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Abstract The twisted face-pairing construction of our earlier papers gives
an efficient way of generating, mechanically and with little effort, myriads of
relatively simple face-pairing descriptions of interesting closed 3-manifolds.
The corresponding description in terms of surgery, or Dehn-filling, reveals
the twist construction as a carefully organized surgery on a link.

In this paper, we work out the relationship between the twisted face-pairing
description of closed 3-manifolds and the more common descriptions by
surgery and Heegaard diagrams. We show that all Heegaard diagrams have
a natural decomposition into subdiagrams called Heegaard cylinders, each
of which has a natural shape given by the ratio of two positive integers.
We characterize the Heegaard diagrams arising naturally from a twisted
face-pairing description as those whose Heegaard cylinders all have inte-
gral shape. This characterization allows us to use the Kirby calculus and
standard tools of Heegaard theory to attack the problem of finding which
closed, orientable 3-manifolds have a twisted face-pairing description.
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1 Introduction

The twisted face-pairing construction of our earlier papers [1], [2], [3] gives an
efficient way of generating, mechanically and with little effort, myriads of rela-
tively simple face-pairing descriptions of interesting closed 3-manifolds. Starting
with a faceted 3-ball P and an arbitrary orientation-reversing face-pairing ε on
P , one constructs a faceted 3-ball Q and an orientation-reversing face-pairing
δ on Q such that the quotient Q/δ is a manifold. Here Q is obtained from
P by subdividing the edges according to a function which assigns a positive
integer (called a multiplier) to each edge cycle, and δ is obtained from ε by
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236 Cannon, Floyd and Parry

precomposing each face-pairing map with a twist. Which direction to twist
depends on the choice of an orientation of P . Hence for a given faceted 3-ball
P , orientation-reversing face-pairing ε, and multiplier function, one obtains
two twisted face-pairing manifolds M = Q/δ and M∗ = Q/δ∗ (one for each
orientation of P ).

In [1] and [2] we introduced twisted face-pairing 3-manifolds and developed
their first properties. A surprising result in [2] is the duality theorem that
says that, if P is a regular faceted 3-ball, then M and M∗ are homeomorphic
in a way that makes their cell structures dual to each other. This duality is
instrumental in [3], where we investigated a special subset of these manifolds,
the ample twisted face-pairing manifolds. We showed that the fundamental
group of every ample twisted face-pairing manifold is Gromov hyperbolic with
space at infinity a 2-sphere.

In this paper we connect the twisted face-pairing construction with two standard
3-manifold constructions. Starting with a faceted 3-ball P with 2g faces and
an orientation-reversing face-pairing ε on P , we construct a closed surface S
of genus g and two families γ and β of pairwise disjoint simple closed curves
on S . The elements of γ correspond to the face pairs and the elements of β
correspond to the edge cycles of ε. Given a choice of multipliers for the edge
cycles, we then give a Heegaard diagram for the resulting twisted face-pairing
3-manifold. The surface S is the Heegaard surface, and the family γ is one
of the two families of meridian curves. The other family is obtained from γ
by a product of powers of Dehn twists along elements of β ; the powers of the
Dehn twists are the multipliers. From the Heegaard diagram, one can easily
construct a framed link in the 3-sphere such that Dehn surgery on this framed
link gives the twisted face-pairing manifold. The components of the framed link
fall naturally into two families; each curve in one family corresponds to a face
pair and has framing 0, and each curve in the other family corresponds to an
edge cycle and has framing the sum of the reciprocal of its multiplier and the
blackboard framing of a certain projection of the curve. These results are very
useful for understanding both specific face-pairing manifolds and entire classes
of examples. While we defer most illustrations of these results to a later paper
[4], we give several examples here to illustrate how to use these results to give
familiar names to some twisted face-pairing 3-manifolds.

One of our most interesting results in this paper is that all Heegaard diagrams
have a natural decomposition into subdiagrams called Heegaard cylinders, each
of which has a natural shape given by the ratio of two positive integers. We
characterize the Heegaard diagrams arising naturally from a twisted face-pairing
description as those whose Heegaard cylinders all have integral shape.
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Heegaard diagrams and surgery descriptions 237

Figure 1: The complex P

We give a preliminary example to illustrate the twisted face-pairing construc-
tion. Let P be a tetrahedron with vertices A, B , C , and D , as shown in
Figure 1. Consider the face-pairing ε = {ε1, ε2} on P with map ε1 which takes
triangle ABC to triangle ABD fixing the edge AB and map ε2 which takes tri-
angle ACD to BCD fixing the edge CD . This example was considered briefly
in [1] and in more detail in [2, Example 3.2]. The edge cycles are the equiv-
alence classes of the edges of P under the face-pairing maps. The three edge
cycles are {AB}, {BC,BD,AD,AC}, and {CD}; the associated diagrams of
face-pairing maps are shown below.

AB
ε1−→ AB

BC
ε1−→ BD

ε−1
2−−→ AD

ε−1
1−−→ AC

ε2−→ BC

CD
ε2−→ CD

To construct a twisted face-pairing manifold from P , for each edge cycle [e]
we choose a positive integer mul([e]) called the multiplier of [e]. Let Q be
the subdivision of P obtained by subdividing each edge e of P into #([e]) ·
mul([e]) subedges. The face-pairing maps ε1 and ε2 naturally give face-pairing
maps on the faces of Q. Choose an orientation of ∂Q, and define the twisted
face-pairing δ on Q by precomposing each εi with an orientation-preserving
homeomorphism of its domain which takes each vertex to the vertex that follows
it in the induced orientation on the boundary. By the fundamental theorem of
twisted face-pairings (see [1] or [2]), the quotient Q/δ is a closed 3-manifold.

To construct a Heegaard diagram and framed link for the twisted face-pairing
manifold Q/δ , we first schematically indicate the edge diagrams as shown in
Figure 2. We then make rectangles out of the edge diagrams in Figure 3, and
add thin horizontal and vertical line segments through the midpoints of each of
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Figure 2: The edge diagrams

Figure 3: The rectangles that correspond to the edge diagrams

the subrectangles of the rectangles. We identify the boundary edges of the rect-
angles in pairs preserving the vertex labels (and, for horizontal edges, the order)
to get a quotient surface S of genus two. The image in S of the thin vertical
arcs is a union of two disjoint simple closed curves γ1 and γ2 , which correspond
to the two face pairs. The image in S of the thin horizontal arcs is a union of
three pairwise disjoint simple closed curves β1 , β2 , and β3 , which correspond
to the three edge cycles. Figure 4 shows S as the quotient of the union of two
annuli, and Figure 5 shows the curve families {γ1, γ2} and {β1, β2, β3} on S .
For i ∈ {1, 2, 3}, let mi be the multiplier of the edge cycle corresponding to βi
and let τi be one of the two Dehn twists along βi . We choose τ1 , τ2 , and τ3

so that they are oriented consistently. Let τ = τm1
1 ◦ τm2

2 ◦ τm3
3 . It follows from

Theorem 6.1.1 that S and {γ1, γ2} and {τ(γ1), τ(γ2)} form a Heegaard dia-
gram for the twisted face-pairing manifold Q/δ . From the Heegaard diagram,
one can use standard techniques to give a framed surgery description for Q/δ .
An algorithmic description for this is given in Theorem 6.1.2. In the present
example, the surgery description is shown in Figure 6 together with a modifica-
tion of the 1-skeleton of the tetrahedron P . There are two curves with framing
0, corresponding to the two pairs of faces. The other three curves correspond
to the edge cycles and have framings the reciprocals of the multipliers.

We now describe our Heegaard diagram construction in greater detail. We use
the notation and terminology of [2]. Let P be a faceted 3-ball, let ε be an
orientation-reversing face-pairing on P , and let mul be a multiplier function
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Heegaard diagrams and surgery descriptions 239

Figure 4: Another view of the surface S

Figure 5: The curve families {γ1, γ2} and {β1, β2, β3} on the surface S

Figure 6: The surgery description

for ε. (As in [2], we for now assume that P is a regular CW complex. We
drop the regularity assumption in Section 2.) Let Q be the twisted face-pairing
subdivision of P , let δ be the twisted face-pairing on Q, and let M be the
associated twisted face-pairing manifold. We next construct a closed surface S
with the structure of a cell complex. For this we fix a cell complex X cellularly
homeomorphic to the 1-skeleton of Q. Suppose given two paired faces f and
f−1 of Q. We choose one of these faces, say f , and we construct ∂f × [0, 1].
We view the interval [0, 1] as a 1-cell, and we view ∂f × [0, 1] as a 2-complex
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with the product cell structure. For every x ∈ ∂f we identify (x, 0) ∈ ∂f× [0, 1]
with the point in X corresponding to x and we identify (x, 1) ∈ ∂f× [0, 1] with
the point in X corresponding to δf (x) ∈ ∂f−1 . Doing this for every pair of
faces of Q yields a cell complex Y on a closed surface. We define S to be the
first dual cap subdivision of Y ; because every face of Y is a quadrilateral, this
simply means that to obtain S from Y we subdivide every face of Y into four
quadrilaterals in the straightforward way. We say that an edge of S is vertical
if it is either contained in X or is disjoint from X . We say that an edge of S
is diagonal if it is not vertical. The union of the vertical edges of S which are
not edges of Y is a family of simple closed curves in S . Likewise the union of
the diagonal edges of S which are not edges of Y is a family of simple closed
curves in S . Theorem 4.3.1 states that the surface S and these two families of
curves form a Heegaard diagram for M .

In this paragraph we indicate how to associate to a given edge cycle E of ε a
closed subspace of S . To simplify this discussion we assume that E contains
three edges and that mul(E) = 2. When constructing Q from P , every edge
of E is subdivided into 2 · 3 = 6 subedges. So corresponding to the three edges
of E , the complex S contains three 1-complexes, each of them homeomorphic
to an interval and the union of 12 vertical edges of S . These three 1-complexes
and part of S are shown in Figure 7; the three 1-complexes are drawn as four
thick vertical line segments with the left one to be identified with the right one.
We refer to the closed subspace C of S shown in Figure 7 as an edge cycle
cylinder or simply as a cylinder. In Figure 7, vertical edges of S are drawn
vertically and diagonal edges of S are drawn diagonally. Some arcs in Figure 7
are dashed because they are not contained in the 1-skeleton of S . The thick
edges in Figure 7 are the edges of Y in C . (It is interesting to note that these
thick edges essentially give the diagram in Figure 11 of [2].) Note that the edge
cycle cylinder C need not be a closed annulus, although C is the closure of
an open annulus. (Identifications of boundary points are possible.) We choose
these edge cycle cylinders so that their union is S and the cylinders of distinct
ε-edge cycles have disjoint interiors.

We define the circumference of an edge cycle cylinder to be the number of
edges in its edge cycle. We define the height of an edge cycle cylinder to be the
number of edges in its edge cycle times the multiplier of its edge cycle. The edge
cycle cylinder C in Figure 7 contains three arcs ρ1 , ρ2 , ρ3 whose endpoints lie
on dashed arcs such that each of ρ1 , ρ2 , ρ3 is a union of thin vertical edges.
Likewise C contains three arcs σ1 , σ2 , σ3 such that each of σ1 , σ2 , σ3 is a
union of thin diagonal edges and the endpoints of σi equal the endpoints of ρi
for every i ∈ {1, 2, 3}. Because the height of C equals 2 times the circumference
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Figure 7: The cylinder C corresponding to the edge cycle E

of C , it follows that σ1 , σ2 , σ3 can be realized as the images of ρ1 , ρ2 , ρ3 under
the second power of a Dehn twist along a waist of C . This observation and
the previous paragraphs essentially give the following. Let α1, . . . , αn be the
simple closed curves in S which are unions of vertical edges of S that are not
edges of Y . Let E1, . . . , Em be the edge cycles of ε. For every i ∈ {1, . . . ,m}
construct a waist βi in the edge cycle cylinder of Ei so that β1, . . . , βm are
pairwise disjoint simple closed curves in S . For every i ∈ {1, . . . ,m} let τi
be one of the two Dehn twists on S along βi , chosen so that the directions in
which we twist are consistent. Set τmul = τ

mul(E1)
1 ◦ · · · ◦ τmul(Em)

m . Then S and
α1, . . . , αn and τmul(α1), . . . , τmul(αn) form a Heegaard diagram for M . The
last statement is the content of Theorem 6.1.1.

