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Abstract For line arrangements in P2 with nice combinatorics (in partic-
ular, for those which are nodal away the line at infinity), we prove that the
combinatorics contains the same information as the fundamental group to-
gether with the meridianal basis of the abelianization. We consider higher
dimensional analogs of the above situation. For these analogs, we give
purely combinatorial complete descriptions of the following topological in-
variants (over an arbitrary field): the twisted homology of the complement,
with arbitrary rank one coefficients; the homology of the associated Milnor
fiber and Alexander cover, including monodromy actions; the coinvariants
of the first higher non-trivial homotopy group of the Alexander cover, with
the induced monodromy action.
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1 Introduction

Let A = {H0, ...,Hn} be a line arrangement in the complex projective plane
P2 with complement M = M(A) = P2 \ ∪n

i=0Hi , and fundamental group π =
π1(M). One has the following known result.

Theorem 1.1 The following statements are equivalent.

(i) A has only double points.

(ii) The fundamental group π is abelian.

The implication (i) =⇒ (ii) goes back to Zariski [40], Chapter VIII, section 2
(see especially his comments on the proof of Theorem 1) and to his attempt to
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use it in the proof of his conjecture on the commutativity of the fundamental
group of the complement of any nodal curve. See Deligne [5] and Fulton [14]
for a proof of this conjecture, and Dimca [6, Corollary (4.3.18)] for details on
Zariski’s approach. Concerning this implication, note that Hattori [15] proves
even more, namely that the complement M is homotopy equivalent to the 2-
skeleton of the standard n-dimensional real torus Tn .

The implication (ii) =⇒ (i) is easy. Assume that A has a point p of multi-
plicity k > 2 and let B be the subarrangement of A consisting of all the lines
passing through p. Then the inclusion M(A) → M(B) induces an epimor-
phism at the level of fundamental groups and π1(M(B)) is a free group Fk−1

on k − 1 generators. Indeed, one has M(B) = (C \ {k − 1 points})× C, hence
π1(M(B)) = Fk−1 . This implies that π = π1(M(A)) is not abelian, actually,
not even nilpotent.

Note also that the implication (ii) =⇒ (i) is specific to line arrangements. In
fact, there are many non-nodal curves C ⊂ P2 with π1(P

2 \ C) commutative,
see for such examples [6, (4.3.8)].

In the first part of this paper we investigate to what extent the above Theorem
1.1 still holds when we consider affine nodal arrangements in the plane C2 . In
other words, we assume that H0 is the line at infinity L∞ = P2 \ C2 and we
ask that A has only double points in the affine plane C2 . If there is just one
multiple point on the line at infinity (i.e. when all the lines in A belong to
the same pencil of lines in P2 ), then M(A) is of a very special type, namely a
product (C \ {n points}) × C, which is very easy to treat as an exercise.

In the sequel we assume that there are exactly r ≥ 2 multiple points on the
line at infinity H0 , and that they are of multiplicities m1 + 1,...,mr + 1. In
this situation we say that A is split solvable of type m = (m1,m2, ...,mr). The
arrangements having this simple type of combinatorics belong to the hypersolv-
able class introduced by Jambu and Papadima, see [18, p.1142]. The type m

determines the combinatorics of the arrangement A, i.e. its intersection lattice
L(A), defined as in [30]. Here is a simple way to think about the type m:
there are exactly r directions for the lines in the affine arrangement in C2 and
there are exactly mj parallel lines having the j -th direction as their common
direction, for any j = 1, ..., r. Requiring only double intersection points, for the
m1 + ... + mr affine lines in C2 , determines then the lattice.

The ideal generalization of Theorem 1.1 would be that the following data are
equivalent (i.e. they determine each other):

(I) the combinatorics of A as described by m;
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(II) the fundamental group π = π1(M(A)).

Such a result would be quite interesting, since in general it is known that the
combinatorics does not determine the fundamental group of a line arrange-
ment, see Rybnikov [36]. However, such a straightforward generalization is not
true. Indeed, M. Falk has produced in [12, p.146-147] an example of two line
arrangements A1 and A2 such that A1 is split solvable of type (1, 2, 2), M(A1)
is homotopy equivalent to M(A2), but A1 and A2 are combinatorially distinct.

To state our first result we need some definitions. We assume from now on
that all arrangements are ordered, i.e. they come with a numbering of their hy-
perplanes. All complex varieties are oriented using the corresponding complex
orientations.

