected half of Ck is a subcomplex of the antistable
complex. Indeed, truncating ĈF s(K) above level k + 1 and then reflecting is
the same as reflecting ĈF s(K) to obtain ĈF a(K) and then truncating below
level −k − 1.

Corollary 4.6 Hi(Ck) ∼= HF+
s i−2k(K) for i ≤ k − 2.

Proof For i in this range Ck and CF+
a (K) are the same, so

Hi(Ck) ∼= HF+
a i−2k(K) ∼= HF+

s i−2k(K)

by the charge conjugation symmetry of section 4.2.

To sum up, we now know Hi(Ck) for every i 6= k − 1. To get Hk−1(Ck) we
need an easy result from algebra, whose proof is left to the reader:

Lemma 4.7 Suppose

A
f−−−→ B

g−−−→ C ⊕D
is a sequence of free abelian groups with gf = 0 and ker g/ im f free. If g′ =
πg : B → C is the obvious map, then ker g′/ im f is free as well.
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In particular, if we take A = CF−s k(K) = (Ck)k , B = CF−s k−1(K) = (Ck)k−1 ,
and C ⊕ D = (Ck)k−2 ⊕ D = CF−s k−2(K), we see that Hk−1(Ck) is a free
group. To compute its rank, we use the Euler characteristic.

Lemma 4.8

χ(Ck) = (−1)σ
′∑
i>k

(i− k)ak = (−1)σ
′
uk

Proof Write

Ck =
⋃
j<0

Dk,j

where Dk,j contains those elements of Ck of the form [xi, j]. From Lemma 4.6,
we see that Dk,j is isomorphic to the complex ĈF s(K) truncated at level k− j
and translated down by 2j . By Proposition 3.5, it contributes

(−1)σ
′ ∑
i≥k−j

aj

to the Euler characteristic. Summing up these contributions for all j < 0 gives
the desired result.

Putting these facts together, we obtain the following:

Proposition 4.2 For k ≥ 0, there is an isomorphism of Z[u] modules

H∗(Ck) ∼= Qk ⊕ Vk
where Qk and Vk are as in the statement of Theorem 1, except that if σ ≥ 0
the grading of u−hk+1 ∈ Vk is σ′ − 2.

Proof Suppose σ ≥ 0. Then for i < k− 1 we have Hi(Ck) ∼= HF+
s i−2k(K) =

0. Indeed, the latter group vanishes whenever i− 2k < σ′ , and the assumption
k ≥ 0 implies i − 2k < 0. Similarly, Corollary 4.5 implies that for i > k − 1,
Hi(Ck) = Z for i = σ′ − 2, σ′ − 4, and so on down to i = k or i = k + 1
(depending on the parity of σ′ ) and that the other homology groups are trivial.

To get Hk−1(Ck), we recall that it is free (by Lemma 4.7) and use Lemma 4.8
to compute its rank. We find that Hk−1(Ck) = Z|bk| if k ≡ σ′ mod 2 and
Hk−1(Ck) = Z|bk|+1 otherwise. This proves the statement at the level of groups.

To check it at the level of modules, we note that the u action in the top half
of Ck clearly agrees with the u action on HF−s (K). In other words, it sends
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the generator in dimension σ′ − 2i to the generator in dimension σ′ − 2(i+ 1).
In view of the structure of H∗(Ck), it now suffices to show that if k < σ′ and
k−1 ≡ σ′ mod 2, then u takes the generator of Hk+1(Ck) to a nonzero element
of Hk−1(Ck). But this follows from the fact that the u action commutes with
the inclusion HF−s i(K) ↪→ Hi(Ck) for i ≥ k − 1.

This proves the proposition in the case σ ≥ 0. When σ ≤ 0 the roles of the
bottom and top halves are reversed, but the proof is otherwise the same.

To prove Theorem 1, we use the long exact sequence:

· · · Hi(Ck) −−−→ HF+
i(K, sk) π∗−−−→ HF+

s i(K) −−−→ Hi−1(Ck) · · ·
We claim that the map π∗ is always surjective. This is clearly true when i is
very large. But this implies the claim for all i, since HF+

s ∗(K) ∼= Z[u−1] and
the maps in the long exact sequence respect the u action.

It is now a simple matter to check that the theorem holds at the level of groups.
To verify the module structure, we consider the cases σ(K) ≥ 0 and σ(K) ≤ 0
separately.