The result of the previous paragraph leads to a link L in S3 that has compo-
nents γ1, . . . , γn and δ1, . . . , δm , where γ1, . . . , γn correspond to α1, . . . , αn and
δ1, . . . , δm correspond to β1, . . . , βm . We define a framing of L so that γ1, . . . , γn
have framing 0 and for every i ∈ {1, . . . ,m} δi has framing mul(Ei)−1 plus the
blackboard framing of δi relative to a certain projection. Then the manifold
obtained by Dehn surgery on L is homeomorphic to M . The last statement
is the content of Theorem 6.1.2. At last we see that multipliers of edge cycles
are essentially inverses of framings of link components. In Section 6.2 we make
the construction of L algorithmic and simple using what we call the corridor
construction.

We know of no nice characterization of twisted face-pairing 3-manifolds. How-
ever, Theorem 5.3.1 gives such a characterization of their Heegaard diagrams.
Theorem 5.3.1 and results leading to it give the following statements. Every
irreducible Heegaard diagram for an orientable closed 3-manifold M gives rise
to a faceted 3-ball P with orientation-reversing face-pairing ε (in essentially

Algebraic & Geometric Topology, Volume 3 (2003)



242 Cannon, Floyd and Parry

two ways – one for each family of meridian curves) such that P/ε is homeo-
morphic to M . Every irreducible Heegaard diagram can be decomposed into
cylinders, which we call Heegaard cylinders, essentially just as our above Hee-
gaard diagrams of twisted face-pairing manifolds are decomposed into edge cycle
cylinders. In general heights of Heegaard cylinders are not multiples of their
circumferences. A given irreducible Heegaard diagram is the Heegaard diagram,
as constructed above, of a twisted face-pairing manifold if and only if the height
of each of its Heegaard cylinders is a multiple of its circumference. Furthermore,
if the height of every Heegaard cylinder is a multiple of its circumference, then
the face-pairing ε constructed from the given Heegaard diagram is a twisted
face-pairing.

Thus far we have discussed the construction of Heegaard diagrams for twisted
face-pairing manifolds and the construction of face-pairings from irreducible
Heegaard diagrams. In Theorem 4.2.1 we more generally construct (irreducible)
Heegaard diagrams for manifolds of the form P/ε, where P is a faceted 3-ball
with orientation-reversing face-pairing ε and the cell complex P/ε is a manifold
with one vertex. In Theorem 5.3.1 we construct for every irreducible Heegaard
diagram for a 3-manifold M a faceted 3-ball P with orientation-reversing face-
pairing ε (in essentially two ways – one for each family of meridian curves) such
that P/ε is a cell complex with one vertex and P/ε is homeomorphic to M .
These two constructions are essentially inverse to each other.

The above statements that every irreducible Heegaard diagram gives rise to a
faceted 3-ball require a more general definition of faceted 3-ball than the one
given in [2]. In [2] faceted 3-balls are regular, that is, for every open cell of a
faceted 3-ball the prescribed homeomorphism of an open Euclidean ball to that
cell extends to a homeomorphism of the closed Euclidean ball to the closed cell.
On the other hand, the cellulation of the boundary of a 3-ball which arises from
a Heegaard diagram has paired faces but otherwise is arbitrary. So we now
define a faceted 3-ball P to be an oriented CW complex such that P is a closed
3-ball, the interior of P is the unique open 3-cell of P , and the cell structure
of ∂P does not consist of just one 0-cell and one 2-cell. This generalization
presents troublesome minor technical difficulties but no essential difficulties. In
particular, all the results of [1] and [2] hold for these more general faceted 3-
balls. Section 2 deals with this generalization. Except when the old definition is
explicitly discussed, we henceforth in this paper use the new definition of faceted
3-ball. We know of no reducible twisted face-pairing manifold which arises from
a regular faceted 3-ball; the old twisted face-pairing manifolds all seem to be
irreducible. On the other hand the new twisted face-pairing manifolds are often
reducible. See Examples 2.1 (which is considered again in 4.3.2 and 7.1) and
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2.3 (which is considered again in 6.2.1).

Our construction of Heegaard diagrams from face-pairings uses a subdivision
of cell complexes which we call dual cap subdivision. We define and discuss
dual cap subdivision in Section 3. The term “dual” is motivated by the notion
of dual cell complex, and the term “cap” is motivated by its association with
intersection. Intuitively, the dual cap subdivision of a cell complex is gotten by
“intersecting” the complex with its “dual complex”. Dual cap subdivision is
coarser than barycentric subdivision, and it is well suited to the constructions
at hand. Heegaard decompositions of 3-manifolds are usually constructed by
triangulating the manifolds and working with their second barycentric subdi-
visions. Instead of using barycentric subdivision, we use dual cap subdivision,
and we obtain the following. Earlier in the introduction we constructed a sur-
face S with a cell structure. We show that S is cellularly homeomorphic to
a subcomplex of the second dual cap subdivision of the manifold M , where
this subcomplex corresponds to the usual Heegaard surface gotten by using a
triangulation and barycentric subdivision.

In Section 7 we use the corridor construction of Section 6.2 to construct links
in S3 for three different model face-pairings. Simplifying these links using
isotopies and Kirby calculus, we are able to identify the corresponding twisted
face-pairing manifolds. In Example 7.1 we obtain the connected sum of the
lens space L(p, 1) and the lens space L(r, 1) as a twisted face-pairing manifold,
where p and r are positive integers. In Example 7.2 we obtain all integer
Dehn surgeries on the figure eight knot as twisted face-pairing manifolds. In
Example 7.3 we obtain the Heisenberg manifold, the prototype of Nil geometry.
In Example 6.2.1 we obtain S2 × S1 .

Which orientable connected closed 3-manifolds are twisted face-pairing mani-
folds? As far as we know they all are, although that seems rather unlikely. An
interesting problem is to determine whether the 3-torus is a twisted face-pairing
manifold; we do not know whether it is or not. In a later paper [4] we present a
survey of twisted face-pairing 3-manifolds which indicates the scope of the set
of twisted face-pairing manifolds. Here are some of the results in [4]. We show
how to obtain every lens space as a twisted face-pairing manifold. We consider
the faceted 3-balls for which every face is a digon, and we show that the twisted
face-pairing manifolds obtained from these faceted 3-balls are Seifert fibered
manifolds. We show how to obtain most Seifert fibered manifolds. We show
that if M1 and M2 are twisted face-pairing manifolds, then so is the connected
sum of M1 and M2 .

This research was supported in part by National Science Foundation grants
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DMS-9803868, DMS-9971783, and DMS-10104030. We thank the referee for
helpful suggestions on improving the exposition.

2 Generalizing the construction

Our twisted face-pairing construction begins with a faceted 3-ball. In Section 2
of [2] we define a faceted 3-ball P to be an oriented regular CW complex such
that P is a closed 3-ball and P has a single 3-cell. In this section we generalize
our twisted face-pairing construction by generalizing the notion of faceted 3-ball.
This generalization gives us more freedom in constructing twisted face-pairing
manifolds, and it is natural in the context of Theorem 5.3.1.

We take cells of cell complexes to be closed unless explicitly stated otherwise.

We now define a faceted 3-ball P to be an oriented CW complex such that P
is a closed 3-ball, the interior of P is the unique open 3-cell of P , and the cell
structure of ∂P does not consist of just one 0-cell and one 2-cell. Suppose that
P is an oriented CW complex such that P is a closed 3-ball and the interior of
P is the unique open 3-cell of P . The condition that the cell structure of ∂P
does not consist of just one 0-cell and one 2-cell is equivalent to the following
useful condition. For every 2-cell f of P there exists a CW complex F such
that F is a closed disk, the interior of F is the unique open 2-cell of F , and
there exists a continuous cellular map ϕ : F → f such that the restriction of
ϕ to every open cell of F is a homeomorphism. So f is gotten from F by
identifying some vertices and identifying some pairs of edges. The number of
vertices and edges in F is uniquely determined. This definition of faceted 3-ball
allows for faces such as those in Figure 8, which were not allowed before; part
a) of Figure 8 shows a quadrilateral and part b) of Figure 8 shows a pentagon.
To overcome difficulties presented by faces such as those in Figure 8, the next
thing that we do is subdivide P .

Figure 8: Faces now allowed in a faceted 3-ball

In this paragraph we construct a subdivision Ps of a given faceted 3-ball P .
The idea is to not subdivide the 3-cell of P and to construct what might be
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called the barycentric subdivision of ∂P . The vertices of Ps are the vertices of
P together with a barycenter for every edge of P and a barycenter for every
face of P . Every face of Ps is a triangle contained in ∂P . If t is one of these
triangles, then one vertex of t is a vertex of P , one vertex of t is a barycenter
of an edge of P , and one vertex of t is a barycenter of a face of P . The only
3-cell of Ps is the 3-cell of P . This determines Ps . Given a face f of P , we let
fs denote the subcomplex of Ps which consists of the cells of Ps contained in
f . Figure 9 shows fs for each of the faces f in Figure 8.

Figure 9: The subdivisions of the faces in Figure 8

In this paragraph we make two related definitions. Let P be a faceted 3-ball,
and let f be a face of P . We define a corner of f at a vertex v of f to be a
subcomplex of fs consisting of the union of two faces of fs which both contain
an edge e such that e contains v and the barycenter of f . We define an edge
cone of f at an edge e of f to be a subcomplex of fs consisting of the union
of two faces of fs which both contain an edge e′ such that e′ contains the
barycenter of f and the barycenter of e.

A face-pairing ε on a given faceted 3-ball P now consists of the following. First,
the faces of P are paired: for every face f of P there exists a face f−1 6= f
of P such that (f−1)−1 = f . Second, the faces of Ps are paired: for every
face t of Ps contained in a face f of P there exists a face t−1 of Ps with
t−1 ⊆ f−1 such that (t−1)−1 = t. Third, for every face t of Ps there exists
a cellular homeomorphism εt : t → t−1 called a partial face-pairing map such
that εt−1 = ε−1

t . We require that εt maps the vertex of P in t to the vertex
of P in t−1 , that εt maps the edge barycenter in t to the edge barycenter in
t−1 , and that εt maps the face barycenter in t to the face barycenter in t−1 .
Furthermore, the faces of Ps are paired and the partial face-pairing maps are
defined so that if t and t′ are faces of Ps contained in some face f of P and if
e is an edge of t ∩ t′ which contains the barycenter of f , then εt|e = εt′ |e . For
every face f of P we set εf = {εt : t is a face of fs}, and we refer to εf as a
multivalued face-pairing map from f to f−1 . We set ε = {εf : f is a face of P}.
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In a straightforward way we obtain a quotient space Ps/ε consisting of orbits of
points of Ps under ε. Finally, as in [2, Section 2] we impose on ε the face-pairing
compatibility condition that as one goes through an edge cycle the composition
of face-pairing maps is the identity. The cell structure of P induces a cell
structure on Ps/ε, and it is this cell structure that we put on Ps/ε, not the cell
structure induced from Ps . We usually write P/ε instead of Ps/ε. We usually
want ε to be orientation reversing, which means that every partial face-pairing
map of ε reverses orientation.