The first definition was systematically investigated by Papadima in [32], in
analogy with classical knot theory.

Definition 1.2 Two arrangements A = {H0, ...,Hn} and B = {H0, ...,Hn}
in the same ambient projective space PN are said to have the same oriented

topological type (notation A ≈ B) if there is an orientation-preserving home-
omorphism f : PN → PN , inducing for all k = 0, ..., n orientation-preserving
homeomorphisms f |Hk : Hk → Hk .

The second definition we need is the following.

Definition 1.3 Let G be a group whose abelianization Gab is free abelian of
finite rank. Then a 1-marking of G is a choice of an ordered basis for Gab .
If G and G′ are two 1-marked groups, we say that G and G′ are 1-marked

isomorphic if there is a group isomorphism φ : G → G′ preserving in the
obvious sense the two markings. Notation: G ≈1 G′ .

Example 1.4 If G = π = π1(M(A)) is the fundamental group of an ordered
projective arrangement A = {H0, ...,Hn}, then the meridians {x1, ..., xn} give
a geometric 1-marking for Gab = H1(M(A), Z). Here xi is the homology class
of a small loop γi going in the positive direction around the hyperplane Hi .
The fundamental group of an ordered projective arrangement is always in this
paper endowed with this geometric 1-marking.

Moreover, it is known that A ≈ B implies π1(M(A)) ≈1 π1(M(B)) with φ = f♯ ;
see Lemma 2.7 from [32].
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Remark 1.5 If G and G′ are two finitely presented groups, there is no al-
gorithm to decide whether they are or not isomorphic. However, if G and G′

have in addition only commutator relations (which is the case for π1(M(A))),
then there is an algorithmic obstruction theory for an analogous 1,2–marked
isomorphism problem, see Papadima [32, Section 4]. Moreover, this reduces to
the above ≈1–problem, when G and G′ are fundamental groups of projective
arrangements with the same combinatorics, see [32, Remark 4.7]. The second
obstruction in this sense plays a key role in Rybnikov’s work [36].

Now we can state our first result. For a type m = (m1,m2, ...,mr), consider the
projective space Pr with coordinates z0, z1, ..., zr and the arrangement Â(m)
therein given by

z0(z1 − z0)(z1 − 2z0) · · · (z1 −m1z0)(z2 − z0) · · · (z2 −m2z0) · · · (zr −mrz0) = 0.

Here the hyperplanes in Â(m) inherit the order of the corresponding linear
factors in the above product. We set A(m) = Â(m)∩U , where U is a general
2-plane in Pr , which we identify to P2 . It is obvious that the arrangement A(m)
is split solvable of type m and that M(Â(m)) is isomorphic to the product

(C \ {m1 points}) × · · · × (C \ {mr points}).
In particular, Â(m) is aspherical. Note also that the combinatorics of A(m)
is nice, in the sense of Jiang–Yau [20, Definition 3.2]; see § 2.7.

It turns out that the appropriate generalization of Theorem 1.1 actually holds
for an arbitrary nice combinatorics.

Theorem 1.6 Let A and B be line arrangements in P2 , with B nice. The
following are equivalent.

(i) L(A) = L(B) (i.e. they have the same combinatorics);

(ii) A ≈ B (i.e. they have the same oriented topological type);

(iii) M(A) ∼ M(B) (i.e. their complements are homeomorphic);

(iv) π1(M(A)) ≈1 π1(M(B)) (i.e. their fundamental groups are 1–marked
isomorphic).

The implication (iv) ⇒ (i), which corresponds to (ii) ⇒ (i) in Zariski’s classical
set-up from Theorem 1.1, will be proved in the next section for arbitrary line
arrangements. In fact this will appear as a special case of a result on general hy-
perplane arrangements, which identifies precisely the amount of combinatorics
determined by the 1-marked fundamental group of the complement, see Theo-
rem 2.1. The other implications follow from results obtained by Jiang–Yau in
[19, 20]. Theorem 1.6 has the following consequence.
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Corollary 1.7 Let A be a line arrangement in P2 . The following are equiva-
lent.

(i) A has the same combinatorics as a split solvable arrangement of type
m = (m1,m2, ...,mr);

(ii) π1(M(A)) ≈1 F(m), where the product of free groups, F(m) = Fm1
×

· · · × Fmr , is endowed with the obvious 1-marking;

(iii) A ≈ A(m).

