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Homology cylinders:
an enlargement of the mapping class group

Jerome Levine

Abstract In a previous paper [1], a group Hg of homology cylinders over
the oriented surface of genus g is defined. A filtration of Hg is defined,
using the Goussarov-Habiro notion of finite-type. It is erroneously claimed
that this filtration essentially coincides with the relative weight filtration.
The present note corrects this error and studies the actual relation between
the two filtrations.
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1 Introduction

In [1] we consider a group Hg consisting of homology bordism classes of ho-
mology cylinders, where a homology cylinder is defined as a homology bordism
between two copies of Σg,1 , the once punctured oriented surface of genus g . This
bordism is equipped with an explicit identification of each end with Σg,1—see
[1] for more details. In particular there is a canonical injection of the mapping
class group Γg,1 into Hg .

Two filtrations of Hg are considered in the first part of the paper. The first
is the relative weight filtration Fwk (Hg), the obvious extension of the rela-
tive weight filtration Fwk (Γg,1) of Γg,1 considered by Johnson, Morita and
others. The canonical injection Jk : Gwk (Γg,1) → Dk(H), where Gwk (Γg,1) =
Fwk (Γg,1)/Fwk+1(Γg,1) is the associated graded group, lifts, in a natural way, to

Gwk (Hg) and there becomes an isomorphism JHk : Gwk (Hg)
∼=−→ Dk(H). Dk(H)

is the kernel of the bracket map βk : H ⊗ Lk+1(H) → Lk+2(H), where Lk(H)
is the degree k component of the free Lie algebra on H = H1(Σg,1).

The second filtration FYk (Hg) is defined using the Goussarov-Habiro theory of
finite-type invariants of 3-manifolds. It is shown in [1] that FYk (Hg) ⊆ Fwk (Hg)
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1198 Jerome Levine

and so we have induced homomorphisms GYk (Hg) → Gwk (Hg) ∼= Dk(H). To
study these homomorphisms we use results announced by Habiro. Habiro con-
siders an abelian group Ak(H) defined by unitrivalent graphs with k trivalent
vertices and with univalent vertices labelled by elements of H , subject to anti-
symmetry, the IHX relation and linearity of labels (see [1] for a more complete
description). We then consider the quotient Atk(H) in which only trees are
allowed. Using results of Habiro it is proved in [1] that there is a well-defined
epimorphism θk : Atk(H) → GYk (Hg). Furthermore there is a combinatorially
defined homomorphism ηk : Atk(H) → Dk(H) (which can be defined for any
abelian group H ) which coincides with the composition:

Atk(H) GYk (Hg) Gwk (Hg) Dk(H)ww

θk
w w

Jk(H)

∼=
(1)

Note that this is different from the map called ηk in [1].

It is erroneously claimed in Proposition 2.2 of [1] that ηk is an isomorphism
for k > 1. But in fact this is FALSE. Thus the implications that all the
maps in diagram (1) are isomorphisms for k > 1 is false. (For k = 1 the
result GY1 (Hg) ∼= Gw1 (Hg)⊕V , where the projection GY1 (Hg)→ V is defined by
Birman-Craggs homomorphisms, is still true.)

It is the aim of this note to correct this error and, in particular, study the
homomorphism ηk . In fact it is known, and will be reproved below, that ηk
induces an isomorphism Atk(H)⊗Q ∼= Dk(H)⊗Q. Thus the maps in diagram
(1) are isomorphisms for k > 1 after tensoring with Q. To handle the more
general case it will be natural to introduce a variation on the notion of Lie
algebra by replacing the axiom [x, x] = 0 with the weaker anti-symmetry axiom
[x, y] + [y, x] = 0 and investigate the corresponding free objects. This variation
does not seem to have been studied before, even though it arises naturally from
the study of oriented graphs.

This work was partially supported by an NSF grant and by an Israel-US BSF
grant.

2 A different notion of Lie algebra

We want to discuss the map ηk : Atk(H)→ Dk(H), for k > 1. For this purpose
it will be more appropriate to consider a replacement for the free Lie algebra
L(H). Let us define a quasi-Lie algebra by replacing the axiom [x, x] = 0
with the axiom [x, y] + [y, x] = 0, for any x, y . Thus we only can conclude
2[x, x] = 0, and so if L is quasi-Lie algebra then L ⊗ Z[1/2] is a Lie algebra.
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We can now define the free quasi-Lie algebra L′(H) over a free abelian group H
in the obvious way (using the free magma over H , for example—see [2]). There
is an obvious map γ : L′(H) → L(H), which is a map of quasi-Lie algebras.
Let γk : L′k(H)→ Lk(H) be the degree k component.

Lemma 2.1 (1) If k is odd then γk is an isomorphism.

