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Abstract The HKR (Hennings–Kauffman–Radford) framework is used
to construct invariants of 4–thickenings of 2–dimensional CW complexes
under 2–deformations (1– and 2– handle slides and creations and cancel-
lations of 1–2 handle pairs). The input of the invariant is a finite dimen-
sional unimodular ribbon Hopf algebra A and an element in a quotient of
its center, which determines a trace function on A. We study the sub-
set T 4 of trace elements which define invariants of 4–thickenings under
2–deformations. In T 4 two subsets are identified : T 3 ⊂ T 4 , which pro-
duces invariants of 4–thickenings normalizable to invariants of the bound-
ary, and T 2 ⊂ T 4 , which produces invariants of 4–thickenings depending
only on the 2–dimensional spine and the second Whitney number of the
4–thickening. The case of the quantum sl(2) is studied in details. We
conjecture that sl(2) leads to four HKR–type invariants and describe the
corresponding trace elements. Moreover, the fusion algebra of the semisim-
ple quotient of the category of representations of the quantum sl(2) is
identified as a subalgebra of a quotient of its center.
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1 Introduction

1.1 The (generalized) Andrews–Curtis conjecture [1] asserts that any simple
homotopy equivalence of 2–complexes can be obtained by deformation through
2–complexes (expansions and collapses of disks of dimension at most two and
changing the attaching maps of the 2–cells by homotopy), to which we refer
here as a 2–deformation. This conjecture is expected to be false and different
proposals for counterexamples have been made, but there seem to be a lack of
tools for actually detecting them as such. An extensive reference for all the
problems connected with the Andrews–Curtis conjecture is [6].
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34 Ivelina Bobtcheva and Maria Grazia Messia

To any 2–dimensional CW complex P , there corresponds a presentation of its
fundamental group, which can be obtained by selecting a vertex as a base point
b and a spanning tree T in the one-skeleton P1 on the complex. Then any
1–cell xi which is not in T , with a choice of orientation determines an element
in π1(P1, b) and the attaching map of any 2–cell defines a word Rj in the xi ’s
which represents a trivial element in π1(P, b). The presentation of π1(P, b)
obtained in this way, P̂ = 〈x1, x2, . . . , xn | R1, R2, . . . , Rm〉, depends on the
choices made, but this dependence can be explicitly described. In [6] (theorem
2.4), it is shown that the correspondence P → P̂ induces a bijection between
the 2–deformation types of connected 2–dimensional CW complexes and the
equivalence classes of finite presentations under the following moves:

(i) The places of R1 and Rs are interchanged;

(ii) R1 is replaced with gR1g
−1 , where g is any element in the group, or the

reverse of such a move;

(iii) R1 is replaced with R−1
1 ;

(iv) R1 is replaced with R1R2 ;

(v) Adding of an additional generator y and an additional relator yR, where
R is any word in the xi ’s, or the reverse of such a move;

We will refer to these six operations as AC–moves and, hopefully without caus-
ing confusion, changing a presentation with a sequence of AC–moves will be
called again a 2–deformation of this presentation. The inverse P̂ → P of the
bijection above is obtained by taking one-point union of n circles and attaching
on them m 2–cells as described by the relations.

If two complexes X and Y are simple homotopy equivalent, then for some k
there exists a 2–deformation from the one-point union of X with k copies of S2

to the one-point union of Y with k copies of S2 . In particular, if an invariant of
2–complexes under a 2–deformation is multiplicative under one point union, in
order to have some hope of detecting a counterexample of the AC–conjecture,
its value on S2 should not be a unit. Since, using the correspondence above,
we will talk instead about invariants of presentations under the AC–moves,
a multiplicative invariant would be considered potentially interesting for the
AC–conjecture if its value for 〈∅ | 1〉 is not a unit.

Such invariants were introduced by Quinn in [16] and studied in [2]. The input
for their construction is a finite semisimple symmetric monoidal category, which
is taken to be one of the Lie families described by Gelfand and Kazhdan in
[4], obtained as subquotients of mod p representations of simple Lie algebras.
Unfortunately, extensive numerical study of Quinn’s invariants (described in
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[24]) indicated that, in all numerically generated examples, the invariants come
from a representation of the free group on the generators into a subgroup of
GLN (Z/p) for some N , and in this representation every word has order p.
Consequently, it was shown in [14] that any invariant possessing this property
can’t detect counterexamples to the AC–conjecture.

In the present work we use the framework of Hennings–Kauffman–Radford
(HKR) [5, 10] to construct invariants of 4–dimensional thickenings of 2–compl-
exes under 2–deformations, i.e. 1– and 2– handle slides and creations or can-
cellations of 1–2 handle pairs. The construction is based on a presentation of
a 4–thickening by a framed link in S3 (where the 1–handles are described by
dotted components) and the input data is a finite dimensional unimodular rib-
bon Hopf algebra and an element in a quotient of its center which determines
a trace function on the algebra.

As Hennings points out, any trace function on the algebra, and therefore any
trace element, leads to an invariant of links, but very few trace elements lead
to invariants of links which are also invariants under the band-connected sum
of two link components (corresponding to 2–handle slides). Let T s be the
subset of these special trace elements. Then T s contains always at least two
elements which are 1 (one) and the algebra integral Λ. Moreover, when the
Hopf algebra is the finite dimensional quantum enveloping algebra at root of
unity of some simple Lie group, T s contains at least one more element zRT
which corresponds to the Reshetikhin–Turaev invariant. This fact was first
observed by Hennings, and then, for the quantum sl(2), zRT was made explicit
by Kerler in [8] (for completeness, in the appendix we present the derivation of
zRT ). In an analogous way (though it won’t be done here), one can see that
Quinn’s invariant can be derived in the HKR–framework from a triangular Hopf
algebra over Z/p and a central element zQ 6= 1 in it. Moreover, the invariant
corresponding to 1 is less interesting than Quinn’s invariant. These facts imply
that it is important not to restrict to the trace function corresponding to 1
(as it is done in [5, 10]), and rise the question what is the possible relationship
between the different invariants derived from the same Hopf algebra. To answer
this question, one needs to study the structure of T s and we hope that the
present work sets the framework for such study.

In particular, we determine a subset T of trace elements which lead to in-
variants of 4–thickenings under 2–handle slides, i.e. T ⊂ T s . By adding the
requirement for invariance under 1–2 handle cancellations, inside T , it is de-
scribed a subset T 4 of trace elements which lead to invariants of 4–thickenings
under 2–deformations. Then we study when the invariant of a 4–thickening
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reduces to un invariant of the boundary and when it reduces to an invariant of
the spine. This leads to the description in T 4 of two subsets:

• T 3 ⊂ T 4 , whose elements lead to invariants which factor as a product
of a 3-manifold invariant and a multiplicative invariant which depends on
the signature and the Euler characteristic of the 4–thickening, and

• T 2 ⊂ T 4 whose elements lead to invariants which only depend on the
2–dimensional spine and the second Whitney number of the 4–thickening.

The definition of T allows to make some interesting conclusions about its struc-
ture. In particular, T carries two different monoidal structures and it is invari-
ant under the action of the S operator defined in (2.55) of [8]. But for now we
don’t know a practical way of calculating the elements of T for a given algebra
and this is quite unsatisfactory. The only partial remedy we can offer, is that
by weakening “slightly” the defining conditions on T , one can define a subset
T Z , containing T , such that its elements are relatively easy to determine since
the calculations are entirely restricted to the center of the algebra. We make
this calculation explicit for the case of the quantum sl(2) and show that in this
case T Z consists of 4 elements, three of which are exactly 1, Λ and zRT . This
fact leads to the conjecture that T Z = T for the quantum sl(2). Under this
assumption we show that the invariant corresponding to the forth element in
T Z is the ratio of the Hennings and the Reshetikhin–Turaev invariants.

The paper is organized as follows. In section 2 we present the main defini-
tions and results. Section 3 contains some notations and preliminaries on Hopf
algebras. Section 4 is dedicated to the study of the structure of T . Section
5 introduces the notion of K–links and K–tangles. Section 6 defines the in-
variant of 4–thickenings and shows that, when the trace element is in T 2 , the
invariant depends only on the two dimensional spine of the 4–thickening and
its second Whitney number. Section 7 studies the reducibility of the invariant
to a 3–manifold invariant and section 8 illustrates the construction with two
examples: the case of a group algebra and the case of the quantum sl(2). At
the end we list some open questions. In the appendix, always for the quantum
sl(2), we show that the Reshetikhin–Turaev invariant is a HKR–type invariant
and calculate the corresponding trace element.

Acknowledgements We want to thank Thomas Kerler, Frank Quinn and the
reviewer for some essential comments and suggestions.
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2 Main Results

2.1 Let (A,m,∆, S, ε, e) be a finite dimensional unimodular ribbon Hopf al-
gebra over a field k with an integral Λ ∈ A and a right integral λ ∈ A∗ such
that λ(Λ) = 1. We define a linear map ? : A⊗A→ A given by

a ? b =
∑
b

λ(S(a)b(1))b(2), where ∆(b) =
∑
b

b(1) ⊗ b(2).

Let Z(A) be the center of A and let K(A) be the null space of the pairing on
Z(A) induced by λ, i.e.

K(A) = {a ∈ Z(A) | for any b ∈ Z(A), λ(ab) = 0}.
Then K(A) is an algebra ideal in Z(A), and let Ẑ(A) = Z(A)/K(A) be the
quotient algebra. Given any a ∈ Z(A), we will denote by [a] its equivalence
class in Ẑ(A). Let also ẐS(A) = {[a] ∈ Ẑ(A) | [S(a)] = [a]} (this will be shown
to be well defined in 4.4).

Lemma 2.2 Let A be a finite-dimensional unimodular ribbon Hopf algebra
over a field k as above. Then

(a) ? : Z(A) ⊗ Z(A) → Z(A) defines an associative product on Z(A) with
an identity Λ and for any a, b ∈ Z(A), S(a ? b) = S(b) ? S(a);

(b) ? defines an associative and commutative product on Ẑ(A).

2.3 Let Cn ⊆ A⊗n, n > 1, be the centralizer of the action of A on A⊗n given
by the comultiplication, i.e. a ∈ Cn iff for any b ∈ A, ∆n−1(b)a = a∆n−1(b).
Define also C1 = Z(A).

C2 contains the commutative subalgebra C2
Z generated by the elements of the

form (a⊗ b)∆c, where a, b, c ∈ Z(A). Let µ : C2
Z ⊗ C2 → k, be given by

µ(
∑
i

ai ⊗ bi,
∑
j

cj ⊗ dj) =
∑
i,j

λ(aicj)λ(bidj),

and let µ̄ : C2
Z ⊗ C2

Z → k be the corresponding restriction of µ. Define

K2
Z = {x ∈ C2

Z | µ(x, y) = 0 for any y ∈ C2} and

K
2
Z = {x ∈ C2

Z | µ(x, y) = 0 for any y ∈ C2
Z}.

Obviously K2
Z and K

2
Z are ideals in C2

Z and K2
Z ⊂ K

2
Z . This induces a

surjective homomorphism

πZ : C2
Z/K

2
Z → C2

Z/K
2
Z .
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Define δ : Z(A)⊗ Z(A)→ C2
Z as δ(w, z) = z ⊗ w − (1⊗ w)∆(z).

Proposition 2.4 δ factors through a well defined map δ̂ : Ẑ(A) ⊗ Ẑ(A) →
C2
Z/K

2
Z .

2.5 Let T ⊂ T Z ⊂ ẐS(A) be T = {[z] ∈ ẐS(A) | δ̂([z], [z]) = 0} and
T Z = {[z] ∈ ẐS(A) | πZ · δ̂([z], [z]) = 0}. Observe that [z] ∈ T Z if and only if
for any a, b, c ∈ Z(A), λ(zc(bz ? a)) = λ(zc(b ? (za))). Hence

Proposition 2.6 [z] ∈ T Z if and only if for any [a], [b] ∈ Ẑ(A), [z(a ? zb)] =
[z(az ? b)].

2.7 Let J : Z(A)→ Z(A), be defined as

J(z) = (λ⊗ 1)(z ⊗ 1)R21R =
∑
i,j

λ(zβiαj)αiβj .

This operator is related to the image of one of the generators, S , in the action
of the torus group on Z(A) (see [8], (2.55)) and it is essential in understanding
when the invariant of the 4–thickening reduces to an invariant of the boundary.
Let Z?(A) denote the algebra which has Z(A) as a vector space and the ?
product structure. Then

Proposition 2.8 (a) J : Z?(A) → Z(A) is an algebra homomorphism, i.e.
for any a, b ∈ Z(A), J(a ? b) = J(a)J(b).

(b) J2(a) = S(a) ? J(1);

(c) J factors through an algebra homomorphism map Ĵ : Ẑ?(A) → Ẑ(A),
and maps ẐS(A) into itself.

Observe that, if J(1) = γΛ, where γ ∈ k is a unit, 2.8 (b) and the fact that on
the center of a ribbon algebra S2 acts as the identity, imply that J is bijective
with an inverse J−1 = γ−1(S ◦ J). Then from 2.8 (a) and 2.2 (a) one obtains

J(ab) = J(J ◦ J−1(a)J ◦ J−1(b)) = J2(J−1(b) ? J−1(a))
= γ−1S(S ◦ J(b) ? S ◦ J(a)) = γ−1J(a) ? J(b).

Therefore we have proved the following:

Corollary 2.9 If J(1) = γΛ, where γ ∈ k is a unit, then γ−1J : Z(A) →
Z?(A) is an algebra isomorphism. In particular, the algebra Z?(A) is commu-
tative.
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Definition 2.10 A quasitriangular unimodular ribbon Hopf algebra for which
J(1) = γΛ, where γ ∈ k is a unit, will be called Λ–factorizable.1

Lemma 2.11 T is a commutative monoid with respect to the usual and the
?–product on ẐS(A). Moreover Ĵ sends T into itself.

We observe that proposition 2.8 implies that when the algebra is Λ–factorizable,
Ĵ : T → T is a bijection whose square is a multiple of the identity.

