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Abstract The real cohomology of the space of imbeddings of S1 into Rn ,
n > 3, is studied by using configuration space integrals. Nontrivial classes
are explicitly constructed. As a by-product, we prove the nontriviality of
certain cycles of imbeddings obtained by blowing up transversal double
points in immersions. These cohomology classes generalize in a nontrivial
way the Vassiliev knot invariants. Other nontrivial classes are constructed
by considering the restriction of classes defined on the corresponding spaces
of immersions.
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1 Introduction

In this paper we study de Rham cohomology classes of the space Imb (S1,Rn)
of smooth imbeddings of S1 into Rn , n > 3, using as main tools configuration-
space integrals and graph cohomology.

Before describing the setting of this paper we give a brief description of the
main results obtained.

1.1 Main results

We consider two complexes (Dk,mo , δo) and (Dk,me , δe) generated by some deco-
rated graphs. These graph complexes are bigraded by two integers m, k called
respectively the degree and the order. The order is minus the Euler character-
istic of the graph, while the degree measures the deviation of the graph from
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being trivalent. The coboundary operators increase the degree by one and do
not change the order.

We prove in subsection 6.1 the following:

Theorem 1.1 For every k ∈ N, there exist chain maps from graph complexes
to de Rham complexes

Dk,mo → Ω(n−3)k+m( Imb (S1,Rn)) for n odd (1.1)

Dk,me → Ω(n−3)k+m( Imb (S1,Rn)) for n even (1.2)

that induce injective maps in cohomology when m = 0.

From the combinatorial structure of the graph complexes, one immediately
deduces (see again subsection 6.1) the following:

Corollary 1.2 For any n > 3 and for any positive integer k0 , there are
nontrivial cohomology classes on Imb (S1,Rn) of degree greater than k0 .

All the differential forms appearing in the above Theorem turn out to be equiv-
ariant w.r.t. the action of the group Diff +(S1) of orientation preserving diffeo-
morphisms of the circle.

The classes of Theorem 1.1 can be seen as an extension to higher dimensions of
Vassiliev knot invariants. One of the main ingredients of Vassiliev’s approach is
to consider immersions which are imbeddings but for a finite number (say k) of
transversal double points (let us call them “special immersions”). The ways of
pushing off a double point form, up to homotopy, an (n−3)-dimensional sphere
(viz., one must choose a normalized vector transverse to the plane spanned
by the tangent vectors of the intersecting strands at the double point). So
every special immersion with k double points gives rise to a k(n − 3)-cycle in
Imb (S1,Rn). Our construction allows us to prove that infinitely many of these
cycles are nontrivial.

When we extend the above construction to imbeddings with framing, namely
when we consider pairs (K,w) consisting of an imbedding K : S1 → Rn and
a section w of the pulled-back bundle K∗SO(Rn), then the situation becomes
simpler and we prove in subsection 7.4 the following:

Theorem 1.3 All cycles of framed imbeddings of S1 into R2s+1 determined
by framed special immersions are nontrivial.
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The restriction of cohomology classes on the space of immersions Imm (S1,Rn)
to the space of imbeddings Imb (S1,Rn) is also discussed. Combining Theo-
rems 8.5, Proposition 8.6 and Corollary 8.7 we obtain:

Theorem 1.4 When n is odd, the inclusion Imb (S1,Rn) ↪→ Imm (S1,Rn)
induces the zero map in cohomology. When n is even, the inclusion map
Imb (S1,Rn) ↪→ Imm (S1,Rn) is nontrivial in cohomology.

Contrary to what happens in Thm. 1.1, not all the differential forms of Thm. 1.4
are Diff +(S1)-equivariant. However, the equivariant ones turn out to be in the
image of certain graphs (of degree different from zero) through the map (1.2).
Thus, Thm. 1.4 provides an extension of the last statement of Thm. 1.1 in the
case m 6= 0.

1.2 The setting

The configuration spaces C0
q (M) of a manifold M are simply the Cartesian

products M q minus all diagonals. Configuration spaces are naturally associ-
ated to imbeddings. Indeed, if f : N → M is an imbedding, it defines maps
C0
q (f) : C0

q (N)→ C0
q (M) for every q ≥ 0.

This simple, natural relation has an application to knot invariants, i.e., to the
study of the zeroth cohomology of the space of imbeddings of S1 into R3 . We
refer to Bott and Taubes’s [9] construction inspired from the perturbative ex-
pansion of Chern–Simons theory [37]. The “physical” origin of this construction
should not be too surprising; for, as a matter of fact, a “correlation function”
in physics (i.e., the inverse of some differential operator) is usually well-defined
only at non-coincident points—and this also leads naturally to configuration
spaces.

The gist of their construction is as follows: One considers differential forms
on C0

q (R3) given by products of the rotational-invariant representatives of the
two-dimensional generators in cohomology (“tautological forms”); next one in-
tegrates these forms on cycles defined by constraining some of the q points to lie
in the image of the given imbedding K ; finally, one wants to prove that certain
linear combinations of these integrals are actually invariant under isotopies of
K .

The big technical problem in Bott and Taubes’s construction (as well as in
other related constructions [3, 26, 7, 8] for 3-manifold invariants) is the con-
vergence of the above integrals, a nontrivial fact since the tautological forms
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are not compactly supported. An elegant solution—which also lies at the core
of the subsequent construction of invariants by determining the suitable linear
combinations of integrals—relies on a compactification of configuration spaces
on which the tautological forms extend as smooth forms. This is the Fulton–
MacPherson [20] compactification, but in the differential-geometric version later
given by Axelrod and Singer [3]. What is actually needed is still a further im-
provement; viz., a compactification of the configuration spaces of R3 with some
points lying on the knot. This is done in [9], and indeed in the more general
case of the configuration space of a manifold M with some points lying on the
image of a given imbedding of another manifold N (assuming N and M to
be compact). The last result allows one to approach more general imbedding
problems, as is done in the present work. We finally observe that, in the 3-
dimensional case, only knot invariants have been constructed this way (and no
higher-degree cohomology classes on the space of imbeddings) and, moreover,
that these invariants are proved to exist and to be nontrivial, but are obtained
modulo corrections with unknown coefficients.

Let us now turn to the case of imbeddings of S1 into Rn with n > 3. Here
“tautological forms” are representatives of the (n−1)-dimensional cohomology
generators of configuration spaces of Rn . We integrate products of tautological
forms on cycles in configuration spaces constraining some of the points to lie
on the imbedding, thus getting differential forms on Imb (S1,Rn). We con-
struct closed linear combinations of these forms by using graph cohomology as
explained in the following.

Graphs, with edges corresponding to tautological forms, are a simple way of
keeping track of all configuration-space integrals one may consider. In order to
get a complete description, i.e. without sign ambiguities, one actually has to
decorate the graphs in a certain way (in fact, two different ways corresponding
to n even or odd). At this point, one can define a grading and a coboundary
operator on the vector space generated by all decorated graphs in such a way
that the assignment to each graph of the corresponding configuration-space in-
tegral defines a (degree shifting) chain map from the graph complex to de Rham
complex of Imb (S1,Rn), see Theorem 4.4. We give an explicit definition of
graph cohomologies, along the lines originally proposed by Kontsevich [26], and
describe in details the chain maps and so the relation to the problem of imbed-
dings. It is at this point that it is crucial to have n > 3, as for n = 3 the map
we construct might fail to be a chain map. As was observed by the referee, this
chain map is also a morphism of differential graded commutative algebras, with
the multiplication on the graphs defined as (a graded version of) the shuffle
product. We plan to return on this and to discuss other algebraic structures
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on the graph complex in [12]. Finally, we prove that the induced map in coho-
mology is injective in degree zero. This is done by pairing the corresponding
cohomology classes on Imb (S1,Rn) to the cycles arising from special immer-
sions described before. Observe that, for n > 3, the connected components of
the space of special immersions are in one-to-one correspondence with chord di-
agrams (i.e., graphs consisting of a distinguished circle with chords), each chord
representing a transversal double point. We prove that the pairing of a cycle of
imbeddings determined by a special immersion with a differential form coming
from a graph cocycle containing the corresponding chord diagram is non zero,
see Theorem 6.4. Moreover, we prove that every graph cocycle of degree zero
contains a chord diagram, see Proposition 5.1.

Consider now the space Imbf (S1,Rn) of framed imbeddings. Since we have
a projection to Imb (S1,Rn) (forgetting the framing), we can pull back all
cohomology classes constructed before. Given a framed special immersion, we
can then generate a cycle of framed imbeddings and exactly as above prove
that cohomology classes corresponding to graph cocycles in degree zero are
nontrivial. In odd dimensions, we can extend our construction and produce
new classes (corresponding to new classes in a modified graph cohomology),
and again prove nontriviality in degree zero. But at this point, we can also
use the same technique to prove that all cycles determined by framed special
immersions are nontrivial, as stated in the Theorem at the beginning.

A problem which is strictly related to the subject of this paper is the study of
the cohomology of the spaces of long knots, i.e., the spaces of imbeddings of the
real line into Euclidean spaces with fixed behavior at infinity. This problem has
been already addressed by various authors [22, 30, 33, 36]. We comment here
that the methods developed in this paper are easily generalized in that direction.
In particular one can prove [34] that our graph complexes are quasi-isomorphic
to the first term of the spectral sequences defined by Vassiliev [33, 36] and Sinha
[30], and that Theorem 1.1 implies the convergence of these spectral sequences
along the diagonal.

We conclude with some remarks on the relation between the configuration-space
techniques described above and physics. We recall that in the 3-dimensional
case, Vassiliev knot invariants appear in the perturbative expansion of expec-
tation values of traces of holonomies in Chern–Simons theory [37]. Bott and
Taubes’s construction is based on the expansion in the “covariant gauge” [23, 4],
whereas the Kontsevich integral [25, 5] is based on the expansion in the “holo-
morphic gauge” [19]. As described in [11], the same Vassiliev invariants may
also be obtained in the perturbative expansion of BF theory in 3 dimensions.
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This theory can actually be defined in any dimension, and the perturbative ex-
pansion of expectation values of traces of the generalized holonomies defined in
[14, 16] (see also [13]) are actually related to the cohomology classes of imbed-
dings described in the present paper. Moreover, the analysis of the BF theories
made in [15] suggests the possibility of connecting our results with the string
topology of Chas and Sullivan [17].

1.3 Plan of the paper

In Section 2 we define a map that assigns to each element of Hp( Imb (S1,Rn),R)
a cohomology class in Hp−k(n−3)( Immk (S1,Rn),R) where Immk (S1,Rn) de-
notes the space of immersion with exactly k transversal double points. This
map is the generalization of the map that extends knot invariants to invari-
ants of Immk (S1,R3) [35, 5]. We say then that a real cohomology class of
Imb (S1,Rn) has Vassiliev-order s if the corresponding cohomology class of
Immk (S1,Rn) is zero for k > s and non-zero for k = s.

After recalling the Bott–Taubes construction for tautological forms and config-
uration spaces in Section 3, we define in Section 4 the two complexes (Do, δo)
and (De, δe) mentioned above. We show that the configuration space integral is
a chain map from the above complexes to the de Rham complex of Imb (S1,Rn)
(where the two cases n even and n odd are kept separately).

In Section 5 we focus on trivalent graphs and construct explicitly some nontrivial
cocycles that are given by linear combinations of them.

In Section 6 we show that for n > 3 the morphisms between the complexes
(Do, δo), (De, δe) and (Ω∗( Imb (S1,Rn)), d) (n odd and, respectively, even) are
monomorphisms in cohomology when they are restricted to the subspaces of
trivalent graphs. At the end, we prove Thm. 1.1 and Cor. 1.2.

In Section 7 we consider the space of framed imbeddings Imbf (S1,Rn). We
show how to define new classes in case n is odd. Here we define a modified
graph cohomology and a new chain map, which we prove to be injective in
cohomology in degree zero. We also prove Thm. 1.3.

In Section 8 we recall the construction of the generators of H∗( Imm (S1,Rn),R)
via Chen integrals [18] and compute their restrictions to Imb (S1,Rn). We
show that this restriction is trivial if n is odd but yields nontrivial classes of
Imb (S1,Rn) if n even, thus proving Thm. 1.4.

Finally, in the Appendix we discuss some Vanishing Theorems that are needed
in order to define the morphisms between the complexes considered before. The
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main result is that, in computing the differential of an integral of tautological
forms, contributions from the so-called hidden faces are always zero.

Conventions Throughout this paper we assume n > 3, unless otherwise
stated.

