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Abstract Using contact surgery we define families of contact structures
on certain Seifert fibered three–manifolds. We prove that all these contact
structures are tight using contact Ozsváth–Szabó invariants. We use these
examples to show that, given a natural number n , there exists a Seifert
fibered three–manifold carrying at least n pairwise non–isomorphic tight,
not fillable contact structures.
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1 Introduction and statement of results

The classification problem for tight contact structures on closed oriented three–
manifolds is one of the driving forces in present day contact topology. Contact
surgery along Legendrian links provides a powerful tool for constructing contact
three–manifolds. Tightness of these structures is, however, hard to prove, unless
the structures can be shown to be fillable, i.e., can be viewed as living on the
boundary of a symplectic four–manifold satisfying appropriate compatibility
conditions. The question whether any tight contact structure is fillable was
open for some time, until the first tight, nonfillable contact three–manifolds were
found by Etnyre and Honda [6], followed by infinitely many such examples [12,
13]. The tightness of those examples was proved using a delicate topological
method called state traversal (see [9]). In this paper we prove tightness by
applying the Heegaard Floer theory recently developed by Ozsváth and Szabó
[17, 18, 21]. According to our main result, tight, not fillable contact structures
are more common than one would expect:

Theorem 1.1 For any n ∈ N there is a Seifert fibered 3–manifold Mn carrying

at least n pairwise non–isomorphic tight, not fillable contact structures.
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200 Paolo Lisca and András I. Stipsicz

The construction of the contact structures in Theorem 1.1 relies on contact
surgery. We verify nonfillability via the Seiberg–Witten equations, following
the approach of [12, 13]. In order to state precisely our results we need a little
preparation.

Contact surgery

In a given contact three–manifold (Y, ξ) a knot K ⊂ (Y, ξ) is Legendrian if K
is everywhere tangent to ξ . The framing of K naturally induced by ξ is called
the contact framing. Given a Legendrian knot K in a contact three–manifold
(Y, ξ) and a rational number r ∈ Q (r 6= 0), one can perform contact r–surgery

along K to obtain a new contact three–manifold (Y ′, ξ′) [1, 2]. Here Y ′ is
the three–manifold obtained by smooth r–surgery along K , where the surgery
coefficient is measured with respect to the contact framing defined above, not
with respect to the framing induced by a Seifert surface (which, in general,
does not exist). The contact structure ξ′ is constructed by extending ξ from
the complement of a standard neighborhood of K to a tight contact structure
on the glued–up solid torus. If r 6= 0 such an extension always exists, and for
r = 1

k (k ∈ Z) it is unique [9]. When r = −1 the corresponding contact surgery
coincides with Legendrian surgery along K [5, 8, 22].

Below we outline an algorithm for replacing a contact r–surgery on a Legendrian
knot K with a sequence of contact (±1)–surgeries on a suitable Legendrian
link. By [2, Proposition 3], contact r–surgery along K ⊂ (Y, ξ) with r < 0 is
equivalent to Legendrian surgery along a Legendrian link L = ∪m

i=0Li which is
determined via the following simple algorithm by the Legendrian knot K and
the contact surgery coefficient r . The algorithm to obtain L is the following.
Let

[a0 + 1, . . . , am], a0, . . . am ≤ −2

be the continued fraction expansion of r . To obtain the first component L0 ,
push off K using the contact framing and stabilize it −a0 − 2 times. Then,
push off L0 and stabilize it −a1 − 2 times. Repeat the above scheme for
each of the remaining pivots of the continued fraction expansion. Since there
are −ai − 1 inequivalent ways to stabilize a Legendrian knot −ai − 2 times,
this construction yields Πm

i=0(−ai − 1) potentially different contact structures.
According to [2, Proposition 7], a contact r = p

q –surgery (p, q ∈ N) on a

Legendrian knot K is equivalent to a contact 1
k –surgery on K followed by a

contact p
q−kp –surgery on a Legendrian pushoff of K for any integer k ∈ N such

that q − kp < 0. Therefore, the latter surgery can be turned into a sequence
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Seifert fibered contact three–manifolds via surgery 201

of Legendrian surgeries, as described above. By [1, Proposition 9], a contact
1
k –surgery (k ∈ N) on a Legendrian knot K can be replaced by k contact
(+1)–surgeries on k Legendrian pushoffs of K .

In conclusion, any contact rational r–surgery (r 6= 0) can be replaced by con-
tact (±1)–surgery along a Legendrian link (which is not necessarily uniquely
specified); for a related discussion see also [3].

