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Open books and configurations
of symplectic surfaces

David T. Gay

Abstract We study neighborhoods of configurations of symplectic sur-
faces in symplectic 4–manifolds. We show that suitably “positive” con-
figurations have neighborhoods with concave boundaries and we explicitly
describe open book decompositions of the boundaries supporting the asso-
ciated negative contact structures. This is used to prove symplectic nonfil-
lability for certain contact 3–manifolds and thus nonpositivity for certain
mapping classes on surfaces with boundary. Similarly, we show that cer-
tain pairs of contact 3–manifolds cannot appear as the disconnected convex
boundary of any connected symplectic 4–manifold. Our result also has the
potential to produce obstructions to embedding specific symplectic config-
urations in closed symplectic 4–manifolds and to generate new symplectic
surgeries. From a purely topological perspective, the techniques in this
paper show how to construct a natural open book decomposition on the
boundary of any plumbed 4–manifold.
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1 Main Results

All manifolds in this paper are oriented; if (X,ω) is a symplectic 4–manifold
we assume that ω ∧ ω > 0. By a symplectic configuration in a symplectic
4–manifold (X,ω), we mean a union C = Σ1 ∪ . . . ∪ Σn of closed symplectic
surfaces embedded in (X,ω) such that all intersections between surfaces are
ω–orthogonal.

A symplectic configuration graph is a labelled graph G with no edges from a
vertex to itself and with each vertex vi labelled with a triple (gi,mi, ai), where
gi ∈ {0, 1, 2, . . .}, mi ∈ Z and ai ∈ (0,∞). Associated to a symplectic config-
uration C = Σ1 ∪ . . . ∪ Σn in a symplectic 4–manifold (X,ω) is a symplectic
configuration graph G(C) where each vertex vi corresponds to a surface Σi ,
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gi = genus(Σi), mi = Σi ·Σi and ai =
∫

Σi
ω , and where each edge represents a

point of intersection. Because ω–orthogonal intersections are necessarily posi-
tive, G(C) completely determines the topology of a regular neighborhood of C
(namely, the result of plumbing disk bundles over surfaces according to G(C));
for this much the areas {ai} are irrelevant. If we include the area information
then G(C) also determines the germ of ω near C (due to a slight generalization
of standard symplectic neighborhood theorems, as in [10]).

For any vertex vi in a graph G, let di denote the degree of vi , the number
of edges connected to vi . We say that a configuration graph G is positive if
mi + di > 0 for every vertex vi .

Recall that the boundary of a symplectic 4–manifold (X,ω) is concave (resp.
convex) if there exists a symplectic dilation V defined on a neighborhood of
∂X pointing in (resp. out) along ∂X ; this induces a negative (resp. positive)
contact structure ξ = ker ıV ω|∂X on ∂X .

We present our main theorem in two parts. Part A states that positive sym-
plectic configurations have neighborhoods with concave boundaries, and part B
explicitly describes the contact structures on such boundaries in terms of open
book decompositions.

Theorem 1.1 (part A) Given any positive symplectic configuration graph G
there exists an open symplectic 4–manifold (N(G), ω(G)), a symplectic configu-
ration C(G) ⊂ (N(G), ω(G)) and a positive contact 3–manifold (M(G), ξ(G)),
satisfying the following properties:

• G = G(C(G)).

• For some contact form α for ξ(G) and some (not necessarily smooth)
function f : M(G) → R, letting Xf = {(t, p)|t < f(p)} ⊂ R ×M(G)
and ω = d(etα), there is a symplectomorphism φ : (Xf , ω) → (N(G) \
C(G), ω(G)) such that

C(G) = { lim
t→f(p)

φ(t, p)|p ∈M(G)}.

Thus, given any symplectic configuration C in any symplectic 4–manifold
(X,ω), if G(C) = G then there exists a compact neighborhood of C in (X,ω)
which is symplectomorphic to a neighborhood of C(G) in (N(G), ω(G)) and
which has concave boundary contactomorphic to (−M(G), ξ(G)).

The strength of this theorem will lie in the characterization of (M(G), ξ(G))
in terms of an open book decomposition of M(G). We briefly recall the re-
lationship between contact structures and open books; for more details see [5]
and [3].
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An open book decomposition of a 3–manifold M is a pair (L, p), where L is
a link and p : M \ L → S1 is a fibration such that the fibers are longitudinal
near each component of L. The link L is called the binding and the compact
surfaces Σt = p−1(t) ∪ L are called the pages, with L = ∂Σt for all t ∈ S1 .
By the mapping class group M(Σ) for a compact surface Σ with boundary,
we mean the group of orientation-preserving self-diffeomorphisms of Σ fixing
∂Σ pointwise modulo isotopies fixing ∂Σ pointwise. The monodromy of an
open book is the mapping class h ∈ M(Σ0) given by the return map of a flow
transverse to the pages and meridinal near the binding.