2.12 Let M be an orientable 4–dimensional manifold which possesses a de-
composition as a handlebody with 0–, 1– and 2–handles. We remind that
an n–handle is a product Dn × D4−n and the choice of radial coordinates in
D4−n gives a description of the product as the mapping cylinder of a projection
Dn × S3−n → Dn . Then Dn × {0} is called the core, Sn−1 × {0} is called the
attaching sphere and {0} ×S3−n is called the belt sphere of the handle. When
another handle is attached on top of this one the intersection of the attaching
map with the handle lies in Dn×S3−n and using the mapping cylinder coordi-
nates the core of the upper handle can be extended in the lower handle. This
extends the upper cores to a disk whose boundary lies on the lower cores. The
union of these extended cores forms a 2–dimensional CW complex which will
be called the spine of the handlebody. The mapping cylinder contractions also
combine to give a standard deformation retraction of the handlebody to the
spine.

A pair of (n + 1)–handle and an n–handle is called a cancelling pair if the
attaching sphere of the (n + 1)–handle intersects the belt sphere of the n–
handle in a single point.

Then a 4–thickening M of a 2–dimensional CW complex P , denoted with
(M,P ), is an orientable 4–dimensional manifold together with a decomposition
as a handlebody with 0–, 1– and 2–handles and an identification (as CW com-
plexes) of the spine of the handlebody structure with P through an embedding
ιM,P : P →M . In particular, ιM,P induces isomorphism on homology. We will
restrict ourselves to 4–thickenings with a single 0–handle. A 2–deformation of
such 4–thickenings is given by a sequence of the following handle moves:

(a) creation or cancellation of a cancelling 1–2 handle pair;

(b) changing the attaching maps of the 1– and 2– handles by isotopy.

1A quasitriangular Hopf algebra is called factorizable if J̄ : A∗ → A, given by J̄(f) =
(f ⊗ 1)(R21R) is bijective.
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Observe that these moves induce a 2–deformation on the spine.

The word 4–thickening is supposed to stress not only the fact that a spine has
been fixed, but also that we have weakened the equivalence relations on the
objects with respect to 4–manifolds.2

2.13 The monoid T will be shown to correspond to invariants under 2–handle
slides. An invariance under 2–deformations requires in addition invariance un-
der 1–2 handle cancellations, and the center elements which lead to such invari-
ants form the following subset of T :

T 4 = {[z] ∈ T | there exits [w] ∈ ẐS(A) and [zw] = [Λ]}.

Let also T 3 = {[z] ∈ T 4 | [zJ(z)] = Xz[Λ] for some unit Xz ∈ k} and

T 2 = {[z] ∈ T 4 | [z] = [z1J(z2)] and δ̂([z1], [z2]) = 0

for some [z1], [z2] ∈ ẐS(A)}.

Theorem 2.14 Given any [z] ∈ T 4 and [w] ∈ ẐS(A) such that [zw] =
[Λ], there exists a HKR–type invariant of 4–thickenings under 2–deformations,
denoted with Z [z](M), such that

Z [z](S
2 ×D2) = λ(z) and Z [z](S

1 ×D3) = ε(w).

Obviously for any finite dimensional unimodular ribbon Hopf algebra A, the
elements [1], [Λ] ∈ T 4 . The choice [z] = [Λ] brings to the trivial invariant
which is 1 for any M . On another hand [z] = [1] gives the Hennings invariant
(in the 3–manifold case):

Corollary 2.15 Any finite-dimensional unimodular ribbon Hopf algebra A
over a field k , determines an invariant ZA of 4–thickenings under 2–deformat-
ions, such that

ZA(S2 ×D2) = λ(1), and ZA(S1 ×D3) = ε(Λ),

In particular, ZA(S2×D2) 6= 0 if and only if A is cosemisimple (A∗ is semisim-
ple), and ZA(S1 ×D3) 6= 0 if and only if A is semisimple.

Given a 4–manifold M , let w2(M) ∈ H2(M ;Z/2) denote the second Whitney
class of M .

2While changing the attaching map of a 2–handle by isotopy is equivalent to the
creation and cancellation of cancelling 2–3 handle pairs, isotoping the attaching map
of a 3–handle is not a 2–deformation.
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Lemma 2.16 Let P be a 2–dimensional CW complex and (M1, P ), (M2, P )
be two 4–thickenings of P such that ι∗M1,P

(w2(M1)) = ι∗M2,P
(w2(M2)). If [z] ∈

T 2 then Z [z](M1) = Z [z](M2).

Corollary 2.17 Let A be a triangular Hopf algebra and let [z] ∈ T 4 . If
(M1, P1) and (M2, P2) are two 4–thickenings such that P1 and P2 are related
by a 2–deformation, then Z [z](M1) = Z [z](M2).

Hence, if A is a triangular Hopf algebra any [z] ∈ T 4 defines an invariant of
2–complexes under 2–deformations, and this invariant is denoted by Z 2

[z](P ).
Then it is natural to expect that for triangular algebras T 4 = T 2 . Actually,
in this case for any z ∈ Z(A), J(z) = λ(z)1. In particular,

T 2 = {[z] ∈ T 4 | there exists [w] ∈ ẐS(A) with δ̂([z], [w]) = 0 and λ(w) 6= 0}.
And since for any z ∈ Z(A), δ(z, 1) = 0, it follows that if A is triangular and
cosemisimple (i.e. λ(1) 6= 0) then T 2 = T 4 . We don’t know if this is true for
any triangular algebra.

2.18 Let M be a 4–thickening represented with a Kirby diagram L (see sec-
tion 5) and let σ+ , σ− and σ0 be the numbers of positive, negative and zero
eigenvalues of the linking matrix of L.

Corollary 2.19 If [z] ∈ T 3 then C+ = Z [z](CP 2) and C− = Z [z](CP 2) are
units in k . Moreover, if M is a 4–thickening with n 1–handles, then

C
n−σ+
+ C

n−σ−
− Z [z](M)

only depends on the boundary ∂M of M and is denoted by Z ∂[z](∂M).

3 Basic facts about Hopf algebras

Here, we introduce some notations assuming that the reader is familiar with
the axioms of a Hopf algebra. A possible reference about Hopf algebras is [22].
Let (A,m,∆, S, ε, e) be a Hopf algebra over a field k , where:

m : A⊗A→ A multiplication map
∆: A→ A⊗A comultiplication map
S : A→ Aopp antipode
ε : A→ k counit
e : k → A unit
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Note also that there are natural isomorphisms; k ⊗ A → A and A ⊗ k → A
which we will often omit, identifying A⊗ k and k ⊗A with A.

3.1 The maps above need to satisfy a list of compatibility conditions, out of
which we only mention the following:

(a) ∆(∆⊗ 1) = ∆(1⊗∆): A→ A⊗A⊗A (coassociativity) ,

(b) ∆m = (m⊗m)(1⊗ T ⊗ 1)(∆⊗∆): A⊗A→ A⊗A, ∆(1) = 1⊗ 1,

(c) m(S ⊗ 1)∆ = m(1⊗ S)∆ = eε : A→ A,

where 1 denotes both the identity element e(1k) in A and the identity map
A → A, and T : A ⊗ A → A⊗ A is the transposition map a ⊗ b → b⊗ a. An
easy consequence of the definition of the antipode is that

(d) T ◦ (S ⊗ S)∆(a) = ∆(S(a)).

Let ∆n = (∆ ⊗ 1⊗(n−1))(∆ ⊗ 1⊗(n−2)) . . .∆: A→ A⊗(n+1). We use Sweedler’s
notation ∆(n−1)(a) =

∑
a a(1) ⊗ a(2) ⊗ . . . a(n−1) ⊗ a(n) . Then (d) implies that

(e) ∆n−1(S(a)) =
∑

a S(a(n))⊗ S(a(n−1)) . . .⊗ S(a(1)).

3.2 An element λL ∈ A∗ is called a left integral for A∗ if

(f ⊗ λL)∆(a) = λL(a)f(1), for any a ∈ A and f ∈ A∗ .
An element λR ∈ A∗ is called a right integral for A∗ if

(λR ⊗ f)∆(a) = λR(a)f(1), for any a ∈ A and f ∈ A∗ .

When A is finite-dimensional, the Hopf algebra isomorphism A ' A∗∗ implies
that one can define a left (right) integral for A as an element Λ ∈ A, such that
a.Λ = ε(a)Λ (Λa = ε(a)Λ) for any a ∈ A.

3.3 The following results ([22, 19, 18]) concern the existence of integrals when
A is a finite-dimensional Hopf algebra over a field k .

(a) The subspaces
∫ ∗
L ,
∫ ∗
R ⊂ A∗ of left (right) integrals for A∗ and the sub-

spaces
∫
L,
∫
R ⊂ A of left (right) integrals for A are one dimensional;

(b) The antipode map is bijective;

(c) For any nonzero λ ∈
∫ ∗
R there exists Λ ∈

∫
L such that

λ(Λ) = λ(S(Λ)) = 1;

(d) Given any nonzero λ ∈
∫ ∗
R the map Φ: A→ A∗ given by Φ(a)(b) = λ(ab)

is a bijection;
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3.4 Note that, if A is a finite-dimensional Hopf algebra and Λ ∈
∫
R , then

S(Λ), S−1(Λ) ∈
∫
L . Moreover, if λ ∈

∫ ∗
R , then λ ◦ S, λ ◦ S−1 ∈

∫ ∗
L . A is

called unimodular if
∫
R =

∫
L and if A is unimodular then for any λ ∈

∫ ∗
R ,

λ(ab) = λ(S2(b)a).

3.5 A quasitriangular Hopf algebra is a Hopf algebra A endowed with invert-
ible element R =

∑
i αi ⊗ βi ∈ A⊗A such that

(a) T ◦∆(a) = R∆(a)R−1 for any a ∈ A ;

(b) (∆⊗ 1)R = R13R23 ;

(c) (1⊗∆)R = R13R12 ,

where as usual R(kl) ∈ A⊗n indicates the image of R under the injective ho-
momorphism of the group of invertible elements in A ⊗ A into the group of
invertible elements of A⊗n where the first factor is mapped into k -th position
and the second into l-th position.

If (A,R) is a quasitriangular Hopf algebra, the following relations hold:

(d) R(12)R(13)R(23) = R(23)R(13)R(12) ;

(e) (S ⊗ 1)R = (1⊗ S−1)R = R−1 , and (S ⊗ S)R = R;

(f) (ε⊗ 1)R = (1⊗ ε)R = 1;

(g) Let u =
∑

i S(βi)αi , then u is invertible and S2(a) = uau−1 , moreover,

∆(u) = (u⊗ u)(R(21)R)−1.

3.6 A quasitriangular Hopf algebra is called triangular if R−1 = R(21) =∑
i βi ⊗ αi . In this case u is a group-like element, i.e. ∆(u) = u⊗ u, which, in

the terminology below, implies that any triangular Hopf algebra is ribbon with
ribbon element u.

A Hopf algebra A is called cocommutative if it possesses triangular structure
with R = 1⊗ 1, i.e. if T ◦∆ = ∆.

3.7 A quasitriangular Hopf algebra A is called ribbon if it is endowed with a
grouplike element g ∈ A such that S2(a) = gag−1 , called the special grouplike
element of A (grouplike means that g is invertible and ∆g = g ⊗ g). It can be
shown (see for example [20, 10]) that if A is ribbon,

θ = gu−1 = u−1g =
∑
i

αig
−1βi =

∑
i

βigαi

is a central element in A such that
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(a) S(θ) = θ ;

(b) θ is invertible with inverse θ−1 =
∑

i αiS(βi)g =
∑

i S(βi)αig−1;

(c) ∆(θ) = (θ ⊗ θ)(R(21)R)−1.

θ is called the ribbon element of A.

A trace function on A is an element f ∈ A∗ such that, for any a, b ∈ A,
f(ab) = f(ba) and f(a) = f(S(a)). In a finite dimensional unimodular ribbon
Hopf algebra there is a bijection between the set of S–invariant central elements
in A and the space of trace functions on A given by z → λzg , where λzg(a) =
λ(zga) ([5, 19]).

4 The center of a unimodular finite dimensional rib-
bon Hopf algebra

In the rest of the paper, unless specified otherwise, (A,m,∆, S, ε, e) will be
a unimodular Hopf algebra over a field k with an integral Λ ∈ A, a right
integral λ ∈ A∗ and a left integral λS = λ ◦ S , such that λ(Λ) = λS(Λ) = 1.
Moreover, we assume that A carries a ribbon structure given by an R–matrix
R =

∑
i αi⊗βi and a group like element g such that gag−1 = S2(a) for any a ∈

A. Many of the statements here can be easily illustrated using the diagrammatic
language in the later chapters, but because of their purely algebraic significance
we decided that it is better to prove them in a self-contained way.

4.1 Generating elements in Cn

(i) The first way to generate elements in Cn , is by “going up”, i.e. by applying
some of the following embeddings on Cn−1 :

η(n−1)
r : Cn−1 → Cn, a→ 1⊗ a;

η
(n−1)
l : Cn−1 → Cn, a→ a⊗ 1;

1⊗(i−1) ⊗∆⊗ 1⊗(n−i−1) : Cn−1 → Cn, i = 1, . . . , n − 1.

The subalgebra of Cn generated inductively in this way, starting with
C1 = Z(A), will be denoted with CnZ .

(ii) The second way to generate new elements in Cn is through the action
of the braid group on Cn as follows. If Bn is the braid group on n
strings and qn : Bn → Sn is its homomorphism onto the symmetric group
Sn , let In = q−1

n (id). The relation 3.5 (d) implies that one can define
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a representation of φ : Bn → End(A⊗n) by defining the image of the
generator which interchanges the i-th and the (i+ 1)-st strings to be

φ(σi,i+1) = 1⊗(i−1) ⊗ (T ◦R)⊗ 1⊗(n−i−1),

where we first multiply the corresponding element in A⊗n on the left
with 1⊗(i−1) ⊗ R ⊗ 1⊗(n−i−1) and then apply the permutation. Suppose
that s, s′ ∈ Bn are such that qn(s) = qn(s′)−1 . Then the condition 3.5 (a)
implies that given any a ∈ Cn , φ(s)◦a◦φ(s′) act on A⊗n by multiplication
with an element in Cn . We write this fact as φ(s) ◦ Cn ◦ φ(s′) ⊂ Cn .
For example, if

∑
i ci ⊗ di ∈ C2 then

∑
i,k,j βkdiαj ⊗ αkciβj ∈ C2 . The

statement implies in particular that φ(In) ⊂ Cn . 3

(iii) The third way to obtain elements in Cn is by “going down”, i.e. by
applying the integrals to the elements in Cn+k :

Proposition 4.2 Let Ln+1 : A⊗(n+1) → A⊗n be the map which applies λ
on the leftmost factor in A⊗(n+1) and let Rn+1 : A⊗(n+1) → A⊗n be the map
which applies λS on the rightmost factor in A⊗(n+1) . Then Ln+1 and Rn+1

map Cn+1 into Cn .