We also assume that all the spaces under consideration (namely, S1 and Rn)
are oriented. In particular two imbeddings (or immersions) that are obtained
from each other by reversing the orientation of S1 will be considered as different
elements of Imb (S1,Rn) (or Imm (S1,Rn)).

We are concerned only with real cohomology groups that we will denote by
H∗( Imb (S1,Rn)) or H∗( Imm (S1,Rn)).

Finally, in the course of the paper we need to choose a unit generator of the
top cohomology of Sn . The main results of Section 8 are independent of such
choice. In the rest of this paper, however, we need to restrict ourselves to
symmetric forms (see Definition 4.3).
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2 Vassiliev classes in H∗( Imb (S1,Rn))

In this Section we propose a classification scheme for the cohomology classes in
H∗( Imb (S1,Rn)), including those that not are necessarily obtained by pullback
of classes in H∗( Imm (S1,Rn)) via the inclusion map

Imb (S1,Rn) ↪→ Imm (S1,Rn).

This scheme is a direct generalization of the scheme proposed by Vassiliev [35]
for knot invariants in R3 .
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We consider the space Immk (S1,Rn) which is defined as the submanifold of
Imm (S1,Rn) whose elements have exactly k transversal double points. More-
over we set Imm′k (S1,Rn) to be the submanifold of Immk (S1,Rn) given by
those immersions whose initial point γ(0) does not coincide with any double
point.

We enumerate all the double points of any γ ∈ Imm′k (S1,Rn) starting from
the initial point γ(0). Then we blow up, in order, all the double points in the
way described below.

Let xj = γ(tj1) = γ(tj2) be the j th double point, with tj1 < tj2 . We denote by
lj1 = Dγ(tj1) and lj2 = Dγ(tj2) the normalized tangent vectors at xj and by T j

the plane in TxjRn spanned by lj1 and lj2 with the orientation determined by
lj1 ∧ l

j
2 .

Here we assume to have chosen once and for all an orientation in Rn . Moreover,
for the rest of this section it is useful to pick up a metric on Rn as well.

Then we consider the (n− 2)-plane N j ⊂ TxjRn that is normal to T j with the
induced orientation and the space Qj of normalized vectors in N j .

The space Qjk of pairs (γ, zj) of immersions with k transversal double points
and normalized vectors in Qj can be formally described as follows. If we con-
sider the Grassmann manifold SG2,n of oriented 2-planes in Rn , then we have
smooth maps

rk,j : Imm′k (S1,Rn)→ SG2,n ≡ SO(n)/{SO(2) × SO(n− 2)}

that associate to the j -th double point the oriented plane T j .

We have an associated bundle

Q = SO(n)×{SO(2)×SO(n−2)} S
n−3 → SG2,n

whose fiber is the homogeneous space

Sn−3 = [SO(2)× SO(n− 2)]/[SO(2) × SO(n− 3)] ≡ SO(n− 2)/SO(n − 3).

The space Q can equivalently be obtained by dividing SO(n) by SO(2) ×
SO(n− 3).

The pull-back bundle Qjk ≡ r∗k,jQ is a sphere bundle with fiber Sn−3 so that
the following diagram:

Q
j
k −→ Q
↓ ↓

Imm′k (S1,Rn)
rk,j−→ SG2,n
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is commutative.

By considering in their order all the double points, we can define the map

rk : Imm′k (S1,Rn)→ (SG2,n)×k

and the bundle
Qk ≡ r∗kQ×k (2.1)

with fiber (Sn−3)×k .

Next we will define, see (2.3), a map sk : Qk → Imb (S1,Rn) that corresponds
to the blow-up of all the double points of an immersion.

Given γ ∈ Imm′k (S1,Rn) and an element of the fiber of Qik over γ , which
we represent as zj ∈ Sn−3 , we choose aj to be either 1 or 2 and define the
following loops in TxjRn :

αjaj (z
j)(t) =

{
0 if t /∈ [tjaj − ε, t

j
aj + ε],

(−1)aj+1 zj δ exp
(

1/[(t − tjaj )2 − ε2]
)

if t ∈ [tjaj − ε, t
j
aj + ε],

(2.2)
with ε, δ > 0.

If we add to the immersion γ the loop αjaj (zj), using the natural identification
Rn ≈ TxjRn , we remove the j th double point (see figure 1).

We assume, from now on, that the parameters ε and δ are chosen so small that
no new double point is created by this operation.

In this construction one of the two strands that meet in the j th double point
is “lifted” in a way parameterized by zj that belongs to the fiber over γ of the
sphere bundle Qjk . The union of all the possible lifts (for a given immersion γ
and a given double point) describes the suspension of the fiber Sn−3 , namely,
an (n − 2)-sphere Sjaj . Denoting by `jaj the straight line passing through xj

with tangent ljaj , we have the following

Proposition 2.1 The linking number between `jaj and Sjbj , bj ≡ aj + 1
mod 2, is one.

The proof is just a consequence of the orientation choices. Observe that, being
`jaj a 1-manifold, the above linking number does not depend on the order.

For any given choice of a and of the “small” parameters ε and δ at each double
point, we have thus defined a map

sk : Qk → Imb (S1,Rn) (2.3)
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which is described, in any coordinate neighborhood of γ ∈ Imm′k (S1,Rn), by
cycles:

(Sn−3)k 3 (z1, · · · , zk) 7→ γ +
k∑
j=1

αjaj (z
j). (2.4)

Due to the arbitrariness in the choice of the index aj ∈ {1, 2} attached to each
double point of γ ∈ Imm′k (S1,Rn), we have constructed 2k cycles, for which
we have the following

Proposition 2.2 If we choose different values of aj ∈ {1, 2} for the double
point labelled by j in (2.2), then the resulting cycles (2.4) are homologous.

Proof It is enough to consider two segments [0, 1] 3 t 7→ lj1(t) and [0, 1] 3 s 7→
lj2(s) that intersect transversally at the middle point. We choose zj ∈ Sn−3

and remove the crossing point as follows:{
lj1(t) 7→ lj1(t) + zjδ exp

(
1/[(t− 1/2)2 − ε2]

)
lj2(s) 7→ lj2(s)− zjδ exp

(
1/[(s − 1/2)2 − ε2]

) (2.5)

where δ and ε are small positive numbers.

l l l l l1 11 2 2
l

2

Figure 1: The resolution of a transversal double intersection

We have then an (n − 3)-cycle of imbedded pairs of segments with fixed end-
points. Let us now take h ∈ [0, 1]. If we replace δ with hδ in the first line of
(2.5), then we have a homotopy between the cycle (2.5) and the cycle obtained
by modifying only lj2 . Analogously if we replace δ with hδ in the second line of
(2.5), we have an homotopy between (2.5) and the cycle obtained by modifying
only lj1 .

By pulling back cohomology classes via (2.3) and integrating them along the
fibers in Qk we obtain the following morphisms in cohomology:

i′k : Hp( Imb (S1,Rn))→ Hp−k(n−3)( Imm′k (S1,Rn)). (2.6)
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Notice that the maps (2.6) are independent of the choices of the a’s at each
double point.

For future purposes, we extend the map (2.6) by setting it equal to zero if
p− k(n− 3) < 0. Hence i′k is defined for every k ∈ N.

Definition 2.3 We say that a cohomology class ω ∈ Hp( Imb (S1,Rn)) is of
finite Vassiliev-order (or V-order) k if i′s(ω) = 0 for every s > k and i′k(ω) 6= 0.
If i′k(ω) is non zero for any k , then we say that the V-order is infinite.

Remark 2.4 If n > 3, then the V-order is always finite. If n = 3 then the V-
order may be infinite. The case n = 3 and p = 0 is the case of knot invariants,
as originally studied by Vassiliev [35].

If n > 3 and p = k(n−3), then from (2.6) we conclude that there is a morphism:

i′k : Hk(n−3)( Imb (S1,Rn))→ H0( Imm′k (S1,Rn)). (2.7)

This case will be particularly important in the rest of the paper, basically
because of the following

Proposition 2.5 If n > 3, then:

(i) the connected components of Immk (S1,Rn) are in one-to-one correspon-
dence with the set of chord diagrams with k chords;

(ii) the connected components of Imm′k (S1,Rn) are in one-to-one correspon-
dence with chord diagrams with k chords and a marked point distinct
from the end-points of the chords.

Here and in the following, by chord diagram we mean a circle with chords that
have no end-points in common.

Proof If n > 3, then any finite collection of (piecewise) imbedded loops can
be isotopically deformed to a trivial link. Hence the connected components of
Immk (S1,Rn) are determined uniquely by the position of the double points.
Their pre-images are points on a circle that are identified in pairs, i.e., chords.

In the case of Imm′k (S1,Rn), one has just to take care of the additional infor-
mation given by the initial point.

In general we want to determine whether a given class in Hp( Imb (S1,Rn)) is
trivial or not. The relevance of the order p = k(n − 3) is highlighted by the
following criterion:
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Corollary 2.6 A sufficient condition for a class ω ∈ Hk(n−3)( Imb (S1,Rn))
to be nontrivial is that its image under (2.7) is nontrivial.

Remark 2.7 We have a map

ϕ : H0( Immk (S1,Rn))→ H0( Imm′k (S1,Rn)) (2.8)

which associates to any chord diagram D the average of all inequivalent chord
diagrams with a marked point that have the same chords of D . This map has
a right inverse, viz., the map

F : H0( Imm′k (S1,Rn))→ H0( Immk (S1,Rn)) (2.9)

that forgets the marked point.

In the following we will consider the combination of (2.7) with ϕ∗ thus obtaining
a map:

ik : Hk(n−3)( Imb (S1,Rn))→ H0( Immk (S1,Rn)). (2.10)

A class ω in H0( Imm′k (S1,Rn)) will be called equivariant if F ∗ϕ∗ω = ω .

Classes in Hk(n−3)( Imb (S1,Rn)) can be constructed via trivalent graphs, as
shown in the sequel of this paper. These classes have been firstly considered in
the 3-dimensional case, in connection with perturbative Chern–Simons quantum
field theory.

3 The Bott–Taubes construction

3.1 Configuration spaces

For any compact manifold M , we consider first the configuration space C0
q (M)

,M q \ {
⋃
S ∆S}, where S runs over the ordered subsets of the first q integers

with |S| ≥ 2, and ∆S denotes the (multi)-diagonal labelled by S , namely, the
subset of M q defined by the equations xj1 = xj2 = · · · = xj|S| , ji ∈ S .

We consider then the compactification Cq(M) of C0
q (M) introduced in [3] as a

modification of the Fulton–MacPherson construction [20], as described below.

One has an obvious inclusion of C0
q (M) ⊂M q and, for each diagonal ∆S , one

has a projection C0
q (M) → Bl(M |S|,∆S) where Bl denotes the differential-

geometric blowup (i.e., one replaces the given diagonal ∆S by the sphere
bundle of its normal bundle). This gives an imbedding C0

q (M) ↪→ M q ×∏
|S|≥2Bl(M

|S|,∆S). The space Cq(M) is then defined as the closure of C0
q (M)

in the above space. The main fact about this compactification of configuration
spaces (see [9]) is the following:
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Theorem 3.1 The spaces Cq(M) are smooth manifolds with corners, and
all the projections C0

q (M) → C0
q−k(M) extend to smooth projections on the

corresponding compactified spaces.

The boundaries of Cq(M) correspond to the “collision” of at least two of the
q points of M . Boundaries are the union of different strata corresponding
to the different ways in which all the points may collide. More precisely, let
S ⊂ {1, · · · , q} be the labels of the colliding points. Let us insert in S different
levels of parentheses so that each pair of parentheses contains at least two
elements. Points in M “collide at the same speed” if they belong to the same
level of parentheses (points are assumed to “collide” starting from the innermost
parentheses). The codimension of a given stratum is equal to the number of
pairs of parentheses.

We are mainly interested in codimension-1 strata, namely, in those strata with
no internal parentheses. For these strata, one calls hidden faces those corre-
sponding to subsets S with |S| ≥ 3 and principal faces those for which |S| = 2.

3.1.1 The case of S1

If we choose M to be S1 , then C0
q (S1) is not connected. We choose a con-

nected component by fixing an order of the points on S1 (consistent with its
orientation). It is then easy to see that this connected component is given by
S1 × Σ0

q−1 where Σ0
q−1 is the ordinary open (q − 1)-dimensional simplex. We

denote the closure of the connected component of C0
q (S1) by the symbol Cq .

This is given by the Cartesian product of S1 times a space Wq−1 that is ob-
tained from the standard closed (q − 1)-simplex by a sequence of blowups (see
the explicit description in [9]).