Let P be a faceted 3-ball, let f be a face of P , and suppose that ε is an
orientation-reversing face-pairing on P . Then the multivalued face-pairing map
εf determines a function from the set of corners of f to the set of corners of
f−1 in a straightforward way. The image of one corner of f under this function
determines the image of every corner of f under this function. The action of ε
on the set of corners of the faces of P determines Ps/ε up to homeomorphism.
Thus for our purposes to define the multivalued face-pairing map εf of a face
f of P , it suffices to give a corner c of f and the corner of f−1 to which εf
maps c.

Let ε be an orientation-reversing face-pairing on a faceted 3-ball P . Essentially
as in Section 2 of [2], ε partitions the edges of P into edge cycles. (We consider
the edges of P , not the edges of Ps .) To every edge cycle E of ε we associate a
length `E and a multiplier mE as before. The function mul: {edge cycles} →
N defined by E 7→ mE is called the multiplier function. We obtain a twisted
face-pairing subdivision Q from P just as before: if e is an edge of P and if E
is the edge cycle of ε containing e, then we subdivide e into `EmE subedges.
As before, we subdivide in an ε-invariant way. We likewise construct Qs in
an ε-invariant way. It follows that ε naturally determines a face-pairing on Q,
which we continue to call ε, abusing notation more than before.

We consider face twists in this paragraph. In the present setting a face twist is
not a single cellular homeomorphism, but instead a collection of cellular home-
omorphisms. For this, we maintain the situation of the previous paragraph.
Let f be a face of Q. Let t be a face of fs . The orientation of f determines
a cyclic order on the faces of fs . Let t′ be the second face of fs which fol-
lows t relative to this cyclic order. Let τt be an orientation-preserving cellular
homeomorphism from t to t′ such that τt fixes the barycenter of f . We call
τf = {τt : t is a face of fs} the face twist of f . We assume that if t1 and t2 are
faces of fs and if e is an edge of t1 ∩ t2 which contains the barycenter of f ,
then τt1 |e = τt2 |e . We also assume that our face twists are defined ε-invariantly:
for each face f of Q and each face t of fs , we have τt−1 = εt′′ ◦ τ−1

t′′ ◦ εt−1 ,
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where t′′ is the second face of fs which precedes t. We furthermore impose a
compatibility condition on our face twists in the next paragraph.

Now we are prepared to define a twisted face-pairing δ on Q. We pair the
faces of Q just as the faces of P are paired. The pairing of the faces of Ps
likewise induces a pairing of the faces of Qs . For every face f of Q and every
face t of fs , we set δt = εt′ ◦ τt , where t′ is the second face of fs which
follows t. For every face f of Q we set δf = {δt : t is a face of fs}, and we set
δ = {δf : f is a face of Q}. We assume that the maps τt are defined so that
δ satisfies the face-pairing compatibility condition that as one goes through a
cycle of edges in Q the compositions of face-pairing maps is the identity. Then
δ is a face-pairing on Q called the twisted face-pairing.

Finally, we define M = M(ε,mul) to be the quotient space Qs/δ . We emphasize
that for a cell structure on M we take the cell structure induced from Q, not
the cell structure induced from Qs . The cell complex M is determined up to
homeomorphism by the function mul and the action of ε on the corners of the
faces of P .

Let P be a faceted 3-ball, let ε be an orientation-reversing face-pairing on P ,
and let mul be a multiplier function for ε. The results of [2] all hold in this
more general setting. So M is an orientable closed 3-dimensional manifold
with one vertex. The dual of the link of that vertex is isomorphic to ∂Q∗ as
oriented 2-complexes, where Q∗ is a faceted 3-ball gotten from Q by reversing
orientation. We label and direct the faces and edges of Q and Q∗ as before.
We again obtain a duality between M and M∗ . The proofs in [2] are valid
in the present more general setting with only straightforward minor technical
modifications and the following. To obtain a duality between M and M∗ in [2],
we construct a dual cap subdivision Qσ of Q. We let C1, . . . , Ck be the 3-cells
of Qσ , and for every i ∈ {1, . . . , k} we let Ai be a cell complex isomorphic
to Ci so that A1, . . . , Ak are pairwise disjoint. Then the vertices of Q can be
enumerated as x1, . . . , xk so that Ci is the unique 3-cell of Qσ which contains
xi for i ∈ {1, . . . , k}. If xi has valence vi , then Ai is an alternating suspension
on a 2vi -gon for i ∈ {1, . . . , k}. In the present setting the 3-cells of Qσ need not
be alternating suspensions; they are quotients of alternating suspensions. See
Section 3.2 for a discussion of the 3-cells of Qσ . So in the present setting we let
x1, . . . , xk be the vertices of Q with valences v1, . . . , vk , and for i ∈ {1, . . . , k}
we simply define Ai to be an alternating suspension on a 2vi -gon. As in [2]
the twisted face-pairing δ on Q induces in a straightforward way what might
be called a face-pairing on the disjoint union of A1, . . . , Ak . At this point we
proceed as in [2].
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We conclude this section with two simple examples to illustrate some of the
new phenomena which occur for our more general faceted 3-balls.

Figure 10: The complex P for Example 2.1

Example 2.1 Let the model faceted 3-ball P be as indicated in Figure 10
with two monogons and two quadrilaterals, the outer monogon being at infinity.
The inner monogon has label 1 and is directed outward. The outer monogon
has label 1 and is directed inward. The inner quadrilateral has label 2 and is
directed outward. The outer quadrilateral has label 2 and is directed inward. As
usual for faces in figures, all four faces are oriented clockwise. We construct an
orientation-reversing face-pairing ε on P as follows. Multivalued face-pairing
map ε1 maps the inner monogon to the outer monogon, there being essentially
only one way to do this. Multivalued face-pairing map ε2 maps the inner
quadrilateral to the outer quadrilateral fixing their common edge. Set ε =
{ε±1

1 , ε±1
2 }.

We might view this face-pairing as follows. Construct a monogon in the open
northern hemisphere of the 2-sphere S2 , put a vertex on the equator of S2

and join the two vertices with an edge. Now vertically project this cellular
decomposition of the northern hemisphere into the southern hemisphere.

The edge cycles for ε have the following diagrams.

CC
ε2−→ CC AC

ε2−→ BC
ε−1
2−−→ AC BB

ε−1
2−−→ AA

ε1−→ BB (2.2)

For now let the first edge cycle have multiplier 4, let the second have multiplier
1, and let the third have multiplier 1.

Figure 11 shows the faceted 3-ball Q; we labeled the new vertices of Q arbi-
trarily. Figure 12 shows the link of the vertex of M , with conventions as in
[2]. Figure 13 shows the faceted 3-ball Q∗ dual to Q with its edge labels and
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Figure 11: The complex Q for Example 2.1

directions. Note that ∂Q∗ is dual to the link of the vertex of M . We obtain a
presentation for the fundamental group G of M as follows. Corresponding to
the face labels 1 and 2 we have generators x1 and x2 . The boundary of the face
of Q∗ labeled 1 and directed outward gives the relator x1x

−1
2 . The boundary

of the face of Q∗ labeled 2 and directed outward gives the relator x5
2x
−1
1 . So

G ∼= 〈x1, x2 : x1x
−1
2 , x5

2x
−1
1 〉 ∼= Z/4Z.

Figure 12: The link of the vertex of M

We will see in Example 7.1 that M is the lens space L(4, 1). In general, if
the first edge cycle of ε has multiplier p, if the second edge cycle of ε has
multiplier q , and if the third edge cycle of ε has multiplier r , then we will see
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Figure 13: The complex Q∗ with edge labels and directions

in Example 7.1 that M is the connected sum of the lens space L(p, 1) and the
lens space L(r, 1) (and so in particular M does not depend on q).

Figure 14: The complex P for Example 2.3

Example 2.3 Let the model faceted 3-ball P be as in Figure 14 with two
quadrilaterals, the outer quadrilateral being at infinity. The inner quadrilateral
has label 1 and is directed outward. The outer quadrilateral has label 1 and
is directed inward. The orientation-reversing multivalued face-pairing map ε1
maps the inner quadrilateral to the outer quadrilateral taking vertex C to
vertex D . Set ε = {ε±1

1 }.

The vertices A and C of P are joined by two edges. We use the subscripts u
and d for up and down to distinguish them. So ACu is the upper edge joining
A and C , and ACd is the lower edge joining A and C . The face-pairing ε has
only one edge cycle, and this edge cycle has the following diagram.

ACu
ε1−→ CD

ε−1
1−−→ ACd

ε−1
1−−→ BA

ε1−→ ACu
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For simplicity let this edge cycle have multiplier 1.

Figure 15 shows the faceted 3-ball Q; we labeled the new vertices of Q arbitrar-
ily. Figure 16 shows the link of the vertex of M . Figure 17 shows the faceted
3-ball Q∗ dual to Q with its edge labels and directions. Note that ∂Q∗ is dual
to the link of the vertex of M . We obtain a presentation for the fundamental
group G of M as follows. Corresponding to the face label 1 we have a generator
x1 . The boundary of the face of Q∗ labeled 1 and directed outward gives the
trivial relator. So G has one generator and no relators, that is, G ∼= Z.

Figure 15: The complex Q for Example 2.3

Figure 16: The link of the vertex of M

We will see in Example 6.2.1 that M is homeomorphic to S2 × S1 for every
choice of multiplier for the edge cycle of ε.

Algebraic & Geometric Topology, Volume 3 (2003)



252 Cannon, Floyd and Parry

Figure 17: The complex Q∗ with edge labels and directions

3 Dual cap subdivision

3.1 Definition

Recall that we discussed dual cap subdivision in Section 4 of [2]. Of course,
there our faceted 3-balls are regular. We generalize to our present cell complexes
in a straightforward way.

Let P be a faceted 3-ball. We construct a dual cap subdivision Pσ of P as
follows. The vertices of Pσ consist of the vertices of the subdivision Ps defined
in Section 2 together with a barycenter for the 3-cell of P . We next describe
the edges of Pσ .

The edges of ∂Pσ consist of the edges of Ps which do not join the barycenter
of a face of P and a vertex of that face. For every face of P , the subdivision
Pσ also contains an edge joining the barycenter of that face and the barycenter
of the 3-cell of P . These are all the edges of Pσ .

Having described the edges of Pσ , the structure of ∂Pσ is determined. The
faces of ∂Pσ are in bijective correspondence with the corners of the faces of
P . Every face of ∂Pσ is a quadrilateral whose underlying space equals the
underlying space of a corner c at a vertex v of a face f of P . Of course, this
quadrilateral contains the barycenter a of f . The first diagram in Figure 18
shows this quadrilateral if c has three vertices and f is a monogon. The second
diagram in Figure 18 shows this quadrilateral if c has three vertices and f is
not a monogon. The third diagram in Figure 18 shows this quadrilateral if c
has four vertices. In the first two diagrams b is the barycenter of the edge of f
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that contains v , and in the third diagram b1 and b2 are the barycenters of the
two edges of f that contain v .

Figure 18: The three types of faces of ∂Pσ

The remaining faces of Pσ are in bijective correspondence with the edges of P .
Let e be an edge of P , and let b be the barycenter of e. We have constructed
exactly two edges e1 and e2 in ∂Pσ which contain b and are not contained in
e. The edge e determines a quadrilateral face of Pσ containing e1 ∪ e2 and
the barycenter u of the 3-cell of P . If e is contained in two distinct faces of
P , then the face of Pσ determined by e has four distinct edges as in the first
diagram of Figure 19. If e is contained in just one face of P , then the face of
Pσ determined by e is a degenerate quadrilateral as in the second diagram of
Figure 19. We have now described all the faces of Pσ . This determines Pσ .
Note that every vertex of P is in a unique 3-cell of Pσ .

