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Abstract Using a knot concordance invariant from the Heegaard Floer
theory of Ozsváth and Szabó, we obtain new bounds for the Thurston–
Bennequin and rotation numbers of Legendrian knots in S3 . We also apply
these bounds to calculate the knot concordance invariant for certain knots.
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1 Introduction

Let K be a Legendrian knot of genus g in the standard tight contact structure
ξstandard on S3 . It is well-known that the Thurston–Bennequin and rotation
numbers of K satisfy the Thurston–Bennequin inequality

tb(K) + |r(K)| ≤ 2g − 1.

Although sharp in some cases (e.g. right-handed torus knots), in general this
bound is far from optimal. Better bounds can be obtained using Kauffman and
HOMFLY polynomials [FT], [Ta]. The Kauffman polynomial bounds are easily
seen to be sharp for left-handed torus knots; they also allow one to determine
the values of the maximal Thurston–Bennequin number for all two-bridge knots
[Ng].

In this paper we use the Ozsváth–Szabó knot concordance invariant τ(K) in-
troduced in [OS5], [Ra] to establish a new bound for the Thurston–Bennequin
and the rotation number of a Legendrian knot. We have

Theorem 1 For a Legendrian knot K in (S3, ξstandard)

tb(K) + |r(K)| ≤ 2τ(K) − 1.
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For a large class of knots (“perfect” knots [Ra]), τ(K) = −σ(K)/2, where
σ(K) is the signature of the knot (with the sign conventions such that the
right-handed trefoil has signature −2). All alternating knots are perfect [OS4],
which gives

Corollary 1 If K ⊂ (S3, ξstandard) is an alternating Legendrian knot, then

tb(K) + |r(K)| ≤ −σ(K) − 1.

In particular, for alternating knots with σ(K) > 0, the Thurston–Bennequin

inequality is not sharp, and tb(K) can never be positive.

Note that this bound is usually not sharp even for two-bridge knots and knots
with few crossings (as can be seen from the calculations in [Ng]).

It is shown in [OS5] that |τ(K)| ≤ g∗(K), where g∗(K) is the four-ball genus
of K . We therefore recover a bound due to Rudolph [Ru]:

Corollary 2 tb(K) + |r(K)| ≤ 2g∗(K) − 1.

We prove Theorem 1 by examining the Heegaard Floer invariants of contact
manifolds obtained by Legendrian surgery. The Heegaard Floer contact invari-
ants were introduced by Ozsváth and Szabó in [OS1]; to an oriented contact
3-manifold (Y, ξ) with a co-oriented contact structure ξ they associate an el-

ement c(ξ) of the Heegaard Floer homology group ĤF (−Y ), defined up to
sign. Conjecturally, the Heegaard Floer contact invariants are the same as the
Seiberg-Witten invariants of contact structures constructed in [KM]. The def-
inition of c(ξ) uses an open book decomposition of the contact manifold; the
reader is referred to [OS1] for the details.

Acknowledgements I am grateful to Peter Kronheimer and Jake Rasmussen
for illuminating discussions.

2 The Invariant τ(K) and Surgery Cobordisms

In this section we collect the relevant results of Ozsváth, Szabó, and Rasmussen.

For a knot K ⊂ S3 , the invariant τ(K) is defined via the Floer complex of the
knot; we will need its interpretation in terms of surgery cobordisms [OS5].

We use notation of [OS3]. Consider the Heegaard Floer group ĤF (Y ) of a

3-manifold Y , and recall the decomposition ĤF (Y ) =
⊕
s∈Spinc(Y ) ĤF (Y, s).
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As described in [OS2], a cobordism W from Y1 to Y2 induces a map on Floer
homology. More precisely, a Spinc cobordism (W, s) gives a map

F̂W,s : ĤF (Y1, s|Y1) → ĤF (Y2, s|Y2).