Proof The proof is standard, but for completeness we will show the first part
of the statement and the second is analogous. Given any

∑
i ai ⊗ bi ∈ Cn+1 ,

where ai ∈ A, bi ∈ A⊗n and any c ∈ A,∑
i λ(ai)bi∆n−1(c) =

∑
i,c

λ(aic(2)S
−1(c(1)))bi∆

n−1(c(3))

=
∑
i,c

λ(c(2)aiS
−1(c(1)))∆

n−1(c(3))bi

=
∑
i,c

λ(S(c(1))c(2)ai)∆
n−1(c(3))bi =

∑
i

λ(ai)∆n−1(c)bi,

hence
∑

i λ(ai)bi ∈ Cn .

By induction the last proposition implies that for any 0 ≤ k < l ≤ n

λ⊗k ⊗ 1⊗(l−k) ⊗ (λS)⊗(n−l) : Cn → C l−k.

Proposition 4.3 For any a ∈ Cn and any partition n′ + n′′ = n, λ⊗n(a) =
(λ⊗n

′ ⊗ (λS)⊗n
′′
)(a). In particular, λ(a) = λS(a) for any a ∈ Z(A).

3Using 3.7 (c) one can show that actually φ(In) ⊂ CnZ .
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Proof First we will prove the statement for n = 1. Suppose that a ∈ Z(A).
Then, using 3.7, it follows that

λ(a) =
∑
i,j

λ(aβjβiS−1(αi)αj) =
∑
i,j

λ(aβiS−1(αi)αjS−2(βj))

=
∑
i,j

λ(gagg−1βiS
−1(αi)αjg−1βj) = λ(gagS−1(θ−1)θ)

= λ(gag) = λ(S(a)).

Let now a ∈ Cn , n > 1. If n′′ = 0, the statement is trivial. Suppose then that
it is true for some n′′ ≥ 0. Then proposition 4.2 implies that (λ⊗(n′−1) ⊗ 1 ⊗
(λS)⊗n

′′
)(a) ∈ Z(A) and hence the statement with n′′+ 1 follows from the one

for n′′ and from the statement with n = 1.

This proposition implies that if a ∈ K(A) then for any b ∈ Z(A), λ(bS(a)) =
λ(S2(a)S(b)) = λ(S(b)a) = 0, i.e. S(a) ∈ K(A). Hence

Corollary 4.4 The algebra ẐS(A) in 2.1 is well defined.

4.5 Proof of lemma 2.2 First observe that proposition 4.2 implies that, for
any a, b ∈ Z(A), a ? b ∈ Z(A). To see the associativity of the product, let
a, b, c ∈ Z(A). Then

(a ? b) ? c =
∑
c,b

λ(S(a)b(1))λ(S(b(2))c(1))c(2)

=
∑
c,b

λ(S(a)b(1)S(b(2))c(2))λ(S(b(3))c(1))c(3)

=
∑
c

λ(S(a)c(2))λ(S(b)c(1))c(3) = a ? (b ? c).

To complete the proof of 2.2(a) we observe that for any a, b ∈ Z(A),

S(a ? b) =
∑
b

λ(S(a)b(1))S(b(2)) =
∑
S(a),b

λ(S(a)(1)b(1))S(a)(2)b(2)S(b(3))

=
∑
S(a)

λ(S(a)(1)b)S(a)(2) = S(b) ? S(a),

which together with the definition of Λ implies that a = Λ ? a = a ? Λ. This
completes the proof of proposition 2.2 (a). Now, for any a, b, c ∈ Z(A), define

σ(a, b, c) = λ(S(a)(b ? c)).

Then 2.2 (b) follows from 4.3 and the following proposition.
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Proposition 4.6 If (a′, b′, c′) is any permutation of (a, b, c) or
(S(a), S(b), S(c)), then

σ(a′, b′, c′) = σ(a, b, c).

Proof First we observe that 2.2 (a) and 4.3 imply that

σ(a, b, c) = σ(S(a), S(c), S(b)).

Hence, it is enough to show that σ(a′, b′, c′) = σ(a, b, c) where (a′, b′, c′) is one
of the two permutations (b, a, c) or (c, b, a). Now we claim that λ(a(S(b)?c)) =
λ(b(S(a) ? c)) which would imply that σ(a, b, c) = σ(b, a, c). To see this, let∑

i γi ⊗ δi = R−1 . Then

λ(b(S(a) ? c)) =
∑
c

λ(ac(1))λ(bc(2)) =
∑
c,i,j

λ(aγiαjc(1))λ(bδiβjc(2))

=
∑
c,i,j

λ(aγic(2)αj)λ(bδic(1)βj) =
∑
c,i,j

λ(ac(2)αjS
−2(γi))λ(bc(1)βjS

−2(δi))

=
∑
c

λ(bc(1))λ(ac(2)) = λ(a(S(b) ? c)).

We complete the proof of the proposition as follows:

σ(a, b, c) = σ(S(a), S(c), S(b)) = σ(S(c), S(a), S(b)) = σ(c, b, a).

4.7 Proof of proposition 2.4 It is enough to show that for any z ∈ K(A)
and any

∑
i ai ⊗ bi ∈ C2 , the following three statements hold:

(a)
∑

i λ(ai)λ(zbi) = 0,

(b)
∑

z,i λ(z(1)ai)λ(z(2)bi) = 0,

(c)
∑

i λ(zai)λ(bi) = 0.

(a) and (c) follow directly from 4.3 and 4.2. On another hand to show (b),
using 4.3 and the fact that z = z ? Λ, we obtain∑

z,i λ(z(1)ai)λ(z(2)bi) =
∑
Λ,i

λ(S(z)Λ(1))λ(Λ(2)ai)λ(Λ(3)bi)

=
∑

Λ

λ(z(
∑
i

λS(Λ(2)ai)λ
S(Λ(3)bi)S(Λ(1)))) = 0.
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4.8 Proof of proposition 2.8 Observe that J actually maps the center into
itself since from 3.7 it follows that

J(z) =
∑
θ

λ(zθθ−1
(1))θθ

−1
(2) = θ((S(z)θ) ? (θ−1)).

This expression also implies (together with 2.2 (b) ) that J factors through a
map Ẑ(A)→ Ẑ(A). Now we can complete the proof of 2.8 (c). Let [a] ∈ ẐS(A).
Then using the fact that S(θ) = θ and 2.2 (a) and (b) we obtain that

[S(J(a)) − J(a)] = [θ(((S(a)− a)θ) ? (θ−1))] = 0.

Hence [J(a)] ∈ ẐS(A).

It is left to show 2.8 (a) and (b).

(a) Let J ′ = J ◦S . Then (a) is equivalent to show that J ′ : Z?(A)→ Z(A) is
an algebra isomorphism, i.e. for any a, b ∈ Z(A), J ′(a ? b) = J ′(a)J ′(b).
From 3.5 (b) and (c) it follows that

J ′(a)J ′(b) =
∑
i,j

λ(S(a)βiαj)αiJ ′(b)βj

=
∑
i,j,i′,j′

λ(S(a)βiαj)λ(S(b)βi′αj′)αiαi′βj′βj

=
∑

i,j,αj,βi

λ(S(a)βi,(2)αj,(2))λ(S(b)βi,(1)αj,(1))αiβj

=
∑
i,j,b

λ(S(a)b(1))λ(S(b(2))βiαj)αiβj = J ′(a ? b).

(b) From 3.5 (b) and (c) it follows that

S(a) ? J(1) =
∑
i,j,k,l

λ(βiβkαlαj)λ(aαiβj)αkβl

= λ(αjβiβkαl)λ(aβjαi)αkβl = J2(a).

4.9 Proof of lemma 2.11 It is obvious that T is a monoid under the usual
multiplication in ẐS(A).

First we will show that if δ̂([z], [z]) = 0 and δ̂([w], [w]) = 0, then δ̂([z ?w], [z ?
w]) = 0. This is equivalent to say that for any

∑
k ak ⊗ bk ∈ C2 ,

λ(x(z ? w)) =
∑
k

λ((z ? w)ak)λ((z ? w)bk),
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where x =
∑

k,w λ(S(z)w(1))λ(w(2)ak)w(3)bk ∈ Z(A). From 4.6 it follows that
the left hand side is actually equal to σ(S(x), z, w) = σ(S(w), S(z), x). Hence

l.h.s =
∑
k,w

λ(S(z)w(1))λ(w(2)ak)λ(zw(3)bk,(1))λ(ww(4)bk,(2))

=
∑
k,w,i,j

λ(S(z)w(1))λ(αiw(2)akS(αj))λ(zβiw(3)bk,(1)βj)λ(ww(4)bk,(2))

=
∑
k,w,i,j

λ(S(z)w(1))λ(w(3)αiakS(αj))λ(zw(2)βibk,(1)βj)λ(ww(4)bk,(2)).

The criteria established in 4.1 and 4.2 imply that

∑
k,w,i,j

λ(S(z)w(1))λ(zw(2)βibk,(1)βj)w(3)αiakS(αj)⊗ ww(4)bk,(2) ∈ C2.

Hence from proposition 4.3 it follows that

l.h.s =
∑
k,w,i,j

λ(S(z)w(1))λ(zw(2)βibk,(1)βj)λ
S(w(3)αiakS(αj))λS(ww(4)bk,(2)).

Now the S–invariance of [z] together with the fact that δ̂([z], [z]) = 0 imply
that

l.h.s =
∑

k,w,i,j,z

λ(z(1)w(1))λ(zz(2)w(2)βibk,(1)βj)λ
S(w(3)αiakS(αj))λS(ww(4)bk,(2))

=
∑

k,w,i,j,z

λ(zw(1))λ(zβibk,(1)βj)λ
S(w(2)αiakS(αj))λS(ww(3)bk,(2))

=
∑
k,w,i,j

λ(zβibk,(1)βj)λ(zS((αiakS(αj))(1)))λ
S(w(1)(αiakS(αj))(2))λ

S(ww(2)bk,(2))

=
∑
k,w,i,j

λ(zβibk,(1)βj)λ
S(z(αiakS(αj))(1))λ

S(w(1)(αiakS(αj))(2))λ
S(ww(2)bk,(2))

=
∑
k,w,i,j

λ(zβibk,(1)βj)λ(z(αiakS(αj))(1))λ(w(1)(αiakS(αj))(2))λ(ww(2)bk,(2)),

where the last two equalities follow from 4.1, 4.2 and 4.3. At this point we use
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the fact that [w] ∈ T and obtain:

l.h.s. =
∑
k,i,j

λ(zβibk,(1)βj)λ(z(αiakS(αj))(1))λ(w(αiakS(αj))(2))λ(wbk,(2))

=
∑
k

λ(zak,(1))λ(wak,(2))λ(zbk,(1))λ(wbk,(2))

=
∑
k

λS(zak,(1))λ
S(wak,(2))λ

S(zbk,(1))λ
S(wbk,(2))

=
∑
k

λS((z ? w)ak)λS((z ? w)bk) =
∑
k

λ((z ? w)ak)λ((z ? w)bk).

Together with the fact that Λ ∈ T , this implies that T is a monoid with
respect to the ?–product structure as well.

It is left to show that T is invariant under the action of Ĵ , i.e for any [z] ∈ T ,
and

∑
k ak ⊗ bk ∈ C2 ,∑

k

λ(J(z)ak)λ(J(z)bk) =
∑
k,J(z)

λ(J(z)(1)ak)λ(J(z)J(z)(2)bk).

For the left hand side one has

l.h.s. =
∑

i,j,n,m,k

λ(zβjαi)λ(zβmαn)λ(αjβiak)λ(αmβnbk)

=
∑

i,j,n,m,k

λ(βjz(βmzαn)(2)αi)λ((βmzαn)(1))λ(αjβiak)λ(αmβnbk)

=
∑

i,j,n,m,k

λ(zz(2)αn,(2)αiβjβm,(2))λ((zαnβm)(1))λ(βiakαj)λ(βnbkαm).

Hence, from the fact that [z] ∈ T and 3.5 (b) and (c), it follows that

l.h.s. =
∑

i,j,n,m,k

λ(z(αnβm)(1))λ(zαn,(2)αiβjβm,(2))λ(βiakαj)λ(βnbkαm)

=
∑

i,j,n,m,k

λ(z(βmαn)(1))λ(zβjβm,(2)αn,(2)αi)λ(αjβiak)λ(αmβnbk)

=
∑

i,j,n,m,k,n′,m′

λ(zβm′αn)λ(zβjβmαn′αi)λ(αjβiak)λ(αmαm′βnβn′bk)

=
∑

i,j,n′,m,k

λ(zβjβmαn′αi)λ(αjβiak)λ(αmJ(z)βn′bk)

=
∑
k,J(z)

λ(J(z)(1)ak)λ(J(z)J(z)(2)bk).
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5 K–links and K–tangles

Let M be an oriented 4–dimensional manifold together with a decomposition
as a handlebody with a single 0–handle and a number of 1– and 2–handles.
Then M can be represented by describing the attaching maps of the 1– and
2–handles in S3 [12, 13]. The attaching map of a 1–handle is a pair of 3–balls
in S3 or equivalently it can be described as a unknot of framing 0 in S3 ( figure
1). In this last case the result of attaching the 1–handle is being thought as
the manifold obtained by pushing into B4 the disk bounded by the unknot and
removing a neighborhood of it. We will use the second method putting a dot on
the unknot to indicate that it describes a 1–handle. Then the attaching maps
of the 2–handles are described by framed links in the 1–handlebody, where if a
2–handle goes over a 1–handle, the corresponding link component is drown to
go through the dotted circle describing the 1–handle.