A positive contact form α on M is supported by the open book (L, p) if dα is
positive on each page and if α orients L in the same sense that L is oriented as
the boundary of a page. A positive contact structure ξ is supported by (L, p) if
ξ = kerα for some contact form α which is supported by (L, p). We have the
following result at our disposal:

Theorem 1.2 (Thurston-Winkelnkemper [12], Torisu [13], Giroux [5]) Every
open book decomposition of any 3–manifold supports some positive contact
structure, and any two positive contact structures supported by the same open
book are isotopic.

Thus, given a compact surface Σ with boundary and a mapping class h ∈
M(Σ), there exists a unique (up to contactomorphism) positive contact 3–
manifold with contact structure supported by an open book with page Σ and
monodromy h; we denote this contact manifold B(Σ, h).

Given a positive configuration graph G, for each vertex vi let Fi be a surface of
genus gi with mi+di boundary components. Let Σ(G) be the surface resulting
from performing connect sums between these surfaces, with one connect sum
between Fi and Fj for each edge connecting vi to vj . Each edge in G corre-
sponds to a circle in Σ(G). An example of a graph G and the surface Σ(G)
is illustrated in figure 1, with the circles corresponding to the edges drawn in
dashed lines. Let σ(G) be the product of one right-handed Dehn twist around
each of the circles in Σ(G) corresponding to the edges of G, let δ(G) be the
product of one right-handed Dehn twist around each component of ∂Σ(G) and
let h(G) = σ(G)−1 ◦ δ(G).

Theorem 1.1 (part B) (M(G), ξ(G)) = B(Σ(G), h(G))

Note that the area information recorded in the graph G is not recorded on the
boundary (M(G), ξ(G)). For this reason, we may suppress mention of the areas
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(0,1,1)
(1,−1,1)

(2,0,1)

Figure 1: A symplectic configuration graph G and the surface Σ(G)

and think of the vertices of G as labelled with pairs (g,m), rather than triples
(g,m, a).

After proving theorem 1.1 we will briefly discuss the situation when G is not
positive.

Theorem 1.1 also has purely topological content, namely the explicit characteri-
zation of an open book on the boundary of a plumbed 4–manifold corresponding
to a positive configuration graph. If we are only interested in smooth topol-
ogy, the techniques used to prove theorem 1.1 do yield a theorem characterizing
open books on the boundaries of arbitrary plumbed 4–manifolds, which we now
state.

Let a plumbing graph be a graph G with no edges connecting a vertex to itself,
with each vertex vi labelled with a pair (gi,mi) and with each edge labelled
with a + or a −. The plumbed 4–manifold X(G) corresponding to G is a
neighborhood of a configuration of surfaces Σ1 ∪ . . . ∪Σn corresponding to the
vertices v1, . . . , vn of G, with genus(Σi) = vi , Σi · Σi = mi and each + (resp.
−) edge corresponding to a positive (resp. negative) transverse intersection
between two surfaces. For each vertex vi let di be the signed count of edges
connecting to vi (a + edge contributes +1 while a − edge contributes −1).
For each vi let Fi be a surface of genus gi with |mi+di| boundary components
and let Σ(G) be the result of performing connect sums between these surfaces
according to G. Let h(G) be the product of the following Dehn twists: one
right-handed Dehn twist about each circle in Σ(G) corresponding to a + edge
in G, one left-handed Dehn twist about each circle in Σ(G) corresponding to
a − edge, one left-handed Dehn twist about each boundary component coming
from a vertex vi for which mi+di > 0, and one right-handed Dehn twist about
each boundary component coming from a vertex for which mi + di < 0.
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Theorem 1.3 Given any plumbing graph G, let X(G) be the associated
plumbed 4–manifold. Then ∂X has an open book decomposition with page
Σ(G) and monodromy h(G).

In the case where mi+di = 0 for all vertices, this is in fact giving us a fibration of
∂X over S1 , or an “open book with empty binding”. If we apply theorem 1.3
to a positive symplectic configuration graph, the reader may notice that the
monodromy as described here is the inverse of the monodromy as described in
theorem 1.1; this is because here we are describing ∂X whereas in theorem 1.1
we are describing −∂X .

The author would like to thank A. Stipsicz for suggesting the idea of trying to
understand boundary behaviors for neighborhoods of symplectic configurations
as a way to search for new symplectic surgeries, and would like to thank A.
Stipsicz, G. Matic, M. Symington and R. Kirby for helpful discussions and for
looking at drafts of this paper and suggesting improvements.

2 Applications

Before presenting the main proofs we investigate a few consequences of theo-
rem 1.1 and point out some directions in which to look for further applications.

Given a compact surface Σ, we say that a mapping class h ∈M(Σ) is positive
if h can be expressed as a product of right-handed Dehn twists. It is not hard to
show, using compact Stein surfaces and Legendrian surgeries, that if h ∈M(Σ)
is positive then B(Σ, h) is strongly symplectically fillable (see [7], [1] and [3]).

Given a configuration graph G, let Q(G) be the associated intersection form;
i.e. Q(G) = (qij), where qii = mi and qij is the number of edges connecting vi
to vj . Let b+(G) denote the number of positive eigenvalues of Q(G).