Following Zariski’s ideas, Oka and Sakamoto [28] gave a general condition for the
splitting of the fundamental group of the complement of a projective plane curve
as a direct product. This was used by Fan [13] to derive a sufficient condition (a
priori not combinatorial, but verified by the split solvable class) under which the
fundamental group of a line arrangement is a product of free groups. However,
Fan’s paper leaves the converse implication as an open question, see [13, p.290].

An important consequence of Zariski’s conjecture is that the fundamental group
of a nodal curve has a simple explicit description, involving only the degree list
of the irreducible components of the curve, see for instance [6]. This viewpoint
is pursued in the second part of our paper. More precisely, we extend the impli-
cation (i) =⇒ (ii) from Corollary 1.7 above to higher dimensional hyperplane
arrangements with simple combinatorics of split solvable type. We show that
not only the fundamental group, but also a lot of additional important topologi-
cal information on the complement can be explicitly described in combinatorial
terms. Such computations do not seem at all obvious, for an arbitrary nice
combinatorics.

Set M(m, s) := M(Â(m))∩U s , where U s ⊂ Pr is a generic s–plane, for 2 ≤ s ≤
r . Note that M(m, 2) = M(A(m)), and M(m, r) = M(Â(m)) = K(F(m), 1).
We will examine four topological invariants of M(m, s), in sections 3 and 4,
using tools from [10], [11].

In Section 3, we will look at twisted homology with rank one coefficients, and
Milnor fiber homology. Both topics are under current intense investigation in
arrangement theory. The important role played in singularity theory by the
homology of the Milnor fiber of a polynomial, together with the monodromy
action on it, can be traced back to Milnor’s seminal book [27]. For the im-
portance of twisted rank one homology in arrangement theory, and connexions
with hypergeometric integrals, see the book by Orlik–Terao [31].

The rank one local systems Lρ on M(m, s) are parametrized by group homo-
morphisms, ρ : F(m) → K∗ , where K is an arbitrary field. The computation of
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all Betti numbers of M(m, s) with coefficients in Lρ is carried out in Proposi-
tion 3.4. The result is purely combinatorial, in the sense that it depends only
on m, s, and on the subset of those indices i for which the restriction of ρ to
Fmi

is non-trivial.

The Milnor fiber F := f−1(1) of a homogeneous degree d polynomial mapping,
f : Cs+1 → C, is endowed with a geometric monodromy, induced by the diag-
onal action of the cyclic group of complex d–roots of unity on Cs+1 . Denote
by F (m, s) the Milnor fiber of the defining polynomial of the cone over the
arrangement Â(m) ∩ U s . Our main result in Section 3 is Theorem 3.7, where
we give a complete description of H∗(F (m, s), K), for an arbitrary field K, to-
gether with the KZd–module structure induced by the geometric monodromy
action. Since the result depends only on m and s, we deduce in particular that
H∗(F (m, s), Z) is torsion–free. This is to be compared to the examples found by
Cohen–Denham–Suciu in [2], where multiarrangements (i.e. arrangements de-
fined by non-reduced equations) with torsion in H1(F, Z) are constructed. Note
also that the torsion–freeness of H1(F, Z) in the arrangement (i.e. reduced) case
is still a major open question.

In Section 4, we examine the Alexander cover, E(m, s) → M(m, s). This is the
Z–cover of M(m, s) with fundamental group N(m) := ker (ν : π1(M(m, s)) =
F(m) → Z), where ν sends to 1 all generators of F(m). This definition mim-
icks a classical construction from the theory of Alexander invariants of knots
and links in S3 , see for instance Hillman’s book [16]. In singularity theory,
Alexander invariants were introduced and studied by Libgober, in a series of
papers starting with [22], see also [23], [24], [25], [26] as well as [9].

Our first main result in Section 4 is Theorem 4.2, where we give a complete
description of the graded KZ–module H∗(E(m, s), K) over an arbitrary field
K, only in terms of m and s.

Our second main result here is related to higher homotopy groups of Alexander
covers. Obviously, E(m, r) = K(N(m), 1) is aspherical. Assuming 2 ≤ s < r ,
it turns out that the first higher non-trivial homotopy group of E(m, s) is
πsE(m, s). We give a concrete estimate of its non-triviality, in the following
way. Let K be an arbitrary field. As is well-known, the N(m)–coinvariants,

(
πsE(m, s) ⊗ K

)
N(m)

,

have a natural KZ–module structure. We describe it completely, in Theo-
rem 4.4, again solely in terms of m and s. Finally, we note in Remark 4.5,
as a result of the aforementioned computation, that πsE(m, s) is not finitely
generated over ZN(m), in spite of the fact that additively

πsE(m, s) = πsM(m, s) ,
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and the latter is known to have a finite free resolution over ZF(m), see [10].