3.1.2 The case of Rn

In the following we need a suitable compactification of C0
q (Rn). Since Rn is

not compact, we cannot rely directly on the preceding construction.

Instead, following [9], we identify Rn with Sn \ {∞} and define Cq(Rn) as the
fiber over ∞ ∈ Sn of Cq+1(Sn)→ Sn (say, projecting to the last factor).

This way, we also have a compactification (and corresponding boundary faces)
at infinity. (For example, C1(Rn) is the n-dimensional ball.)
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3.1.3 The case of an imbedding of S1 into Rn

This is the case of interest for the rest of the paper.

Again following [9], we define the space Cq,t(Rn) of q+ t distinct points in Rn ,
the first q of which are constrained on an imbedding of S1 , as a pulled-back
bundle as follows:

Cq,t(Rn) êv−→ Cq+t (Rn)
↓ p1 ↓

Cq × Imb (S1,Rn) ev−→ Cq (Rn)
(3.1)

where the map ev : Cq × Imb (S1,Rn)→ Cq (Rn) is the evaluation map applied
to q distinct points in S1 and êv is its lift.

The diagram is commutative by construction. The main result is the following
theorem proved in [9]:

Theorem 3.2 The spaces Cq,t(Rn) are smooth manifolds with corners. More-
over, the map êv and the projection p1 (and, more generally, all projections
Cq,t(Rn)→ Cq−k,t−l(Rn)) are smooth.

3.2 Tautological forms

It is not difficult to check that the maps φij : C0
q (Rn)→ Sn−1 ,

φij(x1, . . . , xq) ,
xj − xi
|xj − xi|

,

extend to smooth maps on Cq(Rn). In fact, it is enough to consider the case
q = 2 and then apply Theorem 3.1.

Next we consider the so-called tautological forms, which are smooth as a con-
sequence of Theorem 3.2. They are defined by (see [9]):

θij(vn) , êv∗φ∗ijvn ∈ Ωn−1 (Cq,t(Rn)) , (3.2)

where vn is a given normalized symmetric smooth top form on Sn−1 .

Other forms on Cq,t(Rn) that we want to consider are obtained by pulling back
the symmetric form vn via the map given by the combination of p1 (s. (3.1))
with the map

Cq × Imb (S1,Rn)
pri×id−→ S1 × Imb (S1,Rn).

where pri : Cq → S1 denotes the ith projection.
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The pullback of forms on S1 × Imb (S1,Rn) are forms on Cq,t(Rn). The main
example that we have in mind is the “tangential tautological form”

θii(vn) , (evi ◦D)∗vn, (3.3)

where D is the normalized derivative and evi = ev ◦ (pri × id).

3.2.1 General properties of tautological forms

Taking into account the definition of the maps φij and of the tautological forms
(3.2, 3.3), we have the following relations:

θij(vn) = (−1)n θji(vn), i 6= j, (3.4)

θij(vn) θuv(vn) = (−1)n+1 θuv(vn) θij(vn), (3.5)

θ2
ij(v

n) = 0. (3.6)

The first relation is due to the action of the antipodal map on Sn−1 , the second
relation is a consequence of the degree of the tautological forms, and the third
relation is an obvious consequence of the fact that the square of a top form is
zero.

Finally, it may also be recalled that the cohomology classes of the tautological
forms generate the whole cohomology of the configuration spaces of Rn .

3.3 Forms on the space of imbeddings

In order to have differential forms on Imb (S1,Rn) we consider the “push-
forward,” or fiber-integration. For any bundle (p : E → B ) such that the fiber
F is an m-dimensional compact oriented manifold (possibly with boundaries
or corners), we define a map p∗ from the space of (p + m)-forms on E to the
space of p-forms on B , as follows:

p∗ω(X1, . . . ,Xm) ,
∫
F
ω(X̃1, . . . , X̃m, ·)

where ω is a (p+m)-form on E and X̃i is a vector field on B whose projection
yields the vector field Xi . The definition of p∗ is independent of the choice of
the lifts X̃i .

From the sequence of maps:
Cq,t(Rn)
↓ p1

Cq × Imb (S1,Rn)
↓ p2

Imb (S1,Rn)
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we obtain, by fiber-integrating products of θij(vn)s, forms on Imb (S1,Rn)
which are not necessarily closed since the fiber is a manifold with corners.
From the product of k tautological forms we obtain a ((n− 1)k−nt− q)-form
on Imb (S1,Rn).

Remark 3.3 Forms on Imb (S1,Rn) obtained this way are Diff +(S1)-equiv-
ariant. Observe in fact that an orientation-preserving diffeomorphism of S1

induces an orientation-preserving diffeomorphism of Cq . Horizontality fol-
lows then directly from the fiber integration along configuration spaces of S1 ,
while invariance is a consequence of the usual invariance of integrals under
reparametrizations.

The exterior derivative of pushed-forward forms is given in terms of the gener-
alized Stokes formula:

d p∗ω(X1, . . . ,Xm) = p∗dω(X1, . . . ,Xm) + (−1)deg p∂∗ω p∂∗ω(X1, . . . ,Xm).

The coboundary operator d on the l.h.s. refers to the space Imb (S1,Rn), while
the coboundary operator on the r.h.s. refers to the space Cq,t(Rn). Moreover,
p∂∗ω is given by

p∂∗ω(γ) ,
∫
∂Cq,t(Rn,γ)

ω,

where ∂Cq,t(Rn, γ) is the union of all the boundaries of codimension-1 of the
fiber over the imbedding γ .

If we denote by λ a product of tautological forms, then dλ = 0. So we have

d p∗(λ) = (−1)deg p∂∗λ p∂∗(λ). (3.7)

In Appendix A we will consider these boundary push-forwards explicitly and
show that, for n > 3, only principal faces contribute.

Remark 3.4 Let us consider the j th projection pj : Cq(Rn) → Cq−1(Rn),
and let us define

τik = pj∗θij(vn) θjk(vn) ∈ Ωn−2(Cq−1(Rn)).

As a consequence of (3.4), (3.5) and (3.7), τik is closed. But the (n − 2)-nd
cohomology group of Cq(Rn) is trivial. So the form τik is exact.

Remark 3.5 Another particular case is the integral over Cq(Rn), n > 3, of
a product of tautological forms with the condition that the situation of the
preceding Remark never occurs (that is, we assume that for each point i, there
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are at least three tautological forms θi•(vn)). In this case, the result must be a
number, and this will not vanish only if the form degree matches the dimension
of the space.

However, it is easy to prove that the form degree minus the dimension of the
configuration space is always greater or equal to (n− 3)q/2. So these integrals
always vanish.

4 The complex of decorated graphs in any dimension

Push-forwards of products of tautological forms along configuration spaces can
be given a nice description in terms of graphs with a distinguished oriented
loop. In the following, we will always represent the distinguished loop by a
circle.

The idea is to represent each point in the configuration space as a vertex of a
graph with the convention that all vertices constrained on the imbedding are
put in order on the circle. Each tautological form will then be represented by
an edge not belonging to the circle. (Actually, in the following we will reserve
the term edge only to this kind of edges.)

In view of Remark 3.4, we can restrict ourselves to considering only graphs
whose vertices not on the circle are at least trivalent. Moreover, thanks to
Remark 3.5 and to (3.6), only connected graphs without multiple edges may
yield nonzero results.

To keep track of the orientation of the configuration space and of the order in
which one takes the product of tautological forms, the vertices and the edges
must be numbered. Moreover, to distinguish between θij(vn) and θji(vn), one
has to orient the edges.

However, thanks to the properties (3.4) and (3.5), the decoration of graphs can
be simplified, as will be explained in subsection 4.1.

The differential of a form on Imb (S1,Rn) will be related by (3.7) to other
push-forwards of products of tautological forms. As explained in Appendix A,
also these push-forwards can be described in terms of graphs. As a conse-
quence, we may relate the exterior derivative on the space of imbeddings to a
certain coboundary operator on the complex of graphs. This is explained in
subsection 4.2.

The whole construction will finally be summarized in subsection 4.3, where we
will also establish the relation between the graph cohomology and the de Rham
cohomology of the space of imbeddings.
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4.1 Decorated graphs in odd and even dimensions

Following the above discussion, we will consider connected graphs consisting of
an oriented circle and many edges joining vertices which may lie either on the
circle (external vertices) or off the circle (internal vertices). We also require
that each internal vertex should be at least trivalent.

In a graph we define a small loop to be an edge whose end-points are the same
vertex. We call a small loop external or internal according to the nature of
the corresponding vertex. (External small loops will represent forms θii(vn) as
defined in (3.3), and internal small loops will be ruled away by (4.2).)

Next we assign a decoration to each graph in order to take into account the
specific properties of the tautological forms:

• If n is odd, then we label both internal and external vertices and assign
an orientation (represented by an arrow) to each edge. We assume that
the labelling of the external vertices is cyclic w.r.t. the orientation of
the circle. Moreover, whenever we have an external small loop, we fix an
ordering of the two half-edges that form it; notice that this ordering is
chosen independently from the edge orientation.

• If n is even, then the decoration consists in the labelling of the external
vertices and of all the edges. Again we assume that the labelling of the
external vertices is cyclic w.r.t. the orientation of the circle.

We now define D′o (D′e ) to be the real vector space generated by decorated
graphs of odd (even) type (some examples of elements of these spaces are in
figures 2, 3, 4 and 5).

As explained at the beginning of the Section, we actually do not need the whole
spaces of graphs. We will restrict ourselves to the interesting spaces by dividing
D′o and D′e by certain equivalence relations.

The first two relations do not depend on the decoration and are as follows:

Γ ∼ 0, if two vertices in Γ are joined by more than one edge, (4.1)
Γ ∼ 0, if Γ contains an internal small loop. (4.2)

(The first relation is motivated by (3.6), and the second by the fact that we
cannot associate to an internal small loop any tautological form.)

Next, for any given pair of graphs Γ̂ and Γ that differ only for the decoration,
we introduce the following equivalence relations:
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• For Γ, Γ̂ ∈ D′o ,
Γ ∼ (−1)π1+π2+l+s Γ̂, (4.3)

where π1 is the order of the permutation of the internal vertices, π2 is
the order of the (cyclic) permutation of external vertices, l is the number
of edges whose orientation has been reversed, and s is the number of
external small loops on which the ordering of the half-edges has been
reversed.

• For Γ, Γ̂ ∈ D′e ,
Γ ∼ (−1)π+l Γ̂, (4.4)

where π is the order of the (cyclic) permutation of the external vertices,
and l is the order of the permutation of the edges.

In order to have a well-defined, one-to-one correspondence between decorated
graphs and the push-forwards of tautological forms as described at the be-
ginning of the Section, we need to quotient D′o and D′e with respect to the
equivalence relations (4.1,4.2,4.3) and, respectively, by (4.1,4.2,4.4). Namely,
we define:

Do := D′o/ ∼ and De := D′e/ ∼ .

4.1.1 Order and degree of decorated graphs

The order of a graph Λ (i.e., minus its Euler characteristic) is defined as

ord Λ = e− vi, (4.5)

where e is the number of edges and vi is the number of internal vertices.

The degree of a graph Λ is defined as

deg Λ = 2 e− 3 vi − ve, (4.6)

where e is the number of edges, ve is the number of external vertices and vi is
the number of internal vertices.

In the particular case when the graph has only trivalent internal vertices and
univalent external vertices, its degree is zero and its order is half the total
number of vertices.

We consider Do and De as graded vector spaces with respect to both the order
and the degree.

We denote by Dk,mo and Dk,me the equivalence classes of decorated graphs of
order k and degree m.
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4.2 A coboundary operator for decorated graphs

Now we want to introduce a coboundary operator on each space Do and De .

As explained at the beginning of this Section, we actually look for coboundary
operators that, under the correspondence between graphs and configuration
space integrals, are related to the exterior derivative on Imb (S1,Rn).

We will first define these operators on D′o and D′e , and then prove that they
descend to the quotients. These operators (both on the primed space and on
their quotients) will be denoted by δo and δe respectively. When considering
graphs of unspecified parity, we will simply use the symbol δ .

First of all we introduce some terminology.

Definition 4.1 We call chord an edge whose end-points are distinct external
vertices and short chord a chord whose end-points are consecutive vertices on
the circle. We call regular edge an edge that is neither a chord nor a small loop.
Finally we call arc a portion of the circle bounded by two consecutive external
vertices.