Figure 1: Representation of 1–handle with 2–handles which pass over it

5.1 Define a Kirby link (K–link) to be a framed link in S3 where some of the
unknotted components of framing 0, bounding disjoint Seifert surfaces, have
been dotted. Then an oriented Kirby link (OK–link) is a K–link where an
orientation of each link component has been fixed. A based oriented Kirby link
(BOK–link) is an OK–link where one has fixed numbering and based points for
the undotted components and a numbering and a set of disjoint Seifert surfaces
for the dotted components.

Given a K–link (OK–link, BOK–link) L, we will denote with ML the 4–
dimensional handlebody described by L. If L is a BOK–link with n dot-
ted and m undotted components, then it defines a unique presentation P̂L =
〈x1, x2, . . . , xn | R1, R2, . . . , Rm〉 of π1(ML), where Ri = Ri(x1, x2, . . . , xn) is a
(not freely reduced) word in the xj ’s and shows in which order and with which
sign the i-th undotted component intersects the Seifert surfaces of the dotted
components starting from the base point. An example is shown in figure 2.

5.2 Two BOK–links are said to be 2–equivalent if and only if they can be
deformed into each other through a sequence of the moves (a)–(f) below (cor-
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Figure 2: A BOK–link L with PL = 〈x, y, z | xy−1xy, z−1xx−1z, 1〉

responding to 1– and 2–handle moves of the underlying 4–manifold). Changing
a BOK-link through such a sequence will be called a 2-deformation of this link:

(a) isotopy of framed links;

(b) any pair of one dotted component x and one undotted component y can
be removed or added if the geometric intersection number of y and the
Seifert surface Sx of x is ±1, while Sx is disjoint from all other dotted
and undotted components (1–2 handle cancellation or introduction);

(c) band-connected sum or difference of two undotted link components (slid-
ing a 2–handle over another 2–handle);

(d) band-connected sum or difference of one undotted link component with
one dotted link component (“sliding a 2–handle over 1–handle”);

(e) band-connected sum or difference of two dotted link components (sliding
an 1–handle over another 1–handle);

(f) change of numbering, base points, Seifert surfaces and orientation.

The moves are illustrated in figure 3.

Proposition 5.3 If two BOK–links can be deformed into each other through
the moves (a)–(f) above, then they can be deformed into each other via moves
(a), (b), (c) and (f).

The proof is sketched in figures 4 and 5.

Definition 5.4 Let L be a BOK–link and let σ : P̂L → P̂ ′ be a sequence of
AC–moves. We say that σ can be lifted to L if there exists a 2-deformation
σ̃ : L→ L′ such that P̂L′ = P̂ ′ .
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Figure 3: Illustration of the moves (b)–(e) of a 2–deformation of K–links

Figure 4: Move (e) is a consequence of moves (b) and (c).

Figure 5: Move (d) is a consequence of (b) and (c).

Proposition 5.5 Let L be a BOK–link. Then

(a) Any 2–deformation L → L′ induces a 2–deformation (sequence of AC–
moves) P̂L → P̂L′ ;

(b) if σ : P̂L → P̂ ′ is a sequence of AC–moves then σ = ξ ◦σ0 , where σ0 can
be lifted to L and ξ is a sequence of cancellations of terms xix

−1
i in the

relations (considered as cyclic words in xj ’s).

Proof (a) is straightforward and for the case when the fundamental group
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of the 4–thickening is trivial, (b) is actually the statement of theorem 3.3 in
[6]. In general one can prove (b) by induction on the length of the sequence
of AC–moves σ . Suppose that σ consists of a single AC–move t. If t is not
a cancellation of a term xix

−1
i (i.e. the reverse direction (ii)−1 in 1.1 (ii)),

then it can be lifted to a single move t̃ : L → L′ , of type (a)÷(f) in 5.2.
Observe that this is not true if t is a cancellation of a term xix

−1
i in a relation,

since such term implies that the corresponding undotted component enters and
then goes out of the i-th dotted component (without intersecting the Seifert
surface of any other dotted component) but possibly linking with other undotted
components or itself. Therefore, in general we can not pull it out of the i-th
dotted component.

(b) will follow by induction, if we can show it for the case when σ = t ◦ w ,
where w is a single AC–move of the type (ii)−1 and t is any other single AC–
move (since this would imply that the problematic moves can be shifted at the
end of the sequence of AC–moves). Observe that if t is of the type (ii)−1 , the
statement is trivial. If t is of the type 1.1 (i), (iii) or (v) or (v)−1 , it can be
easily seen that σ0 is a single AC–move of the the same type as t and hence
we can define L′ to be the BOK–link obtained by applying the move σ̃0 on L.

Let t be of the type 1.1 (iv). Suppose that the first two relations of P̂L are
R1 = xR′1x

−1 and R2 , where x, y,R′1 are some words in the generators, and
that w replaces R1 with R′1 and then t replaces R′1 with R′1R2 . Then define σ0

to be the sequence of the following moves: conjugation of the second relation
with x and then multiplication of the first relation with the second. These
moves can be lifted to L and the resulting presentation has as first and second
relations xR′1x

−1xR2x
−1 and xR2x

−1 . Obviously R′1R2 , R2 can be obtained
from those by a sequence of moves of the type (ii)−1 .

If t is of the type 1.1 (ii), the only problem may arise if R1 = xR′1x
−1 , w

replaces R1 in R′1 and then t replaces R′1 with yR′1y
−1 . Then define σ0 to be

the conjugation of R1 with yx−1 . The statement follows.

5.6 We will describe 4–thickenings via their BOK–links. In particular, there
is a surjective map Ψ: L → (ML, PL) from the set of BOK–links onto the
set of 4–thickenings, where P̂L → PL is described in 1.1. Moreover changing
L into L′ by 2–deformation moves 5.2 (a)÷ (c) and (f) changes (ML, PL)
into (ML′ , PL′) by a 2–deformation and vice versa, i.e. Ψ induces a bijection
between the 2-equivalence classes of BOK–links onto the 2-equivalence classes
of 4-thickenings.

Given a presentation P̂ , with [[P̂ ]] we will denote the set of all BOK–links L
such that P̂L = P̂ . Suppose now that P is a 2–complex realizing P̂ under

Algebraic & Geometric Topology, Volume 3 (2003)



HKR–type invariants of 4–thickenings 55

the bijection in 1.1 and fix an element c ∈ H2(P,Z/2). Then for any L ∈
[[P̂ ]], PL = P , and there is an embedding ιML,P : P → ML . Denote with
[[P̂ , c]] the set of all BOK–links L ∈ [[P̂ ]] such that ι∗ML,P

(w2(ML)) = c.
Observe that according to corollary 5.7.2 in [13], the second Whitney class
w2(M) ∈ H2(M ;Z/2) of a 4–thickening M , represented by a K–link, is given
by the cocycle in H2(M,M1;Z/2) 4 whose value on each 2–handle is its framing
coefficient modulo 2. Hence, if P̂ has m relations and c is presented by a cocycle
c̄ ∈ H2(P,P1;Z/2) ' H2(M,M1;Z/2) ' (Z/2)m , [[P̂ , c]] is the set of all BOK–
links in [[P̂ ]] whose framing coefficient on the i-th undotted component is equal
to c̄i modulo 2.

5.7 We assume that the reader is familiar with the notion of a framed tangle,
which intuitively is a slice of a framed link. A good reference is Shum [21],
where it is called double tangle. Since all tangles with which we will work
will be framed, in the future we will just call them tangles. A tangle with n
incoming and m outgoing ends will be called an n−m tangle.

A K–tangle will be a tangle in which some of the unknotted closed compo-
nents of framing 0, bounding disjoint Seifert surfaces, have been dotted. An
OK–tangle is a K–tangle in which an orientation of any dotted or undotted
component has been fixed, and a BOK–tangle is an OK–tangle equipped with
a choice of numbering of the closed dotted, of the closed undotted and of the
open components, a choice of a set of disjoint Seifert surfaces for all dotted
components, and a choice of a basepoint on each undotted component s, where
if the component is open, the basepoint is the positively oriented point in ∂s.

A BOK–tangle is being described by a plane diagram which decomposes into a
combination of the segments presented on figure 6 and the ones obtained from
them by changing the orientation of some components. We make the convention
that the incoming ends will be drawn on the top and the outgoing ends will
be drawn on the bottom. The tangle plane diagrams used here come with a
standard choice of Seifert surfaces which in the future won’t be drawn, while the
choice of base points on the closed undotted components needs to be indicated.

5.8 Two OK–tangles are equivalent if and only if their plane diagrams can be
obtained from each other via the moves on figure 7 and 8 where any double
line represents a number of parallel segments and the unoriented dotted and

4If Mk denotes the k -handlebody, then the boundary operator Hk(Mk,Mk−1;Z)→
Hk−1(Mk−1,Mk−2;Z) is defined by the long exact sequence on the triple
(Mk,Mk−1,Mk−2) and the cochain complex is obtained by dualizing the chain complex
(see 4.2 in [13]).
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Figure 6: Elementary tangle plane diagrams

undotted components can be oriented in any way consistent on both sides of
the identities. Two K–tangles are equivalent if and only if their plane diagrams
can be obtained from each other via the moves on figure 7 and 8 where we have
forgotten the information about orientation.

Observe that two K–links (i.e. 0-0 K–tangles) are equivalent if and only if the
corresponding framed links are isotopic.

Figure 7: “Framed” Reidemeister moves

5.9 Let T be a r− r K–tangle diagram with r open components s1, s2, . . . , sr
and let A1, A2, . . . , At be the incoming ends and B1, B2, . . . , Bt be the outgoing
ends of T all numbered from left to right. Then T is called a string tangle
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Figure 8: Additional isotopy moves

diagram if there exists an element σ in the symmetric group on r elements Sr

such that ∂si = Ai ∪Bσ(i) . σ is called the underlying permutation of T . If T
is an OK–tangle then we add the requirement that Ai is the positively oriented
end of si , i.e. the strings “point down”.

6 Definition of the invariant

6.1 Let T be a BOK–tangle with n dotted components, m closed undotted
components and r open ones. Without loss of generality, we assume that if there
are dotted components such that no undotted component intersects their Seifert
surfaces, these are the first l components. By analogy with the definition of the
Hennings invariant [5], extended to the presence of 1–handles (see for example
in [7]), we define a map

Z (T ) : A⊗(n+m) → A⊗r
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as follows.

Let zj , wi ∈ A, i = 1, . . . , n, j = 1, . . . ,m. We refer to zj as the color of the
j -th undotted component, and to wi as the color of the i-th dotted component
of T .

(a) Represent the BOK–tangle by plane diagram as above;
(b) Label the undotted components of each elementary plane diagram as

follows:

- “cups” and “caps” as presented on figure 9;
- at each crossing of two undotted components pointing downwards,

label the various segments of the plane diagram according to the
Hennings rules presented in figure 9. Any other crossing is obtained
from those presented in the figure by changing the orientation of
some component y . Then the label of y changes by applying S−1 ;

Figure 9: Hennings type rules for labeling extended plane diagrams

- Let x be a dotted component with color w and a Seifert surface Sx
and let vx be the normal vector of Sx . Let w′ = w if vx points
up, and w′ = S−1(w) if vx points down. Then, if s1, s2, . . . , st
are the oriented segments intercepting Sx , and if ∆(t−1)(w′) =∑

w′ w
′
(1) ⊗ w′(2) ⊗ . . . ⊗ w′(t) , si gets labeled with S−1(w′(i)) if it

points up, and with w′(i) otherwise as presented in figure 9.

(c) For each undotted component, starting from the base point, multiply
on the right the various labeling elements, in the order they are found
according to the orientation of the component. In this way, one obtains
an element

∑
i a1,i⊗a2,i⊗. . . am,i⊗b1,i⊗b2,i⊗. . . br,i ∈ A⊗(m+r) , where aj,i

represents the product of the labelings of the j -th closed component and
bk,i represents the product of the labelings of the k -th opened component.
Then define

Z(T )(z1, . . . , zm, w1, . . . , wn)

=

 l∏
j=1

ε(wj)

∑
i

λ(gz1a1,i) . . . λ(gzmam,i)b1,i ⊗ . . . ⊗ br,i ∈ A⊗r.
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6.2 Remarks (a) The application of ε : A → k to the label of the j -th
open component gives exactly the invariant of the tangle T ′ obtained from T
by removing the j -th open component.

(b) We have defined, somewhat arbitrary, the value of the invariant on a
disjoint dotted component of color w to be ε(w). But as it will be shown
in 6.9, this is the only choice consistent with the invariance under the
cancellation of a dotted and undotted component (move 5.2 (b)).

6.3 We illustrate the definition with the example of an oriented extended tan-
gle T presented in figure 10. If w ∈ A is the color of the dotted component
and z ∈ A is the color of the undotted one then

Z (T )(z,w) =
∑
i,w

λ(gzg−1w(2)αig
−1w(1)βi)S

−1(w(3)) ∈ A.

Figure 10: An example of a BOK–tangle

In the future, if we want to investigate the value of Z (T ) for some particular
color of dotted or undotted component, this color may be indicated on the
plane diagram in a circle attached to the corresponding component as in figure
11 below.

6.4 Proof of theorem 2.14 The map defined so far obviously depends on
the choices of numbering, base points and orientations. So we will start putting
restrictions on the values of the colors in order to reduce this dependence and
eventually obtain an invariant of BOK–links under the 2–deformation moves in
5.2.

The proof consists of showing the following statements:

(A) Z (T ) : Z(A)⊗(n+m) → A⊗r does not depend on the choice of base points
and it is invariant under the moves of figures 7, 8;

Let now L be an BOK–link with n dotted and m undotted components. Then
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(B) Z (L) : Z(A)⊗(n+m) → k factors through a map Ẑ(A)⊗(n+m) → k which
will be denoted in the same way;

(C) Z (L) : ẐS(A)⊗(n+m) → k doesn’t depend on the choice of orientation of
the components of the link;

(D) Let x be the first, and y be the second undotted component of L. Let
also L′ is being obtained from L by replacing y with a band connected
sum of x and y . Then if [z], [w] ∈ ẐS(A) are such that δ̂([w], [z]) = 0,
and [c] ∈ ẐS(A)⊗(n+m−2) , we have

Z (L)([z] ⊗ [w]⊗ [c]) = Z (L′)([z] ⊗ [w]⊗ [c]).