Figure 19: Faces of Pσ not contained in ∂Pσ

Now that we have defined dual cap subdivisions of faceted 3-balls, we define
dual cap subdivisions of more general cell complexes. Let X be a CW complex
which is the union of its 3-cells, and suppose that for every 3-cell C of X there
exists a faceted 3-ball B and a continuous cellular map ϕ : B → C such that
the restriction of ϕ to every open cell of B is a homeomorphism. We say that
a subdivision Xσ of X is a dual cap subdivision of X if for every such choice
of C the cell structure on C induced from Xσ pulls back via ϕ to give a dual
cap subdivision of B .

It is now clear how to also define a dual cap subdivision of every CW complex
with dimension at most 2 such that every 2-cell contains an edge. If X is a cell
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complex for which we have defined a dual cap subdivision and k is a positive
integer, then we let Xσk denote the k -th dual cap subdivision of X .

3.2 Structure of 3-cells

In this subsection we discuss the structure of the 3-cells which occur in the dual
cap subdivision of a faceted 3-ball.

Let P be a regular faceted 3-ball. In Section 4 of [2] we showed that every
3-cell of Pσ is an alternating suspension. Every 3-cell of Pσ contains exactly
one vertex of P , and every vertex of P is contained in exactly one 3-cell of Pσ .
If v is a vertex of P with valence k , then the 3-cell B of Pσ which contains
v is an alternating suspension of a 2k -gon. See Figure 20, which is the same
as Figure 15 of [2]. In Figure 20 the vertex v is a vertex of P and u is the
barycenter of the 3-cell of P . Figure 20 shows an alternating suspension of an
octagon.

Figure 20: The 3-cell B of Pσ which contains the vertex v of P

We point out here an important property of the dual cap subdivision of an
alternating suspension. Let B be an alternating suspension as in the previous
paragraph. Because the faces of ∂B are quadrilaterals and B is homeomorphic
to the cone on star(v, ∂B), the 3-cell of Bσ which contains u is homeomorphic
to B by a cellular homeomorphism θ : star(u,Bσ) → B with the following
property: if x is a vertex of star(u,Bσ) and X is a cell of B with x ∈ X , then
θ(x) ∈ X . Figure 21 shows star(u,Bσ) for the 3-cell B from Figure 20. For
convenience further in this section, we make the following definition. Suppose
that V is a CW complex with dimension at most 3, U is a subcomplex of Vσ ,
and θ : U → V is a cellular homeomorphism. We say that θ keeps vertices in
their cells if θ(x) ∈ X whenever x is a vertex of U and X a cell in V with
x ∈ X .

Now we consider the case of a general faceted 3-ball P . Let v be a vertex of
P . Let e1, . . . , ek be the edges of Pσ which contain v . For every i ∈ {1, . . . , k}
let vi be the vertex of ei unequal to v . There are k corners of faces at v . Let
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Figure 21: Star(u,Bσ)

f1, . . . , fk be the faces which contain these corners. Let u be the barycenter of
the 3-cell of P , and let ui be the barycenter of fi for every i ∈ {1, . . . , k}. If
u1, . . . , uk and v1, . . . , vk are distinct, then just as in the previous paragraph,
there is exactly one 3-cell of Pσ which contains v and this 3-cell is an alternating
suspension of a 2k -gon with cone points u and v . In general exactly one 3-cell
of Pσ contains v and every 3-cell of Pσ contains exactly one vertex of P . The
3-cell C of Pσ which contains v is a quotient of an alternating suspension B
of a 2k -gon with cone points mapping to u and v , the identifications arising
as follows. If fi = fj for some i, j ∈ {1, . . . , k}, then ui = uj , and so the
edge joining u and ui equals the edge joining u and uj . If vi = vj for some
i, j ∈ {1, . . . , k}, then the face containing u and vi equals the face containing
u and vj . So the 3-cell of Pσ which contains v is a quotient of an alternating
suspension of a 2k -gon with cone points mapping to u and v . The quotient
map performs two kinds of identifications. Edges containing the cone point
which maps to u are identified if some face of P is not locally an embedded
disk at v . Faces containing the cone point which maps to u are identified
if some edge of P is not locally an embedded line segment at v . In every
case the restriction of the quotient map to every open cell of the alternating
suspension is a homeomorphism. Since the identifications are along edges and
faces containing u, the map θ : star(u′, Bσ) → B can be defined so that it
induces a cellular homeomorphism ψC : star(u,Cσ)→ C .
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3.3 Central balls

In this subsection and the next we investigate the second dual cap subdivision
of a faceted 3-ball.

Let P be a faceted 3-ball. Let u be the vertex of Pσ which is the barycenter
of the 3-cell of P . Let C be a 3-cell of Pσ . Section 3.2 shows that C contains
u, C is a quotient of an alternating suspension B , and there is a cellular
homeomorphism ψC : star(u,Cσ)→ C which keeps vertices in their cells. These
homeomorphisms can be defined compatibly on the pairwise intersections of
their domains so that they piece together to give a cellular homeomorphism
ψ : star(u, Pσ2) → Pσ which keeps vertices in their cells. We call star(u, Pσ2)
the central ball of Pσ2 . We have just shown that the central ball of Pσ2 is
cellularly homeomorphic to Pσ in a way which is canonical on vertices.

3.4 Chimneys

Let P be a faceted 3-ball. Let u be the vertex of Pσ which is the barycenter
of the 3-cell of P . Let A1 be the star of u in the 1-skeleton of Pσ . Let
A = star(A1, Pσ2). We call A the chimney assembly for P . This subsection is
devoted to investigating the structure of chimney assemblies.

Let f be a face of P , and let a be the vertex of Pσ which is the barycenter of
f . Then star(a, Pσ2) is a subcomplex of A, which we call the f -chimney of A.

Let f be a face of P . Let F be a CW complex such that F is a closed disk,
the interior of F is the unique open 2-cell of F , and there exists a continuous
cellular map ϕ : F → f such that the restriction of ϕ to every open cell of F is
a homeomorphism. Given a dual cap subdivision fσ of f , we choose a dual cap
subdivision Fσ of F so that ϕ induces a cellular map ϕσ : Fσ → fσ . Let Cf
be the mapping cylinder of ϕσ , viewed as a CW complex in the obvious way.

In this and the next four paragraphs we show that Cf is cellularly homeomor-
phic to the f -chimney of A. Let a be the barycenter of f and let v be a vertex
of f . Recall from Figure 18 and the discussion in Section 3.1 that there are
three possibilities for a face of ∂Pσ . For each of the three possibilities, Figure 22
shows part of Pσ2 . Every vertex and edge in Figure 22 is a vertex or edge of
Pσ2 except for the dotted arc in the second diagram which joins b, b′ , and u.
The barycenter a of f is shown. In the first two diagrams b is the barycenter
of the edge of f that contains v , and a, b, and v are the vertices of a face h of
fσ . In the third diagram b1 and b2 are the barycenters of the two edges of f

Algebraic & Geometric Topology, Volume 3 (2003)



Heegaard diagrams and surgery descriptions 257

Figure 22: Part of Pσ2

that contain v , and a, b1 , b2 , and v are the vertices of a face h of fσ . The dual
cap subdivision of h is shown in Figure 22. The barycenter u of P and a are
joined by an edge e of Pσ . Let a′ be the barycenter of e in Pσ2 . Let the map
ψ : star(u, Pσ2) → Pσ be as in Section 3.3. Section 3.3 shows that ψ(a′) = a.
Let C be the 3-cell of Pσ which contains v , and let v′ be the barycenter of
C in Pσ2 . Section 3.3 shows that ψ(v′) = v . Let k be the face of hσ which
contains a. In each of the three diagrams in Figure 22 we have drawn in gray
the face k and a face h′ which will be described below. We consider separately
the three possibilities for h shown in Figure 18.

We first consider the case that h has the form of the first diagram in Figure 18.
Then f is a monogon. Let g be the face of Pσ which contains a, b, and u,
and let b′ be the barycenter of g . For clarity, two edges of gσ are not shown.
Section 3.3 shows that ψ(b′) = b. Let h′ be the face of Pσ2 with vertices a′ , b′ ,
and v′ . Then k and h′ are cellularly homeomorphic, star(a, Pσ2) is the product
of a 1-simplex and the dual cap subdivision of a monogon, and star(a, Pσ2) is
cellularly homeomorphic to Cf .

Now suppose that h has the form of the second diagram in Figure 18. Then
v has valence 1 in ∂f . As in the previous case let g be the face of Pσ which
contains a, b, and u, and let b′ be the barycenter of g . Section 3.3 again shows
that ψ(b′) = b. Let h′ be the face of Pσ2 with vertices a′ , b′ , and v′ . Then
k is cellularly homeomorphic to a square and h′ is cellularly homeomorphic
to a square with two adjacent edges identified. It follows that the 3-cell of
star(a, Pσ2) which contains v′ is cellularly homeomorphic to a cube with two
adjacent edges identified.

Finally, suppose h has the form of the third diagram in Figure 18. For i ∈
{1, 2}, let gi be the face of Pσ which contains u and bi , and let b′i be the
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vertex of Pσ2 which is the barycenter of gi . For clarity two edges of (g1)σ and
two edges of (g2)σ are omitted in the third diagram in Figure 22. Section 3.3
shows that ψ(b′i) = bi for i ∈ {1, 2}. Let h′ be the face of Pσ2 with vertices a′ ,
b′1 , b′2 and v′ . We see that ψ restricts to a cellular homeomorphism from h′ to
h. Then both k and h′ are cellularly homeomorphic to squares and the 3-cell
of star(a, Pσ2) which contains v′ is cellularly homeomorphic to a cube.

If h has the form of the second or third diagram in Figure 18, then star(a, Pσ2)
is a union of complexes as described in the previous two paragraphs. It follows
in these cases that star(a, ∂Pσ2) is cellularly homeomorphic to Fσ , that the
restriction of ψ to star(a, Pσ2)∩ star(u, Pσ2) is a cellular homeomorphism onto
fσ , and that star(a, Pσ2) is cellularly homeomorphic to Cf .

So the chimney assembly A for P is the union of the central ball of Pσ2 and the
chimneys of the faces of P . The central ball of Pσ2 is cellularly homeomorphic
to Pσ , and the chimneys of the faces of P are mapping cylinders. Figure 23
shows the chimney assembly for a cube.

Figure 23: The chimney assembly for a cube

Let f be a face of P , and let Cf be the f -chimney of A. We call f ∩ Cf the
top of Cf . We call the intersection of Cf with the central ball of A the bottom
of Cf . We call faces of ∂Cf which are in neither the top nor the bottom of Cf
lateral faces.

4 Building Heegaard diagrams from face-pairings

In this section we construct Heegaard diagrams from face-pairings.
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4.1 Edge pairing surfaces

We begin by constructing a cellulated closed surface S from a face-pairing. We
call S the edge pairing surface of the face-pairing. See the introduction, where
S is defined for regular faceted 3-balls. Our more general faceted 3-balls present
some complications, but we proceed in much the same way.