The following is a straightforward application of the adjunction inequality
(see [9]):

Corollary 2.1 Let G be a connected positive graph with b+(G) > 1 and with
at least one vertex vi for which mi > 2gi − 2. Then B(Σ(G), h(G)) is not
strongly symplectically fillable and therefore h(G) is not positive in M(Σ(G)).

Proof of corollary 2.1 The symplectic manifold (N(G), ω(G)) constructed
in theorem 1.1 is open; a function F < f on M(G) gives a compact version
(NF (G), ω(G)) where NF (G) = φ{(t, p)|F (p) ≤ t < f(p)} ∪ C(G). Suppose
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that B(Σ(G), h(G)) is strongly symplectically fillable. Then there exists a closed
symplectic 4–manifold (X,ω) containing (NF (G), ω(G)) for some function F <
f on M(G) and containing the configuration C(G) = Σ1 ∪ . . . ∪ Σn . The
intersection form for NF (G) is Q(G); since b+(G) > 1 we know that b+2 (X) >
1. Thus the adjunction inequality applies, which states that, for any closed
surface Σ ⊂ X (with [Σ] not torsion in H2(X) if genus(Σ) = 0), |c1(ω) · Σ|+
Σ · Σ ≤ 2 genus(Σ) − 2. However, here we have an embedded surface Σi for
which Σi · Σi > 2 genus(Σi)− 2, which is a contradiction.

Remark 2.2 For any surface Σ, let us call a relation in M(G) of the form δ =
w a boundary-interior relation if δ is a single right twist about each boundary
component and w is some word in interior right twists. We have the following
trivial observation: For a given G, h(G) is positive if and only if there exists
a boundary-interior relation δ(G) = w in M(Σ(G)) such that the word w
includes all the twists in σ(G). (The order in which the twists of σ(G) appear
in w does not matter.) Boundary-interior relations have a variety of uses,
including giving constructions of topological Lefschetz pencils (see [3]).

Let Σn
g denote a surface of genus g with n boundary components. Two

boundary-interior relations are the “lantern relation” in M(Σ4
0) and the “chain

relation” in M(Σ2
g) (see [14]). Figure 2 shows a set of example graphs G1 , G2 ,

G3 , G4 on the left (here we have suppressed the areas and only given the pair
(g,m) at each vertex), with the associated surfaces Σ(G1), . . . ,Σ(G4) drawn on
the right. The lantern relation shows that h(G1) is positive, while corollary 2.1
tells us that h(G2) is not positive. Thus there does not exist a lantern-type re-
lation on Σ5

0 = Σ(G2). The chain relation shows that h(G3) is positive (where
G3 has g + 1 edges between 2 vertices so that Σ(G3) = Σ2

g ). The graph G4

also has g + 1 edges connecting two vertices, but now the self-intersections are
arbitrary integers a and b such that a+g+1 > 0 and b+g+1 > 0. If a and b
are positive and ab > (g + 1)2 , then b+(G4) = 2 and corollary 2.1 tells us that
h(G4) is not positive. Thus, if ab > (g + 1)2 , A = a + g + 1, B = b + g + 1
and n = A + B , then there cannot exist a boundary-interior relation δ = w
in M(Σn

g ) if w contains twists along g + 1 disjoint curves which, collectively,
separate Σn

g into two genus 0 pieces one containing A of components of ∂Σn
g

and the other containing B components.

The existence of an elliptic Lefschetz pencil on CP2 with 9 points in the base
locus and 12 singular fibers means that there exists a boundary-interior rela-
tion δ = w in M(Σ9

1) such that w is the product of twists along 12 curves
C1, . . . , C12 . This author is not aware that this relation has been written down
and has been curious for a long time as to where these 12 curves are. We do

Algebraic & Geometric Topology, Volume 3 (2003)



Open books and configurations of symplectic surfaces 575

G1
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.
g

... ...
g ...

...

G2

(0,1) (0,1)

(0,1)(0,2)

G4 g+1

G3
(0,−g)(0,−g)

a+g+1 b+g+1(0,b)(0,a)

Figure 2: Four example graphs for remark 2.2

know that when we blow up the 9 points we get a Lefschetz fibration given
by the relation (ab)6 = 1 in M(Σ0

1), where a is a meridinal right twist and b
is a longitudinal right twist, so that, after embedding Σ9

1 in Σ0
1 the odd Ci ’s

are isotopic to meridians and the even Ci ’s are isotopic to longitudes. Corol-
lary 2.1 gives a little more information, ruling out certain possible arrangements
of curves. For example, the observation from the previous paragraph about G4

shows that no two of the curves may be disjoint and separate 4 boundary com-
ponents from the other 5. Other possibilities can be ruled out by considering
various cycle graphs.

Along much the same lines, we have:

Corollary 2.3 Let G1 and G2 be positive, connected symplectic configuration
graphs with b+(G1) > 0 and b+(G2) > 0, with at least one vertex vi in G1

for which mi > 2gi− 2. Then, although each B(Σ(Gi), h(Gi)) may be strongly
symplectically fillable, there does not exist a connected symplectic 4–manifold
with disconnected convex boundary B(Σ(G1), h(G1)) q B(Σ(G2), h(G2)).