(E) For [z], [w] ∈ ẐS(A) let Z [w]
[z] (L) denote the value of Z (L) where any

undotted component is colored by [z] and any dotted component is col-
ored by [w]. Then if [zw] = [Λ], Z [w]

[z] (L) is invariant under move 5.2 (b).

Moreover if [z] ∈ T 4 and [zw] = [zw′] = [Λ], then Z [w]
[z] (L) = Z [w′]

[z] (L).
This common value will be denoted with Z [z](L).

6.5 Proof of (A) First we remind Hennings’ result ([5]) that if the colors of
the undotted components are in the center of the algebra, Z (T ) : Z(A)⊗m ⊗
A⊗n → A⊗r is independent of the choice of base points on the closed undot-
ted components, and it is an invariant under the moves presented in figure 7.
Moreover, from the defining identity 3.5 (a) for the R–matrix and the defining
property of g , it is easy to see that it is also an invariant under the moves (a)÷
(c) on figure 8.

Suppose now that the colors of the dotted components are in the center of
the algebra as well. Then the identities (f), (g) and (h) are automatically
satisfied. So, it is left to show that in this case (d) and (e) are satisfied as well.
Let x be the dotted component which we want to slide over the cup, and let
w ∈ Z(A) be its color. Since w is in the center of a ribbon algebra, S2(w) = w
and (d) and (e) become equivalent. So it is enough to show (e). Let w′ =
S−1(w). Suppose that n undotted segments pass through x. Then, depending
on its orientation, under the move (e) the label of the i-th segment changes as
g−1w(i) → S−1(w′(n−i))g

−1 or S−1(w(i)) → w′(n−i) . But from 3.1 (d) it follows
that S−1(w′(n−i))g

−1 = g−1S(w′(n−i)) = g−1w(i) and w′(n−i) = S−1(w(i)).

6.6 Proof of (B) The proof is based on the following observation which is a
version of the centrality result of the HKR–invariant in [11].

Let T be a k− l BOK–tangle with n+m closed and r open components. Let
also T ′ be the BOK–tangle obtained from T by embracing all incoming ends
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(figure 11 (a)) with a dotted component x′ , and let T ′′ be the BOK–tangle
obtained from T by embracing all outgoing ends with a dotted component x′′

(figure 11 (b)). Fix the colors of x′ and x′′ to be the same element a ∈ A and
let c ∈ Z(A)⊗(n+m) describe the coloring of the closed components of T . Then

Z (T ′)(a⊗ c) = Z (T ′′)(a⊗ c).

Figure 11: Centrality of the invariant

This can be seen by decomposing the plane diagram of T into slices such that
each slice contains only one subdiagram of the type crossing, cup, cap or dotted
component. Then, since all colors of the components of T are in Z(A), one
can use moves (a), (b), (c) and (h) to slide the dotted component colored by a
through.

The statement above implies that if T is an r−r string tangle then Z (T ) sends
Z(A)⊗(n+m) into Cr . In particular, if T is a 1-1 BOK–tangle with (n + m)
closed components, Z (T ) sends Z(A)⊗(n+m) into Z(A).

Now we can show (B). Let K(A) ⊂ Z(A) be the null space of the pairing on
Z(A) induced by λ as in 2.1. Suppose that an undotted component y of L has
a color z ∈ K(A). Then we can use isotopy moves to present L as a closure of
a 1-1 string tangle T on y and Z (T ) sends Z(A)⊗(n+m−1) into Z(A). Hence
for any a ∈ Z(A)⊗(n+m−1) , Z (L)(z ⊗ a) = λ(z Z (T )(a)) = 0 by the definition
of K(A).

Now suppose that a dotted component x of L has a color w ∈ K(A). Since
w = w ? Λ without changing the value of the invariant we can introduce an
undotted unknotted component y of color S(w) which passes once through x
and in the same time change the color of x to Λ as shown in figure 12. But
since the new tangle has an undotted component of color S(w) ∈ K(A) its
invariant is 0 as shown previously.

6.7 Proof of (C) Observe that changing the orientation of a dotted compo-
nent x with color [w] ∈ Ẑ(A) has the same effect as leaving its orientation the
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Figure 12: Replacing a dotted component of color w with a pair of dotted component
of color Λ and undotted component of color S(w)

same but changing its color to [S(w)] or [S−1(w)]. Hence if [w] ∈ ẐS(A), the
value of Z (L) remines unchanged.

The fact that changing the orientation of an undotted component doesn’t
change the invariant is a modification of Hennings’ argument when there is
no dotted components. The link plane diagram can be deformed via the regu-
lar isotopy moves of figures 7,8 and if necessary changing orientation of dotted
components into one which is composed totally of segments of the types pre-
sented on figure 13. We do this by first pulling all dotted components on the

Figure 13: Elementary plane diagrams

left of the plane diagram using the moves (f) and (g) of figure 8. In this way,
on the right there is left a tangle T which gets closed through the dotted com-
ponents as shown in figure 14 (a). Then, using move (c) of figure 8 we pull all
undotted segments, which pass through a dotted component and point down,
to the right and absorb the resulting crossings into T obtaining another tan-
gle T ′ as shown in figure 14 (b). Then we pull down the upper ends and pull
up the lower ends of these undotted segments which point down as they pass
through a dotted component. In this way the plane diagram is presented as the
closure (through the dotted components) of a string tangle T ′′ with positively
oriented ends as shown in figure 14 (c). At the end, by local deformations as
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the one on figure 14 (d) we obtain a plane diagram in which all crossings have
the two segments pointing down. After doing some moves of the type of the
second one in figure 7, we can assume that the segments of the undotted com-
ponents in T ′′ between crossings and end points are of the type presented in
figure 13 (b). Now we want to show that, under a change of orientation, the

Figure 14: Deformation of a link plane diagram

label of an undotted component changes by application of S−1 . By definition,
this is the case if we change the orientation of an undotted component in one
of the segments presented on figures 13 (b). Then it is enough to show the
same statement for the undotted components in figures 13 (a). The labeling
of an undotted component which points up as it passes through a dotted circle
of color w is of the type a = S−1(w(i))g−1 and, after its orientation has been
changed, becomes w(i)g = gS−2(w(i)) = S−1(a). The label of an undotted
component which points down as it passes through a dotted circle of color w
is of the type b = αj,(k)w(i)S(βj,(k)), and after a change of the orientation,
it becomes βj,(k)S

−1(w(i))g−1S(αj,(k))g = S−1(b). Since λgz ◦ S = λgz , the
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statement follows.

6.8 Proof of (D) First, using isotopy moves, deform the link plane diagram
as the closure of a tangle T on y and x, where x is oriented downwards and
y is oriented upwards as shown in figure 15 (a). Without loss of generality, we
may assume that the band connected sum is like the one presented on 15 (b).
Let Z (T )([c]) =

∑
i ai ⊗ bi ∈ A⊗A. Then,

Z (L)([z] ⊗ [w]⊗ [c]) =
∑
i

λ(zai)λ(wbi).

On another hand, Z (L′)([z] ⊗ [w]⊗ [c]) =
∑

i λ(zai,(1))λ(wbiai,(2)). Moreover,
ai,(1) ⊗ biai,(2) ∈ C2 , since it represents the invariant of a 2-2 string tangle.
Hence, ∑

i,ai

λ(zai,(1))λ(wbiai,(2)) =
∑
i,ai,z

λ(z(1)ai,(1))λ(wz(2)biai,(2))

=
∑
i,ai,z

λ(ai,(1)z(1))λ(wbiai,(2)z(2)) =
∑
i

λ(zai)λ(wbi).

Figure 15: On the proof of 6.4 (D)

6.9 Proof of (E) The invariance under the cancellation of a pair of dot-
ted and undotted component (move 5.2 (b)) is a straightforward consequence
of the definition of Λ and the fact that λ(Λ) = 1 with the exception of the
case when L = L′ t K , where K is a dotted component whose Seifert sur-
face is disjoint from the rest of the link, and we have added a cancelling pair
of dotted and undotted components such that the new undotted component
passes through K , obtaining in this way a new BOK–link L′′ . Then by def-
inition Z [w]

[z] (L) = ε(w)Z [w]
[z] (L′). On another hand, since [zww] = ε(w)[zw],

Z [w]
[z] (L′′) = ε(w)Z [w]

[z] (L′). Hence Z [w]
[z] (L′′) = Z [w]

[z] (L) as requested.

Assume now that [z] ∈ T 4 and [w], [w′] ∈ ẐS(A) are such that [zw] = [zw′] =
[Λ]. Starting with Z [w]

[z] (L) we will show that one can change the color of all
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Figure 16: On the proof of 6.4 (E)

dotted components from [w] to [w′] without changing the value of the invariant.
Suppose that x1 is a dotted component of color [w]. Since [w] = [Λ ? w] =
[(zw′)?w], we can add a canceling pair of dotted component x2 of color [w′] and
an undotted component y of color [z] which passes once through x as shown
in figure 16. Then, using 6.4 (D), slide the components which pass through x1

over y and since [(zw) ?w′] = [w′], cancel the pair x1, y . Now (E) follows from
the fact that [S(w′)] = [w′].

We have shown that Z [z](ML) = Z [z](L) defines an invariant of 4–thickenings.
To complete the proof of theorem 2.14 it is left to observe that S2×D2 is rep-
resented by an undotted unknot of framing 0 and hence Z [z](S2×D2) = λ(z),
while S1 × D3 is represented by one dotted component and hence Z [z](S1 ×
D3) = ε(w).

Observe that if [z] ∈ T 4 , and [zw] = [Λ], then for any unit γ ∈ k , [z′] = [γz] ∈
T 4 and [z′w′] = [Λ] where [w′] = 1

γ [w]. Hence

Corollary 6.10 For any unit γ ∈ k , Z [γz](M) = γχ(M)−1Z [z](M), where
χ(M) is the Euler characteristic of M .

6.11 Factorization properties of the link invariant Suppose that L =
L′tL′′ is a link (without dotted components), and L′ and L′′ are sublinks of L
which don’t have common components. Then let Z [z],[w](L′ t L′′) ∈ k denote
the value of Z (L) where all components of L′ have been labeled with [z] and
all components of L′′ have been labeled with [w].

Corollary 6.12 (a) If [z], [w] ∈ ẐS(A) are such that δ̂([w], [z]) = 0, then
Z [w],[J(z)](L′ t L′′) = Z [w](L′)Z [J(z)](L′′);

(b) If [z] ∈ T then Z [z?J(z)](L) = Z [z](L)Z [J(z)](L).
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Figure 17: Replacing an undotted component of color J(z) with an undotted compo-
nent of color 1 embraced by an undotted component of color z

Proof The definition of J in 2.7 implies that coloring a component x ∈ L′′
with [J(z)] is equivalent to coloring x with 1 and embracing it with a small
undotted unknot x′ of color [z] as showed in figure 17. But since any component
y ∈ L′ has color [w], according to 6.4 (D), y can be slided over x′ and it is
a basic fact from the Kirby calculus, that in this way y can be unlinked from
x. Hence we can unlink any component of L′ from any component of L′′ and
move them apart. This shows (a).

Let now L# = L t L′ be the double of L, i.e. L′ is a copy of L, and L# is
obtained from L by adding a parallel to each component of L, using the framing.
Then (b) would follow from (a) if we could show that for any [z], [w] ∈ ẐS(A),

Z [z?w](L) = Z [z],[w](L
′ t L).

Let x be a component of L colored by [z ?w]. L can be presented as a closure
of a 1-1 string tangle T on x with Z [z?w](T ) = c ∈ Z(A). Then

Z [z?w](L) = λ((z ? w)c) = λ(w(S(z) ? c)) = λ(zc(1))λ(wc(2)),

where in the last two equalities we have used 4.6 and 4.3. But the last expression
is exactly the invariant of a link obtained from L by adding a parallel component
x′ of x and coloring x by [w] and x′ by [z].

6.13 Proof of lemma 2.16 Let P be a 2–dimensional CW complex, c ∈
H2(P,Z/2), and let

P̂ = 〈x1, x2, . . . , xn | R1, R2, . . . , Rm〉.

From 5.6 it follows that in order to prove lemma 2.16 it is enough to show that,
if L0 is a standard representative in [[P̂ , c]], then for any other L ∈ [[P̂ , c]] and
any [z] ∈ T 2 , Z [z](L) = Z [z](L0). So, we proceed with the description of L0 .

Without loss of generality we assume that, if P̂ contains trivial relations, these
are the last k relations. Then let

Q = R1R2 . . . Rm−k = xe1i1 x
e2
i2
. . . xetit , where ei = ±1,
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be the unreduced word obtained by putting together all nontrivial relations
in P̂ . Let also t+i (t−i ) denote the absolute value of the sum of the positive
(negative) exponents of xi in Q and li denote the length of the relation Ri
(the sum of the absolute values of the exponents of xj ’s in Ri ). Define σQ
to be the permutation element in the symmetric group St , such that σQ(k) <
σQ(l) if (ik < il ) or (ik = il and ek < el ) or (ik = il , ek = el and k <
l). Observe that applying the permutation σQ on the letters of Q gives the

word x
−t−1
1 x

+t+1
1 x

−t−2
2 x

t+2
2 . . . x−t

−
n

n xt
+
n
n . Let also τQ be the following element in St

presented as product of cycles:

τQ = (σQ(1), σQ(2), . . . , σQ(l1))(σQ(l1 + 1), . . . , σQ(l1 + l2)) . . .
. . . (σQ(t− lm + 1), . . . , σQ(t)).

Fix a braid BQ on t strings oriented downwards, which has τQ as underly-
ing permutation. Then the standard representative L0 is defined to be the
BOK–link in [[P, c]] of the type presented in figure 14 (c), where the dotted
components are ordered in increasing order from the right to the left and where
T ′′ = T0 is a string tangle which is obtained by putting next to BQ k undotted
unknots. The framing coefficients of all undotted components are chosen to be
0 or 1 depending on the corresponding value of the cocycle c̄ ∈ H2(P,P1;Z/2).