Let P be a faceted 3-ball with orientation-reversing face-pairing ε. We first
construct a cell complex X cellularly homeomorphic to the 1-skeleton of P .
Let f and f−1 be two paired faces of P . Next construct a CW complex F
such that F is a closed disk, the interior of F is the unique open 2-cell of F , and
there exists a continuous cellular map ϕ : F → f such that the restriction of ϕ
to every open cell of F is a homeomorphism. There also exists a corresponding
cellular map ψ : F → f−1 such that ϕ and ψ are related as follows. Recall that
to define ε we construct subdivisions fs and f−1

s of f and f−1 in Section 2. Let
t be a face of fs . Then there exists a corresponding face t−1 of f−1

s and a partial
face-pairing map εt : t → t−1 . There also exists a subspace T of F such that
the restriction of ϕ to T is a homeomorphism onto t. We may, and do, choose
the maps ϕ and ψ so that if x ∈ T , then ψ(x) = εt(ϕ(x)). We next construct
∂F × [0, 1]. We view the interval [0, 1] as a 1-cell, and we view ∂F × [0, 1] as
a 2-complex with the product cell structure. For every x ∈ ∂F we identify
(x, 0) ∈ ∂F × [0, 1] with the point of X corresponding to ϕ(x) ∈ ∂f and we
identify (x, 1) ∈ ∂F × [0, 1] with the point of X corresponding to ψ(x) ∈ ∂f−1 .
Doing this for every pair of faces of P yields a cell complex Y whose underlying
space is a closed surface. We define S to be the dual cap subdivision of Y . We
say that an edge of S is vertical if it is either contained in X or is disjoint from
X . We say that an edge of S is diagonal if it is not vertical. We say that an
edge of S is a meridian edge if it is not an edge of Y . We refer to edges of Y as
nonmeridian edges of S . The union of the vertical meridian edges is a family
{α1, . . . , αn} of pairwise disjoint simple closed curves in S called the vertical
meridian curves of S . The union of the diagonal meridian edges is a family
{β1, . . . , βm} of pairwise disjoint simple closed curves in S called the diagonal
meridian curves of S .

Example 4.1.1 We illustrate the above edge pairing surface construction us-
ing the simple example of the lens space L(3, 1). To obtain L(3, 1) we take a
faceted 3-ball P with just two faces which are triangles as in Figure 24, where
one face is at infinity. The orientation-reversing face-pairing map ε1 maps
the inner triangle to the outer triangle taking vertex A to vertex B . We set
ε = {ε±1

1 }. Let S be the edge pairing surface of ε, and let Ã, B̃ , and C̃ be the
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Figure 24: The complex P for Example 4.1.1

vertices of S which correspond to A, B , and C . Figure 25 shows S as an annu-
lus whose boundary components are to be identified in a straightforward way.
Similarly, Figure 26 shows S as a quotient of a quadrilateral. This quadrilateral
is gotten from the edge cycle of ε, shown in Figure 27, in a straightforward way.
The meridian edges of S are drawn with thin arcs, and the nonmeridian edges
of S are drawn with thick arcs. We see that S is a torus. The union of the
vertical meridian edges is a simple closed curve on the torus, and the union of
the diagonal meridian edges is a simple closed curve on the torus. The torus
and these two curves form a Heegaard diagram for L(3, 1). This is a special
case of Theorem 4.2.1.

Figure 25: The edge pairing surface of ε viewed as a quotient of an annulus

Figure 26: The edge pairing surface of ε viewed as a quotient of a quadrilateral
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Figure 27: A diagram of the edge cycle of ε

4.2 Heegaard diagrams for general face-pairings

Theorem 4.2.1 Let P be a faceted 3-ball with orientation-reversing face-
pairing ε such that the cell complex N = P/ε is a manifold with one vertex.
Let H1 be the star of the barycenter of the 3-cell of N in the 1-skeleton of Nσ ,
and let H = star(H1,Nσ2). Then

i) H is a handlebody in N and ∂H is a Heegaard surface for N , and

ii) ∂H is cellularly homeomorphic to the edge pairing surface S of ε.

Identifying S with ∂H , we have the following:

iii) the set {αi} of vertical meridian curves of S is a basis of meridian curves
for H ;

iv) the set {βi} of diagonal meridian curves of S is a basis of meridian curves
for N \ int(H);

v) (S; {αi}; {βi}) is a Heegaard diagram for N .

Proof We view Nσ2 as a quotient of Pσ2 . The preimage of H in Pσ2 is the
chimney assembly A for P , and H is obtained from the chimney assembly by
gluing together the tops in pairs. Hence H is a handlebody in N . Let H ′

denote the closure of the complement of H in N . Then H ′ is the star in Nσ2

of the 1-skeleton of N , and so is a union of stars of vertices and stars of edge
barycenters. Each vertex star is a cone with cone point the vertex, and hence is
homeomorphic to a closed ball since N is a manifold. Each 3-cell in the star of
an edge barycenter is either a cube or (as in the second diagram in Figure 22)
a cube with a pair of adjacent edges identified, and the star of each barycenter
is a two-sided mapping cylinder obtained from D2 × I . It follows that H ′ is a
handlebody and so ∂H is a Heegaard surface for N . This proves i).

In this paragraph we show that ∂H is cellularly homeomorphic to S . The
preimage of ∂H in Pσ2 is the union of all the lateral faces of the chimneys of
A. Section 3.4 shows that every chimney of A is a mapping cylinder, and so the
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union of the lateral faces of every chimney of A is a mapping cylinder. Hence
∂H is homeomorphic to a topological space obtained by attaching two-sided
mapping cylinders to the 1-skeleton of P . It now follows from the definition
of S in terms of attaching two-sided mapping cylinders that S is cellularly
homeomorphic to ∂H . This proves ii).

Let f be a face of P . The top of the f -chimney Cf of A meets the union of the
lateral faces of Cf in a simple closed edge path in A. This edge path maps to
a meridian curve for H , and every edge in this meridian curve corresponds to a
vertical meridian edge of S . Hence the union of the edges of ∂H corresponding
to the vertical meridian edges of S forms a basis of meridian curves for H .
This proves iii).

Suppose given an edge cycle of ε consisting of j distinct edges e1, . . . , ej of P
with diagram

e1

εf1−−→ e2

εf2−−→ · · ·
εfj−1−−−→ ej

εfj−−→ e1.

Let u be the vertex of Pσ2 which is the barycenter of the 3-cell of P , and
let ψ : star(u, Pσ2) → Pσ be the cellular homeomorphism of Section 3.3. Let
e′i = ψ−1((ei)σ), let vi be the vertex of e′i such that ψ(vi) is the barycenter
of ei and let Cfi be the fi -chimney of A for every i ∈ {1, . . . , j}. For every
i ∈ {1, . . . , j} the chimney Cfi contains two lateral faces and the chimney
Cf−1

i
contains two lateral faces with the following properties, where i + 1 is

taken modulo j . See Figure 28. The two lateral faces of Cfi both contain an
edge which contains vi and a vertex xi in the top of Cfi , and the two lateral
faces of Cf−1

i
both contain an edge which contains vi+1 and a vertex yi in

the top of Cf−1
i

. Furthermore the image in ∂H of xi equals the image in ∂H

of yi , and both the edge containing vi and xi and the edge containing vi+1

and yi map to edges of ∂H which correspond to diagonal meridian edges of S .
For each i ∈ {1, . . . , j}, yi−1 , vi , xi , and the barycenter bi of ei are vertices
of face of a Pσ2 , where i − 1 is taken modulo j . The union in Nσ2 of the
images of these j faces is a properly embedded closed disk D in H ′ whose
boundary is in ∂H ′ = ∂H . See Figure 29, which shows a chimney assembly
together with the top of an f -chimney drawn with thick arcs and the face of
Pσ2 with vertices yi−1 , vi , xi , and bi . If ε has m edge cycles, then we obtain
m such disks D1, . . . ,Dm in H ′ . The disks D1, . . . ,Dm are pairwise disjoint,
H ′ \

⋃m
i=1Di has one connected component for every vertex of N , and each of

these connected components contracts to the corresponding vertex. Since N
has only one vertex, it follows that D1, . . . ,Dm form a basis of meridian disks
for H ′ , and so the union of the edges of ∂H corresponding to the diagonal
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meridian edges of S forms a basis of meridian curves for H ′ . This proves iv),
and v) now follows.

Figure 28: Two lateral faces of Cfi and two lateral faces of Cf−1
i

Figure 29: The face with vertices yi−1 , vi , xi , and bi

This proves Theorem 4.2.1.

4.3 Heegaard diagrams for twisted face-pairing 3-manifolds

We next interpret Theorem 4.2.1 for twisted face-pairing 3-manifolds.

Let P be a faceted 3-ball with orientation-reversing face-pairing ε, and suppose
given a multiplier function for ε. Let Q be the associated twisted face-pairing
subdivision of P , let δ be the associated twisted face-pairing on Q, and let
M = Q/δ be the associated twisted face-pairing manifold. Let S be the edge
pairing surface of δ .

Theorem 4.2.1 implies that S is cellularly homeomorphic to a Heegaard surface
for M . We view S as a union of subspaces, one for every edge cycle of ε as
follows. Let E be an edge cycle of ε. Suppose that E has length j , multiplier
k and edge cycle diagram

e1

εf1−−→ e2

εf2−−→ · · ·
εfj−1−−−→ ej

εfj−−→ e1.
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To construct Q from P we subdivide each of the edges e1, . . . , ej into jk
subedges. Every edge of Q gives rise to two edges of S . So the edges e1, . . . , ej
of P give rise to subcomplexes ẽ1, . . . , ẽj of S each of which is the union of
2jk edges of S . As in Figure 11 of [2], δ maps subedge m of ei relative
to fi to subedge m + 1 of ei+1 relative to fi+1 for every i ∈ {1, . . . , j} and
m ∈ {1, . . . , jk−1}, where i+ 1 is taken modulo j . It follows that E gives rise
to a subspace C of S as shown in Figure 30. We call C an edge cycle cylinder.
Certain arcs contained in C are not edges of S , and so they are drawn with
dashes. The edges of S are drawn with two thicknesses simply to distinguish
the thin meridian edges from the thick nonmeridian edges of S . In general C
need not be homeomorphic to a closed annulus, but there exists a closed an-
nulus A and a surjective continuous map ϕ : A → C such that the restriction
of ϕ to the interior of A is a homeomorphism and ϕ maps the boundary of
A to the union of the arcs drawn with dashes in Figure 30. We refer to the
images under ϕ of the two boundary components of A as the ends of C . The
ends of C are chosen so that the edge cycle cylinders corresponding to different
ε-edge cycles meet only along their boundaries and their union is S . If γ is
an arc in A which joins the boundary components of A, then we say that the
curve ϕ(γ) joins the ends of C . If γ is a simple closed curve in the interior of
A which separates the boundary components of A, then we say that the curve
ϕ(γ) separates the ends of C . We define the circumference of C to be j , and
we define the height of C to be jk . Now we see that Figure 11 of [2] essentially
shows an edge cycle cylinder in a Heegaard surface for M . The thick vertical
edges in Figure 30 arise from P , and the thick diagonal edges in Figure 30 arise
from P ∗ . Vertical edges of S are drawn vertically, and diagonal edges of S are
drawn diagonally. The following theorem is now clear.

Figure 30: The edge cycle cylinder corresponding to the ε-edge cycle E

Theorem 4.3.1 Let M = M(ε,mul) be a twisted face-pairing manifold, and
let δ be the associated twisted face-pairing. Let S be the edge pairing surface

Algebraic & Geometric Topology, Volume 3 (2003)



Heegaard diagrams and surgery descriptions 265

of δ , let {αi} be the set of vertical meridian curves, and let {βi} be the set of
diagonal meridian curves. Then (S, {αi}, {βi}) is a Heegaard diagram for M .

Example 4.3.2 We return to Example 2.1. The model face-pairing in Ex-
ample 2.1 has three edge cycles. Line 2.2 gives diagrams for them. As in
Example 2.1, we choose multipliers to be 4, 1, and 1. Each of these three edge
cycles gives rise to an edge cycle cylinder as in Figure 30. These three edge cycle
cylinders are shown in Figure 31. They are drawn as quadrilaterals with their
left sides to be identified with their right sides. The first edge cycle cylinder has
circumference 1 and height 4, the second has circumference 2 and height 2, and
the third has circumference 2 and height 2. The thin dotted arcs in Figure 31
indicate how the ends of the cylinders are to be identified. These identifications
respect the face-pairing maps, which are also shown. After performing the re-
quired identifications we obtain a closed orientable surface S of genus 2. The
union of its vertical meridian edges is a basis of meridian curves for S , and the
union of its diagonal meridian edges is a basis of meridian curves for S . The
result is a Heegaard diagram for our twisted face-pairing manifold.