Statement of results

In the following, we shall denote by

M(g, n; (α1, β1), . . . , (αk, βk))

the Seifert fibered 3–manifold obtained by performing (−α1

β1
)–, . . . , (−αk

βk
)–

surgeries along k fibers of the circle bundle Yg,n → Σg over the genus–g surface
Σg with Euler number e(Yg,n) = n. The Seifert invariants

(g, n; (α1, β1), . . . , (αk, βk))

are said to be in normal form if

αi > βi ≥ 1, i = 1, . . . , k.

Using Rolfsen twists (hence changing n if necessary), any tuple

(g, n; (α1, β1), . . . , (αk, βk))

can be transformed into normal form.

Consider the family of contact 3–manifolds defined by the contact surgery di-
agrams of Figure 1 (the box is repeated (g − 1)–times, g ≥ 1).

Throughout the paper we shall assume:

g ≥ 1,
1

2
≤ r1 < 1, ri < 0, i = 2, . . . , k (ri ∈ Q). (1.1)

Under the assumptions (1.1) one can write the coefficients as:

r1 =
(n − 2g + 1)α1 + β1

(n − 2g + 2)α1 + β1
, ri =

βi − αi

βi
, (1.2)

where

n ≥ 2g, α1 > β1 ≥ 0, αi > βi ≥ 1, i = 2, . . . , k.
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Figure 1: Contact structures on Seifert fibered 3–manifolds

Converting the contact surgery coefficients into smooth coefficients, after (n −
2g + 1) Rolfsen twists on the r1–framed unknot we conclude that the 3–
manifolds underlying the contact structures given by Figure 1 are of the form:

M(g, n; (α1, β1), . . . , (αk, βk)), n ≥ 2g. (1.3)

Moreover, if β1 > 0 the Seifert invariants are in normal form. Observe that for
β1 = 0 the (−α1

β1
)–surgery is trivial.

Conversely, given a Seifert fibered 3–manifold M as in (1.3), Figure 1 provides
a contact structure on M as long as the coefficients ri defined by (1.2) satisfy
the conditions (1.1).
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Let ξ1, . . . , ξt denote the contact structures obtained by turning the diagrams
of Figure 1 into contact (±1)–surgeries in all possible ways according to the
algorithm described in the previous subsection. This paper is devoted to the
study of ξ1, . . . , ξt . Using the contact Ozsváth–Szabó invariants [21] we prove:

Theorem 1.2 Fix k ≥ 1, g ≥ 1, 1
2 ≤ r1 < 1 and ri < 0 for i = 2, . . . , k .

Then, all the contact structures defined by Figure 1 are tight.

It is unclear from the construction whether the contact structures ξ1, . . . , ξt are
all distinct up to isotopy. Observe that for k = 1 and r1 = α+1

2α+1 the 3–manifold
underlying Figure 1 is M(g, 2g; (α, 1)).

Theorem 1.3 Given g ≥ 1 and n ∈ N, there is an α ∈ N such that at least

n of the contact structures defined by Figure 1 for k = 1 and r1 = α+1
2α+1 are

pairwise non–isomorphic.

In fact, a more detailed analysis shows that the contact structures defined by
Figure 1 on M(g, 2g; (α, 1)) are all distinct up to isotopy (see Section 4). This
leads us to:

Conjecture 1 All the tight contact structures defined by Figure 1 and satis-
fying the assumptions (1.1) are distinct up to isotopy.

Recall that a contact 3–manifold (Y, ξ) is symplectically fillable, or simply fil-

lable, if there exists a compact symplectic four–manifold (W,ω) such that (i)
∂W = Y as oriented manifolds (here W is oriented by ω ∧ ω) and (ii) ω|ξ 6= 0
at every point of Y . Our next result concerns fillability properties of some of
the contact structures under examination.

Theorem 1.4 Fix α ∈ N and g ≥ 1 such that d(d+1) ≤ 2g ≤ d(d+2)−1 for

some positive integer d. Then, the tight contact structures defined by Figure 1

for k = 1 and r1 = α+1
2α+1 are not symplectically fillable.

As we show in Section 4, there is some evidence supporting the following:

Conjecture 2 No contact structure defined by Figure 1 and satisfying condi-
tions (1.1) is fillable.

The above results immediately imply Theorem 1.1:
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Proof of Theorem 1.1 Fix n ∈ N and g = 1. Choose α ∈ N such that the
statement of Theorem 1.3 holds. The contact structures ξ1, . . . , ξt defined by
Figure 1 on M(1, 2; (α, 1)) are tight by Theorem 1.2 and there are at least n
pairwise non–isomorphic among them by Theorem 1.3. By Theorem 1.4 applied
with d = 1 they are also not fillable. This concludes the proof.