Remark 1.8 The statements (i) and (ii) in Theorem 1.1 are equivalent to the
following.

(iii) The second Betti number of M is maximal in the set of second Betti
numbers of complements of arrangements of n + 1 lines in P2 . Moreover
this maximum is given by b2(M) =

(n
2

)
.

The equivalence of (i) and (iii) follows from the description of the cohomology of
the complement of the associated central arrangement A′ in C3 given by Orlik
and Solomon in [29], since the non-nodal points p correspond exactly to non-
trivial relations in H2(M(A′)). A further generalization to curve arrangements
will be given elsewhere.

2 Combinatorics and 1–marked groups

This section is devoted to the proof of Theorem 1.6 and Corollary 1.7. Our key
result in this direction is the following.

Theorem 2.1 Let A and B be arbitrary projective arrangements. Assume
that π1(M(A)) ≈1 π1(M(B)). Set p := min{pA, pB}. Then Lp(A) = Lp(B).
In particular L2(A) = L2(B).

Here pA stands for the order of π1 -connectivity p(M(A)) of the complement
M(A), a homotopy invariant introduced by Papadima and Suciu in [33, p.73].
The notation Lp(A) = Lp(B) means that A and B have the same dependent
subarrangements of cardinality at most p + 1.

Example 2.2 For line arrangements, the above result simply says that the
1-marked group π1(M(A)) determines the intersection lattice L(A). It seems
worth mentioning that this phenomenon may also happen in higher dimensions.
Indeed, let Â and B̂ be essential aspherical arrangements in Ps and Pt respec-
tively. Take (r − 1)–generic proper sections A := Â ∩U and B := B̂ ∩ V , with
r > 2. Then pA = pB = r − 1 by [10, Theorem 18(i)], in particular A and B
are non-aspherical. Since rank(A) = rank(B) = r , we deduce from Theorem
2.1 that π1(M(A)) ≈1 π1(M(B)) implies L(A) = L(B).
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2.3 Combinatorics and 1–marked cohomology

To prove Theorem 2.1, we begin by recalling that the cohomology algebra of
the complement, together with its natural 1–marking, contains the same in-
formation as the combinatorics. More precisely, we will need the result below,
essentially stated (without proof) by Kawahara in [21, Lemmas 22 and 23]. For
the reader’s convenience, we include a short proof.

Proposition 2.4 Let A′ = {H ′
0, ...,H

′
n} be a central arrangement in CN . For

i = 0, 1, ..., n, let ei ∈ H1(M(A′)) be the cohomology class corresponding to the
hyperplane H ′

i . Then the cohomology algebra H∗(M(A′)) and the collection
of elements {e0, ..., en} determine the combinatorics of A′ .

Proof It is enough to notice that, for any multi-index i1 < ... < ip , one has

codim(H ′
i1 ∩ ... ∩ H ′

ip) < p

if and only if ∑

j=1,p

(−1)jei1 ∧ ... ∧ êij ∧ ... ∧ eip = 0

in Hp−1(M(A′)).

Indeed, the “only if” part follows from the description of the cohomology algebra
in [29], while the “if” part follows by applying Proposition 3.66 in [30] to the
subarrangement of A′ consisting of the hyperplanes {H ′

i1
, ...,H ′

ip
}.

2.5 More on 1–markings

As indicated by the previous result, it will be useful to describe the general
relationship between various types of 1–markings.

Let A ⊂ PN be an arrangement and let A′ ⊂ CN+1 be the associated central
arrangement. Then π′ = π1(M(A′)) has a natural 1-marking {x′

0, ..., x
′
n},

where x′
i ∈ H1((M(A′)) is the homology class of a small loop γ′

i going in
the positive direction around the affine hyperplane H ′

i corresponding to the
projective hyperplane Hi .