Let L be another BOK–link in [[P̂ , c]] and let [z] ∈ T 2 , i.e. there exist
[z1], [z2] ∈ ẐS(A) such that [z] = [z1J(z2)] and δ̂([z1], [z2]) = 0. By the defini-
tion of P̂L , each letter xejij in Q corresponds to an intersection point Aj in L of
an undotted component with the Seifert surface of the ij -th dotted component
and ej is the sign of this intersection. Use σQ to define an order of the set of
points Aj , in particular Aj ≺ Al if σQ(k) < σQ(l). By isotopy moves as in 6.7,
we deform L into a link L′′ from the type presented in figure 14 (c) so that
the points Aj are ordered in increasing order from the right to the left. Then
Z [z](L) = Z [z](L′′). Of course, T ′′ in general will be different from T0 , but it
is a string tangle and since P̂L = P̂L0 , T ′′ has the same underlying permutation
τQ . Now, as shown in figure 17, labeling an undotted component y ∈ L′′ with
[z1J(z2)] is the same as labeling y with [z1] and embracing it with undotted
component y′ labeled by [z2]. But since δ̂([z1], [z2]) = 0, any component la-
beled by [z1] can be slided over any component labeled by [z2]. Therefore if
x is any other undotted component in L′′ , we can use sliding of x over y′ to
change the sign of any crossing of y with x and by sliding y over y′ we can
add two positive or two negative twists on y , i.e. change the framing coefficient
of y with ±2. Since T ′′ and T0 have the same underlying permutation, by
applying a sequence of such operations T ′′ can be transformed into T0 . Hence
Z [z](L0) = Z [z](L′′) = Z [z](L).
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6.14 Proof of corollary 2.17 If A is a finite-dimensional unimodular tri-
angular Hopf algebra then the positive and negative crossings of two undotted
components have the same labeling. Therefore for any [z] ∈ T 4 we can repeat
the argument above and show that if L1, L2 ∈ [[P̂ , c]] then Z [z](L1) = Z [z](L2).
Moreover, the ribbon element in a triangular algebra is θ = 1. Hence the in-
variant in lemma 2.16 won’t depend any more on the framings of the undotted
components, in particular for any L1, L2 ∈ [[P̂ ]] and any [z] ∈ T 4 ,

Z [z](L1) = Z [z](L2).

Now, let P̂ → P̂ ′ be an AC–move and L ∈ [[P̂ ]]. By 5.5 (b) there exists a
BOK–link L′ , 2–equivalent to L such that P̂ ′ can be obtained from P̂L′ by
cancellations of terms of the type xix−1

i . But such term in L′ corresponds to
an undotted segment which enters into the i-th dotted component xi , possibly
links with other undotted components or itself (but doesn’t pass through other
dotted ones) and then goes out of xi . Now by cross changes we can unlink any
such undotted component and then by isotopy moves, pull it out of xi without
changing the value of the invariant. The result is an BOK–link L′′ ∈ [[P̂ ′]] and
we have Z [z](L′′) = Z [z](L′) = Z [z](L).

7 Relation with the 3–manifold invariants

7.1 Suppose that we want an invariant of a 4–thickening to depend only on its
boundary. This would imply (see [12]) invariance under two additional moves:

(i) Removing or adding a dot on an 0–framed unknot. This corresponds to
replacing a one handle with its canceling 2–handle and vice versa;

(ii) Deleting or adding an unknot U±1 of framing ±1, contained in a neigh-
borhood disjoint from the rest of the link, which corresponds to taking a
connected union with CP 2 or CP 2 .

In general, Z [z] won’t be invariant under these additional moves, but in many
examples (including all the ones coming from the quantum sl(2)) Z [z] can be
normalized to depend only on the boundary. We will use the statement below
only for [z] ∈ T , but observe that it is true in the following weaker form:

Proposition 7.2 Suppose that [z] ∈ T Z and that [zJ(z)] = X[Λ] for some
unit X ∈ k . Then X = λ(zθ−1)λ(zθ).
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Proof Since ε(θ) =
∑

i ε(βigαi) = 1, [θ−1zJ(z)] = X[Λ] and therefore X =
λ(θ−1zJ(z)). Substituting here the expression for J(z) from 4.8 we obtain that

X = λ(θ−1zJ(z)) = λ(z((S(z)θ) ? θ−1)).

Now since [S(z)] = [z], applying 4.6 it follows that

X = λ((zθ)(z ? θ−1)) = λ((zθ)(1 ? zθ−1)) = λ(zθ−1)λ(zθ),

where in the second equality we have used the fact that [z] ∈ T Z .

7.3 Proof of corollary 2.19 Since C± = λ(zθ±1), the first assertion follows
from the proposition above. The rest follows from the observation that the
ordered pair (σ+−n, σ−−n) is an invariant under 2–deformations of M since
a 2–handle slide 5.2 (c) doesn’t change the number of dotted components and
the values of σ+ and σ− , while move 5.2 (b) reduces by one the number of
dotted components, and in the same time reduces by one the values of σ+ and
σ− . Moreover, the proposition 7.2 implies that under the moves 7.1(i) and
(ii), Z [z](M) changes exactly as C

σ+−n
+ C

σ−−n
− and therefore their quotient

Z ∂[z](∂M) depends only on the boundary.

Proposition 7.4 Let [z] ∈ T 3 . Then

(a) for any unit γ ∈ k , [γz] ∈ T 3 and Z ∂[γz](∂M) = γσ0Z ∂[z](∂M);

(b) if [J(z)], [z ? J(z)] ∈ T 3 then Z ∂[z?J(z)](∂M) = Z ∂[z](∂M)Z ∂
[J(z)](∂M).

The proposition is a direct consequence of the corollaries 6.10 and 6.12.

Corollary 7.5 If A is Λ–factorizable then for any [z] ∈ T 3 ,

Z ∂[z](∂M)Z ∂
[J(z)](∂M) = Xσ0

z Z ∂[1](∂M).

Proof Since the algebra is Λ–factorizable, J(1) = γΛ. Then [z] ∈ T 3 implies
that [zJ(z)] = Xz[Λ]. Applying 1

γJ on both sides of the equality and using
2.9, we obtain that [J(z) ? J2(z)] = γXz [1]. But 2.8 (b) implies that [J2(z)] =
γ[S(z)] = γ[z]. Hence [J(z) ? z] = γXz [1]. Since in this case J is a bijection,
we can reverse the argument and therefore obtain that, if the algebra is Λ–
factorizable,

T 3 = {[z] ∈ T | [z ? J(z)] = Xz [1] for some unit Xz ∈ k}.

In particular, if [z] ∈ T 3 then [J(z)], [z ? J(z)] = Xz[1] ∈ T 3 . Now the
statement follows from proposition 7.4.
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8 Examples

To illustrate the generality of the present framework we describe two examples.
The first one is useful to get familiar with the framework, and the second one
is the quantum sl(2) case, which shows quite rich algebraic structure, but it
is not interesting for the AC–conjecture. Indeed all sl(2) theories are actually
3–dimensional.

8.1 The cocommutative case: R = 1⊗ 1

Since this is a particular case of a triangular structure on A, we are talking
about invariants of 2–complexes. First, observe that in this case g = 1 and
S2 = 1. As a consequence, the invariant has very simple definition, which
is worth writing down. Let [z] ∈ T 4 and choose [w] ∈ ẐS(A) such that
[zw] = [Λ]. Let P̂ = 〈x1, x2, . . . , xn | R1, R2, . . . , Rm〉 be a presentation, where
Ri = Ri(x1, x2, . . . , xn). Let also Q, σQ, t

±
i , lj and t be as in 6.13 and ti =

t+i + t−i be the total exponent of xi . Associated to Q, define a bijective map
SQ : A⊗t → A⊗t such that

SQ(
∑
i

a1,i ⊗ a2,i ⊗ . . . ⊗ at,i) =
∑
i

Sε1(a1,i)⊗ Sε1(a2,i)⊗ . . . ⊗ Sε1(at,i),

where εj = (1 − ej)/2 and S0 = idA , i.e. in case that the j -th exponent in Q
is negative SQ applies the antipode on the j -th factor in A⊗t .

Let σ̄Q : A⊗t → A⊗t be the permutation of factors induced by σQ and let∑
i

a1,i ⊗ a2,i ⊗ . . .⊗ at,i = SQ ◦ σ̄−1
Q (∆t1−1w ⊗∆t2−1w⊗ . . .⊗∆tn−1w) ∈ A⊗t.

Then from the definition of Z 2
[z] in section 7 and the fact that we are in the

case when R = 1⊗ 1, it follows that

Z2
[z](P ) =

∑
i

λ(za1,ia2,i . . . al1,i)λ(zal1+1,ial1+2,i . . . al1+l2,i) . . .

. . . λ(zat−lm+1,iat−lm+2,i . . . at,i).

We illustrate the technique with the case of a group algebra and [z] = 1. The
result is a well known invariant which depends on the fundamental group of P .
Let A = k[G], where G is a finite group. Then the product on A is induced
from the one in G, and for any a ∈ G, ∆(a) = a⊗ a and S(a) = a−1 . A is a
unimodular algebra with Λ =

∑
a∈G a, and λ ∈ A∗ defined as λ(1) = 1, and

λ(a) = 0 if a 6= 1. Hence the algebra is cosemisimple, and it is semisimple if
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and only if the characteristic of k doesn’t divide the order of G. For z = 1 and
w = Λ, the value of the invariant is:

Z 2
[1](P ) =

∑
{aj}nj=1

λ(R1(a1, . . . , an))λ(R2(a1, . . . , an)) . . . λ(Rm(a1, . . . , an)),

where the sum is over all possible sequences {aj}nj=1 of elements in G and
Ri(a1, a2, . . . , an) denotes the image of the word Ri under the group homo-
morphism of the free group on the generators x1, x2, . . . , xn into G given by
xj → aj . Hence Z 2

[1](P ) is equal to the number of all possible group homo-
morphisms G→ π1(P ).

8.2 The quantum enveloping algebra of sl(2)

We use here the definition of the finite-dimensional quantum enveloping algebra
of sl(2) “at root of unity” as given in chapter 36 of the book of G. Lusztig [15],
and we refer the reader to [15], chapters 23, 31, 32, 34 and 36, for the proof that
the definition is consistent with the Hopf algebra axioms and that the category
of representations of the algebra is the same as the one of the finite-dimensional
quantum sl(2), defined in a more familiar ways. For the sl(2) case, many
statements can actually be easily verified by direct computation as well.

8.3 Let p > 3 be a prime number and let k′ = Z[v]/〈1 + v + . . . + vp−1〉 and
k = Q[v]/〈1 + v + . . . + vp−1〉. For any n,m ∈ Z such that m ≥ 0 we will use
the following common notations:

[n] =
vn − v−n
v − v−1

,

[
n
m

]
=
∏m−1
s=0 (vn−s − v−n+s)∏m

s=1(vs − v−s) ,

{m} =
m∏
i=1

(vi − v−i), {0} = 1,

hoping that the double use of square bracket to denote equivalence classes in
Ẑ(A) and quantum integers will not bring to a confusion. Note that {p−1} = p.
Define A to be the k algebra generated by the elements 1cE(n) , 1cF (n) such
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that c ∈ Z/p and 0 ≤ n ≤ p− 1 and relations:

1cE(n)1sE(m) = δc,s+2n

[
n+m
n

]
1cE(n+m);

1cF (n)1sF (m) = δc,s−2n

[
n+m
n

]
1cF (n+m);

1cF (n)1sE(m) = δc,s−2n

min(m,n)∑
t=0

[
m+ n− s

t

]
1cE(m−t)1c−2(m−t)F

(n−t);

1cE(n)1sF (m) = δc,s+2n

min(m,n)∑
t=0

[
m+ n+ s

t

]
1cF (m−t)1c+2(m−t)E

(n−t).

We introduce the notation 1cE(n)F (m) = 1cE(n)1c−2nF
(m) . Then A is a finite-

dimensional algebra with identity 1 =
∑

c∈Z/p 1c and basis {1cE(n)F (m)},
where c ∈ Z/p, 0 ≤ n,m ≤ p − 1. A has a Hopf algebra structure with
the following structure maps:

ε(1cE(n)) = ε(1cF (n)) = δc,0δn,0;

∆(1cE(n)) =
n∑
a=0

∑
r∈Z/p

va(a−n)+r(n−a)1rE(a) ⊗ 1c−rE(n−a);

∆(1cF (n)) =
n∑
a=0

∑
r∈Z/p

va(a−n)−(c−r)a1rF (a) ⊗ 1c−rF (n−a);

S(1cE(n)) = (−1)nvn(c−1−n)1−c+2nE
(n);

S(1cF (n)) = (−1)nv−n(c−1+n)1−c−2nF
(n);

It is easy to check that A is a unimodular Hopf algebra with an integral Λ =
10E

(p−1)F (p−1) and that A∗ has as a right integral λ defined as

λ(1cE(n)F (m)) = vcδn,p−1δm,p−1.

Obviously, λ(Λ) = 1. A is a quasitriangular ribbon algebra with

R =
p−1∑
n=0

∑
r,s∈Z/p

v
n(n−1)

2
+ rs

2 {n}1rF (n) ⊗ 1sE(n) and g =
∑
c∈Z/p

v−c1c.

8.4 The center of A is described in [8], where the following notations are
used: K =

∑
s∈Z/p v

s1s , πs(K) = 1−2s , E = (v − v−1)
∑

c∈Z/p 1cE(1) and

Algebraic & Geometric Topology, Volume 3 (2003)



HKR–type invariants of 4–thickenings 73

F =
∑

c∈Z/p 1cF (1) . Following [8] we define

X = (v − v−1)
p−1∑
s=0

1sE(1)F (1) +
p−1∑
k=1

b(k − 1)12k ∈ Z(A) and

φj(x) =
∏

0≤s≤p−1:b(s)6=b(j)
(x− b(s)) ∈ k[x], j = 0, . . . , q

where b(s) = b(p− 1− s) = v2s+1+v−2s−1

v−v−1 . Let q = p−1
2 and let

Pj =
1

φj(b(j))
φj(X)−

φ′j(b(j))
φj(b(j))2

φj(X)(X − b(j)), j = 0, . . . , q,

Nj =
1

φj(b(j))
φj(X)(X − b(j)), j = 0, . . . , q − 1,

N+
j = TjNj, N

−
j = (1− Tj)Nj , where Tj =

p−1−j∑
s=j+1

1−2s.