Our results seem to suggest (see Section 4) that a Seifert fibered 3–manifold

M(g, n; (α1, β1), . . . , (αk, βk))

with Seifert invariants in normal form should support a tight, not fillable contact
structure if n ≥ 2g > 0. This should be contrasted with the result of Gompf [8],
who showed that a Seifert fibered 3–manifold with base genus g ≥ 1 always
carries a Stein fillable contact structure.

Section 2 is devoted to the proof of Theorem 1.2, while Theorems 1.3 and 1.4
will be proved in Section 3. In Section 4 we give further evidence supporting
Conjectures 1 and 2.

Acknowledgements The first author was partially supported by MURST,
and he is a member of EDGE, Research Training Network HPRN-CT-2000-
00101, supported by The European Human Potential Programme. The authors
would like to thank Peter Ozsváth and Zoltán Szabó for many useful discussions
regarding their joint work. The second author was partially supported OTKA
T034885 and T037735.

2 Proof of Theorem 1.2

In a remarkable series of papers [17, 18, 19, 21] Ozsváth and Szabó defined new
invariants of many low–dimensional objects — including contact structures on
closed 3–manifolds. In this section we apply these invariants to prove Theo-
rem 1.2.

Heegaard Floer theory associates abelian groups HF+(Y, t) and ĤF (Y, t) to
a closed, oriented Spinc 3–manifold (Y, t), and homomorphisms

F+
W,s : HF+(Y1, t1) → HF+(Y2, t2), F̂W,s : ĤF (Y1, t1) → ĤF (Y2, t2)

to a Spinc cobordism (W, s) between two Spinc 3–manifolds (Y1, t1) and
(Y2, t2).

Throughout this paper we shall assume that Z/2Z coefficients are being used

in the complexes defining the HF+– and ĤF –groups.
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Let Yg,−2g be a circle bundle over the genus–g surface Σg with Euler number
−2g (g ≥ 1), and let Dg,−2g denote the corresponding disk bundle. Since
H2(Dg,−2g; Z) has no 2–torsion, each Spinc structure on Dg,−2g is uniquely
determined by its first Chern class. Let s be the unique Spinc structure on
Dg,−2g with c1(s) = 0, and denote by t the restriction of s to Yg,−2g .

Let W denote the cobordism from #2g(S
1 × S2) to Yg,−2g given by the at-

tachment of a 4–dimensional 2–handle along the (−2g)–framed knot K ⊂
#2g(S

1 × S2) of Figure 2. Let t0 ∈ Spinc(#2g(S
1 × S2)) be the unique Spinc

Figure 2: The framed knot K

structure on #2g(S
1×S2) with vanishing first Chern class. In [20, Lemma 9.17]

it is proved that there is an isomorphism

HF+(#2g(S
1 × S2), t0) −→ HF+(Yg,−2g, t)

which can be written as a sum of maps
∑

s
F+

W,s over the set of Spinc structures
on W which restrict to t0 and t. Application of the 5–lemma to the long exact
sequence connecting HF+(Yg,−2g, t) and ĤF (Yg,−2g, t) immediately yields the
following:

Lemma 2.1 The homomorphism
∑

{s∈Spinc(W ) | s|∂W =(t0,t)}

F̂W,s : ĤF (#2g(S
1 × S2), t0) → ĤF (Yg,−2g, t),

is an isomorphism.

Contact Ozsváth–Szabó invariants

Let (Y, ξ) be a closed contact 3–manifold oriented by ξ , and let tξ ∈ Spinc(Y )
be the Spinc structure induced by ξ . In [21], Ozsváth and Szabó define an
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invariant
c(Y, ξ) ∈ ĤF (−Y, tξ)

whose main properties are summarized in the following two theorems.

Theorem 2.2 [21] If (Y, ξ) is overtwisted, then c(Y, ξ) = 0. If (Y, ξ) is

Stein fillable then c(Y, ξ) 6= 0. In particular, for the standard contact structure

(S3, ξst) we have c(S3, ξst) 6= 0.

Theorem 2.3 Suppose that (Y2, ξ2) is obtained from (Y1, ξ1) by a contact

(+1)–surgery. Then we have

F−W (c(Y1, ξ1)) = c(Y2, ξ2),

where −W is the cobordism induced by the surgery with reversed orientation

and F−W is the sum of
∑

s
F̂−W,s over all Spinc structures s extending the

Spinc structures induced on −Yi by ξi , i = 1, 2. In particular, if c(Y2, ξ2) 6= 0
then (Y1, ξ1) is tight.