Case 1 σ(K) ≥ 0: From the short exact sequence of Z[u] modules

0 −−−→ H∗(Ck) −−−→ HF+
∗ (K, sk) −−−→ HF+

s ∗(K) −−−→ 0

we see that HF+
∗ (K, sk) must have a summand Z[u−1] which maps onto

HF+
s ∗(K). We claim that the kernel of this map is isomorphic to Vk . Indeed,

the kernel can hardly be larger than Vk , since there is no such module available
in H∗(Ck). To get other direction, we observe that CF+

i (K, sk) is identical to
CF∞i (K) for i ≥ k− 1. Indeed, the largest j for which [xi, j] 6∈ CF+(K, sk) is
−1 if k ≥ εx(xi) and k−εx(xi)−1 if k ≤ εx(xi). In both cases, gr[xi, j] < k−1.
It follows HF+

∗ (K, sk) has a Z[u−1] summand which extends at least as far
down in the grading as Vk . Together with the known structure of CF+

s (K),
this implies that the kernel is at least as big as Vk , thus proving the claim.
It is now easy to see that to see that the Z[u] module structure must be as
described.

Case 2 σ(K) ≤ 0: As in the previous case, HF+
∗ (K, sk) must have a sum-

mand Z[u−1] which maps onto HF+
s ∗(K). This time, however, it is easy to

show that this map has no kernel. Indeed, since σ ≤ 0 and k ≥ 0, there are
no elements in H∗(Ck) with grading less than that of 1 ∈ HF+

s ∗(K) ∼= Z[u−1].
Thus the short exact sequence splits as a sequence of Z[u] modules.
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This finishes the proof of Theorem 1. Corollary 4.1 is an immediate consequence
of the theorem and Lemma 4.1, while Corollary 4.2 follows from the discussion
of HF red in section 4 of [6].

5 Using the exact triangle

In this section, we describe how to calculate HF+(Kn) for any n. The results
may be summarized as follows:

Proposition 5.1 For k 6= 0, there is an isomorphism of Z[u] modules

HF+(K0, sk) ∼= Qk ⊕ Vk.

Similarly, if we use the twisted coefficients of [7] we have

HF+(K0, s0) ∼= (Q0 ⊕ V0)⊗ Z[T, T−1]⊕ Z[u−1].

Proposition 5.2 For n ∈ Z+ and σ(K) ≤ 0, we have

HF+(Kn, sk) ∼= Z[u−1]⊕
⊕
i≡k(n)

Qi
⊕
i≡k(n)

Vi

while if σ(K) ≥ 0

HF+(Kn, sk) ∼= Z[u−1]⊕
⊕
i≡k(n)

Qi
⊕

i0 6=i≡k(n)

Vi

where i0 is the representative of k mod n with the smallest absolute value.

Remarks

(1) The groups Qk and Vk are described in the statement of Theorem 1. By
convention, Q−k = Qk and V−k = Vk .

(2) For the moment, we consider all these groups to be Z/2 graded. The
absolute grading of [8] can easily be worked out from the exact triangle
as well.

(3) We can use the same methods as in the large n case to compute the
groups ĤF (Kn, sk) and HF−(Kn, sk). To get HF+(K−n, sk) we use
the isomorphism

HF+(K−n, sk) ∼= (HF−(Kn
, sk))∗.
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(4) These results are summarized in the following rule of thumb: the Floer
homology of the knot K behaves like the sum of a fixed group Q and the
Floer homology of the (2, n) torus knot of the same signature. Q does
not interact with HF+(S3) in the exact triangle.

To prove these two propositions, we use the exact triangle of [7]. Starting with
our knowledge of HF+(Kn, sk) for n� 0, we use the exact triangle to calculate
HF+(K0, sk). Then we apply the triangle again to get HF+(Kn) for any n.

5.1 Review of the exact triangle

The exact triangle — first conceived by Floer and now widened in scope by
Ozsváth and Szabó — has numerous incarnations. The one we want is described
in Theorem 10.19 of [7].

Theorem 5.1 For n ∈ Z+ , there are exact triangles

HF+(S3)

vvll
l
l
l
l
l
l
l
l
l
l
l

⊕
i≡k(n)HF

+(K0, si) // HF+(Kn, sk)

ggO
O
O
O
O
O
O
O
O
O
O
O

and

HF+(S3)

''P
P
P
P
P
P
P
P
P
P
P
P

⊕
i≡k(n)HF

+(K0, si)

66
l
l
l
l
l
l
l
l
l
l
l
l
l

HF+(K−n, sk).oo

All the maps in these triangles respect the Z[u] module structure.