Figure 31: A Heegaard diagram decomposed into three edge cycle cylinders

5 Building face-pairings from Heegaard diagrams

In Section 4 we construct Heegaard diagrams from face-pairings. Theorem 4.3.1
shows that every twisted face-pairing manifold has a Heegaard diagram which
can be decomposed into cylinders which correspond to the edge cycles of the
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model face-pairing. The height of every such cylinder is a multiple of its circum-
ference, the multiple being the multiplier of the corresponding edge cycle. In
this section we show that the decomposition of Heegaard diagrams into anal-
ogous cylinders is a general phenomenon, not one restricted to twisted face-
pairing manifolds. In general the heights of the cylinders need not be multiples
of their circumferences. In fact, Theorem 5.3.1 shows that the height of every
such cylinder coming from a given Heegaard diagram is a multiple of its circum-
ference if and only if the Heegaard diagram arises from a twisted face-pairing
manifold as in Theorem 4.3.1. This provides a characterization of the Heegaard
diagrams which we construct for twisted face-pairing manifolds.

5.1 Generalities concerning Heegaard diagrams

For us a Heegaard diagram is a Heegaard diagram for a closed connected ori-
entable 3-manifold. It consists of an orientable connected closed surface S with
positive genus and two bases of meridian curves for S . We assume that there
exists a triangulation of S for which each of these meridian curves is piecewise
linear, and we assume that these curves intersect transversely in only finitely
many points. Let U be the union of the two bases of meridian curves for S .
We say that our Heegaard diagram is irreducible if every connected component
of S \ U is homeomorphic to an open disk.

Suppose given an irreducible Heegaard diagram consisting of an orientable con-
nected closed surface S and two bases of meridian curves for S . We refer to
the meridian curves in one basis as vertical meridian curves, and we refer to the
meridian curves in the other basis as diagonal meridian curves. The assump-
tions imply that the meridian curves of our Heegaard diagram determine a cell
structure on S whose vertices are the intersections of the meridian curves and
whose faces are the closures of the connected components of the complement
in S of the union of the meridian curves. We refer to the edges of S which are
contained in vertical meridian curves as vertical (meridian) edges, and we refer
to the edges of S which are contained in diagonal meridian curves as diagonal
(meridian) edges. Since the meridian curves intersect transversely, every vertex
of S has valence 4 and the edges of every face of S are alternately vertical and
diagonal. Since the Heegaard diagram is irreducible, no face can have a single
edge and so every face of S has an even number of edges.
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5.2 Heegaard cylinders

Suppose given an irreducible Heegaard diagram with surface S . We view S as
having a cell structure as in the last paragraph. This subsection is devoted to
defining subspaces of S called Heegaard cylinders.

In this paragraph we construct what we call temporary horizontal segments of
S . For this we choose an orientation of S . This orientation of S determines
an orientation of the boundary of every face of S . Let f be a face of S . Let
v1 be a vertex of f such that a diagonal edge e1 of f follows v1 (relative to
f ). See Figure 32, where, as usual, faces are oriented in the clockwise direction.
The vertex v1 and the edge e1 determine a vertical edge e2 of f which follows
e1 (relative to f ) and a terminal vertex v2 of e2 (relative to f ). We choose
an open arc in the interior of f whose closure joins v1 and v2 . We call the
closure of this open arc a temporary horizontal segment of S . In Figure 32, e1

is drawn with a dashed line segment, e2 is drawn with a line segment, the rest
of the boundary of f is drawn with a broken arc, and the temporary horizontal
segment s joining v1 and v2 is drawn with a dotted line segment. We choose
a temporary horizontal segment for every such choice of e1 and e2 so that the
temporary horizontal segments associated to distinct choices of e1 and e2 meet
only at vertices of S . Figure 33 shows a complete set of temporary horizontal
segments for a digon, a quadrilateral, and a hexagon, with conventions as in
Figure 32.

Figure 32: The temporary horizontal segment s of f

Figure 33: A complete set of temporary horizontal segments for a digon, a quadrilateral
and a hexagon

In this paragraph we define what it means for one temporary horizontal segment
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to follow another. Every vertex v of S has a neighborhood as in Figure 34.
The vertex v is contained in temporary horizontal segments s1 , s2 , s3 , and
s4 , which need not be distinct. Rotating about v in the clockwise direction
from s1 , we encounter a vertical edge, then a diagonal edge and then s2 . We
say that s2 follows s1 and likewise that s4 follows s3 . If faces are oriented in
the counterclockwise direction, then we rotate about v in the counterclockwise
direction. For every temporary horizontal segment s1 of S there exists a unique
temporary horizontal segment s2 of S such that s2 follows s1 . Furthermore,
s1 is the unique temporary horizontal segment of S such that s2 follows s1 .

Figure 34: A neighborhood of a vertex v of S

In this paragraph we use the temporary horizontal segments of S to construct
annuli in S . For this let s1 be a temporary horizontal segment of S . The previ-
ous paragraph implies that there exist temporary horizontal segments s2, . . . , sk
such that si+1 follows si for every i ∈ {1, . . . , k}, where i+1 is taken modulo k .
The union of s1, . . . , sk is a closed curve σ which intersects itself at most tan-
gentially, not transversely. The temporary horizontal segment s1 is contained
in a face f of S , and s1 is related to a diagonal edge e of f as in Figure 35.
Across e from f is a face f ′ of S , and just as e is related to s1 , the edge e is
related to a temporary horizontal segment s′1 in f ′ as in Figure 35. Just as s1

determines the closed curve σ , the temporary horizontal segment s′1 determines
a closed curve σ′ . The curves σ and σ′ are the boundary components of an
open annulus in S which contains the interior of e.

Figure 35: The temporary horizontal segment s′1 of f ′

A defect of the annuli constructed in the previous paragraph is that the union of
their closures is not all of S . To remedy this defect, we homotop the temporary
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horizontal segments of S as indicated in Figure 36. More precisely, for every
face f of S choose a barycenter b in the open subset of f bounded by temporary
horizontal segments and join b with an arc to the initial vertex(s) (relative to f )
of every diagonal edge of f so that these arcs meet only at b and they meet the
temporary horizontal segments only at vertices. Then homotop (isotop except
for a digon) the temporary horizontal segments of S contained in f to the union
of these arcs, fixing endpoints. We refer to the image of a temporary horizontal
segment under such a homotopy as a horizontal segment. The result of these
homotopies is to enlarge the annuli of the previous paragraph so that the union
of their closures is S . We refer to the closures of these enlarged annuli as simple
cylinders. Each simple cylinder C is the image of a closed annulus A under a
continuous map that restricts to a homeomorphism from int(A) to int(C). We
call the image of each component of ∂A an end of the simple cylinder. Each
end of a simple cylinder is a union of horizontal segments.

Figure 36: Homotoping the temporary horizontal segments in Figure 33

Suppose that C1, . . . , Ck are simple cylinders, and suppose that Ci has ends Ei
and E′i for every i ∈ {1, . . . , k}. Also suppose that the horizontal segments in
E′i equal the horizontal segments in Ei+1 for every i ∈ {1, . . . , k− 1}. Then we
call C1∪· · ·∪Ck a cylinder. We define a Heegaard cylinder to be a cylinder which
is maximal with respect to containment. We define the height of a Heegaard
cylinder to be the number of simple cylinders contained in it. We define the
circumference of a Heegaard cylinder to be the number of diagonal edges in
any simple cylinder contained in the given Heegaard cylinder. The interiors
of the simple cylinders of S are pairwise disjoint, and the union of the simple
cylinders of S is S . It follows that the interiors of the Heegaard cylinders of S
are pairwise disjoint, and the union of the Heegaard cylinders of S is S .

5.3 Face-pairings for general Heegaard diagrams

Theorem 5.3.1 Suppose given an irreducible Heegaard diagram D . Then
there exists a faceted 3-ball P with orientation-reversing face-pairing ε such
that N = P/ε is a manifold with one vertex and D is the Heegaard diagram of
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N described in Theorem 4.2.1. Furthermore, D is the Heegaard diagram of a
twisted face-pairing manifold as described in Theorem 4.3.1 if and only if the
height of every Heegaard cylinder of D is a multiple of its circumference.

Proof Let S be the surface of the Heegaard diagram D . We begin by defining
a 1-complex K , which is a subspace of S . Recall that homotoping the tem-
porary horizontal segments to the horizontal segments in Section 5.2 involves
choosing a barycenter for every face of S . These barycenters are the vertices
of K . The edges of K are dual to the diagonal edges of S . In other words, for
every diagonal edge e of S there are faces f1 and f2 of S on either side of e,
and there is an edge of K corresponding to e which joins the barycenters of f1

and f2 .

Let V be the union of the vertical meridian curves of D . Then S \ V is
homeomorphic to the 2-sphere with 2g holes, where g is the genus of S . Of
course, we construct K so that K ⊆ S \ V . Figure 37 indicates how to define
a strong deformation retraction from S \ V to K . In Figure 37 horizontal
segments are drawn with dotted arcs, diagonal edges are drawn with dashed
arcs, edges of K are drawn with thick arcs, vertical edges are drawn with
medium thick arcs and retraction fibers are drawn with thin arcs and dashed
arcs. Since filling in the 2g holes of S \ V yields a 2-sphere, K is cellularly
homeomorphic to the 1-skeleton of a faceted 3-ball P with 2g faces such that
a neighborhood of K in ∂P is homeomorphic to S \ V . We identify K with
the 1-skeleton of P .

Figure 37: Fibers of a retraction from S \ V to K

There exists an orientation-reversing face-pairing ε on P which acts on the
vertices and edges of K as follows. Let e be an edge of K with vertices v1 and
v2 . By definition e is dual to a diagonal edge d of S . Let v be a vertex of this
diagonal edge of S . See Figure 38, where conventions are as in Figure 37. A
vertical meridian curve of D passes through v . Let d′ be the diagonal edge of
S incident to v across this vertical meridian curve from d. Let e′ be the edge
of K dual to d′ , and let v′1 and v′2 be the vertices of e′ corresponding to the
vertices v1 and v2 of e as in Figure 38. The vertex v determines a face f of
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P which contains e and a face f−1 which contains e′ . Then the (multivalued)
face-pairing map εf maps e to e′ taking v1 to v′1 and v2 to v′2 .

Figure 38: Part of S near v

In this paragraph we show that the cell complex N = P/ε is a manifold with
one vertex. As in the proof of the main theorem of [1], to prove that N is a
manifold, it suffices to prove that the Euler characteristic of N is 0. It is clear
that N has one 3-cell and g faces. So as in the proof of the main theorem of [1],
to prove that N is a manifold, it suffices to prove that N has one vertex and
g edges. The description of ε in the previous paragraph shows that the ε-edge
cycles are in bijective correspondence with the diagonal meridian curves of D .
Since D has g diagonal meridian curves, it follows that N has g edges. Just
as we defined the 1-complex K with edges dual to the diagonal edges of S , it
is possible to define a 1-complex K∗ with edges dual to the vertical edges of
S . See Figure 39, which is the same as Figure 38, except that two edges of K∗

are added as thick dashed line segments. Just as the complex K is connected,
so is the complex K∗ . The connectivity of K∗ and the description of ε in the
previous paragraph imply that N has one vertex. Thus N is a manifold with
one vertex.