Proof Let us assume that we are performing contact (+1)–surgery along the
Legendrian knot K ⊂ (Y1, ξ1). Then, there is an open book decomposition
(F, φ) on Y1 compatible with ξ1 in the sense of Giroux and such that K lies
on a page. In fact, the proof of [7, Theorem 3] shows that the 1–skeleton
of any contact cellular decomposition of (Y1, ξ1) is contained in a page of a
compatible open book. Since K can be assumed to lie in the 1–skeleton of
a contact cellular decomposition of (Y1, ξ1), the conclusion follows. Moreover,
up to refining the decomposition, we may assume that K is not homotopic to
the boundary of the page. Then, an open book for (Y2, ξ2) is given by (F, φ′),
where φ′ = φ ◦ R−1

K and RK is the right–handed Dehn twist along K . The
first part of the statement now follows applying [21, Theorem 4.2]. The second
part of the statement follows immediately from the fact that the invariant of
an overtwisted contact structure vanishes.

Theorem 2.3 immediately yields:

Corollary 2.4 If c(Y2, ξ2) 6= 0 and (Y1, ξ1) is obtained from (Y2, ξ2) by Leg-

endrian surgery along a Legendrian knot, then c(Y1, ξ1) 6= 0. In particular,

(Y1, ξ1) is tight.

Proof Let K ⊂ (Y2, ξ2) be the Legendrian knot along which the Legendrian
surgery is performed. A Legendrian pushoff of K gives rise to a Legendrian
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knot K̃ in (Y1, ξ1). By [1, Proposition 8], contact (+1)–surgery on (Y1, ξ1)
along K̃ gives back (Y2, ξ2). Therefore, by Theorem 2.3 c(Y2, ξ2) 6= 0 implies
c(Y1, ξ1) 6= 0.

Let (Zj , ηj) be the contact 3–manifold obtained by performing contact (+1)–
surgery on the standard contact three–sphere along the j–component Legen-
drian unlink depicted in Figure 3.

Figure 3: The contact 3–manifold (Zj , ηj)

Lemma 2.5 The contact 3–manifold (Zj , ηj) given by Figure 3 has non–

vanishing contact Ozsváth–Szabó invariant for every j ≥ 0.

Proof Notice first that Zj is diffeomorphic to #j(S
1 × S2). We will argue

by induction on j . For j = 0 we have the standard contact 3–sphere, which
has non–vanishing contact Ozsváth–Szabó invariant by Theorem 2.2. Now con-
sider ηj−1 and add the j–th component of the Legendrian unlink to it with
contact framing (+1). Let −W be the corresponding cobordism with reversed
orientation. By [18, Theorem 9.16] the homomorphism F−W fits into an exact
triangle:

ĤF (#j−1(S
1 × S2)) ĤF (#j(S

1 × S2))

ĤF (#j−1(S
1 × S2))

F−W

In [18, Subsection 3.1 and Proposition 6.1] it is proved that

dimZ/2Z ĤF (#j(S
1 × S2)) = 2j .

Therefore, the exactness of the triangle implies that the map F−W is injective.
Since by Theorem 2.3 we have

F−W (c(Zj−1, ηj−1)) = c(Zj , ηj)

Algebraic & Geometric Topology, Volume 4 (2004)



208 Paolo Lisca and András I. Stipsicz

and by the inductive assumption c(Zj−1, ηj−1)) 6= 0, this concludes the proof.

Note that when k = 1 and r1 = 1
2 , Figure 1 specifies a unique contact structure

ξg for every g because the contact surgery coefficients are of the form 1
k , k ∈ Z.

Denote the resulting contact 3–manifold by (Yg, ξg). It is a simple exercise to
verify that Yg is an S1–bundle over a genus–g surface with Euler number
e(Yg) = 2g .

Proposition 2.6 The contact Ozsváth–Szabó invariant of (Yg, ξg) is nonzero.