Remarks

(1) Note that for n ≥ 2g − 1, the adjunction inequality implies that at most
one term in the direct sum is nontrivial.

(2) Our notation for Spinc structures is as follows. In the language of section
3.1, H2(K0) is generated by A∗1 (the Poincare dual of A1 ). On K0 ,
we let sk be the Spinc structure whose determinant line bundle has first
Chern class 2kA∗1 . We have to check that for n� 0, the Spinc structure
sk on K0 really does induce sk on Kn . To see this, note that on Kn ,
the difference sk+1−sk = 2A∗1 . It follows that there is a constant m such
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that the Spinc structure sk on K0 induces sk+m on Kn . By adjunction,
HF+(K0, sk) is nontrivial only when −g < k < g . On the other hand,
we know that HF+(K, sk) 6= HF+(S3) precisely for −g < k < g , so we
must have m = 0. (This proves that sk and s−k are conjugate Spinc

structures on Kn , as mentioned in section 4.2.)

(3) To use the second exact triangle, we need the following lemma.

Lemma 5.1 For n� 0,

HF+(K−n, sk) ∼=
{

Z[u−1]⊕Qk ⊕ Vk if σ ≥ 0
Z[u−1]⊕Qk if σ ≤ 0

Proof Observe that

HF+(K−n, sk) ∼= HF−(−K−n, sk) ∼= (HF−(Kn
, sk))∗

where K is the mirror image of K . (In the last equality, we have used the fact
that HF−(Kn

, sk) is free over Z.) Since K and K have the same Alexander
polynomials and σ(K) = −σ(K), the lemma follows from Corollary 4.2.

5.2 Proof of Proposition 5.1

We use the exact triangle for n � 0. Consider the map h : HF+(Kn, sk) →
HF+(S3) ∼= Z[u−1]. For k 6= 0, HF+(K0, sk) is finitely generated, so h must
be onto when the grading is large. The only way this can happen is if the
Z[u−1] summand in HF+(Kn, sk) maps onto HF+(S3). In this case, ker h is
a torsion module R = Z[u−1]/u−m plus the other summands in HF+(Kn, sk).

Suppose that σ(K) ≥ 0, so that HF+(Kn, sk) ∼= Z[u−1]⊕Qk . Then

HF+(K0, sk) ∼= Qk ⊕R.

But by Theorem 9.1 of [7] we have χ(HF+(K0, sk)) = uk = χ(H∗(Ck)). It
follows that we must have R ∼= Vk . Similarly, if σ(K) ≤ 0, we see that
HF+(K0, sk) ∼= Qk ⊕ Vk ⊕ R. In this case, the Euler characteristic shows
that the group R must be trivial.

The case k = 0 requires some special attention, since HF+(K0, s0) is not
finitely generated. To get around this problem, we use the exact triangle for
twisted coefficients (Theorem 10.21 of [7]). In this case, we have a map

h : HF+(Kn, s0)[T, T−1]→ HF+(S3)[T, T−1] ∼= Z[u−1][T, T−1].
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We consider the action of h on the Z[u−1] summand of HF+(K, s0). Clearly
h(u−k) is nonzero — otherwise HF+(K0, s0) would contain a copy of
Z[u−1][T, T−1], which it does not. Thus we can write

h(u−k) = F (T )u−k+m + (lower order terms)

for some m ≥ 0. We claim that after a change of basis in HF+(S3)[T, T−1], we
have F (T ) = T − 1. This follows from the calculation of HF∞ in [7]. Indeed,
the fact that HF∞(K0) ∼= Z[u, u−1] implies that (after a change of basis) F is
a polynomial of degree 1. On the other hand, to get h in the untwisted triangle,
we substitute T = 1 in the twisted map. Since HF∞(K0) ∼= H∗(T 2)⊗Z[u, u−1],
we must have F (1) = 0.

Now that we understand the action of h, we see that

HF+(K0, s0) ∼= (Q0 ⊕R)⊗ Z[T, T−1]⊕ Z[u−1]

where R is the torsion module Z[u−1]/u−m . Although it is not explicitly stated
in [7], it is not difficult to follow through the proof of Theorem 9.1 there and
see that it applies to HF+(K0, s0) as well, so long as we take the Euler char-
acteristic of HF+(K0, s0) as a Z[T, T−1] module. We can now argue as in the
case k 6= 0.