For any graph Γ, δΓ will be, by definition, a signed sum of decorated graphs
obtained by contracting, one at a time, all the regular edges and all the arcs of
Γ. Notice that the contraction of an arc joining the vertices of a short chord
will produce an external small loop. In the odd case, we order its half-edges
consistently with the orientation of the circle.

Edges and vertices are then relabelled as follows after contraction: if the new
graph is obtained by contracting vertex i with vertex j , then we relabel the
vertices by lowering by one the labels of the vertices greater than max(i, j ) and
assign the label min(i, j ) to the vertex where the contraction has happened. If
we contract the edge α, we lower by one the labels of all the edges greater than
α.

Moreover, we associate to each contraction a sign defined as follows:

• On the space D′o , the sign associated to the contraction of the edge or of
the arc joining the vertex i to the vertex j (using the orientation of the
edge or the arc) is given by

σ(i, j) =
{

(−1)j if j > i,
(−1)i+1 if j < i.

(4.7)
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• On the space D′e , the sign associated to the contraction of the arc joining
vertex i to vertex j is given by

σ(i, j) =
{

(−1)j if j > i,
(−1)i+1 if j < i;

(4.8)

while, if we contract edge α, we have the following sign:

σ(α) = (−1)α+1+ve , (4.9)

where ve is the number of external vertices.

The following Theorem shows that for both odd and even case, D is a complex
of graded vector spaces.

Theorem 4.2 The operators δo and δe descend to Do and, respectively, De .
They are both coboundary operators there, and we have

δo : Dk,mo → Dk,m+1
o δe : Dk,me → Dk,m+1

e .

The corresponding cohomology groups will be denoted in the following by
Hk,m(Do) and Hk,m(De).

Proof First we consider graphs of odd type and review the proof given in [7].

Let us consider the contraction of (ij), i.e., of the edge or portion of circle
between i and j . If we exchange i and j or reverse an arrow, we get a minus
sign; in both cases the roles of i and j are interchanged and we have σ(i, j) =
−σ(j, i). Therefore δo is compatible with such an exchange.

Let us choose another vertex k , and exchange j and k . We can assume i < j
and that (ij) is oriented from i to j . First we suppose k > i and k > j .
If we contract (ij) we get a factor (−1)j ; if we exchange j and k and then
contract (ik) we get a factor (−1)k+1 . Obviously the underlying graph is the
same in the two cases. We want to prove that the relabelling of one the two
decorated graphs yields the other one, i.e., the two decorated graphs define the
same element in Do . The indices lowered by one are, in the first case, all those
greater than j and in the second case all those greater than k . The set of
vertices that, in the first case, are labelled as j, (j + 1), · · · , (k− 2), (k− 1), are
labelled, in the second case, as (j+ 1), (j+ 2), · · · , (k−1), j and the sign of the
relevant permutation is (−1)k−j+1 .

In summary:

• if we contract (ij) we get a sign (−1)j ;
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• if we swap k and j , contract (ik) and then relabel to get the same graph
as in the previous case, we get the sign (−1)k+1(−1)k−j+1 = (−1)j .

Similarly, we can treat the case k < i. All other cases (contraction of (ij) and
swapping of l with k) are trivial.

Now let us prove that δ2
o = 0 by showing that contracting two different pairs

(ij) and (rs) in opposite order yields the opposite sign.

If we have i 6= r and j 6= s, then we can always assume that i < j , r < s and
j < s. Contracting (ij) gives a sign (−1)j and lowers s by one, so contracting
(rs) gives (−1)s−1 . If we contract (rs) first, then j is not lowered by one and
the global sign is (−1)s(−1)j .

If s = j and i 6= r , we can pass from a (double)-contraction to the other one
by exchanging i and r , with a change in sign in Do . The same holds for s 6= j
and i = r .

Next let us consider D′e .

Again we have to show that a permutation of external vertices or of edges does
not affect δe . The case when we swap external vertices is identical to the case
of Do , so we just have to verify what happens when we swap two edges labelled
by α and β , with α < β .

We claim that if we contract the edge α we obtain the same result as if we
swap the edge α with the edge β and subsequently contract the edge β . In
fact in the first case the result is (−1)α+1+ve times a graph whose edges are:
(1, . . . , α − 1, α + 1, . . . , β − 1, β, β + 1, . . . , t), while in the second case the
result is (−1)β+ve times a graph whose edges are (1, . . . , α − 1, α + 1, . . . , β −
1, α, β + 1, . . . , t). We now permute the labels of the edges of this last graph
and obtain (1, . . . , α − 1, α, α + 1, . . . , β − 1, β + 1, . . . , t); this permutation
has order (β − 1) − (α + 1) + 1 = β − α − 1. The total sign is therefore:
(−1)β+ve(−1)β−α−1 = (−1)α+1+ve , i.e., the same result obtained by contracting
the edge α.

Finally, we have to show that δ2
e = 0. As in the odd case, the proof consists

in showing that if we make two contractions in different order, then we have
opposite signs and hence the relevant graphs cancel.

This is obviously true if we contract two pairs of external vertices or two edges.
Now we contract the arc between two consecutive external vertices (say i and
j , with i < j ) and an edge α. Remember that the number ve of external
vertices appears in equation (4.9). If we contract α first, we do not change the
labels of the external vertices and we get the global sign (−1)α+1+ve (−1)j =
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(−1)α+1+ve+j . If we contract (ij) first, then the number of edges is lowered by
one and so the global sign is (−1)j(−1)α+1+(ve−1) = (−1)α+ve+j .

4.3 The configuration space integral as a morphism of com-
plexes

We can finally give all the details of the construction described at the opening
of the Section.

First of all, we fix n > 3 and choose a form vn through which we define our
tautological forms.

Definition 4.3 Let α be the antipodal map on Sn−1 . We call symmetric form
a normalized element vn ∈ Ωn(Sn−1) that satisfies α∗vn = (−1)n vn .

Obviously the standard volume form on Sn−1 is a symmetric form and, more-
over, no nontrivial top form wn on Sn−1 can satisfy the condition α∗wn =
(−1)n−1 wn .

From now on we will always assume that vn is a fixed normalized symmetric
form on Sn−1 .

Then we associate to every class of graphs Γ a form I(vn)(Γ) on Imb (S1,Rn)
in terms of a configuration space integral as follows:

• In the odd case, the edge joining the vertex i to the vertex j is re-
placed by the form θij(vn). The external small loop at k is replaced by
(−1)l+s θkk(vn), where l = 0 if the edge orientation agrees with the or-
dering of the half-edges and l = 1 otherwise, while s = 0 if the ordering
of the half-edges corresponds to the orientation of the circle and s = 1
otherwise. Since all the forms are even, we do not have to say in which
order we take their product. The orientation of the configuration space
is determined by the numbering of the vertices.

• In the even case, we first have to choose a numbering of the internal
vertices as well. Then the edge joining the vertex i to the vertex j is
replaced by the form θij(vn), and an external small loop at k is replaced
by the form θkk(vn). The numbering of the edges tells us in which order
we have to take the product of tautological forms, while the numbering of
the external vertices determines the orientation of the configuration space.
(The numbering of internal vertices is on the other hand irrelevant.)
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We will denote by I(vn) the linear extension to D of the map just described.
Then we have the following:

Theorem 4.4 For any n > 3 and for any symmetric form vn ,

I(vn) : (Dk,mo , δo)−→(Ωm+(n−3)k( Imb (S1,Rn)), d), if n is odd,

I(vn) : (Dk,me , δe)−→(Ωm+(n−3)k( Imb (S1,Rn)), d), if n is even,

are chain maps.

Proof The coboundary operator δ has been defined in subsection 4.2 in such
a way that it corresponds to the coboundary operator d via Stokes’ Theorem if
one considers only principal faces (see Appendix A and in particular Thm. A.4
and Rem. A.5). The fact that I is actually a chain map then follows from
Theorem A.6 according to which we can neglect hidden faces.

As for the degree of these maps, this is easily computed: if the graph Λ has
e edges, vi internal vertices and ve external vertices, then, by (4.6), deg Λ =
2 e − 3 vi − ve . On the other hand the degree of the corresponding differential
form is

deg I(Λ) = (n− 1) e− n vi − ve = deg Λ + (n− 3) ord Λ,

where ord Λ is the order of the graph as defined in (4.5).

In the following we will denote also by I(vn) the map induced in cohomology:

I(vn) : Hk,m(Do)−→Hm+(n−3)k( Imb (S1,Rn)), if n is odd, (4.10)

I(vn) : Hk,m(De)−→Hm+(n−3)k( Imb (S1,Rn)), if n is even. (4.11)

The case m = 0 is particularly interesting and will be discussed in the next
section. In Section 6 we will prove that in this case the above homomorphisms
are actually injective.

Recall finally that, as observed in Remark 3.3, the image of I(vn) lies in the
subspace of Diff +(S1)-equivariant forms. Thus, we can produce elements of
the Diff +(S1)-equivariant cohomology of Imb (S1,Rn).

4.3.1 The dependency on the symmetric form vn .

We want now to consider the dependency of the chain map I on the choice of
the symmetric form. We have the following
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Proposition 4.5 Let n > 4. If vn0 and vn1 are two symmetric forms and Γ is
a cocycle, then I(vn1 )(Γ) − I(vn0 )(Γ) is an exact form.

Proof Let us write vn1 − vn0 = dwn , where wn ∈ Ωn−2(Sn−1). We can assume
that α∗nw

n = (−1)n wn . Then vnt = vn0 + t dwn , t ∈ [0, 1], interpolates between
v0 and v1 . We now define

ṽn , vn0 + d(t wn) ∈ Ωn−1(Sn−1 × [0, 1]).

This form is still closed and symmetric: (αn × id)∗ṽn = (−1)n ṽn .

Denoting by it : Sn−1 ↪→ Sn−1 × [0, 1] the inclusion at t ∈ [0, 1], we also have

i∗t ṽ
n = vnt ,∫

Sn−1

i∗t ṽ
n = 1.

Using this extended symmetric form, we can define extended tautological forms
by

θ̃ij , (êv × id)∗(φij × id)∗ṽn ∈ Ωn−1 (Cq,t(Rn)× [0, 1]) .

If we now replace the edges of a graph by these extended tautological forms, af-
ter integrating over the configuration space we will get a form on Imb (S1,Rn)×
[0, 1]. Denote by Ĩ(ṽn) this map. Observe that, denoting by jt : Imb (S1,Rn) ↪→
Imb (S1,Rn)× [0, 1] the inclusion at t, we have

j∗t Ĩ(ṽn)(Γ) = I(vnt )(Γ).

If Γ is a cocycle, then the results of Appendix A (in particular Thms. A.4
and A.11) also show that Ĩ(ṽn)(Γ) is a closed form in Ω∗( Imb (S1,Rn)× [0, 1]).
As a consequence,

I(vn1 )(Γ)− I(vn0 )(Γ) = dπ∗Ĩ(ṽn)(Γ), (4.12)

where π is the projection Imb (S1,Rn) × [0, 1] → Imb (S1,Rn), and we have
used again the generalized Stokes formula.

Thus, for n > 4 the homomorphisms (4.10) and (4.11) do not depend on the
choice of the symmetric form.

If n = 4, then the homomorphisms might depend on the chosen symmetric
form v4 (see Rem. A.12).

Anyway, we will prove (see Thm. 6.4) that the integrals of I(vn)(Γ), Γ ∈
H∗,0(D), on the cycles given in (2.4) do not depend on vn , even for n = 4.

Convention 4.6 In the rest of this paper, in all the tautological forms, we
will omit the explicit dependency on the symmetric form vn .
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5 Cocycles of trivalent graphs

Trivalent graphs are defined as (decorated) graphs having exactly one edge for
each external vertex, while exactly three edges merge into each internal vertex.
Notice that in particular trivalent graphs do not have external small loops.
Moreover, trivalent graphs span Dk,0 . Particular cases of trivalent graphs are
of course chord diagrams.

We will look for cocycles that are linear combinations of trivalent graphs, that
is, elements of Hk,0(D). We have the following

Proposition 5.1 If Γ =
∑

i ciΓi ∈ Hk,0(D) is a cocycle given by a linear
combination of trivalent graphs Γi , then at least one Γi is a chord diagram.
Moreover, no graph in Γ may contain a short chord.

Proof Let l be the minimum number of internal vertices among the graphs
Γi . The first statement is equivalent to saying that l = 0.

In fact, assume on the contrary that l > 0, and let Γj be a graph (which
does not vanish in D) with exactly l internal vertices. Since we consider only
connected graphs, there will be at least one internal vertex connected by one
edge (call it f ) to an external vertex.