Proof Let (Y ′
g , ξ′g) be the contact 3–manifold given by Figure 1 with k =

1 and r1 = 1, and perform contact (+1)–surgery on a pushoff of the r1–
framed Legendrian knot K . According to the algorithm described in Section 1,
the resulting contact structure is (Yg, ξg). Note that Y ′

g is diffeomorphic to
#2g(S

1×S2). Combining Lemma 2.5 and Corollary 2.4 we conclude c(Y ′
g , ξ′g) 6=

0. In fact, (Y ′
g , ξ

′
g) must be the only tight, hence Stein fillable contact structure

on #2g(S
1 × S2). The cobordism given by the handle attachment induced by

the surgery along K can be easily identified (after reversing orientation) with
the cobordism appearing in Lemma 2.1, therefore the non–vanishing of c(Y ′

g , ξ′g)
implies, by Theorem 2.3, that c(Yg, ξg) 6= 0.

Remark 2.7 The tightness of the contact structures ξg was first proved by
Honda [9] (see also [13]).

Proof of Theorem 1.2 Let K1,K2 denote two Legendrian pushoffs of the
r1–framed Legendrian unknot K of Figure 1. According to the algorithm of
Section 1 all contact structures of Figure 1 can be given as negative contact
surgery on the diagram obtained erasing the ri–framed circles (i = 2, . . . , k)
from Figure 1 and performing contact (+1)–surgeries on K,K1 and contact

r1

1−2r1
–surgery on K2 . (Here we use the assumption ri < 0 for i = 2, . . . , k .)

Since r1 ≥ 1
2 , the surgery coefficient of K2 is also negative (or infinity), therefore

all the contact structures defined by Figure 1 (obeying the restrictions on the
ri ) can be given as Legendrian surgery on (Yg, ξg) for an appropriate g ≥ 1.
Since negative contact surgery can be replaced by a sequence of Legendrian
surgeries, Corollary 2.4 and Proposition 2.6 imply that these contact structures
have non–vanishing contact Ozsváth–Szabó invariants, hence by Theorem 2.2
they are tight. This concludes the proof of the theorem.
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3 The proof of non–fillability

Suppose that (Y, ξ) is given by a contact (±1)–surgery diagram and denote the
corresponding 4–manifold by X . Then, the Spinc structure of the 0–handle of
X extends to a Spinc structure s ∈ Spinc(X) with the property that s|∂X = tξ

and c1(s) evaluates on a homology class [ΣK ] given by an oriented surgery curve
K as rot(K). This statement was proved for (−1)–surgeries by Gompf [8] —
in this case the complex structure of D4 also extends over the 2–handles —
and in [13] for the case of (+1)–surgeries; see also [3].

Consider the diagram obtained from Figure 1 for k = 1 and r1 = α+1
2α+1 ; this

diagram represents contact structures on M(g, 2g; (α, 1)). According to the
algorithm outlined in Section 1, these contact structures are also representable
by replacing the Legendrian knot K with three Legendrian pushoffs K1,K2,K3

having contact surgery coefficients (+1), (+1) and −(α+1), respectively. This
last diagram can be turned into a contact (±1)–surgery diagram by stabilizing
the Legendrian curve K3 α times. There are (α + 1) different ways to do this.
Choose an orientation for K3 and define ξr as the result of the surgery along
the diagram with rot(K3) = r . (Notice that r ≡ α (mod 2) and −α ≤ r ≤ α.)
The above observation regarding Spinc structures yields:

Lemma 3.1 Let s ∈ Spinc(X) be the unique Spinc structure such that

〈c1(s), [ΣK3
]〉 = r and 〈c1(s), [Σj ]〉 = 0 on the 2–homology classes defined

by the remaining surgery circles. Then, the restriction of s to ∂X is the Spinc

structure tξr
∈ Spinc(M(g, 2g; (α, 1))) induced by the contact structure ξr .

Recall that, since X is simply connected, the Chern class c1(s) uniquely spec-
ifies the Spinc structure s ∈ Spinc(X). For M = M(g, 2g; (α, 1)) let µ ∈
H1(M ; Z) denote the homology class of the normal circle to the knot K3 — or,
equivalently, the homology class represented by the singular fiber of the Seifert
fibration. Then, Lemma 3.1 implies that

c1(ξr) = c1(tξr
) = r PD(µ).

In particular, since the order of µ in H1(M ; Z) is equal to 2gα + 1, tξr
is a

torsion Spinc structure for all r .

Proof of Theorem 1.3 By the classical Dirichlet’s theorem on primes in
arithmetic progressions, there are infinitely many primes of the form 2gm + 1
as m varies among the natural numbers. Therefore, we can choose natural
numbers a1, . . . , an so that

p1 = 2ga1 + 1, . . . , pn = 2gan + 1

Algebraic & Geometric Topology, Volume 4 (2004)
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are distinct odd primes. Define a so that

2ga + 1 = p1 · · · pn.