Figure 39: Part of S near v

Figure 39 indicates how the edges of K and K∗ decompose S into a union
of quadrilaterals. Furthermore, the vertical and diagonal median curves of S
are edges of the dual cap subdivision of this tiling by quadrilaterals. Since
the two edges of K that are in a quadrilateral are paired under ε and K is
the 1-skeleton of P , this exactly matches the cell structure of the edge pairing
surface S′ of ε as the dual cap subdivision of a tiling by quadrilaterals. Hence
there exists a homeomorphism from S to S′ such that the vertical edges of S
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map to vertical meridian edges of S′ and diagonal edges of S map to diagonal
meridian edges of S′ . It follows that D is the Heegaard diagram of N described
in Theorem 4.2.1.

Now suppose that ε is a twisted face-pairing. By the previous paragraph, we
can identify S with the edge pairing surface S′ of ε. Each edge cycle cylinder
is a union of simple cylinders, so every Heegaard cylinder of D is a union of
edge cycle cylinders. Since the height of every edge cycle cylinder is a multiple
of its circumference, the height of every Heegaard cylinder is a multiple of its
circumference.

Finally suppose that the height of every Heegaard cylinder of D is a multiple of
its circumference. Let K ′ be the 1-complex with the same underlying space as
K but such that each open edge of K ′ is a component of the intersection of K
with the interior of a Heegaard cylinder. Let P ′ be the faceted 3-ball with the
same underlying space as P , but with edges the edges of K ′ rather than the
edges of K . Before we constructed a face-pairing ε on P by identifying edges
of K along diagonal meridian edges. Now we construct a face-pairing ε′ on P ′

by identifying edges of K ′ along horizontal segments. Then two edges of K ′

are in the same edge cycle exactly if they are in the same Heegaard cylinder,
and ε is the twisted face-pairing obtained from ε′ by choosing the multiplier of
an edge cycle to be the quotient of the height of the corresponding Heegaard
cylinder by its circumference.

This proves Theorem 5.3.1.

6 Surgery descriptions for twisted face-pairing man-
ifolds

The Heegaard diagrams of twisted face-pairing manifolds described in Theo-
rem 4.3.1 easily yield surgery descriptions for these manifolds. This section
deals with these surgery descriptions.

6.1 Initial surgery descriptions

Let P be a faceted 3-ball with orientation-reversing face-pairing ε, and suppose
given a multiplier function for ε. Let M be the associated twisted face-pairing
manifold. Theorem 4.3.1 describes a Heegaard diagram D for M . Let S be
the surface of D , let C be an edge cycle cylinder of D , and let α be a minimal

Algebraic & Geometric Topology, Volume 3 (2003)



Heegaard diagrams and surgery descriptions 273

union of vertical meridian edges of C which joins the ends of C . Figure 40
shows C as a quadrilateral whose left and right sides are to be identified, and
α is shown as a union of vertical dotted edges. Let α′ be the minimal union of
diagonal meridian edges of C which joins the endpoints of α as in Figure 40.
Let β be a simple closed curve in C which separates the ends of C . If the height
of C equals the circumference of C , then α′ is isotopic (relative endpoints) to
a Dehn twist of α along β . In this case, let τ be the appropriate Dehn twist so
that α′ is isotopic (relative endpoints) to τ(α). In general, if the ε-edge cycle
corresponding to C has multiplier m, then the height of C divided by the
circumference of C equals m and α′ is isotopic (relative endpoints) to τm(α)
for the appropriate Dehn twist τ along β . In Figure 40, m = 2. This discussion
essentially proves the following theorem.

Figure 40: The curves α and α′

Theorem 6.1.1 Let M = M(ε,mul) be a twisted face-pairing manifold. Let
S be the associated Heegaard surface, and let α1, . . . , αn be the vertical merid-

ian curves. Let τmul = τ
mul(E1)
1 ◦ · · · ◦ τmul(Em)

m , where τ1, . . . , τm are consis-
tently oriented Dehn twists along the core curves of the edge cycle cylinders
corresponding to the edge cycles E1, . . . , Em . Then (S; {αi}, {τmul(αi)}) is a
Heegaard diagram for M .

Proof The theorem follows from the previous discussion except for the matter
of the directions of the Dehn twists. The previous discussion shows that every
edge cycle cylinder determines a Dehn twist. Since the twisting directions of
these Dehn twists are consistent relative to a fixed orientation of S , there are
two choices for τmul . For one choice of τmul the curves τmul(α1), . . . , τmul(αn)
are isotopic to the diagonal meridian curves of D , and Theorem 6.1.1 is clear.
For the other choice of τmul the curves τmul(α1), . . . , τmul(αn) are isotopic to
the diagonal meridian curves, not of D , but of the corresponding Heegaard
diagram for the twisted face-pairing manifold M∗ dual to M . Theorem 6.1.1
follows because Theorem 4.6 of [2] (together with its generalization in Section 2
if P isn’t regular) shows that M∗ is homeomorphic to M .
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We are now prepared for the following theorem, which shows how to obtain
twisted face-pairing manifolds by Dehn surgery on framed links in S3 . We
begin with some terminology.

Let (H,H ′; γ1, . . . , γn; γ′1, . . . , γ
′
n) be a Heegaard splitting of S3 . That is, H and

H ′ are handlebodies in S3 such that H ∪H ′ = S3 and H ∩H ′ = ∂H = ∂H ′ ,
γ1, . . . , γn bound a basis of meridian disks for H , and γ′1, . . . , γ

′
n bound a basis

of meridian disks for H ′ . We call (H,H ′; γ1, . . . , γn; γ′1, . . . , γ
′
n) a standard

Heegaard splitting of S3 if γi and γ′j are disjoint if i 6= j and γi ∩ γ′j intersect
in a single point if i = j .

If H is a handlebody and β1, . . . , βm are pairwise disjoint simple closed curves
in ∂H , then pairwise disjoint simple closed curves δ1, . . . , δm in the interior
of H are parallel copies of τ1, . . . , τm if they satisfy the following: there are
pairwise disjoint closed annuli A1, . . . , Am in H such that ∂Ai = δi ∪ τi and
βi = Ai ∩ ∂H for every i ∈ {1, . . . ,m}.

Theorem 6.1.2 Let M = M(ε,mul) be a twisted face-pairing manifold, let
E1, . . . , Em be the edge cycles of ε, let S be the edge pairing surface for the
twisted face pairing δ , let α1, . . . , αn be the vertical meridian curves of S ,
and let β1, . . . , βm be core curves for the edge cycle cylinders corresponding to
E1, . . . , Em . Let (H,H ′; γ1, . . . , γn; γ′1, . . . , γ

′
n) be a standard Heegaard diagram

of S3 . Let ϕ : S → ∂H be a homeomorphism such that ϕ(αi) = γi for every
i ∈ {1, . . . , n}, and let δ1, . . . , δm be parallel copies of ϕ(β1), . . . , ϕ(βm) in the
interior of H . We obtain a link L in S3 by taking L = γ1∪. . .∪γn∪δ1∪. . .∪δm .
We define a framing of L as follows. The components γ1, . . . , γn have framing
0. For every i ∈ {1, . . . ,m} the component δi has framing lk(δi, ϕ(βi)) ±
mul(Ei)−1 , where lk(δi, ϕ(βi)) is the linking number of δi and ϕ(βi) after they
are compatibly oriented and the sign is either + for every i ∈ {1, . . . ,m} or −
for every i ∈ {1, . . . ,m}. Then the manifold obtained by Dehn surgery on this
framed link L is homeomorphic to M .

Proof The surface ∂H and the curves γ1, . . . , γn and γ′1, . . . , γ
′
n form a Hee-

gaard diagram for S3 . By performing Dehn surgery on γ1, . . . , γn , each with
framing 0, we obtain a connected sum of n copies of S2 × S1 , which has a
Heegaard diagram consisting of the surface ∂H , the curves γ1, . . . , γn and
the curves γ1, . . . , γn . (The bases of meridian curves are equal.) For every
i ∈ {1, . . . ,m} let τi be a Dehn twist on ∂H along ϕ(βi), choosing τ1, . . . , τm
so that the directions in which they twist are consistent relative to a fixed ori-
entation of ∂H . Set τmul = τ

mul(E1)
1 ◦· · ·◦τmul(Em)

m . Theorem 6.1.1 implies that
M has a Heegaard diagram consisting of the surface ∂H , the curves γ1, . . . , γn
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and the curves τmul(γ1), . . . , τmul(γn). The fact that M is obtained by Dehn
surgery on γ1, . . . , γn and δ1, . . . , δm now follows from a standard argument
which appears, for example, in the proof of the Dehn-Lickorish Theorem on
page 84 of [6]. It only remains to determine the framings of δ1, . . . , δm .

We determine the framings of δ1, . . . , δm in this paragraph. Let i ∈ {1, . . . ,m}.
Let T be a solid torus regular neighborhood of δi such that ϕ(βi) ⊆ ∂T . Let
α ⊆ ∂T be the boundary of a meridian disk of T . The curve α and part of
ϕ(βi) are shown in part a) of Figure 41. Using our usual orientation convention
for figures as in Figure 40, our Dehn twist takes α to a curve γ as shown in
part b) of Figure 41. Let m = mul(Ei). Then γ is homologous in ∂T to
α −mϕ(βi) = (1−mlk(δi, ϕ(βi)))α − m`i , where `i = ϕ(βi) − lk(δi, ϕ(βi))α
is parallel to δi and hence is a longitude for T . Thus the framing of δi is
lk(δi, ϕ(βi)) − 1/m. If our Dehn twist is in the opposite direction, then the
framing of δi is lk(δi, ϕ(βi)) + 1/m.

Figure 41: Determining the framing of δi

This proves Theorem 6.1.2.

6.2 The corridor construction

Theorem 6.1.2 describes a framed link L in S3 such that Dehn surgery on L
obtains a given twisted face-pairing manifold. The goal of this subsection is
to make the construction of such links L algorithmic and simple. We call the
method which we use the corridor construction.

Let P be a faceted 3-ball, and let ε be an orientation-reversing face-pairing on
P . In this paragraph we construct corridors between the paired faces of P . Let
f be a face of P . The face f is paired with the face f−1 . Let c be a corner
of f at a vertex v of f , and suppose that εf takes c to the corner c′ of f−1

at the vertex v′ of f−1 . Let γ be an edge path arc in P with endpoints v and
v′ . See the left part of Figure 42, where f and f−1 are triangles, γ is drawn
with thick line segments, and the corners c and c′ are indicated with dotted
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edges. From ∂P we construct a new cell complex with underlying space the
2-sphere as follows. We choose an arbitrarily small neighborhood of γ in ∂P
and modify the cell structure of ∂P only in this neighborhood as indicated in
Figure 42. The right part of Figure 42 shows the new cell complex. We refer
to this modification of ∂P as constructing a corridor between f and f−1 . In a
straightforward way we continue to successively construct corridors between all
the paired faces of P . We call the resulting cell complex C a corridor complex
for ε. Every face of C is in some sense the union of two paired faces of P and
a corridor.