Proof If such a symplectic 4–manifold existed then there would exist a closed,
connected, symplectic 4–manifold (X, η) containing

(N,ω) = (NF1(G1), ω(G1)) q (NF2(G2), ω(G2))
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for appropriate functions F1 and F2 . The intersection form for N is Q(G1)⊕
Q(G2), so that b+2 (N) > 1; the rest of the contradiction is identical to that in
the preceding proof.

Remark 2.4 McDuff [8] has shown that symplectic 4–manifolds with discon-
nected convex boundary do exist. By a result of Gromov [6] (made explicit in [2]
and [8]), it is not possible to have multiple convex S3 boundary components,
which is the case of this corollary when Σ(G1) and Σ(G2) are both disks. We
hope that our result significantly enlarges the class of pairs of contact manifolds
which cannot appear as disconnected convex boundaries, despite being individ-
ually strongly symplectically fillable. It is not hard to construct examples of
graphs G with b+(G) = 1, with one vertex for which mi > 2gi − 2 and such
that M(G) is not S3 , but it is then not necessarily clear how to show that
(M(G), ξ(G)) is in fact strongly symplectically fillable.

It would be interesting to construct arguments in the opposite direction:

Question 2.5 Are there any positive configuration graphs G for which we can
show directly that B(Σ(G), h(G)) is overtwisted and hence conclude, without
appealing to the adjunction inequality, that a symplectic configuration with
configuration graph G cannot embed in a closed symplectic 4–manifold?

Showing that B(Σ, h) is overtwisted for a given surface Σ and mapping class h ∈
M(Σ) is, in principle, purely a mapping class group problem, as follows: Let Σ
and Σ′ be compact surfaces with boundary and h ∈M(Σ) and h′ ∈M(Σ′) be
mapping classes. We say that (Σ′, h′) is a positive (resp. negative) stabilization
of (Σ, h) if Σ′ is the result of attaching a 1–handle to Σ and h′ = h◦τ , where τ
is a right-handed (resp. left-handed) Dehn twist along a curve dual to the co-core
of the 1–handle. It can be shown, using results of Giroux [5] and Torisu [13],
that B(Σ, h) is overtwisted if and only if there exist pairs (Σ′, h′) and (Σ′′, h′′)
such that (Σ′, h′) is related to (Σ, h) by a sequence of positive stabilizations
and destabilizations and (Σ′, h′) is a negative stabilization of (Σ′′, h′′)

Lastly, we point out that theorem 1.1 could be used to produce new symplectic
surgeries. If, for a given symplectic configuration graph G, we can find some
other interesting symplectic 4–manifold (Y, η) with concave boundary contac-
tomorphic to (−M(G), ξ(G)), then we may surger out a neighborhood of a
configuration C for which G(C) = G and replace it with (Y, η). (Syming-
ton [10, 11] has investigated configurations which have neighborhoods with
convex boundaries, and has used this to produce useful symplectic surgeries;
this paper is partly inspired by that work.)
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Question 2.6 Given G, is there any canonical way to produce such a (Y, η)
with significantly different topology from (N(G), ω(G))? Especially interesting
would be examples where Y is a rational homology ball.

3 The main proof

Proof of theorem 1.1 Our proof is a three step construction. In “Step 1” we
construct a symplectic 4–manifold (X,ω) with a symplectic dilation (Liouville
vector field) V + defined on all of X and pointing out along ∂X . X will contain
a configuration Z of properly embedded symplectic surfaces with boundary,
which will become the configuration C(G) once we cap off the surfaces with
2–handles. In “Step 2”, we arrange that the induced positive contact form on
∂X has a particularly nice form and then we produce a symplectic contraction
V − defined on X \Z , pointing out along ∂X \ ∂Z . In “Step 3” we cap off the
surfaces in Z by attaching appropriately framed 4–dimensional symplectic 2–
handles along ∂Z ; these handles have the effect of turning the convex boundary
into a concave boundary. The symplectic contraction V − from Step 2 extends
across the 2–handles; flow along −V − gives the symplectomorphism φ (after
attaching an open collar to the boundary).

Step 1 For lack of a better term, the objects we construct in this step will be
called “Step 1 objects”. A Step 1 object is a 6–tuple (X,ω,Z, V +, f, p) where:

• (X,ω) is a compact symplectic 4–manifold with boundary.

• Z = F1∪ . . .∪Fn is a configuration of symplectic surfaces with boundary,
each properly embedded in X , with ω–orthogonal intersections.

• f is a proper Morse function on X which restricts to each Fi as a proper
Morse function, with only critical points of index 0 and 1, all of which
lie in Z .

• V + is a symplectic dilation on (X,ω), tangent to Z and gradient-like for
f , inducing a positive contact structure ξ+ = ker(ı(V +)ω|∂X) on ∂X .