If a is odd, let α = a, otherwise let α = a(2g+1)+1. With this choice 2gα+1
is divisible by p1 · · · pn and α is odd. Therefore,

α ≡ pi mod 2, i = 1, . . . , n,

and we can choose the stabilizations of K3 so that c1(ξi) = piµ. This implies
that the order of c1(ξi) is 2gα+1

pi
, and since the pi ’s are all distinct, the orders

of the c1(ξi)’s are all different for i = 1, . . . , n. This shows that the contact
structures ξi , i = 1, . . . , n, are pairwise non–isomorphic, concluding the proof.

The proof of Theorem 1.4 will follow the approach used in [10] and further
exploited in [12]. Fix a Seifert fibration

M = M(g, n; (α1, β1), . . . , (αk, βk)) → Σg

over the orbifold Σg . The surface Σg can be thought of as the underlying space
of an orbifold with k marked points of multiplicities α1, . . . , αk . An orbifold
line bundle L → Σg can be pulled back to an honest line bundle L → M with
torsion first Chern class, and if the invariants αi are mutually coprime, all line
bundles on M with torsion first Chern class arise in this way. An orbifold line
bundle L → Σg can be described by its Seifert data (c; γ1, . . . , γk), where c is
the background degree of L and the numbers γi determine the orbifold bundle
around the orbifold points of Σg (see [14, §2] for further details). For example,
the orbifold canonical bundle KΣ has Seifert data (2g − 2;α1 − 1, . . . , αk − 1).
The degree of the orbifold line bundle L is equal by definition to the rational
number

deg(L) = b +
k∑

i=1

γi

αi
.

For more about Seifert fibered three–manifolds and line bundles on them see [14,
16].

Theorem 3.2 [14] The moduli space of Seiberg–Witten solutions for the

Seifert fibered 3–manifold M = M(g, 2g; (α, 1)) and Spinc structure tξr
∈

Spinc(M) contains only reducible solutions, for all of which the associated Dirac

operator has trivial kernel.
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Proof We need to express the Spinc structure tξr
in the coordinates used in

[14] and then appeal to the description of the Seiberg–Witten moduli spaces on
Seifert fibered 3–manifolds as given in [14, Theorem 5.19]. In that paper the
Spinc structures are parametrized by their twisting relative to the canonical
Spinc structure tcan induced by any tangent 2–plane field transverse to the
S1–fibration. As explained in [14, §3], the orbifold disk bundle associated to
M can be desingularized to a smooth complex surface X with ∂X = M . The
group H2(X; Z) is generated by the classes of a genus–g smooth complex curve
C and a smooth rational curve R, satisfying:

C · C = 2g, C · R = 1, R · R = −α.

The restriction to ∂X of the complex bundle TX is isomorphic to the pull–back
of

C ⊕ K−1
Σ → Σg,

where C is the trivial complex line bundle and KΣ is the orbifold canonical
bundle of Σg .

Therefore, denoting by sC the Spinc structure on X induced by the complex
structure, we have sC|∂X = tcan (cf. text following [14, Lemma 5.10]). The
adjunction formula gives:

〈c1(X), C〉 = 2, 〈c1(X), R〉 = 2 − α.

Thus, if Γr ∈ H2(X; Z) is a cohomology class satisfying

〈Γr, C〉 = −1 〈Γr, R〉 =
1

2
(r + α − 2),

setting sr = sC + Γr , we have sr|∂X = tξr
. This implies:

tξr
= tcan + Γr|∂X = tcan +

1

2
(r − α − 2)PD(µ). (3.1)

Now [14, Theorem 5.19] can be restated in the following form, more convenient
for our present purposes. Fix a torsion Spinc structure

tk = tcan + k PD(µ) ∈ Spinc(M).

Let Lk → Σg be an orbifold line bundle which pulls back to a line bundle Lk →
M with c1(Lk) = k PD(µ). Then, the moduli space Mk of Seiberg–Witten
solutions on M in the Spinc structure tk has a component of reducible solutions
(homeomorphic to the Jacobian torus of Σg ), and by [14, Corollary 5.17] the
associated Dirac operators have trivial kernels if and only if either α is even or

deg Lk 6∈
1

2
deg KΣ + (2g +

1

α
) · Z ⊂ Q. (3.2)
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In addition, Mk contains irreducible solutions if and only if there exists some
orbifold line bundle L → Σg satisfying:

deg L ∈ [0,deg KΣ] \ {
1

2
deg KΣ}, deg L ∈ deg Lk + (2g +

1

α
) · Z. (3.3)

In view of (3.1), in our case we have:

k =
1

2
(r − α − 2) ≡ 2gα +

1

2
(r − α) mod (2gα + 1).