For a knot K in S3 and n > 0, let S3
−n(K) be obtained by −n-surgery on K ,

and denote by W the cobordism given by the two-handle attachment. The
Spinc structures on W can be identified with the integers as follows. Let
Σ be a Seifert surface for K ; capping it off inside the attached two-handle,
we obtain a closed surface Σ̂ in W . Let sm be the Spinc -structure on W
with 〈c1(sm), [Σ̂]〉 − n = 2m. Accordingly, the Spinc structures on S3

−n(K)
are numbered by [m] ∈ Z/nZ. The cobordism (W, sm) induces a map from

ĤF (S3) to ĤF (S3
−n(K), [m]); it will be convenient to think of (W, sm) as

a cobordism from (−S3
−n(K), [m]) to −S3 , and consider the associated map

F̂n,m : ĤF (−S3
−n(K), [m]) → ĤF (−S3). Now, suppose that n is very large.

By the adjunction inequality, the map F̂n,m vanishes for large m; moreover, it
turns out that its behavior is controlled by the knot invariant τ(K):

Proposition 1 [OS5, Ra] For all sufficiently large n, the map F̂n,m vanishes

when m > τ(K), and is non-trivial when m < τ(K).

Note that for m = τ(K) the map F̂n,m might or might not vanish, depending
on the knot K .

We’ll need two more properties of τ(K):

Proposition 2 [OS5]

1) If the knot K is the mirror image of K , then τ(K) = −τ(K).

2) If K1#K2 is the connected sum of two knots K1 and K2 , then τ(K1#K2) =
τ(K1) + τ(K2).

3 Contact Invariants and Legendrian Knots

In this section we use properties of the contact invariants to prove Theorem 1.

Let the contact manifold (Y2, ξ2) be obtained from (Y1, ξ1) by Legendrian
surgery, and denote by W the corresponding cobordism. As shown in [LS],
the induced map F̂W , obtained by summing over Spinc structures on W , re-
spects the contact invariants; we shall need a slightly stronger statement for
the case of Legendrian surgery on S3 , using the canonical Spinc structure only.
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The canonical Spinc structure k on the Legendrian surgery cobordism W from
S3 to S3

−n(K) (or, equivalently, from −S3
−n(K) to −S3 ) is induced by the

Stein structure and determined by the rotation number of K ,

〈c1(k), [Σ̂]〉 = r, (1)

where Σ̂ is the surface obtained by closing up the Seifert surface of K in the
attached Stein handle [Go]. Let s be the induced Spinc structure on −S3

−n(K);

s is the Spinc structure associated to ξ , and c(ξ) ∈ ĤF (−S3
−n(K), s).

Proposition 3 (cf. [LS]) Let (W, k) be a cobordism from (S3, ξstandard) to

(S3
−n(K), ξ) induced by Legendrian surgery on K , and let

F̂W,k : ĤF (−S3
−n(K), s) → ĤF (−S3)

be the associated map. Then

F̂W,k(c(ξ)) = c(ξstandard).

Since c(ξstandard) is a generator of Z = ĤF (S3), it follows that the map F̂W,k

is non-trivial.

Proof of Theorem 1 Since changing the orientation of the knot changes the
sign of its rotation number, it suffices to prove the inequality

tb + r ≤ 2τ(K) − 1. (2)

We may also assume that tb(K) is a large negative number: we can stabilize the
knot (adding kinks to its front projection) to decrease the Thurston–Bennequin
number and increase the rotation number while keeping tb + r constant.

Writing −n = tb − 1 for the coefficient for Legendrian surgery and setting
r − n = 2m, by (1) we can identify the map F̂W,k , induced by Legendrian

surgery, with F̂n,m in the notation of Section 2. By Proposition 3, this map
does not vanish, so Proposition 1 implies that m ≤ τ(K), which means that

tb(K) + r(K) ≤ 2τ(K) + 1.