• p : ∂X \ ∂Z → S1 is a fibration such that (∂Z, p) is an open book on
∂X .

• ξ+ is supported by (∂Z, p).

Each component K of ∂Fi ⊂ ∂Z has two different natural framings, the framing
coming from the page of the open book, which is a Seifert surface for ∂Z ,
and the framing coming from a Seifert surface for ∂Fi . Denote the former
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framing pf(K) (for “page framing”) and denote the latter framing cf(K) (for
“component framing”).

Our goal is to produce a Step 1 object (X,ω,Z, V +, f, p) related to the given
graph G as follows:

• Z = F1 ∪ . . . ∪ Fn , where each surface Fi corresponds to a vertex vi in
G and the intersections correspond to the edges in G.

• genus(Fi) = gi

• ∂Fi has mi + di components.

• For each Fi , there is one component K of ∂Fi for which pf(K) = cf(K)−
di , and for all other components the two framings are equal.

Topologically X is built from 0–handles and 1–handles, with one 0–handle
for each vertex and each edge in G, and with a 1–handle connecting an edge
0–handle to a vertex 0–handle if that edge is incident with that vertex.

We begin with two basic Step 1 objects A = (XA, ωA, ZA, V
+
A , fA, pA) and

B = (XB , ωB , ZB , V
+
B , fB , pB) defined as follows (here we use polar coordinates

(r1, θ1, r2, θ2) on R4):

• XA = XB = B4 = {r2
1 + r2

2 ≤ 1} ⊂ R4 .

• ωA = ωB = r1dr1dθ1 + r2dr2dθ2 .

• ZA = {r2 = 0} and ZB = {r2 = 0} ∪ {r1 = 0}.
• V +

A = V +
B = 1

2(r1∂r1 + r2∂r2).

• fA = fB = r2
1 + r2

2 .

• pA = θ2 while pB = θ1 + θ2 .

Thus (∂ZA, pA) is the standard open book on S3 with page equal to a disk and
binding the unknot, and (∂ZB , pB) is the open book on S3 with page equal to
an annulus (a left-twisted Hopf band), monodromy equal to a single right twist
about the core circle of the annulus, and the Hopf link with positive linking
number as the binding. Note that, for the single component of ∂ZA , we have
pf = cf , whereas for each of the two components of ∂ZB , we have pf = cf −1.

We think of these two objects as 4–dimensional symplectic 0–handles, in the
sense of Weinstein [15]. We also have Weinstein’s 4–dimensional symplectic
1–handle, which is constructed as a neighborhood of the origin in R4 with the
standard symplectic form ω = dx1dy1 + dx2dy2 , the Morse function f = −x2

1 +
y2

1+x2
2+y2

2 and the symplectic dilation V + = −x1∂x1+2y1∂y1+ 1
2 (x2∂x2+y2∂y2).

Weinstein shows that we can always attach such a 1–handle at any two points on
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A A

B

B

A
B

Figure 3: The Step 1 object corresponding to the graph G in figure 1

a convex boundary of a symplectic 4–manifold, such that the symplectic forms
and symplectic dilations match up along the glueing. In [3] we have shown that,
if in addition the contact structure on the boundary is supported by an open
book and the attaching 3–balls of the 1–handle are pierced by the binding (as
the z–axis pierces the unit ball in R3 ), then the handle can be constructed in
such a way that the new contact structure produced by the associated contact
surgery is also supported by an open book. The new page is produced from the
old page by attaching a 2–dimensional 1–handle at the corresponding intervals
along the binding and the new monodromy is equal to the old monodromy
extended by the identity on the 1–handle. (Note that the 2–dimensional 1–
handle is explicitly the set {x2 = y2 = 0} inside the 4–dimensional 1–handle,
and that this a symplectic surface.)

Now suppose that we are attaching such a 1–handle to a Step 1 object
(X,ω,Z, V +, f, p) at two points along the binding ∂Z (not connecting two
surfaces in Z that already intersect). Then we produce a new Step 1 object
(X1, ω1, Z1, V

+
1 , f1, p1), where Z1 is the result of attaching a 1–handle to Z ,

(∂Z1, p1) is the open book described in the preceding paragraph, and f1 has a
single new index 1 critical point.

We now describe how to build our desired Step 1 object corresponding to the
given graph G. Figure 3 illustrates this construction applied to the graph G
of figure 1. Start with a Step 1 object which is a disjoint union of many copies
of the 0–handle objects A and B , with one A for each vertex and one B for
each edge in G. These are indicated in figure 3 by dotted rectangles, with the
bindings of the open books indicated as solid links (unknots or Hopf links).
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Figure 4: The same Step 1 object, drawn as a Kirby calculus diagram in a single S3