(2) If k = 2l , then there is an exact sequence of additive homomorphisms

Ll(H)/2Ll(H) L′k(H) Lk(H)→ 0w w

γk

Proof Clearly γk is onto. Furthermore the kernel Kk(H) of γk is generated
additively by all brackets which contain a sub-bracket of the form [α,α] for
some α ∈ L′(H). In fact such a bracket will be zero in L′(H) unless it is
exactly of the form [α,α]. In other words for any α, η ∈ L′(H)

[[α,α], η] = 0 = [η, [α,α]]

This follows directly from the Jacobi relation and anti-symmetry.

Thus we can define a map L′(H) → L′(H) by α 7−→ [α,α]—it is an additive
homomorphism by anti-symmetry— and the image of this map is exactly the
kernel of γ . Note that this map vanishes on 2L′(H) and on any element of the
form α = [η, η]. The assertions of the lemma follow.

Conjecture 1 It is easy to see that Ll(H)/2Ll(H)→ L′2l(H) is a monomor-
phism for l = 1 and it is reasonable to conjecture that this is true for all l .

Analogous to βk we can define a homomorphism β′k : H⊗L′k+1(H)→ L′k+2(H)
by β′k(h⊗ α) = [h, α]. We see that β′k is onto by the Jacobi identity and anti-
symmetry and denote the kernel by D′k(H). If we apply the snake lemma to
the diagram:

0→ D′k(H) H ⊗ L′k+1(H) L′k+2(H)→ 0

0→ Dk(H) H ⊗ Lk+1(H) Lk+2(H)→ 0

w

u

w

β′k

u

1⊗γk+1
u

γk+2

w w

βk

we conclude:

Corollary 2.2 The canonical map D′k(H) → Dk(H) fits into the following
exact sequences, depending on whether k is odd or even.

0→ D′2l(H)→ D2l(H)→ K2l+2(H)→ 0

0→ H ⊗K2l(H)→ D′2l−1(H)→ D2l−1(H)→ 0

Algebraic & Geometric Topology, Volume 2 (2002)



1200 Jerome Levine

3 Atk(H) and Lie algebras

We will refer to a univalent vertex of a tree as a leaf, except when the tree is
rooted, i.e. one of the univalent vertices is designated a root. In that case only
the remaining univalent vertices will be referred to as leaves.

We can graphically interpret L′k(H) as the abelian group generated by rooted
binary planar trees with k leaves, whose leaves are labelled by elements of H
modulo the anti-symmetry and IHX relations and linearity of labels. These
relations correspond exactly to the axioms for a quasi-Lie algebra. The corre-
spondence is described in [2], for the case of a free magma. Similarly we can
interpret H ⊗ L′k(H) as rooted binary planar trees with k leaves whose leaves
and root are labelled by elements of H , modulo anti-symmetry, IHX and label
linearity. See Figure 1.

root

a

b c

a

b c

d

Figure 1: The left-hand tree corresponds to [a, [b, c]] in L′3(H). The right-hand tree
corresponds to d⊗ [a, [b, c]] in H ⊗ L′3(H).

We now define a map η′k : Atk(H)→ H⊗L′k+1(H), in the same way that ηk was
defined, by sending each labelled binary planar tree to the sum of the rooted
labelled binary planar trees, one for each leaf, obtained by designating that leaf
as the (labelled) root. We want to show that Imβ′k = D′k(H), i.e. that the
following sequence is exact.

Atk(H)
η′k−→ H ⊗ L′k+1(H)

β′k−→ L′k+2(H)→ 0

We first prove:

Lemma 3.1 Im η′k ⊆ D′k(H).

Proof Let T be a labelled planar binary tree, representing t ∈ Atk(H). Then
β′k ◦ η′k(t) ∈ L′k+2(H) is represented by a sum

∑
l Tl , over all leaves l of T ,

where Tl is the rooted tree obtained by adjoining to the edge of T containing
l a rooted edge as in Figure 2. We need to show that this sum represents 0.

Algebraic & Geometric Topology, Volume 2 (2002)



Addendum and correction to: Homology cylinders 1201

l l

T

root

l
T

Figure 2: Define a rooted tree from a tree and one of its leaves

Consider now the sum
∑

(v,e) Tv,e , over all pairs (v, e), where v is a vertex of T
and e an edge containing v . Tv,e is the rooted tree obtained by adjoining to e,
near v , a rooted edge as in Figure 3. The terms of this sum for univalent vertices
v is clearly just

∑
l Tl . The remaining terms correspond to the internal vertices

and, for each internal vertex, there are three terms, whose sum will vanish by
the IHX relation. Thus it suffices to prove that

∑
(v,e) Tv,e represents 0. But

this is clear since, for each edge e, with vertices v′, v′′ , we have Tv′,e = −Tv′′,e ,
by the anti-symmetry relation.

T

root

T

v

e

v,e

Figure 3: Define a rooted tree from a tree and an edge-vertex pair

Theorem 1 η′k : Atk(H) → D′k(H) is a split surjection. Ker η′k is the torsion
subgroup of Atk(H), if k is even. It is the odd torsion subgroup if k is odd. In
either case

(k + 2) Ker η′k = 0.