Therefore, since r ∈ [−α,α],

deg KΣ = 2g − 1 −
1

α
< deg Lk = 2g +

1

2α
(r − α) < 2g +

1

α
.

It follows that Lk satisfies (3.2) and there is no orbifold line bundle L →
Σg satisfying (3.3). Hence, Mk consists entirely of reducible solutions with
associated Dirac operators having trivial kernels.

Corollary 3.3 Let (W,ω) be a weak filling of the contact 3–manifold (M, ξr).
Then, b+

2 (W ) = 0 and the homomorphism H2(W ; R) → H2(∂W ; R) induced

by the inclusion ∂W ⊂ W is the zero map.

Proof The statement follows from Theorem 3.2 in exactly the same way as [12,
Proposition 4.2] follows from [12, Lemma 4.1].

Proof of Theorem 1.4 Let ξr be one of the contact structures on M =
M(g, 2g; (α, 1)) given by Figure 1. We shall argue as in [12, Theorem 1.1],
therefore we shall need to find a 4–manifold Z = Z(g, 2g; (α, 1)) with b+

2 (Z) =
0, ∂Z = −M and such that the intersection form QZ does not embed into the
diagonal lattice Dm = (Zm,m(−1)) for any m.

We shall use a construction similar to the one given in [12, Proposition 4.4].
To this end, fix g, d ∈ N with d(d + 1) ≤ 2g ≤ (d + 1)2 − 2, let C ⊂ CP2 be

a smooth complex curve of degree d + 2, and let ĈP2 be the blow–up of CP2

at (d + 2)2 − 2g − 1 distinct points of C . Denote by Ĉ ⊂ ĈP2 the proper

transform of C . Let C̃ ⊂ ĈP2 be a smooth, oriented surface obtained by

adding g− 1
2d(d+ 1) fake handles to Ĉ . Blow up ĈP2 at one more point of C̃ ,

then blow up repeatedly at distinct points of the last exceptional sphere until
the corresponding proper transform in the resulting rational surface X is an
embedded sphere S with self–intersection −α. Define Z as the complement in
X of a tubular neighborhood of C̃ ∪ S .
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The group H2(X; Z) is generated by classes h, e1, e2, . . . , et , where h corre-
sponds to the standard generator of H2(CP2; Z) and the ei ’s are the classes of
the exceptional curves. Let q be a positive integer such that 2q ≤ t, and define
Λq = (Hq, Qq) as the intersection lattice given by the subgroup

Hq = 〈e1 − e2, e2 − e3, . . . , e2q−1 − e2q, h − e1 − e2 − . . . − eq〉 ⊂ H2(X; Z)

together with the restriction Qq of the intersection form QX .

As in the proof of [12, Proposition 4.4], the inequality 2g ≤ d(d + 2) − 1
guarantees that 2(d + 2) ≤ t, hence the lattice Λd+2 = (Hd+2, Qd+2) embeds
into (H2(Z; Z), QZ). Since by [12, Lemma 4.3] Λd+2 = (Hd+2, Qd+2) does not
embed into any diagonal lattice Dm , the same holds for (H2(Z; Z), QZ).

By Corollary 3.3, a filling (W,ω) would give rise to a negative definite closed
4–manifold V = W ∪ Z with nonstandard intersection form, contradicting
Donaldson’s famous diagonalizability result [4].

4 Concluding remarks

With a little more work, essentially the same proof as the one given in Section 3
yields non–fillability for all structures defined by Figure 1 on M(g, n; (α, β)) and
satisfying

d(d + 1) ≤ 2g ≤ n ≤ d(d + 2) − 1

for g ≥ 1 and some integer d. In fact, a slightly more general argument in the
computation of the Spinc structures allows one to check that the statement of
Theorem 3.2 still holds.

In another direction, Theorem 1.4 generalizes to all M(g, n; (α, 1)) with n ≥
2g > 0. In this case, one needs to consider Figure 1 for k = 1 and

r1 =
(n − 2g + 1)α + 1

(n − 2g + 2)α + 1
.