For an edge ek connecting two vertices vi and vj , let Bk be the corresponding
copy of B and Ai and Aj be the corresponding copies of A. Connect Bk to
Ai by a symplectic 1–handle as described above, with the 1–handle connecting
one component of the binding in Bk to the binding in Ai , and connect Bk
to Aj by a 1–handle connecting the other component of the binding in Bk
to the binding in Aj . In figure 3 we have drawn the attaching 3–balls of
these 1–handles with dashed lines connecting them. After doing this for all the
edges, we have a Step 1 object where the configuration Z is a configuration of
disks, one disk for each vertex, with intersections given by G. Furthermore,
for each component Ki of ∂Z corresponding to a vertex vi , we have pf(Ki) =
cf(Ki) − di . Now attach 2gi 1–handles in pairs along each component Ki of
∂Z to get a Step 1 object for which the configuration is now a configuration of
surfaces Z = F1 ∪ . . . ∪ Fn where each Fi corresponds to a vertex vi , each Fi
has a single boundary component, and genus(Fi) = gi , with the intersections
given by G. These pairs of 1–handles are drawn on the lower right of each A
binding. We still have pf(∂Fi) = cf(∂Fi) − di . Finally, attach (mi + di − 1)
1–handles along an isolated stretch of ∂Fi to get mi + di binding components
for each Fi ; for the “new” binding components we will have pf = cf , while one
binding component still has pf = cf −di . These 1–handles are drawn on the
lower left of each A binding. Figure 4 shows a standard Kirby calculus diagram
for the same construction, drawn in a single copy of S3 ; the link drawn is the
binding of an open book, not a surgery link (yet).

Note that the page of the resulting open book (∂C, p) in the final Step 1 object
(X,ω,Z, V +, f, p) is exactly the surface Σ(G) associated to the graph G and
that the monodromy is exactly the mapping class σ(G). Thus (∂X, ξ+) =
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B(Σ(G), σ(G)).

Step 2 For each Fi in Z = F1 ∪ . . . ∪ Fn , choose a positive constant bi <
ai/(2π(mi + di)). By an explicit construction (similar to that in section 4
of [3]) one can show that there exists a positive contact form α+ supported
by (∂Z, p) with the following behavior near each component K of each Fi : In
a neighborhood of K there should exist solid torus coordinates (r, µ, λ) (ra-
dial, meridinal and longitudinal coordinates, with K = {r = 0}) with respect
to which α+ = 1

2r
2(dµ − dλ) + bidλ and p = µ + λ. After an isotopy fix-

ing ∂Z , by theorem 1.2, we can assume that kerα+ = ξ+ = ker(ı(V +)ω|∂X).
Because V + is defined on all of X and is gradient-like for f , we can use the
canonical symplectification of ξ+ and enlarge and/or trim X so that in fact
α+ = ı(V +)ω|∂X .

At this point note that the area of each Fi is
∫
Fi
ω =

∫
∂Fi

α+ = 2π(mi+di)bi <
ai .

Now we recall some definitions from [4]. A contact pair on a 3–manifold M
is a pair (α+, α−) of 1–forms defined, respectively, on open subsets M± with
M = M+∪M− , such that ±α±∧dα± > 0 on M± and such that dα+ = −dα−
on M0 = M+ ∩M− . In particular α+ (resp. α− ) is a positive (resp. negative)
contact form and α0 = α+ + α− is a closed, nowhere zero 1–form on M0 =
M+ ∩M− . A dilation-contraction pair on a symplectic 4–manifold (X,ω) is
a pair (V +, V −) defined, respectively, on open subsets X± ⊂ X , such that
L(V ±)ω = ±ω and ω(V +, V −) = 0. We say that (V +, V −) transversely covers
a 3–dimensional submanifold M if M ⊂ X+ ∪X− and both V + and V − are
positively transverse to M . This gives us an induced contact pair (α+, α−) on
M defined by α± = ı(V ±)ω|M , with domains M± = M ∩X± .

In our situation we have the positive contact form α+ defined on (∂X)+ = ∂X ,
supported by (∂Z, p); for a large enough constant k > 0, (α+, α− = kdp−α+)
will be a contact pair (with (∂X)− = ∂X \ ∂Z ). Fix such a k and henceforth
let α− = kdp− α+ .

Backward flow along the symplectic dilation V + starting on ∂X gives us an
embedding φ+ : (−∞, 0] × ∂X ↪→ X such that φ+(0, p) = p, Dφ+(∂t) = V +

and (φ+)∗ω = d(etα+), where t is the coordinate on (−∞, 0]. Since V + is
tangent to Z and gradient-like for f , we know that φ+((−∞, 0]× (∂X \∂Z)) =
X \ Z . Lemma 4.1 in [4] then tells us that there exists a unique symplectic
contraction V − defined on X \Z such that (V +, V −) is a dilation-contraction
pair transversely covering ∂X inducing the contact pair (α+, α−). Forward flow
along −V − starting on ∂X \ ∂Z then gives an embedding φ− from {(t, p)|0 ≤
t < F (p)} ⊂ R×(−(∂X \∂Z)) into X for some function F : ∂X \∂Z → (0,∞],
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such that φ−(0, p) = p, Dφ−(∂t) = −V − and (φ−)∗ω = d(etα−). The proof of
lemma 4.1 in [4] shows us how to explicitly calculate V − given (α+, α−), from
which we can see that, in our case, F <∞ and the image of φ− is all of X \Z ,
with Z \ ∂Z = {limt→F (p) φ

−(t, p)|p ∈ ∂X \ ∂Z}.