Corollary 3.2 Atk(H)⊗Q ∼= D′k(H)⊗Q ∼= Dk(H)⊗Q

Conjecture 2 It is reasonable to conjecture that η′k is an isomorphism.

Proof of Theorem 1 We will need some auxiliary maps. First we define

ρk : H ⊗ L′k+1(H)→ Atk(H).

Let α be a generator of H ⊗L′k+1(H) represented by a rooted tree with labels
on all leaves and root. Define ρk(α) to be the same labelled tree obtained
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by just forgetting which vertex is the root. This obviously preserves the anti-
symmetry and IHX relations and label linearity, and so gives a well-defined
additive homomorphism. The important property to observe is

ρk ◦ η′k = multiplication by k + 2.

This shows that (k + 2) Ker η′k = 0.

When k is even, D′k(H) is torsion-free, by Corollary 2.2. This shows that Ker η′k
is the torsion subgroup of Atk(H). If k is odd, then Corollary 2.2 shows that
all the torsion in D′k(H) is of order 2, since L(H) is torsion-free and K2l(H)
is 2-torsion by Lemma 2.1. Since k + 2 is odd, we conclude that Ker η′k is the
odd torsion subgroup of Atk(H). From this it follows that η′k splits.

It remains only to show that η′k is onto. For this we will construct a map

τk : L′k+2(H)→ H ⊗ L′k+1(H)/η′k(Atk(H)).

Consider a generator α of L′k+2(H) represented by a rooted tree T with labelled
leaves as in Figure 4. Here v is the trivalent vertex adjacent to the root and
A,B the two subtrees (rooted, with labelled leaves) with v as their common
root. We then form a labelled tree T ′ from A and B by eliminating the root
of T and making v the midpoint of an edge connecting A to B—see Figure 4

A

A

B

B

T

T'

v

Figure 4

Now for each leaf w of T ′ we can create a rooted tree Tw by making w the
root. Then Tw represents an element of H ⊗ L′(H). Recall that we defined
η′k(T

′) to be the sum ΣwTw over all leaves of T ′ . We now define τk(α) to be
the class represented by the sum ΣwTw over all leaves w of A. We need to
check that this is well-defined modulo η′k(Atk(H)).

If we consider an anti-symmetry relation in T at a trivalent vertex in A or
B then the image is clearly an anti-symmetry relation in every Tw . The anti-
symmetry relation at the vertex v is easily seen to map to precisely η′k(T

′).

Now consider an IHX relation at an internal edge e of T . If e is an internal
edge of A or B then it induces an IHX relation in every Tw . Suppose, on the
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other hand that e contains v . If the other vertex of e is in A, for example,
then we can represent the IHX relation as in Figure 5.

A'

A'
A'

A''

A''

A''
B

B
B

_
+

Figure 5: Graphical representation of the IHX relation

Here we have split A into two subtree pieces A′ and A′′ . The image of this
IHX relation is pictured in Figure 6, where we take the sum over all leaves w
in each subtree.

'

B

B

_

+

B

B

+

+

Aw A'' A'
A''
w

A
'
w

A''

A''
A''

Bw A
'

A
'
w

Figure 6: The image of the IHX relation in Figure 5

Then we can see that the first and third terms cancel while the second, fourth
and fifth terms add up to exactly η′k(T

′).

Now it is easy to see that the composition

τk ◦ β′k : H ⊗ L′k+1(H)→ H ⊗ L′k+1(H)/η′k(Atk(H))

is just the canonical projection. From this it follows immediately that Ker β′k =
Im η′k .
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4 Relation between GYk (Hg) and Gwk (Hg)

Finally we can draw some conclusions about the natural map GYk (Hg) →
Gwk (Hg).

Corollary 4.1 (1) For all k

Atk(H)⊗Q ∼= GYk (Hg)⊗Q ∼= Gwk (Hg)⊗Q

(2) For k = 1 we have GY1 (Hg) ∼= V ⊕ Gw1 (Hg).

(3) If k is even, there is an exact sequence

GYk (Hg)→ Gwk (Hg)→ Kk+2(H)→ 0

(4) If k > 1 is odd, then GYk (Hg) → Gwk (Hg) is onto and there is an exact
sequence

H ⊗Kk+1(H)→ GYk (Hg)⊗ Z(2) → Gwk (Hg)⊗ Z(2) → 0

where Z(2) is the ring of fractions with odd denominator.

Conjecture 3 Taking account of the various conjectures mentioned above we
can conjecture that the precise relationship between Gwk (Hg) and GYk (Hg), for
k > 1 is given by the following exact sequences:

0→ GY2l(Hg)→ Gw2l(Hg)→ Ll+1(H)/2Ll+1(H)→ 0

H ⊗ Ll(H)/2Ll(H)→ GY2l−1(Hg)→ Gw2l−1(Hg)→ 0 (l > 1)
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