Figure 42: Constructing a corridor between f and f−1

Again let P be a faceted 3-ball, and let ε be an orientation-reversing face-
pairing on P . In this paragraph we describe a planar diagram D of a link L
in S3 . Let C be a corridor complex for ε. We view the underlying space of
C as the one-point compactification R2 ∪ {∞} of R2 , where the point ∞ lies
in the interior of some face of C . The diagram D lies in C \ {∞}. Let g be
a face of C . We next describe the part of D which lies in g . One component
of L has a projection α in the interior of g \ {∞} with no self-crossings; it is
unknotted. We call this component of L a face component of L. To describe the
rest of D which lies in g , we construct a continuous map ϕ : C → ∂P (which
is independent of g) such that 1) ϕ maps vertices to vertices in the canonical
way, 2) the restriction of ϕ to every edge of C is a homeomorphism onto the
canonically corresponding edge of P and 3) the restriction of ϕ to the inverse
image of the interior of every face of P is a homeomorphism. The face g of C
corresponds to two paired faces f and f−1 of P . Let c be an edge cone of f
at an edge e (as defined in the fifth paragraph of Section 2). The face-pairing ε
pairs c with an edge cone c′ of f−1 at an edge e′ . Then part of one component
of L has a projection β in g \ {∞} such that 1) only the endpoints of β lie in
an edge of g , 2) ϕ(β) begins at the barycenter of e, 3) then an initial segment
of ϕ(β) lies in c, 4) then β crosses under α, 5) then β crosses over α, 6) then
a terminal segment of ϕ(β) lies in c′ and 7) finally ϕ(β) ends at the barycenter
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of e′ . The corridor complex C is constructed so that we may, and do, choose
the projections β for a fixed g (and f ) and varying c to have no self-crossings
and no crossings with each other. Figure 43 shows the face component α and
the projections β for the face on the right part of Figure 42. Constructing such
projections for every face g of C obtains D . The components of L other than
the face components are in bijective correspondence with the edge cycles of ε.
We call these components of L edge components. We call D a corridor complex
link diagram for ε. We call L a corridor complex link for ε.

Figure 43: The face component α and the projections β

Figure 44: A framed corridor complex link diagram for Example 2.3

Example 6.2.1 We return to the model face-pairing in Example 2.3. A cor-
ridor complex for it appears in Figure 44, drawn with thin arcs. A framed
corridor complex link diagram for it also appears in Figure 44, drawn with
thick arcs. The model face-pairing has only one edge cycle, and we let it have
multiplier m. Theorem 6.2.2 states that the associated twisted face-pairing
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manifold M is obtained by Dehn surgery on the framed link in Figure 44. The
framed link in Figure 44 is isotopic to a link consisting of two unlinked circles,
one with framing 0 and one with framing 1/m. As in Proposition 14.4 of [6],
Dehn surgery on a circle in S3 with framing 0 gives S2 × S1 , and as in Propo-
sition 14.6 of [6], Dehn surgery on a circle in S3 with framing 1/m gives S3 .
Thus M is the connected sum of S2×S1 and S3 . In other words, M is S2×S1

for every choice of the multiplier m.

Theorem 6.2.2 Let M = M(ε,mul) be a twisted face-pairing manifold, and
let E1, . . . , Em be the edge cycles of ε. Let L be a corridor complex for ε
with diagram D . Define a framing on L as follows: every face component
of L has framing 0, and the edge component of L corresponding to Ei has
framing mul(Ei)−1 plus its blackboard framing relative to D for every i ∈
{1, . . . ,m}. Then the manifold obtained by Dehn surgery on the framed link
L is homeomorphic to M .

Proof Let C be the corridor complex for ε from which D is constructed. As
in the construction of D , we view the underlying space of C as the one-point
compactification R2 ∪ {∞} of R2 , where the point ∞ lies in the interior of
some face of C . We choose standard coordinates x, y and z for R3 , and we
identify C \{∞} with the xy -plane in R3 . We choose a closed standard metric
ball in R3 centered at the origin so large that it contains every edge of C in
its interior. Let X be the solid hemisphere consisting of all points of this ball
on and below the xy -plane.

In this paragraph we construct a handlebody in R3 by attaching handles to X .
Let f and f−1 be two paired faces of P . Let g be the face of C corresponding
to f and f−1 . If ∞ /∈ g , then g ⊆ ∂X . If ∞ ∈ g , then g ∩ ∂X has nonempty
interior and is the complement in g of a neighborhood of ∞. We attach a
standard handle to g ∩X . This handle is embedded in R3 so that its vertical
projection to the xy -plane lies both in X and in the interior of g . Figure 45
gives a view from above of g and the handle attached to g , where both f and
f−1 are squares joined by a simple corridor. Figure 46 gives another view of
this handle. For every two paired faces of P we attach a handle to X in this
way. We denote the result by H . It is clear that H is a handlebody and that
the closure of the complement of H in S3 is also a handlebody.

We next construct simple closed curves in ∂H as follows. First choose a
barycenter for every edge of C . Again let f and f−1 be two paired faces
of P , and let g be the corresponding face of C . Just as in the construction
of D , construct curves in ∂H which lie in and above g ; these curves cross the
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Figure 45: Top view of the handle attached to g

Figure 46: Another view of the handle attached to g

handle and they join barycenters of edges of g which correspond to edges of
f and barycenters of edges of g which correspond to edges of f−1 . For every
corridor edge e of g construct an arc in g in the obvious way which joins the
barycenter of e and the barycenter of the edge of g across the corridor from
e. We construct all these curves so that only their endpoints lie in edges of g
and they are pairwise disjoint except possibly at endpoints. Finally, construct
a meridian curve for the handle of H attached to g such that this meridian
curve meets each of the curves which cross the handle exactly once. Figure 47
shows a top view of g and the handle of H attached to g with the curves just
constructed drawn with thick solid and dashed arcs. Doing this for every two
paired faces of P , we obtain two families of simple closed curves in ∂H . The
curves γ1, . . . , γn in one family are the meridian curves of the handles of H .
The curves δ1, . . . , δm in the other family correspond canonically to the edge
cycles of ε.

Figure 47: Constructing curves in the part of ∂H which project vertically to g
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Let S be the edge pairing surface of the twisted face-pairing δ , let α1, . . . , αn
be the vertical meridian curves, and let β1, . . . , βm be core curves of the edge
cycle cylinders. Then S is homeomorphic to the edge pairing surface S′ of ε
by a homeomorphism that takes α1, . . . , αn to the vertical meridian curves of
S′ and takes β1, . . . , βm to the diagonal meridian curves of S′ . The surface ∂H
is homeomorphic to the edge pairing surface S′ of ε by a homeomorphism that
takes γ1, . . . , γn to the vertical meridian curves of S′ and takes δ1, . . . , δm to
the diagonal meridian curves of S′ . Hence the curves γ1, . . . , γn and δ1, . . . , δm
can be indexed so that there exists a homeomorphism ϕ : S → ∂H such that
ϕ(αi) = γi and ϕ(βj) = δj for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
Theorem 6.1.2 produces a framed link L in S3 such that the manifold obtained
by Dehn surgery on L is homeomorphic to M . Finally, it is clear that D is a
diagram of L and that the framings are as claimed.

This proves Theorem 6.2.2.

7 Examples

In this section we present some examples in which we use Theorem 6.2.2 to
identify some twisted face-pairing manifolds. We have already given such an
example in Example 6.2.1, where we constructed a framed link in S3 for the
model face-pairing in Example 2.3. Using this we showed that the twisted
face-pairing manifolds in Example 2.3 are all homeomorphic to S2 × S1 .

Figure 48: The corridor complex and framed link diagram for Example 2.1
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Figure 49: A simpler framed link

Figure 50: Preparing for a Kirby move of type 2

Figure 51: A simpler framed link

Example 7.1 We return to the model face-pairing in Example 2.1. We choose
multipliers of the edge cycles in line 2.2 to be p, q , and r , in order. A corri-
dor complex for Example 2.1 appears in Figure 48, drawn with thin arcs. A
framed link diagram for it also appears in Figure 48, drawn with thick arcs.
Theorem 6.2.2 states that the associated twisted face-pairing manifold M is
obtained by Dehn surgery on the framed link in Figure 48. The framed link in
Figure 48 is isotopic to the framed link in Figure 49. The component of the
link in Figure 49 with framing 1/q corresponds to a connected summand of M .
But, as in Example 6.2.1, this connected summand is S3 . So we delete the com-
ponent of the link in Figure 49 with framing 1/q . We modify the component of
the link in Figure 49 with framing 0 which links the components with framings
1/p and 1/r by means of a Kirby move of type 2. For this we orient the com-
ponents with framing 0 and connect them with an arc as shown in Figure 50.
The result is a link isotopic to the one in Figure 51. It follows from Proposition
17.3 of [6] that M is a connected sum of the lens space L(p,−1) = L(p, 1) and
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the lens space L(r,−1) = L(r, 1).

Figure 52: Two framed links for Example 7.2

Figure 53: Two more framed links for Example 7.2

Example 7.2 We return to the model face-pairing which we described at the
beginning of the introduction. We choose multipliers m1 = 1, m2 = 1, and
m3 = m. A corridor complex for this example appears in Figure 6, drawn with
thin arcs, and a framed link diagram for it also appears in Figure 6, drawn
with thick arcs. The part of the link in Figure 6 which is the union of the
components with framing 0 and the component which in the diagram crosses
both components with framing 0 is isotopic to the Borromean rings. So the
framed link in Figure 6 is isotopic to the link in part a) of Figure 52. We simplify
the framed link in part a) of Figure 52 using Kirby calculus by performing
twist moves, which are discussed in Sections 16.4, 16.5 and 19.4 of [6] under
the name Fenn-Rourke moves. Twisting −m times along the component with
framing 1/m, twisting −1 times along the similar component with framing 1,
and deleting resulting components with framing ∞ yields the link in part b)
of Figure 52. Because the link in part b) of Figure 52 is amphicheiral we may,
and do, multiply every framing by −1. We isotop the result to the framed link
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in part a) of Figure 53. Now we perform twist moves on the link in part a) of
Figure 53. We twist 1 time along the component with framing −1, twist −1
times along the component with framing 1, and delete resulting components
with framing ∞. The result is shown in part b) of Figure 53. This is the figure
eight knot with framing m. If m = 1, then M is the Brieskorn homology
sphere Σ(2, 3, 7), which has the geometry of the universal cover of PSL(2,R).
According to Theorem 4.7 of [7], M is hyperbolic if m ≥ 5.

Figure 54: The complex P for Example 7.3

Figure 55: A corridor complex and framed link diagram for Example 7.3

Figure 56: Two framed links for Example 7.3

Example 7.3 This example is closely related to the previous one. The model
faceted 3-ball for this example is gotten from the faceted 3-ball given in Figure 1
by collapsing the edge AB to a point and collapsing the edge CD to a point.
The result is the faceted 3-ball P given in Figure 54. Because the edges AB
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Figure 57: Two more framed links for Example 7.3

and CD in Figure 1 are both fixed by the model face-pairing of Example 7.2,
the model face-pairing of Example 7.2 induces a model face-pairing ε on P .
The face-pairing ε pairs the faces of P as indicated in Figure 54, and the face-
pairing maps of ε fix the vertices A and B . The model face-pairing ε has one
edge cycle. This edge cycle has length 4 and corresponds to the edge cycle
of length 4 in Example 7.2. We let this edge cycle of ε have multiplier m. A
corridor complex for ε appears in Figure 55, drawn with thin arcs, and a framed
link diagram for it also appears in Figure 55, drawn with thick arcs. This link is
the Borromean rings. As in Example 7.2 we may, and do, multiply the framings
by −1 and we isotop the link in Figure 55 to obtain the framed link in part
a) of Figure 56. Now we perform a twist move by twisting −1 times along the
component with framing −1/m and we introduce a component with framing
∞ to obtain the framed link in part b) of Figure 56. Next we twist 1 time
along the component with framing ∞ to obtain the link in part a) of Figure 57.
Finally, we twist −1 times along the component with framing m/(m + 1) to
obtain the link in part b) of Figure 57. Adding a component with framing ∞
that is parallel to the component with framing m gives a special case of the
link at the top of Figure 12 on page 146 of [5]. It follows that M is the Seifert
fibered manifold 〈Oo1|0; (m, 1)〉 in the notation of [5]. This means that M is
orientable with an orientable base surface of genus 1, that the Euler number of
M is 0, and that M has one exceptional fiber of type (m, 1). When m = 1,
the manifold M is the Heisenberg manifold, the prototype for Nil geometry.
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