Step 3 Our final symplectic 4–manifold (N(G), ω(G)) will be constructed
by attaching a symplectic 2–handle as described in [4] along each component
K of the binding ∂Z ⊂ ∂X with framing pf(K) + 1, and then attaching an
open symplectic collar on the boundary. In [4] it is shown that one can attach
handles in this way to produce a concave boundary, and in [3], it is shown that
the contact manifold on the boundary is indeed B(Σ(G), σ(G)−1 ◦ δ(G)). It is
not hard to see that the 4–manifold produced in this way is a neighborhood
of a configuration of closed surfaces with the correct genera and intersecting
according to the graph G; the surfaces are simply the surfaces Fi in Z capped
off with the descending disks of the 4–dimensional 2–handles.

To see that the self-intersections are correct, note that the self-intersection of
a surface Σi built by attaching 2–handles, framed as above, along ∂Fi for one
of the surfaces Fi ⊂ Z is equal to the sum over all components K of ∂Fi of
(pf(K) + 1)− cf(K), which is exactly mi .

To see that the remaining claims of the theorem hold, we need to look more
closely at the structure of the 2–handles. Proposition 4.6 in [4] shows us how to
construct our 2–handles; here we give the construction tailored to the special
case at hand. For each Fi ⊂ Z , let ci = ai/(2πk(mi + di)) (with k as fixed
in Step 2). The handle H that will attach to each component K of ∂Fi is a
subset of R4 with the symplectic form ωH = ci(r1dr1dθ1 + r2dr2dθ2) with the
Morse function fH = −r2

1 + r2
2 . The following is a dilation-contraction pair on

(R4, ωH):

V +
H = (

1
2
r1 −

k

r1
)∂r1 +

1
2
r2∂r2

V −H = −1
2
r1∂r1 − (

1
2
r2 −

k

r2
)∂r2

(V +
H , V

−
H ) transversely covers the regular level sets of f as long as −2k <

f < 2k . Let ε1 = 2(bi/ci − k); note that −2k < ε1 < 0. Choose some ε2
with 0 < ε2 < 2k . Construct H so that the attaching boundary of H (which
we call ∂1H ) is a neighborhood of {r2 = 0} in f−1(ε1) and so that the free
boundary ∂2H interpolates from a neighborhood of {r1 = 0} in f−1(ε2) down
to f−1(ε1), so that both boundaries are transverse to both V +

H and V −H (where
defined). (See section 2 of [4] for a more detailed discussion of this type of
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handle construction and notation.) On ∂1H , we use solid torus coordinates
(r =

√
cir2, µ = θ2, λ = −θ1); the contact pair induced by (V +

H , V
−
H ) on ∂1H

then becomes:

(α+
H =

1
2
r2(dµ− dλ) + bidλ, α

−
H = k(dµ+ dλ)− α+

H)

This is exactly the contact pair we have on a neighborhood of K ⊂ ∂X , so
that lemma 4.1 in [4] tells us we can attach H to X by identifying the (r, µ, λ)
coordinates on ∂1H with the (r, µ, λ) coordinates in a neighborhood of K ,
in such a way that the symplectic forms and the dilation-contraction pairs fit
together smoothly. Note that since p = µ+ λ in a neighborhood of K , we are
attaching H with framing pf(K) + 1.

After attaching these handles to each component of ∂Fi , we get a closed surface
Σi which is the union of Fi and the disks D = {r2 = 0} ∩H = {r2 = 0, r2

1 ≤
2(k− bi/ci)} in each handle H . Σi is smooth because V + is tangent to Fi and
V +
H is tangent to D . Σi is symplectic because Fi and D are both symplectic.

We have already arranged that the area of Fi is 2π(mi + di)bi . The area
of each disk D is 2πci(k − bi/ci). Thus the area of Σi is exactly ai . Let
C(G) = Σ1 ∪ . . . ∪ Σn .

Note that, in the handle H , the symplectic contraction V −H is defined across
all of the free boundary ∂2H whereas the dilation V +

H does not extend across
the ascending circle {r1 = 0} ∩ ∂2H . Thus after attaching all the handles we
get a symplectic 4–manifold (X1, ω1) with a dilation-contraction pair (V +

1 , V −1 )
which transversely covers ∂X1 inducing a contact pair (α+

1 , α
−
1 ) with domains

(∂X1)+ = ∂X1 \ L1 (where L1 is the union of the ascending circles) and
(∂X1)− = ∂X1 . The closed 1–form α0

1 = α+
1 + α−1 is kdp1 for the natural

open book (L1, p1) on ∂X1 that results from pf +1 surgeries on the binding
of the open book (∂Z, p) on ∂X , the pages of which are still diffeomorphic to
Σ(G) and the monodromy of which is now σ(G) ◦ δ(G)−1 (see [3]). The fact
that (α+

1 , α
−
1 ) is a contact pair implies that α0

1 ∧α−1 > 0, which in turn implies
that α−1 , as a positive contact form on −∂X1 , is supported by the open book
(L1,−p1), which has page Σ(G) and monodromy σ(G)−1 ◦ δ(G). Thus we let
M(G) = −∂X1 and ξ(G) = kerα− . Also let α = α− .