Lemma 18 in [8] allows to express the elements above in terms of the algebra
basic elements 1sE(i)F (j) as follows:

1−2sφk(X)(X − b(k)) =
p−1∑
j=0

p−1∏
i=j+1

(b(k)− b(i+ s))([j]!)2(v − v−1)j1−2sE
(j)F (j),

1−2sφk(X) =
p−2∑
j=0

p−1∑
t=j+1

p−1∏
i=j+1,i6=t

(b(k) − b(i+ s))([j]!)2(v − v−1)j1−2sE
(j)F (j),

Φk(b(k)) = ([p − 1]!)2 (v − v−1)p−2

[2k + 1]2
,

Φ′k(b(k)) = ([p − 1]!)2 (v − v−1)p−3[2(2k + 1)]
[2k + 1]5

,

for any k = 0, . . . , q − 1, and

1−2sφq(X) =
p−1∑
j=0

p−1∏
i=j+1

(b(q)− b(i+ s))([j]!)2(v − v−1)j1−2sE
(j)F (j),

Φq(b(q)) = ([p − 1]!)2(v − v−1)p−1.

From here one can see that N−0 = (v− v−1)Λ and λ(N−i ) = (v− v−1)[2i+ 1]3 .
In particular λ(N−i ) 6= 0 for any i = 0, . . . , q − 1.
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8.5 (Kerler [8]) Z(A) is a 3q+1 dimensional algebra with basis {Pi,N±j , i =
0, . . . , q, j = 0, . . . , q − 1} and products:

PiPj = δi,jPj

PiN
±
j = δi,jN

±
j

N±l N
±
j = N∓l N

±
j = 0.

Moreover, the ribbon element in this basis is given by

θ = vqPq +
q−1∑
j=0

v2j(j+1)(Pj +
2j + 1
[2j + 1]

Nj −
p

[2j + 1]
N−j ).

Observe that since X and Tj are S–invariant, any element in Z(A) is S–
invariant and

K(A) = span{Pq,Nj , j = 0, . . . , q − 1}.
Hence Ẑ(A) = ẐS(A) is generated by [Pi], [N−j ], i, j = 0, . . . , q − 1 and the
following relations:

(a) [Pi][Pj ] = δi,j[Pj ],

(b) [Pi][N−j ] = δi,j[N−j ],

(c) [N−l ][N−j ] = 0.

To be able to continue we need to understand also the ? product structure of
the algebra. An easy calculation shows that

(d) Ĵ([1]) = γp[Λ] and Ĵ([Λ]) = [1] =
∑q−1

i=1 [Pi],

where γp = p3 , i.e. the algebra is Λ–factorizable. Then according to corollary
2.9, J2 = γp 1 , γ−1

p J : Z(A)→ Z?(A) is an algebra isomorphism and therefore
the ? algebra structure can be derived from the knowledge of J .

Lemma 8.6 Ĵ([N−i ]) = (v − v−1)[2i + 1]2
∑q−1

k=0
[(2i+1)(2k+1)]

[2k+1] [Pk].

We will need the following proposition:

Proposition 8.7 For any b such that 0 ≤ b ≤ p − 2, let Ωb = Z(A) ∩
span{1sE(a)F (a), s ∈ Z/p, 0 ≤ a ≤ b}. Then Ωb ⊂ span{Pi, Nj, 0 ≤ i ≤
q, 0 ≤ j ≤ q − 1}.

Proof We will show that Ωb = span{Xa, 0 ≤ a ≤ b}. Then the statement
will follow from the observation in [8] that any polynomial in X is contained
in the span of Pi , i = 1, . . . , q and Nj , j = 1, . . . , q − 1.
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Let Y =
∑

s∈Z/p
∑p−1

a=0 τ
Y
a,s1sE(a)F (a) be in Z(A). Then for any s ∈ Z/p,

1sE(1)Y = Y 1sE(1)

From here by direct computation one can see that for any 0 ≤ a ≤ p− 2,

[a− s]τYa+1,s+2 = [a+ 1](τYa,s − τYa,s+2).

This implies that if Y ∈ Ωb then τYb,s doesn’t depend on s and we denote it
with τYb . In particular, Xb is of this type, moreover τXb 6= 0 and therefore,
there exists r ∈ k such that if b > 0 then Y − rXb−1 ∈ Ωb−1 and if b = 1 then
Y = rX0 = r1 . The proposition follows by induction.

8.8 Proof of lemma 8.6 Now we continue with the proof of the lemma 8.6.
Observe that since [N−i +N+

i ] = 0, Ĵ([N−i ]) = −Ĵ([N+
i ]), so we will compute

Ĵ([N+
i ]). From the expressions in 8.4 one obtains:

Pj = 1−2j + 12j+2 +
∑
s∈Z/p

p−1∑
a=1

τ js,a1sE
(a)F (a), 0 ≤ j ≤ q − 1

Pq = 11 +
∑
s∈Z/p

p−1∑
a=1

τ qs,a1sE
(a)F (a),

Nj =
p−1∑
a=0

νj−2s,a1−2sE
(a)F (a), N+

j =
p−1−j∑
s=j+1

p−1∑
a=0

νj−2s,a1−2sE
(a)F (a),

where νj−2s,0 = 0 and νj−2s,p−1 = (v − v−1)[2j + 1]2 . Given i, a such that
0 ≤ i ≤ q − 1, 0 ≤ a ≤ p − 1 and given s ∈ Z/p, let ν̄i−2s,a ∈ k are the
coefficients of the expansion of J(N+

i ) in terms of the basis 1−2sE
(a)F (a) , i.e.

J(N+
i ) = S◦J(N+

i ) =
∑
n,m

λ(βnN+
i αm)S(αnβm) =

∑
s∈Z/p

p−1∑
a=0

ν̄i−2s,a1−2sE
(a)F (a).

Substituting here the expression for the R–matrix and for N+
i we obtain

ν̄i−2s,a = va(a+1)+2as{a}2
[
p− 1
a

]2 p−1−i∑
l=i+1

v2l(a−2s−1)νi−2l,p−1−a.

In particular ν̄i−2s,p−1 = 0 and

ν̄i−2s,0 = −(v − v−1)[2i + 1]2
[(2s + 1)(2i + 1)]

[2s + 1]
.

Then the lemma follows from proposition 8.7 and the expression for Ps .
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8.9 For any 0 ≤ i, j ≤ q − 1, let ωi,j = [(2j+1)(2i+1)]
[2j+1] . Let also

Ṅi =
Ni

(v − v−1)[2i + 1]2
and Ṅ±i =

N±i
(v − v−1)[2i + 1]2

.

Observe that [Ṅ−0 ] = [Λ]. Since Ĵ is injective, the (q − 1) × (q − 1) matrix ω
is nondegenerate and the proposition above implies that

Ĵ([Ṅ−j ]) =
q−1∑
i=1

ωji[Pi] and Ĵ([Pj ]) = γp

q−1∑
i=1

(ω−1)ji[Ṅ−i ].

Proposition 8.10 (a) σkij = σ([Ṅ−i ], [Ṅ−j ], [Pk]) = λ(Ṅ−k )
∑q−1

s=0 ωisωjsω
−1
sk ,

and σ(a, b, c) = 0 for any other triple of generators a, b, c;

(b) σkij/λ(Ṅ−k ) = 1 if all of the following four conditions are satisfied:

i+ j + k ≤ p− 2, i+ j − k ≥ 0, k + i− j ≥ 0, k + j − i ≥ 0.

Otherwise σkij = 0.

Proof of (a) Lemma 2.8 allows as to express the ? product in the following
way:

[Ṅ−i ] ? [Ṅ−j ] = γ−1
p Ĵ(Ĵ([Ṅ−i ])Ĵ([Ṅ−j ])) =

q−1∑
k,s=0

ωisωjs(ω−1)sk[Ṅ−k ];

[Pi] ? [Pj ] = γ−1
p Ĵ(Ĵ([Pi])Ĵ([Pj ])) = 0;

This implies that σ(a, b, c) = 0 if all three elements are of the type Ṅi , or if
only one of them is such. For the only nonzero case we obtain

σ([Pk], [Ṅ−i ], [Ṅ−j ]) = λ(Pk, (Ṅ−i ? Ṅ−j )) = λ(Ṅ−k )
q−1∑
s=0

ωisωjs(ω−1)sk.

Proof of (b) Using that for any primitive p-th root of unity v and any a ∈
Z/p,

q−1∑
s=0

va(2s+1) =
p δa,0 − v−a

1 + v−a
,

one obtains that
q−1∑
i=0

[(2j + 1)(2i + 1)][(2i + 1)(2k + 1)] = − p

(v − v−1)2
δj,k.
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Hence

(ω−1)i,j = −(v − v−1)2

p
[2i+ 1][(2i + 1)(2j + 1)],

and

σkij

λ(Ṅ−k )
= −(v − v−1)2

p

q−1∑
s=0

[(2i + 1)(2s + 1)][(2j + 1)(2s + 1)][(2k + 1)(2s + 1)]
[2s+ 1]

.

Substituting above the expression

[(2i+ 1)(2s + 1)]
[2s + 1]

=
2i∑
l=0

v2(i−l)(2s+1),

and expanding we obtain that

p
σkij

λ(Ṅ−k )

=
k+i−j∑
l=k−i−j

q−1∑
s=0

(v2l(2s+1) + v−2l(2s+1))−
j+k+i+1∑
l=j+k−i+1

q−1∑
s=0

(v2l(2s+1) + v−2l(2s+1))

= p

 k+i−j∑
l=k−i−j

δl̄,0 −
j+k+i+1∑
l=j+k−i+1

δl̄,0

 ,

where l̄ = Mod(l, p). This completes the proof of the proposition.

Observe that the proof of proposition 8.10 above imply:

Corollary 8.11 The subalgebra of Ẑ?(A) spanned by [Ṅ−j ], 0 ≤ j ≤ (q −
1) is isomorphic to the fusion algebra Fp of the semisimple quotient of the
representation category of A defined in 10.3.

Finally we can describe all elements in T Z .

Theorem 8.12 T Z consists of the multiples of [1], [Λ],
∑q−1

j=0[2j+1][Ṅ−j ] and

[P0]. Moreover, Ĵ sends bijectively T Z into itself.

Proof Suppose that [z] =
∑q−1

i=0 xi[Pi] +
∑q−1

i=0 yi[Ṅ
−
i ]. According to 2.6

[z] ∈ T Z if and only if for any [a], [b], [c] ∈ Ẑ(A), σ(zc, za, b) = σ(zc, a, zb).
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Replacing here all possible choices of a, b, c we obtain that this condition is
equivalent to the following system of equations for the coefficients xi, yi :

(i) yiykσ
j
ik = yjykσ

i
jk;

(ii) yk(xi − xj)σijk = yixkσ
k
ji;

(iii) xk(xi − xj)σkji = 0;

(iv) yixkσ
j
ik = yjxkσ

i
jk;

(v) xk(xi − xj)σijk = 0,

for any 0 ≤ i, j, k ≤ q − 1. Now we want to show that [z] is contained either
in the span of the [Pi]’s or in the span of the [Ṅ−i ]’s. Observe that σk0,j =
δkjλ(Ṅ−j ). Hence equations (v) and (ii) with j = 0 become

xi(xi − x0) = 0 yix0 = 0.

Therefore either xi = 0 for any i or yi = 0 for any i. Suppose now that we are
in the case when yi = 0 for any i and let I 6= ∅ be the subset of indices such
that xi 6= 0. Then, condition (v) implies that

(a) 0 ∈ I ;

(b) for any other i ∈ I , x0 = xi ;

(c) if σijk 6= 0 and two of the indices i, j, k are in I , then the third one must
be in I as well.

Moreover, any subset I which satisfies these conditions corresponds to a so-
lution of the form [zI ] =

∑
i∈I [Pi]. In particular, since σk0,0 = σ0

0,k = δk,0 ,
I = {0} ([zI ] = [P0]) gives a solution of the problem.

Suppose now that i ∈ I and i 6= 0. Since σ1
ii 6= 0 (8.10 (b)) it follows that 1

should be in I as well. But if 1, j ∈ I where j ≤ q − 2, then j + 1 ∈ I (since
σj+1
j,1 6= 0). Hence, if I contains one nonzero index, it must contain all indices,

i.e. I = {0, 1, . . . , q − 1} and [zI ] = [1].

Suppose now that x0 = 0 and I 6= ∅ is the subset of indices such that yi 6= 0
i.e. [z] =

∑
i∈I yi[Ṅ

−
i ]. From 8.10 (b) it follows that σijk = λ(Ṅi)εijk where εijk

is symmetric with respect to the three indices. Then equation (i) becomes:

yk(λ(Ṅj)yi − λ(Ṅi)yj)εijk = 0.

In particular for i = 0 and j = k we have yk(λ(Ṅk)y0 − yk) = 0. Hence
I satisfies the conditions (a)–(c) above and therefore either I = {0} or I =
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{0, 1, . . . , q− 1} and yk = λ(Ṅk)y0 for any k 6= 0. The corresponding solutions
for [z] are [z] = y0[N−0 ] = y0γp[J(1)] and

[z] = y0

q−1∑
j=0

[2j + 1][Ṅ−j ] = − y0Ĵ([P0])
(v − v−1)2p2

.

This completes the proof of the theorem.