In δΓj there will then be a graph Γ′j obtained by contracting the edge f .

First of all, notice that Γ′j does not vanish in D . In fact, if it did, then there
would be an automorphism ϕ of the graph underlying Γ′j that would yield
−Γ′j ∈ D . Observe that the only 4-valent vertex in Γ′j has to be mapped to
itself by ϕ. We can now extend this to an automorphism of Γj by decollapsing
f after the application of ϕ and deciding that f is mapped into itself and each
of its end-points are mapped into themselves (notice that we cannot interchange
the end-points of f since one is internal and the other is external). So by the
extended automorphism we would prove that also Γj vanishes in D .

Since Γ is a cocycle, there must be other graphs such that their images under
the application of δ contain Γ′j . But there are only two possible graphs with this
property, namely, those obtained by splitting the unique four-valent external
vertex in Γ′j in the two possible ways. But both these graphs have l−1 internal
vertices, so l cannot be the minimum.

To prove the second statement, observe first that H1,0(D) = 0 (in the odd case
since the chord diagram is not closed, in the even case since the chord diagram
vanishes by symmetry).
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So assume k > 1. This means that the number of vertices is greater than 2.
Since we consider only connected graphs, this means that, if a graph Γi contains
a short chord, then there is only one arc (call it a) that has the same end-points
as the short chord.

Let Γ′i be the graph in δΓi obtained by contracting a. Notice that Γ′i contains
an external small loop. Thus, since we do not allow internal small loops, there
is no other graph whose image under the application of δ may contain Γ′i .

But as above we can prove that Γ′i does not vanish (unless Γ is zero itself.)

So Γ cannot be a cocycle.

Applying the homomorphisms (4.10) and (4.11) to a trivalent cocycle Γ, we
will then get cohomology classes on Imb (S1,Rn) of degree (n− 3) ord Γ.

The question whether nontrivial cocycles in the graph complex represent non-
trivial cocycles in the cohomology ring H∗( Imb (S1,Rn)) will be addressed to
in the next Section.

In the rest of this Section, we will discuss some examples of trivalent cocycles.

5.1 The odd case

Trivalent graphs have been widely studied ([5, 23, 9, 6, 1]) in the case n = 3.
Here all graphs are associated to zero-forms, i.e., functions on Imb (S1,R3))
and, at each order, it is possible to find δ -closed linear combinations of graphs.

Elements of H0( Imb (S1,R3)) are nothing but constant functions on connected
components of the space Imb (S1,R3), i.e., knot invariants. Such invariants
are related to topological quantum field theories, namely, to the Chern–Simons
theory [37] and to BF theories (see [11] and references therein). Moreover,
they are Vassiliev invariants (i.e., invariants of finite type) (see [35, 5, 1]).

When n > 3, the homomorphism (4.10) implies that we can construct coho-
mology classes on Imb (S1,Rn) using exactly the same linear combinations of
graphs that give knot invariants in three dimensions.

For instance the simplest cocycle

1/4
∫
C4

θ13θ24 − 1/3
∫
C3,1

θ14θ24θ34,

see figure 2, represents an element of H2n−6( Imb (S1,Rn)).
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At order 3, there is only one cocycle, which was calculated in [2] and [24] (s.
also [5]). We show it in figure 3. In terms of integrals of tautological forms, it
is given by:

1
2

∫
C4,2

θ15θ26θ36θ45θ56 +
1
3

∫
C6

θ14θ25θ36 +
1
3

∫
C3,3

θ14θ26θ35θ64θ65θ54+

−
∫
C5,1

θ16θ25θ36θ46 −
1
2

∫
C6

θ14θ26θ35 +
1
2

∫
C2,4

θ13θ25θ54θ56θ64θ63θ43.

Recall now that every Vassiliev invariant in three dimensions produces a non-

1

3

1

2 3
2

4

41/4 -1/3

Figure 2: Cocycle of odd type at order 2
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3

4

5

6

+1/2

+1/2- -1/2

+1/3+1/3
5

6

6

Figure 3: Cocycle of odd type at order 3

trivial cocycle of trivalent graphs of odd type [5]. It is also well known that
there are nontrivial Vassiliev invariants at any order (e.g., coefficients of the
Alexander–Conway or of the Jones polynomials). Hence, Hk,0(Do) contains
nontrivial elements for any k ≥ 2.
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5.2 The even case

For n even, we use the homomorphism (4.11) to construct cohomology classes
of Imb (S1,Rn).

It is easy to show that, at order two, there is only one cocycle in De (see
figure 4), which induces, for every even n, the element

1/4
∫
C4

θ13θ24 − 1/3
∫
C3,1

θ14θ24θ34 ∈ H2n−6( Imb (S1,Rn)).

At order 3 the vector space generated by trivalent graphs of even type has again
dimension one, and the generator is given explicitly in figure 5.

1

2 3

4

1
2

1

2 3

1

2 3
1/4 -1/3

Figure 4: Cocycle of even type at order 2
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+
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1

2

1

2

3 4

56

Figure 5: Cocycle of even type at order 3
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The corresponding element of H3n−9( Imb (S1,Rn)) can be written as:

1
2

∫
C4,2

θ1aθ2bθ3bθ4aθab −
1
2

∫
C4,2

θ1aθ2bθ3aθ4bθab −
1
2

∫
C6

θ15θ24θ36+

+
∫
C5,1

θ1aθ25θ3aθ4a +
∫
C3,3

θ1aθ2bθ3cθabθbcθca −
3
2

∫
C2,4

θ1aθ2bθacθadθbdθbcθcd.

Here we have labelled with numbers the external vertices and with letters the
internal ones.

Moreover, we prove in [12] that, as in the odd case, there exist nontrivial coho-
mology classes of decorated trivalent graphs of even type in an infinite number
of orders k .

6 Trivalent graphs and nontrivial classes in
H∗( Imb (S1,Rn))

Let us now consider any nontrivial class in the cohomology of graphs. Under
(4.10) or (4.11), this class will represent a possibly trivial cohomology class on
H∗( Imb (S1,Rn)).

This Section is devoted to prove that, however, classes in the cohomology of
trivalent graphs—that is, in H∗,0(D)—yield nontrivial classes in the cohomol-
ogy of Imb (S1,Rn).

The proof is based on the analysis of Section 2 and particularly on the criterion
provided by Corollary 2.6.

The main result of the present Section is the following:

Theorem 6.1 Let n > 3. An [(n− 3)k]th cohomology class on Imb (S1,Rn),
corresponding via (4.10) or (4.11) to a linear combination of trivalent graphs,
yields via (2.7) a nontrivial 0th cohomology class on Imm′k (S1,Rn).

Proof Let Γ =
∑

i λi Γi ∈ Hk,0(D) be the given cocycle of trivalent graphs.
Let us denote by ω (ωi) the image of Γ (Γi) under (4.10) or (4.11). So ω =∑
λiωi is a closed k(n− 3)-form on Imb (S1,Rn).

The forms ωi are given by integrals of products of tautological forms over the
corresponding configuration spaces Cqi,ti(Rn) with qi ≤ 2k , and qi = 2k if and
only if Γi is one of the chord diagrams which are necessarily contained in Γ by
Prop. 5.1.

Algebraic & Geometric Topology, Volume 2 (2002)



Configuration spaces and Vassiliev classes in any dimension 979

We integrate first over the internal vertices and denote the result by µi ; then
we have ωi =

∫
Cqi

µi .

We consider γ ∈ Imm′k (S1,Rn), and to each double point pj, j = 1, . . . , k , of
γ we associate a ball Dj of radius ε > 0. The intersection γ ∩Dj is given by
lj1(ε) ∪ lj2(ε), where ljaj (ε), aj = 1, 2, are two closed segments as in figure 1.

We now define C(ε;j,aj)
qi as the open subset of Cqi such that the image through

γ of all its projections over S1 does not intersect ljaj (ε). We also define

Cεqi , {

 k⋃
j=1

2⋃
aj=1

C
(ε;j,aj)
qi


In other words, this complementary set Cεqi is equal to the subset of Cqi for
which all the projections over S1 yield, through γ , one and only one element
in each ljaj (ε). Thus, Cεqi = ∅ unless qi = 2k .

Next we define accordingly

ωε ,
∑
i

λi

∫
Cεqi

µi,

ω(ε;j,aj) ,
∑
i

λi

∫
C

(ε;j,aj)
qi

µi.

In the limit ε → 0+ , we recover the whole configuration space Cqi , so ω(ε;j,aj)

becomes ω .

We now associate, once and for all, an index aj ∈ {1, 2} to the j th crossing and
construct according to (2.2) and (2.4) a k(n − 3)-cycle in Imb (S1,Rn) which
we call β(ε, δ), where ε and δ are small but positive. Different choices of the
parameters ε and δ will yield homologous cycles in Imb (S1,Rn), as far as they
do not become too large.

Any other choice of the indices aj s will also produce a homologous cycle in
force of Proposition 2.2. We denote this new cycle by β(ε, δ) + ∂ζ(ε, δ; j, aj ),
for a suitable (k(n − 3) + 1)-chain ζ(ε, δ; j, aj).

We now want to compute the integral

I(ε, δ, j, aj ) =
∫
β(ε,δ)

ω(ε;j,aj)

and show that
lim
δ→0+

I(ε, δ, j, aj ) = 0.
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In fact, if in the explicit choice of β(ε, δ) we have the same aj as in ω(ε;j,aj) ,
then the above integral is zero for any δ . Otherwise, it is equal to∫

ζ(ε,δ;j,aj)
dω(ε;j,aj)

by Stokes’ Theorem. The form ω(ε;j,aj) is not closed. But the main point
here is that it is defined also on the space Imm′1 (S1,Rn)(j) ⊂ Imm1 (S1,Rn)
given by the elements γ for which γ(tj1) = γ(tj2) is the only double point, and
tij 6= 0. This means that the above integral is well-defined also for δ = 0 where
it vanishes by dimensional reasons. But this value is also equal to the limit
δ → 0+ of the integral.

Next we consider all the sets C(ε;j,aj)
qi simultaneously. They are not disjoint, but

we can redefine them (in an obvious way) so as to make them disjoint. With
this we have ∑

j

∫
β(ε,δ)

ω(ε;j,aj) +
∫
β(ε,δ)

ωε =
∫
β(ε,δ)

ω.

Observe now that this expression is independent of δ > 0 for δ small enough;
in fact, different values of δ correspond to homologous cycles.

In particular, to compute the r.h.s. we can take the limit δ → 0+ . But in this
limit the first term on the l.h.s. vanishes as proved above, and the integral of
ωε over β(ε, δ) is like the integral of a Dirac-type current concentrated on the
points of C2k whose projections on S1 yield exactly the set of those distinct
points that are in pairs identified by γ ∈ Imm′k (S1,Rn).

Saying that only the forms on C2k survive is tantamount as saying that only the
chord diagrams contained in ω survive. Our final task is to prove that, when
each chord connects two points on S1 that are directly identified by γ (i.e.,
that are in the pre-image of the same double point), then the corresponding
integral is 1, otherwise it is zero.

A chord connecting two (small) intervals that contain no other vertices can
be seen as the (n − 3)-form obtained by integrating vn over I × I with some
identifications. To each point in Sn−3 we assign a way of lifting one of these
two intervals and this generates a sphere Sn−2 . The total integral associated
to this chord will then be given by the linking number of this sphere Sn−2 with
the other interval (seen as an indefinite line). This linking number is zero if the
image of the two intervals does not contain the double point and, in force of
Proposition 2.1, is 1 otherwise.
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Remark 6.2 Observe that for n > 4 no care has to be taken in the actual
choice of the symmetric form vn , as follows from Prop. 4.5. If n = 4, then
different choices of vn might yield different homomorphisms from the graph
cohomology to the de Rham cohomology of Imb (S1,R4). However, the proof of
the above proposition shows that the evaluation of I(v4)(Γ), for Γ ∈ Hk,0(De),
on the subspace of Hk(n−3)( Imb (S1,R4)) spanned by the cycles defined in (2.4)
are independent of v4 .

Remark 6.3 The above proof can also be applied to the case n = 3 assuming
that one has already made the corrections for the anomalies appearing in that
case. Notice that this proof does not reduce to the original one given in [1]—
from which it was however inspired—and seems to be a little easier.