According to the algorithm described in Section 1, the corresponding contact
surgery can be expressed as a contact (±1)–surgery by replacing the r1–framed
unknot K with two pushoffs of K , n − 2g pushoffs of a stabilization K± of
K , and one pushoff of K± stabilized α − 1 times. Depending on the choice of
stabilization of K , the result looks either like Figure 4 or Figure 5. Denoting
by r the rotation number of the last knot (after a choice of orientation), this
gives a contact structure ξ+

r for every −α < r ≤ α and a contact structure ξ−r
for every −α ≤ r < α (and r ≡ α mod 2 in both cases).
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1
2(α − r) 1

2 (α + r) − 1

Figure 4: The contact structures ξ+
r

A computation as in Section 3 gives

tξ±r
= tcan +

1

2
(r − α − 2 ± α(n − 2g) − α(n − 2g)) PD(µ).

This already shows that the contact structures defined on M(g, n; (α, 1)) by
Figure 1 are all distinct up to homotopy, providing further evidence for Con-
jecture 1.

One can also compute the 3–dimensional invariant d3([ξ
±
r ]) of the homotopy

class [ξ±r ] of tangent 2–plane fields containing the contact structure ξ±r (as
discussed in [13]), obtaining:

d3([ξ
±
r ]) =

1

4(nα + 1)
((n − 2g)2α − r2n ± 2(n − 2g)r) +

2g − 1

2
.

On the other hand, the statement of Theorem 3.2 holds for all contact struc-
tures defined on M = M(g, n; (α, 1)) by Figure 1 for n ≥ 2g . Therefore, the
argument of [11, Theorem 2.1] and [13, Theorem 4.1] applies, showing that
there is a unique homotopy class Ξ(tξ±r

) of 2–plane fields inducing the Spinc

structure tξ±r
and which might potentially contain a fillable contact structure.

The proof of this observation rests on the fact that, assuming Theorem 3.2 to
hold, the 3–dimensional invariant of Ξ(tξ±r

) is determined by some topological
terms plus an η–invariant of (M, tξ±r

) as follows.

By the formula preceding [15, Section 3] (when ρ(L) 6= 0, which always holds
in our case), the dimension d1 of the Seiberg–Witten moduli space with fixed
boundary limit can be expressed as

d1 = d3(Ξ(tξ±r
)) + ωred(tξ±r

) − (2g − 1),
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1
2 (α − r) − 1 1

2(α + r)

Figure 5: The contact structures ξ−r

where d3(Ξ(tξ±r
)) is the 3–dimensional invariant of Ξ(tξ±r

) and ωred(tξ±r
) is

given, in the notations of [15], by the formula:

2g − 1

2
−

l − sign(l)

4
+ lρ±(1 − ρ±) − ρ± +

1 − α

2α
(1 − 2ρ±) + S(1, α)

+Fρ±(α, 1, γ) + 2Sρ±(1, α, γ).

In our situation we have:

l = n +
1

α
, sign(l) = 1, ρ± =

α(n ∓ (n − 2g)) − r + 1

2nα + 2
,

γ =
1

2
(r + α − 2), S(1, α) =

α2 + 2

12α
−

1

4
, Fρ±(α, 1, γ) =

γ + ρ±

α
,

Sρ±(1, α, γ) =
α2 − 3α(1 + 2γ) + 2(1 + 3γ + 3γ2)

12α
.

This shows that

ωred(tξ±r
) = −

1

4(nα + 1)
((n − 2g)2α − r2n ± 2(n − 2g)r) +

2g − 1

2
.

On the other hand, by the argument of [11, Theorem 2.1] we have

d1 = −1 − b1(M) = −1 − 2g,

therefore
d3(Ξ(tξ±r

)) = −ωred(tξ±r
) − 2,

yielding

d3(Ξ(tξ±r
)) =

1

4(nα + 1)
((n − 2g)2α − r2n ± 2(n − 2g)r) −

2g + 3

2
.
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Since
d3([ξ

±
r ]) − d3(Ξ(tξ±r

)) = 2g + 1 6= 0,

none of the contact structures defined by Figure 1 on M(g, n; (α, 1)) (n ≥ 2g >
0) are symplectically fillable.

We believe that the same idea should work for all the tight contact structures
given by Figure 1 (with the constraints (1.1)). The verification of non–fillability,
however, seems to be much more tedious in the general case. The difficulty is
number–theoretic in nature: it is hard to see that d3([ξ]) 6= d3(Ξ(tξ)), because
the formulas involve sums which are hard to write in closed form.
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[18] P. Ozsváth and Z. Szabó, Holomorphic disks and three–manifold invariants:

properties and applications, to appear in Ann. Math., arXiv:math.SG/0105202

[19] P. Ozsváth and Z. Szabó, Holomorphic triangles and invariants of smooth

4–manifolds, arXiv:math.SG/0110169
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Università di Pisa

I-56127 Pisa, Italy

and
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