5.3 Proof of Proposition 5.2

To compute HF+(Kn, sk), we use the exact triangle

HF+(S3)

''P
P
P
P
P
P
P
P
P
P
P
P

⊕
i≡k(n)HF

+(K0, si)

⊕gi
66
l
l
l
l
l
l
l
l
l
l
l
l
l

HF+(K−n, sk).oo

The key point is that the maps gi : HF+(K0, si)→ HF+(S3) are independent
of n. Indeed gi is simply the map induced by the standard cobordism between
S3 and K0 .

Lemma 5.2 For i 6= 0, the map gi is trivial if σ ≥ 0. If σ ≤ 0, gi maps the
summand Vi onto the span of {1, u−1, u−2, . . . , u−hi+1} in HF+(S3). If we use
twisted coefficients, these statements are true for i = 0 as well. With untwisted
coefficients, g0 maps HF+(K0, s0) onto HF+(S3) with kernel Q0⊕V0⊕Z[u−1].
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Proof Suppose i 6= 0 and take n � 0. The usual argument shows that
HF+(S3) must map onto the Z[u−1] summand in HF+(K−n, sk), with a Z[u]
torsion module R as kernel. For σ ≥ 0, we have HF+(K−n, sk) ∼= Qk ⊕ Vk ⊕
Z[u−1] by Lemma 5.1. On the other hand, we know HF+(K0, si) ∼= Qk⊕Vk , so
R must be trivial. Likewise, if σ ≤ 0, we know HF+(K−n, sk) ∼= Qk ⊕Z[u−1],
so we must have R ∼= Vk . For i = 0, the same arguments apply if we use
twisted coefficients.

The statement for untwisted coefficients is just a rephrasing of the fact that the
map HF+(S3)→ HF+(K−n, s0) is trivial.

It is now elementary to compute HF+(K−n, sk). For example, if σ ≥ 0 and
k 6≡ 0 mod n, all the gi vanish, and we have

HF+(K−n, sk) ∼= Z[u−1]⊕
⊕
i≡k(n)

Qi
⊕
i≡k(n)

Vi.

On the other hand, when σ ≤ 0, the image of ⊕gi is isomorphic to Vk0 , where
k0 is the representative of k mod n with the smallest absolute value. Thus

HF+(K−n, sk) ∼= Z[u−1]⊕
⊕
i≡k(n)

Qi
⊕

k0 6=i≡k(n)

Vi.

We leave it to the reader to check that these results also hold in the case k ≡ 0
mod n.

Finally, to get Proposition 5.2, we use the isomorphism

HF+(K−n, sk) ∼= (HF−(Kn
, sk))∗

together with the usual exact sequence relating HF+ and HF− .

5.4 Frøyshov’s Invariant

We conclude by justifying the statement about Frøyshov’s invariant given in
the introduction. In [8], Ozsváth and Szabó define an invariant d which is the
analogue (up to a factor of 2) of the h-invariant in their theory.

To compute d(Kn), we use the fact that the degree of the map h : HF+(S3)→
HF+(K−n, sk) is determined by purely homological information, namely the
values of n and k . In particular, for n = 1, the degree of h is 0.

Consider the exact triangle for K−1 . If we use twisted coefficients, the facts
stated above imply that d(K−1) = 2 dim kerh. From Lemma 5.2, we know that

dim ker h =

{
0 if σ ≥ 0
|V0| = d|σ′|/2e if σ ≤ 0.
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This gives us d(K−1). To get d(K1), we use the easily proved fact that d(−Y ) =
−d(Y ) and the identification K1 = −K−1 .

6 Other Knots

We conclude by discussing the extent to which the methods used in this paper
extend to knots with more than two bridges. Of course there is no analogue of
Schubert’s theorem for these knots, and thus no explicit general form for their
Heegard splitting. On the other hand, given a particular knot, it is straightfor-
ward to find a Heegard splitting of its complement. As in the case of two-bridge
knots, it is convenient to consider n-surgery on K for n � 0. In this case,
we still have a stable complex ĈF s(K), with an Alexander grading which can
be computed by Fox calculus. As in section 3.3, it is straightforward to deter-
mine ĈF (K, sk) from ĈF s(K). In addition, we should still be able to run the
argument of section 4.3 to compute the grading of the generator of ĈF s .

The calculation of section 4.4 fails, however, because for a general knot the
Alexander grading on ĈF s(K) does not agree with the Maslov grading. (For
example, it is easy to see that the two differ for non two-bridge torus knots.)
We refer to those knots for which the two gradings coincide as perfect knots. We
expect that the methods of this paper will extend to perfect knots in general,
although it is more difficult to compute HF+

a (K). We hope to discuss the issues
described above, as well as some other classes of perfect knots, in a future paper.
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