To convert +1 into −1, we apply this inequality to the knot K#K . Recalling
that tb(K1#K2) = tb(K1) + tb(K2) + 1 and r(K1#K2) = r(K1) + r(K2) and
using additivity of τ , we get 2tb(K) + 2r(K) + 1 ≤ 4τ(K) + 1. Then tb(K) +
r(K) ≤ 2τ(K), and (2) now follows, since tb(K)+ r(K) is always odd (because
the numbers tb(K) − 1 = Σ̂ · Σ̂ and 〈c1(k), [Σ̂]〉 = r have the same parity).
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Example 1 Let K be a (p, q) torus knot. By [OS5], τ(K) = 1
2(p−1)(q−1) =

g(K), so Theorem 1 reduces to the Thurston–Bennequin inequality, which is
actually sharp in this case. For a (−p, q) torus knot K , τ(K) = −1

2(p −
1)(q − 1), and Theorem 1 gives tb(K) + |r(K)| ≤ −pq + p + q − 2. Although
stronger than the Thurston–Bennequin inequality, this bound is unfortunately
not sharp: it follows from the Kauffman and HOMFLY polynomial bounds that
tb(K) + |r(K)| ≤ −pq (and the latter bound is sharp).

4 An Application: calculating τ(K)

In this section we use Theorem 1 to determine the invariant τ(K) for certain
knots; essentially, we just give a different proof for some results of [OS5] and
[Li].

Indeed, a Legendrian representative of K and Theorem 1 allows us to find a
lower bound for τ(K). An upper bound is given by the unknotting number
of the knot, since |τ(K)| ≤ g∗(K) ≤ u(K). While u(K) is normally hard to
determine, we only need to look at the unknotting number for some diagram
of K to find an upper bound for τ(K).

Example 2 [OS5, Li] We determine τ(K) for the knot K = 10139 , shown
on Fig. 1. Changing the four crossings circled on the diagram, we obtain an
unknot. Therefore, τ(K) ≤ u(K) ≤ 4, so τ(K) ≤ 4. For a lower bound, look

Figure 1: The knot 10139 . Changing the four circled crossings, we obtain an unknot.

at the front projection of the (oriented) Legendrian representative of 10139 on
Fig. 2. The Thurston–Bennequin and the rotation number can be easily found,
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Figure 2: A Legendrian representative of 10139

since

tb(K) = writhe(K) − #(right cusps),

r(K) = #(upward right cusps) − #(downward left cusps)

for an oriented front projection. We compute tb = 6, r = 1, so 2τ(K)− 1 ≥ 7,
and τ(K) ≥ 4. It follows that τ(K) = 4.

Figure 3: The knot −10145 . Changing the two circled crossings, we obtain an unknot.

Example 3 [Li] Using the same idea, we find τ(K) for the knot K = −10145 ,
shown on Fig. 3. This knot can be unknotted by changing the two circled
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crossings, so τ(K) ≤ u(K) ≤ 2. On the other hand, for the Legendrian rep-
resentative shown on Fig. 4, we compute tb(K) = 2, r(K) = 1. Accordingly,
2τ(K) − 1 ≥ 3; it follows that τ(K) = 2.

Figure 4: A Legendrian representative of −10145

Theorem 2 [Li] Let K be a knot which admits a Legendrian representive

with positive Thurston–Bennequin number, and let Kn be its n-th iterated

untwisted positive Whitehead double. Then τ(Kn) = 1.

We recall that an untwisted positive Whitehead double for a knot K ⊂ S3 is
constructed by connecting the knot K and its 0-push-off K ′ with a cusp; here
the 0-push-off is meant to be a copy of K , pushed off in the direction normal
to a Seifert surface for K .

Proof Clearly, for the Whitehead double of any knot, we can obtain an unknot
by changing one of the two crossings in the cusp connecting the two copies of the
knot. Then the unknotting number for a Whitehead double cannot be greater
than one. Now, by a theorem of Akbulut and Matveyev [AM] the knot Kn

has a Legendrian representative Ln with tb(Ln) = 1 provided that the original
knot K has a Legendrian representive with the positive Thurston-Bennequin
number. Since tb(Ln) + |r(Ln)| ≤ 2τ(Kn) − 1, and τ(Kn) ≤ u(K) ≤ 1, it
follows that τ(Kn) = 1.
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