8.13 The sl(2) HKR–type invariants

We remind that T s denotes the subset of elements in ẐS(A) which define
invariants of links under the band-connected sum of two distinct components.
Then T 3 ⊂ T ⊂ T s . We can not offer a way to calculate the elements in T
and even less a way to study its maximality, i.e. if it coincides with T s . But
since T Z ⊃ T , a hypothetical search for the elements in T could start by
calculating the elements in T Z as it has been done above for the sl(2) case.
The surprise is that T Z is already very restrictive: up to multiplication by an
element in k , it consists of four elements and, using proposition 10.6 in the
appendix, we see that three of them are in T s :

[zH ] = [1] gives the Hennings invariant;
[z∗RT ] = [P0]
[z∗H ] = [Λ] gives the trivial invariant (equal to 1 for any manifold);

[zRT ] = − [J(P0)]
(v − v−1)2p2

=
q−1∑
j=0

[2j + 1][Ṅ−j ] gives the RT–invariant;

So, it seems reasonable to make the following conjecture:

Conjecture 8.14 If A is a finite dimensional, unimodular, ribbon, Λ–factor-
izable algebra, then T Z = T .

If the conjecture holds then sl(2) produces exactly four HKR–type invariants,
all normalizable to 3–manifold invariants. Moreover, since [P0zRT ] = −p2[Λ]
and [P0 ? zRT ] = [1], proposition 7.5 implies:

Corollary 8.15 Z ∂[zH ](∂M) = Z ∂[zRT ](∂M)Z ∂[z∗RT ](∂M).

To support the conjecture, we show that the statement of corollary 8.15 holds
for the values of the three invariants for S2×S1 and the Lens spaces. Directly
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from the definition for S2 × S1 we have:

Z∂[zH ](S
2 × S1) = λ(1) = 0;

Z∂[z∗RT ](S
2 × S1) = λ(P0) = 0;

Z∂[zRT ](S
2 × S1) = λ(zRT ) =

q−1∑
j=1

= [2j + 1]2.

Observe that Z ∂[z](L(1, n)) = λ(zθn)/λ(zθ). Then from 8.5 one obtains that

[θ]n =
∑q−1

j=0 v
2nj(j+1)([Pj ]− n p(v − v−1)[2j + 1][Ṅ−j ]). Hence,

λ(z∗RT θ
n) = −pn(v − v−1);

λ(zRT θn) =
q−1∑
j=0

v2nj(j+1)[2j + 1]2;

λ(θn) = −pn(v − v−1)
q−1∑
j=0

v2nj(j+1)[2j + 1]2.

Therefore the statement of corollary 8.15 holds for the values of the three in-
variants for the Lens spaces as well.

9 Questions

9.1 If the conjecture 8.14 is false, this would imply that the condition [z] ∈ T
in theorem 2.14 is too strong and needs to be weakened. Then one may ask if
it can be replaced with [z] ∈ T Z .

9.2 In the case of the quantum sl(2) we saw that the fusion algebra of the
semisimple quotient of the representation category is a subalgebra of ẐS? (A)
generated by nilpotent elements. What is in general the relationship between
ẐS? (A) and the representation theory of A?

9.3 Observe that if the Hopf algebra is triangular, then T 3 = {X[Λ] | X ∈ k},
i.e. such algebra doesn’t produce nontrivial 3–manifold invariants. On another
hand if T 3 = T 4 (i.e. any 4–invariant is normalizable to a 3–manifold invari-
ant) then T 2 = {X[Λ] | X ∈ k}, i.e. such algebra doesn’t produce nontrivial
invariants of 2–complexes. This seems to be the example of the quantum sl(2).
It would be interesting to know if there exists a Hopf algebra for which T 4
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doesn’t reduce to T 2 or to T 3 and if a similar algebra exists, one may ask if
as ?–monoid T is generated by T 2 and T 3 . This is related to the following
purely topological question:

9.4 Let (M,P ) and (M ′, P ′) be two 4–thickenings such that index(M) =
index(M ′), P is 2–equivalent to P ′ and ∂M is diffeomorphic to ∂M ′ . Then is
it true that M is diffeomorphic to M ′? Is M 2–equivalent to M ′? The results
in [17] seem to support the affirmative answer.

10 Appendix: The Reshetikhin–Turaev sl(2)–invar-
iant as HKR–type invariant

Before starting working on this project, the first author asked T.Kerler why the
Reshetikhin–Turaev sl(2)–invariant is a HKR–type invariant. For completeness
we give here Kerler’s explanation and the evaluation of the corresponding trace
element [zRT ] ∈ Ẑ(A). In somewhat different form this evaluation has been
done in [7].

We use the definition of the Reshetikhin–Turaev invariant as given in [20]. But
since the definition of the quantum sl(2) here is slightly different from the one
in [20], the reader is referred to the work of Gelfand and Kazhdan [4] for the
proof that, the full linear category generated from the “small” representations
used below, satisfies the requirements in paragraph 3.1 of [20].

Let A, k and g be as in 8.3. For any finite dimension left A–module V
define the dual representation V ∗ of V to be representation with linear space
Hom(V, k) and action of a ∈ A given by S(a)∗ . Define also the quantum trace
trV : A→ k of V to be

trV (a) =
dim(V )∑
i=1

e∗i (gaei) for any a ∈ A,

where {ei}dim(V )
i=1 is a basis for V and {e∗i }

dim(V )
i=1 its the dual basis for V ∗ .

Proposition 10.1 For any finite dimensional left A–module V there exists
zV ∈ Z(A) such that for any a ∈ A, trV (a) = λ(g2zV a).

Proof First observe that for any a, b ∈ A,

trV (ab) =
dim(V )∑
i=1

e∗i (gabei) =
dim(V )∑
i=1

e∗i (bgaei) = trV (bS2(a)).
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Now, since g is invertible, from 3.3 (d) it follows that there exists an element
zV ∈ A such that trV (a) = λ(g2zV a). Moreover, 3.4 and 3.7 imply that for any
a, b ∈ A,

λ(g2(zV a− azV )b) = λ(g2zV ab− S4(a)g2zV b)
= λ(g2zV ab− g2zV bS

2(a)) = trV (ab− bS2(a)) = 0.

Then the statement follows from 3.3 (d).

10.2 Let Σ = {0, 1, . . . , q− 1} and let Vn , n ∈ Σ be the simple left A-module
with highest weight 2n. Then Vn has a basis {eni }ni=−n and the action of the
algebra generators is as follows:

12i−2F
(1)eni =

{
0 if i = −n
en(i−1) otherwise

12i+2E
(1)eni =

{
0 if i = n
[n+ i+ 1]en(i+1) otherwise

1ceni =
{
eni if c = 2i (mod p)
0 otherwise

When it is clear which one is the representation, we will use ei instead of eni .
Moreover, dn = 2n+ 1 will denote the dimension of Vn and zn = zVn .

Given a sequence i = (i1, i2, . . . , ik) of elements in Σ, define

V (i) = Vi1 ⊗ Vi2 ⊗ . . .⊗ Vik and r(i) = trV (i)(id).

Observe that r(n) = [2n + 1] and since g is a group-like element, r(i) =∏k
s=1 r(is).

10.3 As it is shown in [4], the full linear category Cp generated by Vn , n ∈ Σ, is
equivalent to the semisimple quotient of the category of integral representation
of A, and this equivalence induces a braided monoidal structure on Cp . In
particular there is a product structure on Cp given by

Vi � Vj = ⊕s∈Σk
εsij ⊗ Vs.

The essence of this product structure is encoded in the fusion algebra Fp which
is defined as the vector space Z[x0, x1, . . . , xq−1] and product structure given
by

xi � xj =
∑
s∈Σ

εsij xs,

for any i, j ∈ Σ. The (non negative) integers εsij are called the fusion coefficients
of Cp . The fusion coefficients for the quantum sl(2) have been calculated in

Algebraic & Geometric Topology, Volume 3 (2003)



HKR–type invariants of 4–thickenings 83

[20, 4] and are the following: εsij = 1 if all of the following four conditions are
satisfied

i+ j + s ≤ p− 2, i+ j − s ≥ 0, s+ i− j ≥ 0, s+ j − i ≥ 0,

and εsij = 0 otherwise.

10.4 Given an oriented k − l tangle T , represented with a tangle diagram,
one associates to the incoming and the outgoing ends of T the sequences ε =
{ε1, . . . , εk} and ε = {ε1, . . . , εl} where εi = 1 (εi = 1) if in a neighborhood of
the point the tangle component points down and εi = −1 (εi = −1) otherwise.

A coloring n = (n1, n2, . . . , nm) ∈ Σ×m of an oriented k − l tangle T with m
components, is a map which associates to the i-th connected component of T an
element ni ∈ Σ. A coloring of the tangle induces colorings i(n) = {i1, i2, . . . , ik}
and i(n) = {i1, i2, . . . , il} of the incoming and the outgoing ends of the tangle.

The colored tangles form a category H with objects the set S of sequences
{(εs, is)}ks=1 , where εs = ±1 and is ∈ Σ. If η, η′ ∈ S then a morphism η → η′

is a colored tangle considered up to isotopy such that the sequence of signs
and colors of the outgoing ends is equal to η and the one of the incoming
ends is equal to η′ (This is not a mistake. While in the HKR framework we
were multiplying the algebra elements on the right, in the Reshetikhin–Turaev
framework one considers the left action of the algebra on a representation and
this leads to the necessity of reversing the idea of incoming and outgoing). The
composition of two tangles T ′ ◦ T is obtained by placing T ′ on the top of T
and gluing the ends. The category can also be provided with tensor product by
defining T ′ ⊗ T to be the tangle obtained by placing T ′ to the left of T .

10.5 Theorem 2.5 in [20] states that there exists a unique covariant functor
F : H → RepA such that for any object η in H , F (η) = V ε1

i1
⊗ V ε2

i2
⊗ . . . V εk

ik
,

where V 1
n = Vn and V −1

n = V ∗n . Moreover, F preserves the tensor product and
if F (T ; n) denotes the value of F on an oriented tangle T with coloring n, on
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the elementary colored tangles presented in figure 6 this value is as follows:

F (b1; i) = idVi , F (b2; i) = idV ∗i

F (d1; i, j) : x⊗ y →
∑
n

βn.y ⊗ αn.x : Vi ⊗ Vj → Vj ⊗ Vi;

F (d2; i, j) : x⊗ y →
∑
n

S(αn).y ⊗ βn.x : Vi ⊗ Vj → Vj ⊗ Vi,

F (e1; i) : x⊗ y → x(y) : V ∗i ⊗ Vi → k;
F (e2; i) : y ⊗ x→ x(g.y) : Vi ⊗ V ∗i → k;

F (f1; i) : 1→
di∑
k=1

ek ⊗ e∗k : k → Vi ⊗ V ∗i ;

F (f2; i) : 1→
di∑
k=1

e∗k ⊗ g−1.ek : k → V ∗i ⊗ Vi,

where with “.” denotes the left action of A on the corresponding left A–module.

Let L be a link with m components. Fix an orientation of L and define {L} =∑
n r(n)F (L; n), where the sum is over all possible colorings n = {n1, . . . , nm}

of L. Then theorem 3.3.2 in [20] states that {L} doesn’t depend on the orien-
tation of the components of L. Moreover, {L} is an invariant of the link under
isotopy and under taking the band connected sum of two different components.

Proposition 10.6 {L} = Z [zRT ](L), where zRT =
∑q−1

n=0 r(n)zn . In particu-
lar, [zRT ] ∈ T s .

Proof We can represent L as the closure of a braid B on k strings oriented
downwards as in the example in figure 18. Let σ be the underlying permutation

Figure 18: Presenting a link as the closure of a braid
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of B , i.e. the boundary of the i-th component of B consists of the i-th incoming
and the σ(i)-th outgoing ends (counted from the left to the right). Then σ is
the product of m cycles:

σ = (j1
1 , j

1
2 , . . . j

1
s1) . . . (jm1 , j

m
2 , . . . j

m
sm).

For the example of figure 18, σ = (1)(2, 3, 4). Let Z (B) =
∑

i a1,i⊗a2,i . . .⊗ak,i
be the element in A⊗k as defined in 6.1. Let also∑
j

c1,j⊗c2,j . . .⊗cm,j =
∑
i

(aj11 ,igaj12 ,i . . . gaj1s1 ,i)⊗. . .⊗(ajm1 ,igajm2 ,i . . . gajmsm ,i).

Then from 10.5 it follows that for any coloring n = {n1, n2, . . . , nm} of L,

F (L; n) =
∑
j

trVn1
(c1,j) . . . trVnm (cm,j) =

∑
j

λ(gzn1c1,jg) . . . λ(gznmcm,jg).

Here we have used the fact that for any a, b ∈ A and −n ≤ s, l ≤ n,
n∑

i=−n
e∗l (a.ei)e

∗
i (b.es) = e∗l (ab.es).

Making the confrontation with the expression for Z in 6.1, we see that F (L; n)
= Z (L)(zn1 , . . . , znm). The statement of the proposition follows by linearity.

Proposition 10.7 For any 0 ≤ n ≤ q − 1, [zn] = [Ṅ−n ].

Proof From 8.5 it follows that zn =
∑q−1

i=0 (xiPi + yiṄi
−

+ wiṄi) + xqPq . Let
0 ≤ j ≤ q and aj = 1−2jE

(p−1)F (p−1) . Then 10.2 implies that trVn(aj) = 0 for
any j . On another hand, from the expressions for Pj and Nj in 8.8 it follows
that

λ(gznajg) = v2jxj.

Hence xj = 0 for any 0 ≤ j ≤ q . On another hand, for every 0 ≤ j ≤ n,
trVn(1−2j) = v2j and from 8.8 it follows that

λ(gzn1−2jg) = v4j
q−1∑
i=0

(yiλ(Ṅi
−

1−2j) + wiλ(Ṅi1−2j)).

Hence we obtain the following system of q + 1 equations for the coefficients
yi, wi :

q−1∑
i=j

yi +
q−1∑
s=0

ws = 1, 0 ≤ j ≤ n;

q−1∑
i=j

yi +
q−1∑
s=0

ws = 0, n+ 1 ≤ j ≤ q;
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The solution is yi = δi,n and
∑q−1

s=0 ws = 0. Hence zn = Ṅ−n +
∑q−1

s=0 wsṄs and
[zn] = [Ṅ−n ].

As a consequence of the last two propositions it follows that

[zRT ] =
q−1∑
n=0

[2n + 1][Ṅi
−

].
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