It is clear from the proof of Theorem 6.1 that the image through (2.7) of the
differential form ω = I(vn)(Λ) associated to a trivalent cocycle Λ, is equivariant
in the sense of Remark 2.7. Hence, we can recast the results of the previous
proof as follows:

Theorem 6.4 Let n > 3 and let

ω = I(vn)(Λ) ∈ Hk(n−3)( Imb (S1,Rn)),

with Λ ∈ Hk,0(D) a linear combination of trivalent graphs. Then the blowup
map (2.10) associates to ω the linear combinations of the chord diagrams con-
tained in Λ, interpreted as an element of H0( Immk (S1,Rn)). So the induced
map Hk,0(D)→ H0( Immk (S1,Rn)) is injective and independent of the choice
of the symmetric form vn .

We finally remark that the proof of Theorem 6.1 also implies the following
result: a cycle of imbeddings of S1 into Rn defined by a special immersion is
nontrivial if there is a graph cocycle in which the chord diagram corresponding
to the special immersion appears with nonzero coefficient. We do not know
however under which conditions a chord diagram (with no separating chords)
may be part of a graph cocycle. We will see in the next Section that, in the
case of framed imbeddings (and for n odd), the situation improves and, in
particular, Theorem 1.3 holds.

6.1 Proof of Theorem 1.1 and Corollary 1.2

The statement about the chain maps, has been already proved in Thm. 4.4. The
other statement is a direct consequence of the above Theorem, of Proposition 5.1
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and of Corollary 2.6. As for Corollary 1.2, we simply recall from subsections 5.1
and 5.2 that, irrespectively of the parity, there exist cocycles of trivalent graphs
in an infinite number of orders.

7 Framed imbeddings

Let K : S1 → Rn be an immersion. Recall that an orthonormal framing of
K is a trivialization of the pulled-back bundle K∗SO(Rn), where SO(Rn) '
Rn×SO(n) is the orthonormal frame bundle of Rn . Equivalently we may view
the framing as a map w : S1 → SO(n). An orthonormal framing w is said to be
adapted if, for every s ∈ S1 , the last column of w(s) is equal to the normalized
tangent vector DK(s) := K̇(s)/|K̇(s)| . Let p be the projection SO(n)→ Sn−1

in the quotient by SO(n−1), viewed as the subgroup of SO(n) fixing the vector
(0, . . . , 0, 1). Then saying that w is a adapted framing is equivalent to stating
that the following diagram commutes:

SO(n)

p

��
S1

w
;;
x
x
x
x
x
x
x
x
x

DK
// Sn−1

(7.1)

A pair (K,w) consisting of an immersion K and of a adapted framing w will be
shortly called a framed immersion. We will denote by Immf (S1,Rn) the space
of framed immersions and by Imbf (S1,Rn) its subspace of framed imbeddings.

By forgetting of the framing we get a map Imbf (S1,Rn) → Imb (S1,Rn); so
we can pull back all cohomology classes constructed in the previous sections.
Analogously, given a framed special immersion with k transversal double points,
we get a k(n− 3)-cycle of framed imbeddings exactly by the same construction
as in Section 2. We may repeat verbatim the proof of Theorem 6.1, so that
Theorem 6.4 and 1.1 and Corollary 1.2 immediately generalize to the case of
framed imbeddings. In the following we will show that, for n odd, there are
actually more cohomology classes on Imbf (S1,Rn) than on Imb (S1,Rn).

7.1 Short chords and new cohomology classes on Imbf (S1,R2s+1)

We have seen in Section 4 that the boundary term corresponding to the con-
traction of a short chord—viz., an external small loop at a vertex labelled by,
say, k—is the form θkk(vn), i.e., the pullback of vn by using the composition
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of the projection to the kth point on the circle with the normalized tangent
vector map DK . We now wish to use a framing, and in particular diagram
(7.1), to get rid of such terms. The plan is to find a form τ on SO(n) with
dτn = p∗vn .

Lemma 7.1 If n is even, [p∗vn] is a nontrivial cohomology class on SO(n).
If n is odd, p∗vn is exact.

Proof If n = 2s then the restriction map H∗(SO(2s)) → H∗(SO(2s − 1))
is surjective and so, by Leray–Hirsch theorem, H∗(SO(2s)) is a free module
over H∗(S2s−1), the action of the only non trivial generator of the cohomology
of S2s−1 on H∗(S2s−1) being the product by [p∗v2s]. Hence p∗v2s cannot be
exact. If n = 2s+ 1, then the class of the normalized top form v2s+1 of S2s is
half the Euler class and so p∗v2s+1 is exact.

Thus, we will have to restrict in the following to the case n = 2s + 1. Using
the framing, we see now that θkk(v2s+1) is exact; viz., it is equal to dϑk(τ2s+1),
where ϑk(τ2s+1) is the pullback of τ2s+1 by the composition of the projection
to the kth point on the circle with the framing map w .

7.1.1 Modified graph cohomology

To keep track of the above forms, we modify the space of graphs Dk,mo by
introducing a new decoration, say a cross, that can be put on any external
vertex (observe that a crossed vertex with no edges is allowed and that there
can be more than one crossed vertex in the same graph). Crosses are numbered
and a new equivalence relation Γ ∼ (−1)σΓ′ is introduced, where Γ′ is the same
graph as Γ but for the numbering of crosses which is a permutation of the one
in Γ: σ is the order of this permutation. Let x be the number of crosses in the
graph Λ. We define the gradations

õrdΛ = e− vi + x,

d̃egΛ = 2 e− 3 vi − ve + x.

We denote by D̃k,mo the extended space of graphs of order k and degree m. We
also define a map

Ĩ(vn, τ2s+1) : D̃k,mo → Ωm+(2s−2)k( Imbf (S1,R2s+1)),
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by the same rules as in subsection 4.3 plus a new rule that associates to a cross
at the vertex k the form ϑk(τ2s+1) (the products of these odd forms being
determined by the numbering of the crosses).

We also introduce a coboundary operator δ̃ on D̃k,mo ; it acts on all edges, arcs
and crosses one at a time. Its action on edges and arcs is the same as for the
coboundary operator δ . Its action on the cross labelled a at the vertex i deletes
the cross and produces an external small loop (with half-edges ordered consis-
tently with the orientation of the circle); the sign associated to this operation
on a graph Γ is defined to be (−1)d̃egΓ+a . Observe that δ̃ raises d̃eg by 1 and
leaves õrd unchanged. It is not difficult to check that δ̃2 = 0.

It should be clear by now that the analogue of Theorem 4.4 for framed imbed-
dings is the following

Proposition 7.2

Ĩ(vn, τ2s+1) : (D̃k,mo , δ̃)→ (Ωm+(2s−2)k( Imbf (S1,R2s+1)), d)

is a chain map.

Proof The coboundary operator δ̃ has been defined in such a way that dĨ(Γ)
is equal to (−1)deg Ĩ(Γ)+1Ĩ(δ̃Γ) if one neglects hidden faces. Thus, we have to
prove that hidden faces do not contribute. But, since forms corresponding to
crosses are basic in the fibrations Σr,ς → Cq−r+1,t−ς(R2s+1), we may rely again
on the results of Appendix A.

Finally, we notice that the proof of Theorem 6.1 generalizes immediately to the
present case since the forms ϑ are well-defined on immersions. So we get the
following generalization of Theorem 1.1:

Theorem 7.3 The induced homomorphism

Hk,0

δ̃
(D̃o)→ H(2s−2)k( Imbf (S1,R2s+1))

is injective.

7.2 Relation between Hk,0

δ̃
(D̃o) and Hk,0

δ (Do)

First, we consider another graph complex, namely our old Dk,mo , but with a
new coboundary operator δ that differs from δ because it does not act on arcs
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joining the vertices of short chords. This new coboundary operator raises deg
by 1 and leaves ord unchanged.

We define a map φ : Dk,mo → D̃k,mo . If Γ does not contain short chords, we set
φ(Γ) = Γ. If instead Γ contains a short chord, we proceed as follows: First we

regard Γ as an element of D̃k,mo . Then we pick a short chord (say, joining vertex
i to vertex j ) and replace Γ by Γ−σ(i, j)Γ′ , where Γ′ is obtained by replacing
the short chord by a crossed vertex with label min{i, j}, while all other vertices
are renumbered consequently. We repeat this for each short chord and number
the crosses according to this order. Clearly φ is well-defined (i.e., it does not
depend on the order in which we consider the short chords) and moreover we
have the following

Proposition 7.4 φ : (Dk,mo , δ) → (D̃k,mo , δ̃) is a chain map inducing an iso-
morphism:

Hk,0(φ) : Hk,0
δ (Do) ∼→ Hk,0

δ̃
(D̃o).

As a consequence we have:

Corollary 7.5 There is an injective homomorphism

Hk,0
δ (Do) ↪→ Hk,0

δ̃
(D̃o)

Proof In Proposition 5.1 we showed that no element of Hk,0
δ (Do) contains a

graph with short chords. Since δ is equal to δ on elements of Do not containing
short chords, we immediately deduce that Hk,0

δ (Do) ⊆ Hk,0
δ (Do) ∼= Hk,0

δ̃
(D̃o).

7.3 Relation between Hk,0

δ̃
(D̃o) and Bar-Natan’s algebra Ak(©)

The advantage of dealing with the complex (Dk,mo , δ) instead of (D̃k,mo , δ̃) is
that Hk,0

δ (Do) is isomorphic to the dual of the space Ak(©) of trivalent graphs
with a distinguished circle and oriented vertices, modulo STU relations.

More precisely a BN graph is defined as a connected graph made of a distin-
guished oriented circle and a certain number of edges, which are allowed to meet
in two type of vertices: internal vertices in which three edges meet, and external
vertices, in which an edge meets the distinguished circle. External vertices are
oriented by one of the two possible cyclic orderings of the half edges emanating
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from that vertex. The degree of a BN graph is the number of its edges minus
the number of internal vertices.

D(©) is set to be the real vector space generated by BN graphs. D(©) is
graded by the degree of the graphs, Dk(©) being the component of degree k .

Let STU be the subspace generated by the linear combinations of graphs as
in figure 6, where the undrawn part is the same for the three graphs that are
considered.

− +

Figure 6: STU relation

We define A(©) , D(©)/STU and we denote its dual by A∗(©). A(©) is
graded and we denote the kth component by Ak(©). The space A∗(©) is also
know as the space of weight systems.

Proposition 7.6 There is an isomorphism A∗k(©) ∼= Hk,0
δ (Do)

The proof is given in Theorem 1 of ref. [1].

Remark 7.7 It can be shown, following the proof of Prop. 7.6, that given
Γ ∈ Dk(©) and w ∈ A∗k(©) such that w(Γ) 6= 0, then the image of w in
Hk,0
δ (Do), under the isomorphism of Prop. 7.6, is a cocycle containing a graph

that, modulo decoration, is identical to Γ.

It is well known [4, 5] that any finite dimensional Lie algebra with an invariant
inner product gives rise to a family of elements of A∗(©). In particular it is
possible to construct elements of A∗k(©) which are non zero on graphs contain-
ing short chords, and hence elements of Hk,0

δ (Do) which contains graphs with

short chords. This implies that Hk,0

δ̃
(D̃o) ∼= Hk,0

δ (Do) is actually strictly bigger

than Hk,0
δ (Do).

7.4 Proof of Theorem 1.3

For every given chord diagram there exist cocycles of zero degree in (Dk,mo , δ̂)
containing it. This follows from Remark 7.7 and from the fact that the weight
system determined by the Lie algebra gl(n) is nonzero on every chord diagram.
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8 On the cohomology of the spaces of imbeddings
and immersions of S1 into Rn

In this Section we will relate the cohomology of the spaces Imb (S1,Rn) and
Imm (S1,Rn) of imbeddings and immersions of S1 into Rn . This will allow
us to consider examples of nontrivial cohomology classes of Imb (S1,Rn) not
coming from trivalent graphs and even not coming from our graphs. Moreover
these last classes are not equivariant w.r.t. the action of Diff+(S1).

We will first review known facts about the computation of H∗( Imm (S1,Rn))
by Chen’s iterated integrals, and then we will consider the restriction of the
above cohomology classes to Imb (S1,Rn).

Given a Riemannian simply connected manifold M , we naturally associate to
any ψ ∈ Imm (S1,M) its normalized derivative Dψ , which is an element of the
loop space LSM , where SM denotes the tangent sphere bundle. We denote
by LX the free loop space over a manifold X .

Smale proved [31] (see also [10]) the following:

Theorem 8.1 The map D : Imm (S1,M)→ LSM is a weak homotopy equiv-
alence.

In particular the space Imm (S1,Rn) is weakly homotopy equivalent to LSn−1 .

The cohomology of the loop space of a simply connected manifold X can be
computed via Chen’s iterated integrals [18] (for a purely algebraic approach see,
for example,[28]).