From the explicit form for V −H and the observations made in Step 2 about
flow along −V − , we see that flow along −V −1 starting on ∂X1 gives a dif-
feomorphism φ−1 from {(t, p)|0 ≤ t < f(p)} ⊂ R ×M(G) to X1 \ C(G), for
some function f : M(G) → (0,∞), such that φ−(0, p) = p, Dφ−(∂t) = −V − ,
(φ−)∗ω1 = d(etα) and C(G) = {limt→f(p) φ

−(t, p)|p ∈M(G)}.
Finally let (N(G), ω(G)) = (X1, ω1)∪φ− ((−∞, 0]×M(G), d(etα)); the embed-
ding φ is simply φ− extended by the identity on (−∞, 0]×M(G).
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4 The nonpositive case

If our initial graph G is not positive, we can simply add extra vertices la-
belled (0, 0, 1) to produce a graph G′ ⊃ G which is positive. This corresponds
to plumbing on some extra spheres of square 0. We can now carry out the
construction above applied to G′ , but stop short of attaching the 2–handles
required to close off these extra spheres. This will give a model neighbor-
hood (N(G), ω(G)) of a configuration C(G) with G = G(C(G)), but now the
boundary will not be concave. Instead the boundary will be “partially con-
vex and partially concave” in the following sense: (N(G), ω(G)) will carry a
dilation-contraction pair transversely convering ∂N(G) inducing a contact pair
(α+, α−), but neither α+ nor α− will be defined on all of ∂N(G). Neverthe-
less, the pair (α+, α−) will determine the germ of ω(G) along ∂N(G) and the
dilation-contraction pair determines something like a canonical symplectifica-
tion of the contact pair, so that we have good control on the symplectic topology
of N(G)\C(G). Furthermore, (α+, α−) will be supported by a signed open book
(L+, L−, p) on M = ∂N(G), by which we mean the following: (L = L+qL−, p)
is an open book, α± is defined on M± = M \ L∓ , and α± is supported, as a
positive contact form on ±M± , by (L±,±p). The link L− will be the union
of the ascending circles for the 2–handles that we did attach, while L+ will be
the binding components from the Step 1 object to which we did not attach 2–
handles. Smaller or larger neighborhoods of C(G) will have boundaries which
are still transversely covered by the dilation-contraction pair and hence carry
related contact pairs, all supported by the same signed open book. This line of
reasoning will be investigated more thoroughly in a future paper.

5 Boundaries of arbitrary plumbings

Proof of theorem 1.3 If we strip the symplectic topology out from the proof
of theorem 1.1, Step 2 is irrelevant. In Step 1, relabel B as B+ and introduce
a negative version of B which we call B− ; B+ (resp. B− ) is a neighborhood
of a positive (resp. negative) intersection of two disks, with a left-twisted (resp.
right-twisted) Hopf band as the open book on the boundary, with monodromy
equal to a single right (resp. left) Dehn twist along the core of the band. On
∂B+ we have pf = cf −1 and on ∂B− we have pf = cf +1. Thus if we mimic
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the construction in theorem 1.1 but use copies of B+ for + edges and copies of
B− for − edges, we can produce a (non-symplectic) Step 1 object (X,Z, f, p)
where:

• X is a compact 4–manifold with boundary which is a neighborhood of
Z .

• Z = F1 ∪ . . . ∪ Fn ⊂ X is a configuration of properly embedded surfaces
with boundary, corresponding to the vertices of G, with the appropriate
genera and self-intersections and intersecting transversely according to
the edges of G.

• ∂Fi has |mi + di| components, unless mi + di = 0, in which case ∂Fi
has one component. (Recall that now di is the signed count of edges
connecting to vi .)

• p : ∂X \ ∂Z → S1 is a fibration making (∂Z, p) an open book on ∂X .

• For each Fi , there is one component K of ∂Fi for which pf(K) = cf(K)−
di and for all other components the two framings are equal.

When we get to Step 3, since we are no longer requiring that our handles
be symplectic, we can attach 2–handles along binding components with any
framings we choose. Framing pf−1 produces a new open book with the same
page and introduces a right-handed boundary Dehn twist into the monodromy;
framing pf +1 also produces a new open book with the same page and intro-
duces a left-handed boundary Dehn twist. Framing pf produces a new open
book with the page alterred by capping off the corresponding boundary compo-
nent, decreasing the number of binding components by 1. For vertices vi with
mi+di < 0, use (pf −1)-framed binding handles, for vertices with mi+di = 0,
use pf -framed binding handles and for vertices with mi + di > 0, use (pf +1)-
framed binding handles. Because of these choices of framings we then calculate
that for each Σi , Σi · Σi = mi .
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