From the natural product decomposition, M(A′) = M(A)×C∗ one gets natural
isomorphisms

ι(A)♯ : π1(M(A′))→̃π1(M(A)) × Zu0 (2.1)
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and
ι(A)∗ : H1(M(A′))→̃H1(M(A)) ⊕ Zu0 (2.2)

where u0 is the standard generator of π1(C
∗) = H1(C

∗) ≃ Z. The isomorphism
ι(A)∗ sends the classes x′

i to xi for all i = 1, ..., n and the sum x′
0 +x′

1 + ...+x′
n

to u0 , see [7, p.209]. It follows that, if A and B are two projective arrangements
and φ : π1(M(A)) → π1(M(B)) is a marked isomorphism, then

θ = ι(B)−1
♯ ◦ (φ × id) ◦ ι(A)♯

gives an isomorphism π1(M(A′)) → π1(M(B′)) preserving the geometric 1-
markings.

A 1-marking {x1, ..., xn} for a group G induces, for any ring R, an ordered
R-basis {x∗

1, ..., x
∗
n} for H1(G,R) = Hom (H1(G, Z), R) given by the usual

property, x∗
i (xj) = δij , which will be called a cohomological 1-marking. If

φ : G → G′ is a 1-marked isomorphism, then φ∗ : H1(G′, R) → H1(G,R)
preserves the corresponding cohomological 1-markings.

2.6 Proof of Theorem 2.1

Let A′ and B′ be the associated central arrangements. Set π′
A := π1(M(A′)),

K ′
A := K(π′

A, 1), denote by fA : M(A′) → K ′
A the classifying map, and likewise

for B . Assuming that π1(M(A)) ≈1 π1(M(B)), we get an algebra isomorphism
H∗(K ′

A) ≃ H∗(K ′
B), preserving the cohomological 1-markings, see subsection

2.5.

We claim that fA induces isomorphisms f q
A : Hq(K ′

A, Q) → Hq(M(A′), Q), for
all q ≤ p(M(A′)) = p(M(A)), and likewise for B .

To check this, note first that f q
A is surjective for any q ≥ 0, since f1

A is by
construction an isomorphism and the algebra H∗(M(A′), Q) is generated by
H1(M(A′), Q), [29]. Next, for q ≤ pA , the vector spaces Hq(K ′

A, Q) and
Hq(M(A′), Q) have the same finite dimension, by the very definition of the or-
der of π1 -connectivity pA , hence our claim. Note that f1

A takes the cohomolog-
ical 1-marking of π′

A to the H1 -basis {e0, ..., en} appearing in Proposition 2.4,
again by construction, and similarly for f1

B . We thus know that the cohomology
algebras H≤p(M(A′), Q) and H≤p(M(B′), Q) are isomorphic, and the distin-
guished H1 -bases are preserved. By Proposition 2.4 we get Lp(A) = Lp(B).

Finally, the order of π1–connectivity pA is at least 2 for any hyperplane arrange-
ment A. This follows from a result of Randell [35], which says that f2

A is always
an isomorphism. The proof of Theorem 2.1 is complete.
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2.7 Proof of Theorem 1.6

Jiang and Yau first associate to an arbitrary line arrangement A a graph ΓA ,
depending only on L(A), in the following way. The vertices VA are the singular
points of A of multiplicity at least 3. Two vertices are joined by an edge if there
is a line of A containing them. For v ∈ VA , they define a subgraph ΓA(v),
having as vertex set, VA(v), v and all his neighbours from ΓA . An edge {u, u′}
belongs to ΓA(v) if u, u′ and v lie on a line of A. The following combinatorial
definition appears in [20, Definition 3.2].

Definition 2.8 The arrangement A is nice if there is V ′ ⊂ VA such that
VA(u′) ∩ VA(v′) = ∅, for all distinct u′, v′ ∈ V ′ , and with the property that the
subgraph Γ′ ⊂ ΓA , obtained by deleting the vertex v′ and the edges of ΓA(v′),
for all v′ ∈ V ′ , is a forest.

If A is split solvable, then all vertices from VA lie on the line at infinity H0 .
It follows that ΓA is a complete graph, equal to ΓA(v), for any v ∈ VA . In
particular Γ′ is a discrete graph with no edges, and consequently A is nice.

We may now give the proofs of Theorem 1.6 and Corollary 1.7.

(i) =⇒ (ii) If L(A) = L(B), then A and B are lattice–isotopic; see [20,
Theorem 3.3]. The conclusion follows from Randell’s lattice–isotopy theorem
[34].

(ii) =⇒ (iii) Obvious.

(iii) =⇒ (i) See [19].

(ii) =⇒ (iv) This implication is valid for arbitrary arrangements in PN , as
noted in Example 1.4.

(iv) =⇒ (i) See our Theorem 2.1.