Let us consider the m-dimensional simplex Σm := {(t1, . . . tm) ∈ Rm : 0 ≤
t1 ≤ . . . ≤ tm ≤ 1} and the map Φ

Φ: Σm × LX −→ X × · · · ×X
((t1, . . . , tm), γ) 7→ (γ(t1), . . . , γ(tm)).

From a collection of forms w1, . . . , wm in Ω∗(X), we obtain the form pr∗1 w1∧,
. . . ,∧pr∗m wm on Xm , where pri : Xm → X denotes the projection onto the
ith factor. The iterated Chen integral is defined by pullback via the map Φ
and subsequent integration on Σm . The result is a form on LX ,

Moreover, any form w0 ∈ Ω∗(X) defines also a form of the same degree on LX ,
denoted again as w0 , obtained by pullback via the evaluation map at the initial
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point of the loop. In summary, we consider the following class of forms on LX
with degree

∑m
i=0 deg(wi)−m:

w0P (w1, · · · , wm) , w0

∫
Σm

Φ∗(pr∗1 w1∧, . . . ∧ pr∗mwm). (8.1)

When all the forms wi are equal to a given form w , we use the shorter notation
w0Pm(w).

When M = Rn , it is sufficient to consider wi = vn , where vn is a fixed
normalized top form on Sn−1 . In fact, we have [21]:

Proposition 8.2 The algebra H∗
(
LSn−1,R

)
is the associative and graded

commutative algebra with the following set of generators and relations:

• For n odd, the generators are P1(vn)P2s(vn) in degree (2s+1)(n−2)) and
vnP2s(vn) in degree (2s+ 1)(n− 2) + 1, with s = 0, 1, . . . . The relations
are given by the requirement that the product of any two generators is
zero.

• For n even, the generators are vn in degree n − 1 and P1(vn) in degree
n− 2 with the only relation (vn)2 = 0.

This determines uniquely the real cohomology of Imm (S1,Rn), which is ob-
tained by pulling back to Imm (S1,Rn) the above classes via the map D (nor-
malized derivative).

Some of the above cohomology classes are equivariant with respect to the ac-
tion of the group Diff+(S1) of orientation preserving diffeomorphisms of S1 , on
Imm (S1,Rn). More precisely, one can prove [21] that irrespectively of the di-
mension n, the forms vnPk(vn) do not yield equivariant classes on Imm (S1,Rn)
and that the equivariant generators are given by D∗P1(vn) for n even and by
D∗P1(vn)D∗P2s(vn), with relations as before, for n odd.

Remark 8.3 The equivariant forms D∗Pk(vn) can be constructed using the
morphisms I(vn) of equations (4.10) and (4.11). Let us consider in fact a graph
Γk ∈ Dk,k consisting of k small loops attached to k different external vertices.
Since Γk contains no chord, I(vn)(Γk) is a well defined differential form on
Imm (S1,Rn), and we have an (obvious) identification D∗Pk(vn) = I(vn)(Γk).
For instance, the closure of D∗Pk(vn) can be seen as a consequence of the
equation δΓk = 0, which holds both in the odd and in the even case.

We now consider the restriction of the above forms and classes on Imm (S1,Rn)
to forms and classes on Imb (S1,Rn). It is convenient to assume that vn is a
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symmetric form (see Def 4.3). Then we define θ(vn) to be the configuration
space integral I(vn)(Γ′1) where Γ′1 ∈ D1,0 is the graph with two external vertices
joined by one chord, and I(vn) the homomorphisms of eq. (4.10) or (4.11),
depending on the parity of n. Clearly θ(vn) is zero if n is even because the
corresponding graph is zero by the relation (4.4). On the contrary, if n is odd,
one has the following:

Lemma 8.4 If n is odd, we have

dθ(vn) = −2D∗P1(vn).

Proof First, let us write

θ(vn) =
∫
S1×I

φ∗vn

where
φ : S1 × I × Imb (S1,Rn) → Sn−1

(s, t, ψ) 7→ ψ(s+t)−ψ(s)
||ψ(s+t)−ψ(s)||,

(8.2)

We have
dθ(vn) =

∫
S1×∂I

i∗φ∗vn = D∗P1(α∗vn)−D∗P1(vn), (8.3)

where the map i denotes the restriction to the boundary S1 × ∂I and α is the
antipodal map on Sn−1 .

We now prove the following:

Theorem 8.5 If n is odd, then the inclusion of Imb (S1,Rn) in Imm (S1,Rn)
induces the zero map in (real) cohomology.

Proof The restriction of D∗P1(vn) to Imb (S1,Rn) is exact in force of Lemma
8.4. When we restrict the generators D∗[P1(vn)P2s(vn)] in degree (2s+ 1)(n−
2)) to Imb (S1,Rn), we obtain trivial cocycles, as shown in the following equa-
tion:

− 2D∗[P1(vn)P2s(vn)] =

= d
(
θ(vn)D∗P2s(vn)− (1/2)θ2(vn)D∗[vnP2s−2(vn)]

)
. (8.4)

Next we prove that also the generators D∗[vnP2s(vn)] represent trivial cocycles
when restricted to Imb (S1,Rn).
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First we notice that D∗vn is exact when restricted to Imb (S1,Rn). Consider
in fact the map φ̂ : I × Imb (S1,Rn) → Sn−1 given by the restriction of the
map φ of equation (8.2) to {0}× I× Imb (S1,Rn) ⊂ S1× I× Imb (S1,Rn) and
define

Θ(vn) ,
∫
I
φ̂∗vn. (8.5)

We conclude that
dΘ(vn) = −2D∗vn.

Finally, we have

−2D∗[vnP2s(vn)] = d
(
Θ(vn)D∗P2s(vn)− (1/2)Θ2(vn)D∗P2s−1(vn)

)
.

Thanks to the identification D∗Pk(vn) = I(vn)(Γk) of Remark 8.3, Lemma 8.4
and equation (8.4) can be seen in graph cohomology as the existence of Γ′k ∈
Dk,k−1
o such that δo(Γ′k) = Γk .

Theorem 8.5 has been proved in [9], but only for the case H1( Imm (S1,R3)).

If n is even, then we know that θ(vn) is zero and moreover it is easy to see that
Θ(vn) (as defined in (8.5)) is closed. Thus, if n is even, we cannot conclude
anymore that the inclusion Imb (S1,Rn) ↪→ Imm (S1,Rn) induces the zero
morphism in cohomology. On the contrary, we find that the classes D∗P1(vn),
D∗vn and D∗[vnP1(vn)] remain nontrivial when restricted to Imb (S1,Rn). We
first have:

Proposition 8.6 If n is even, then the restriction of D∗[vnP1(vn)] to
Imb (S1,Rn) is a nontrivial cocycle of degree 2n− 3.

Proof Let us consider the real Stiefel manifold

Vn,2 = SO(n)/SO(n − 2).

It is an orientable compact manifold of dimension (2n−3). To each (x,y) ∈ Vn,2
we associate the following element of Imb (S1,Rn):

t 7→ ((1− cos t) x + sin t y). (8.6)

The integral of the cocycle D∗[vnP1(vn)] over the image of the map (8.6) is
given by the degree of the map:

f : S1 × Vn,2(R)→ Sn−1 × Sn−1

(t,x,y) 7→ (y, sin t x + cos t y) .
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It is evident that

f−1((0, · · · , 0, 0, 1), (0, · · · , 0, 1, 0)) =
= (π/2, (0, · · · , 0, 1, 0), (0, · · · , 0, 0, 1))∪

∪ (3π/2, (0, · · · , 0,−1, 0), (0, · · · , 0, 0, 1))

and
deg f = 1 + (−1)n.

Corollary 8.7 If n is even, then the restrictions of D∗P1(vn) and D∗vn to
Imb (S1,Rn) are nontrivial cocycles of degree n− 2 and, respectively, n− 1.

Proof D∗[vnP1(vn)] is the product of D∗vn and D∗P1(vn).

For completeness, we explicitly construct examples of cycles of Imb (S1,Rn)
below, nontrivially paired with the above cocycles.

If n is even, then a nontrivial element Γn−2 ∈ Hn−2( Imb (S1,Rn)) is given
by the map that assigns to each normalized vector x ∈ Sn−2 , represented as
(x1, x2, · · · , xn−1, 0) ∈ Rn , the imbedded loop in Rn given by

t 7→ (x1(1− cos t), x2(1− cos t), . . . , xn−1(1− cos t), sin t).

By computing the degree of the normalized derivative of this map, it turns out
that the evaluation of D∗P1(vn) on Γn−2 is −2.

Again, for n = 2s, a nontrivial element Γn−1 ∈ Hn−1( Imb (S1,Rn)) is given
by the map that assigns to each normalized vector

x = (x1, y1, x2, y2, · · · , xs, ys) ∈ S2s−1 ⊂ R2s

the loop based at x given by

t 7→ (x1(1− cos t) + y1 sin t,−x1 sin t+ y1(1− cos t), · · ·
· · · , xs(1− cos t) + ys sin t,−xs sin t+ ys(1− cos t)),

and the evaluation of D∗vn on Γn−1 yields (−1)s .

Remark 8.8 Corollary 8.7 extends Thm. 1.1 since it provides an example
in which the morphism (4.11) is nontrivial on a nontrivalent graph cocycle
Γ1 ∈ H1,1(De).
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Remark 8.9 To complete the discussion on the nature of the restriction to
Imb (S1,Rn) of nontrivial classes on Imm (S1,Rn), we should also say some-
thing about D∗Pk(vn) and D∗[vnPk(vn)] when n is even and k > 1.

At the moment, however, we have no cycles to pair with them in order to prove
that they are nonzero nor have an argument to prove their vanishing. We may
only comment that these classes are images under (4.11) of nontrivial cocycles
of graphs (in the sense of Section 4). Therefore, triviality of the above classes
would imply that (4.11) is not injective.

Remark 8.10 We have chosen vn to be a given symmetric form. Notice
however that the main results of this Section (Theorem 8.5, Proposition 8.6
and Corollary 8.7) are independent of the choice of the volume form on Sn−1 ).

A Appendix: Integrals along the boundary and van-

ishing theorems

The goal of this Appendix is to show that, as long as n > 3 and we use only symmetric
forms, hidden faces do not contribute to Stokes’ theorem.

A.1 Codimension-one faces

Let us begin with a description of the codimension-one faces of ∂Cq,t(Rn) These faces
can be divided into three classes:

Type I s ≥ 2 of the points in Rn collapse together;

Type II s ≥ 1 of the points in Rn escape together to infinity;

Type III r ≥ 1 of the points in S1 and s ≥ 0 of the points in Rn , with r + s ≥ 2,
collapse together; we denote these faces by the symbol Σr,s .

Boundary faces of type I or type II are given by Ĉs(Rn)×Cq,t−s+1(Rn) and Ĉs+1(Rn)
×Cq,t−s(Rn) respectively. Here Ĉk(Rn) is obtained from (Rn)k/G — G being the
group of global translations and scalings — by blowing up all diagonals. Each Ĉk(Rn) is
a compact manifold with corners. In the simplest case, k = 2, we have Ĉ2(Rn) = Sn−1 .
Notice however that in the following we will only need to consider the interior of Ĉk(Rn)
which is easily identified with C0

k−1(Rn)/R+ , where the group R+ acts by rescaling all
components.

A boundary face Σr,0 is a fibration over Cq−r+1,t(Rn) got by pulling back Ĉr(TS1).
In the case when s > 0, the description of Σr,s is a little bit longer. Actually, we will
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only describe the interior of Σr,s (which is enough for Stokes’ theorem). Let us first
define

Sn−1 n Cr,s , {a ∈ Sn−1, (x1, . . . , xr) ∈ Rr, (y1, . . . , ys) ∈ (Rn)s |
a(xi) 6= yj, ∀i, j; xi = xj ⇒ i = j; yi = yj ⇒ i = j},

where a ∈ Sn−1 is seen as a linear map R→ Rn .

Next introduce the equivalence relations

(a;x1, . . . ; y1, . . . ) ∼ (a;λx1, . . . ;λ y1, . . . ),
(a;x1, . . . ; y1, . . . ) ∼ (a;x1 + ξ, . . . ; y1 + a(ξ), . . . ),

with λ > 0 and ξ ∈ R , and denote by Sn−1 n Ĉr,s the quotient. This is a fibration
over Sn−1 whose fiber will be denoted by Ĉr,s .

Then the interior int(Σr,s) of a type III face, corresponding to the collapse of r points
on S1 together with s points in Rn , is a fibration over Cq−r+1,t−s(Rn) obtained
by pulling back (Sn−1 n Ĉr,s) via the composition D̂ of the normalized derivative
D : Imb (S1,Rn)→ LSn−1 with the evaluation at the position on S1 where the points
have collapsed:

int(Σr,s) −→ Sn−1 n Ĉr,s
↓ ↓

Cq−r+1,t−s(Rn) D̂−→ Sn−1

Remark A.1 What is really important for all the subsequent considerations are the
dimensions of the fibers of the above spaces. A simple computation yields

d0,s=̇ dim Ĉs(Rn) = ns− n− 1,

dr,s=̇ dim Ĉr,s = r + ns− 2 for r > 0.
(A.1)

We end with the following

Definition A.2 A codimension-one face is called a principal face if it is of type I with
s = 2, or of type II with s = 1, or of type III with r+s = 2. All other codimension-one
faces are called hidden faces.

A.2 Subgraphs corresponding to codimension-one faces

In Section 4, we have explained how to associate integrals of tautological forms over
configuration spaces to decorated graphs. Here we want to represent the integration
along codimension-one faces in terms of subgraphs.

First we introduce the notion of decorated graphs with a point at infinity. These are
just decorated graphs with one extra vertex labelled by ∞ and the condition that ∞ is
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not the end-point of any edge. Of course, there is a one-to-one correspondence Γ 7→ Γ̃
between decorated graphs and decorated graphs with a point at infinity.

A subgraph Γ′ of a graph Γ̃ is a graph whose vertices are a subset of the vertices in Γ̃
and whose edges and arcs are the subset of the edges and arcs of Γ̃ whose end-points
are distinct and both in the subset of vertices of Γ′ . (Notice in particular that an
external small loop based at a vertex in Γ′ is not considered as an edge of Γ′ .)

A subgraph Γ′ of a decorated graph with a point at infinity is said to be admissible if
one of the following conditions is fulfilled:

Type I Γ′ has s ≥ 2 internal vertices and no other vertices;

Type II Γ′ has s ≥ 1 internal vertices plus the ∞-vertex;

Type III Γ′ has r ≥ 1 external vertices and s ≥ 0 internal vertices, with r + s ≥ 2.

The correspondence between admissible subgraphs and codimension-one faces should
be clear.

Definition A.3 An admissible subgraph will be called principal (hidden) if the cor-
responding face is principal (hidden).

If Γ′ is an admissible subgraph of Γ, we define the reduction of Γ modulo Γ′ , which
we will denote by [Γ/Γ′] , as follows. First we define two vertices in Γ to be equivalent
if they both belong to Γ′ . Then the set of vertices of [Γ/Γ′] is the set of vertices of Γ
modulo the equivalence relations, while the set of edges and arcs contains all the edges
and arcs of Γ that do not belong to Γ′ . The vertex in [Γ/Γ′] whose pre-image in Γ is
Γ′ will be denoted by v(Γ′,Γ).

Given any graph Γ, we will denote by αΓ the corresponding form (product of tauto-
logical forms associated to the edges).

Following the description of the preceding Section, we can compute the form on the
space of imbeddings obtained by integrating αΓ along the codimension-one face corre-
sponding to Γ′ as follows: we integrate along the configuration space corresponding to
[Γ/Γ′] the product of α[Γ/Γ′] and a form which we denote by α(Γ/Γ′).

For faces of type I, α(Γ/Γ′) is the form I(Γ′) obtained by integrating αΓ′ along Γ′ ,
and as such vanishes unless it is a zero-form.

For faces of type II, sending a subgraph Γ′ to infinity is, roughly speaking, like shrinking
to a point the complementary subgraph. More precisely, we consider the subgraph Γ̃
of Γ consisting of the vertices which are not in Γ′ , and of those arcs and edges whose
end-points do not belong to Γ′ . Then we form the quotient Γ′′ = Γ/Γ̃ and denote by
v the vertex of Γ′′ whose pre-image is Γ̃. Now α(Γ/Γ′) is obtained by integrating αΓ′′

over the subspace of the configuration space corresponding to Γ′′ , in which v is fixed
to 0 ∈ Rn . Again, we have that α(Γ/Γ′) vanishes unless it is a zero-form.

For a face of type III, α(Γ/Γ′) is the pullback of I(Γ′) via the map D (normalized
derivative), combined with the evaluation at the point corresponding to the vertex
v(Γ′,Γ). As a consequence, I(Γ′) and α(Γ/Γ′) vanish unless their degree is less or
equal to n− 1.
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A.3 Vanishing theorems

Now we can state the following:

Theorem A.4 If Γ′ is a principal subgraph, then I(Γ′) vanishes unless

(1) Γ′ is of type I and contains exactly one edge, or

(2) Γ′ is of type III with r = s = 1 and contains exactly one edge, or

(3) Γ′ is of type III with r = 2 and has at most one edge.

In the first two cases or in the third case with no edges I(Γ′) = ±1 . In the third case
with one edge, I(Γ′) = ±vn .

Proof Since Γ′ is principal, it contains at most two vertices. Thus, by our definition
of graphs, there is at most one edge in Γ′ if it of type I or III, and no edge if Γ′ is of
type II.

If there are no edges, then there is nothing to be integrated. However, the fiber corre-
sponding to Γ′ has dimension strictly positive (equal to n− 1) if it is of type I or II,
or if it is of type III with r = s = 1.

If however the face is of type III with r = 2 the fiber dimension is zero, and we get
I(Γ′) = 1.

If there is exactly one edge and Γ′ is of type I or it is of type III with r = s = 1, we
have to integrate the (n − 1)-dimensional form v over the fiber which is Sn−1 . This
yields I(Γ′) = ±1.

If Γ′ is of type III with r = 2 and contains exactly one edge (to which corresponds
vn ), then the fiber is zero-dimensional, and I(Γ′) = ±vn .

Remark A.5 The cases in which I(Γ′) does not vanish correspond exactly to the
integrations over principal faces considered in Section 4. The sign I(Γ′) = ±1 is the
sign σ of (4.7), (4.8) and (4.9), i.e., the sign associated to the operator δ ; the case
I(Γ′) = ±vn corresponds to the contraction of an arc joining the end-points of a short
chord.

As for the hidden faces, we have the following result, whose proof is contained in the
next subsubsection.

Theorem A.6 If Γ′ is an admissible subgraph corresponding to a hidden face and
n > 3 , then α(Γ/Γ′) = 0 .
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A.3.1 Proof of Theorem A.6

We follow the strategy proposed in [26] and [32].

Throughout this subsection, by valence of a vertex we mean the number of edges ending
at that vertex.

We start by proving the following basic facts.

Lemma A.7 If Γ′ is hidden and contains a zero-valent vertex different from ∞ , then
α(Γ/Γ′) = 0 .

Lemma A.8 If Γ′ is hidden and contains a univalent internal vertex, then α(Γ/Γ′) =
0 .

Lemma A.9 If Γ′ is hidden and contains a bivalent internal vertex, then α(Γ/Γ′) =
0 .

Proof of Lemma A.7 Let i be the 0-valent vertex and xi the corresponding point.
We perform the xi -integration first. Let us compute the dimension of this fiber. Since
Γ′ is hidden, we can use the other points to fix translations and scalings (or just scalings
if Γ′ is of type II). So the fiber is n-dimensional if i is internal and 1-dimensional if i
is external.

The form to be integrated over this fiber is however of degree zero since no edge ends
at i .

Proof of Lemma A.8 As in the previous proof, we perform the xi -integration first,
where i is an internal univalent vertex now. As before, the fiber is n-dimensional.

The form to be integrated over this fiber is the tautological form corresponding to the
edge ending at i . Thus, it has degree n− 1.

Proof of Lemma A.9 Now we perform the n-dimensional integration over xi , where
i is an internal bivalent vertex.

Let j and k be the end-points of the two edges starting at i . If j = k , then the
integrand form is θ2

ij = 0.

So assume j 6= k . The xi -integration can be the extended to Rn with only xj and xk
blown up. Let us denote by C(Rn;xj , xk) this space. We must then compute

α =
∫
C(Rn;xj,xk)

θij θik.
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Following Kontsevich [26], we consider the involution χ of C(Rn;xj , xk) that maps xi
to xj +xk−xi . Observe that χ is orientation preserving (reversing) if n is even (odd).
Moreover,

χ∗θij = θki = (−1)n θik,
χ∗θik = θji = (−1)n θij .

Thus,

α = (−1)n
∫
C(Rn;xj,xk)

θik θij = (−1)n (−1)n−1

∫
C(Rn;xj,xk)

θij θik = −α.

Therefore, α = 0.

Thanks to the above Lemmas, we can from now on assume that all internal vertices
in Γ′ are at least trivalent and that all external vertices are at least univalent. As a
consequence, we have

2e′ ≥ r + 3s,

where e′ is the number of edges in Γ′ , r is the number of external vertices (possibly
zero) and s that of internal vertices. Therefore, since any edge carries an (n−1)-form,

degα(Γ/Γ′) ≥
{

(n− 1) r+3s
2 − dr,s if Γ′ is of type I or III,

(n− 1)3(s+1)
2 − d0,s+1 if Γ′ is of type II,

with dr,s defined in (A.1). In order to prove that α(Γ/Γ′) vanishes, it is then enough to
check that degα(Γ/Γ′) > 0 for Γ′ of type I or II, and that degα(Γ/Γ′) > n− 1 for Γ′

of type III (otherwise the form to be integrated over the fiber vanishes by dimensional
reasons). Finally, a straightforward computation yields

degα(Γ/Γ′) ≥


(n−3)s

2 + n+ 1 if Γ′ is of type I,
(n−3)s

2 + 5n−1
2 if Γ′ is of type II,

(n−3)(r+s−2)
2 + n− 1 if Γ′ is of type III.

(A.2)

The result now follows from the facts that Γ′ is hidden (so r+ s > 2) and that n > 3.

Remark A.10 In the case n = 3, the previous argument fails for Γ′ of type III, and
suitable corrections have to be found (see [9, 32, 29]).

In the case n = 2, the argument fails in general and more refined techniques have to
be considered (see [27]).
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A.4 Forms depending on a parameter

As in the proof of Prop. 4.5, we now consider tautological forms that are pullbacks of a
form ṽn in Ωn−1(Sn−1× [0, 1]) which is closed and symmetric and integrates to one on
the sphere for any value of the parameter t ∈ [0, 1]. The corresponding configuration
space integral Ĩ(Γ) yields then a form on Imb (S1,Rn) × [0, 1]. It is not difficult to
check that Thm. A.4 still holds with I replaced by Ĩ . Moreover, we have the following
generalization of Thm. A.6:

Theorem A.11 If Γ′ is an admissible subgraph corresponding to a hidden face and
n > 4 , then Ĩ(Γ′) = 0 .

Proof We proceed as in the proof of Thm. A.6 till the paragraph just before (A.2).

Now we observe that, by dimensional reasons, Ĩ(Γ′) vanishes if deg Ĩ(Γ′) > 1 for Γ′ of
type I or II, or deg Ĩ(Γ′) > n for Γ′ of type III.

But these inequalities are again satisfied by (A.2).

Remark A.12 In the case n = 4, the above result might not hold. For example,
consider the 5-dimensional face Σ3,1 and assume that in Γ′ there are three edges (so,
a 9-form). After integration, we are left with a 4-form on S3 × [0, 1], and there is no
apparent reason why it should vanish.

In particular, consider the cocycle of figure 4. When all the vertices in the second graph
collapse, we are exactly in the same situation as above. Since there are no other edges,
we can now perform the integration over [0, 1]. We are finally left with the integral
along the knot of the pullback via the normalized derivative of a top form w4 on S3 .
Thus, on the r.h.s. of (4.12), we must add a multiple (possibly zero) of P1(w4), that is,
of the lowest cohomology class obtained by restriction from the space of immersions.
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BF theories in 3 and 4 dimensions,” J. Math. Phys. 36, 6137–6160 (1995)

[12] A. S. Cattaneo, P. Cotta-Ramusino, R. Longoni: “Algebraic stuctures in graph
homology,” in preparation

[13] A. S. Cattaneo, P. Cotta-Ramusino, M. Rinaldi: “Loop and path spaces
and four-dimensional BF theories: connections, holonomies and observables,”
Commun. Math. Phys. 204, 493–524 (1999)

[14] A. S. Cattaneo, P. Cotta-Ramusino, C. Rossi: “Loop observables for BF theories
in any dimension and the cohomology of knots,” Lett. Math. Phys. 51, 301–316
(2000)
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