2.9 Proof of Corollary 1.7

To get Corollary 1.7 from Theorem 1.6, all we need is to prove the marked
isomorphism π1(M(A(m))) ≈1 F(m). This in turn follows from our definition
of A(m) and from Zariski’s Theorem on hyperplane sections, see for instance
[6, p.26], saying that the inclusion M(A(m)) → M(Â(m)) is a 2-equivalence.
Therefore

π1(M(A(m))) ≈1 π1(M(Â(m))) ≈1 Fm1
× · · · × Fmr .
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3 Combinatorial formulae for twisted homology

We know from Corollary 1.7 that the complement of a split–solvable line arr-
angement of type m, M(A), is homeomorphic to the combinatorial model,
M(Â(m)) ∩ U2 , where U2 ⊂ Pr is a generic 2–plane. Our next results will
describe various topological invariants of M(A), in terms of m.

3.1 The set-up

It turns out that this may be done, at no extra cost, for all generic s–plane
sections, M(m, s) := M(Â(m)) ∩ U s , with 2 ≤ s ≤ r . Set M := M(m, s) and
π := π1(M). Theorem 18 from [10] guarantees the existence, up to homotopy,
of a minimal CW–structure Y on M(Â(m)) = K(F(m), 1), whose s–skeleton
is homotopy equivalent to M : M ∼= Y (s) .

We aim at computing twisted homology, H∗(M,S), where S is a (right) Zπ–
module. For this, we may use the π–equivariant chain complex of the universal
cover of Y ,

C•(Ỹ ) : 0 → Zπ ⊗ Cr → · · · → Zπ ⊗ Cs
ds→ Zπ ⊗ Cs−1 → · · · , (3.1)

where Ck , 0 ≤ k ≤ r , denotes the free abelian group generated by the k–cells
of Y . Indeed, one knows (see e.g. [39, Chapter VI]) that

H∗(M,S) = H∗(S ⊗Zπ C≤s(Ỹ )) . (3.2)

Since s ≥ 2, π = π1(M(Â(m)), which is a product of free groups, F(m) =
Fm1

× · · · × Fmr . Consider now the well-known standard minimal resolution
of Z over ZF(x1, . . . , xm), where F(x1, . . . , xm) is the free group on the let-
ters x1, . . . , xm , see for instance [17, pp.196-197]. Use then tensor products of
resolutions, as in [17, p.222], to obtain a free resolution of Z over Zπ ,

C•(π) : 0 → Zπ ⊗ Cr → · · · → Zπ ⊗ Cs
∂s→ Zπ ⊗ Cs−1 → · · · (3.3)

Note that both (3.1) and (3.3) are minimal free resolutions of Z over Zπ .
Consequently, Ck = TorZπ

k (Z, Z), for all k . In more concrete terms, we see from
the construction of resolution (3.3) that the graded abelian group C• := ⊕r

k=0Ck

equals

C• =

r⊗

i=1

Ci
• . (3.4)

Here Ci
• is concentrated in degrees • = 0 and 1, for all i, with graded pieces

Z and Zmi respectively. Denoting by {vi
1, . . . , v

i
mi

} the standard basis of Zmi ,
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and setting Fmi
= F(xi

1, . . . , x
i
mi

), we may completely describe the resolution
(3.3), as follows:

∂k(1 ⊗ vi1
j1
⊗ · · · ⊗ vik

jk
) =

k∑

p=1

(−1)p−1(x
ip
jp
− 1) ⊗ vi1

j1
⊗ · · · v̂ip

jp
· · · ⊗ vik

jk
. (3.5)

We may now explain our computational strategy. For S a principal ideal do-
main, with Zπ–module structure given by a change of rings, Zπ → S , we may
use [11, Lemma 2.10] to infer that the S–chain complexes S ⊗Zπ C•(Ỹ ) and
S⊗Zπ C•(π) are actually isomorphic, not just chain–homotopy equivalent. This
will enable us to replace C≤s(Ỹ ) in equation (3.2) by a simpler, explicit object,
namely C≤s(π) from (3.3).

One more remark will be useful. Each graded abelian group Ci
• appearing in

(3.4) is actually a chain complex, with differential ∂′ : Zmi → Z given by

∂′(vi
j) = 1 , for j = 1, . . . ,mi . (3.6)

We may thus view C• as a tensor product chain complex,

(C•, ∂
′) =

r⊗

i=1

(Ci
•, ∂

′) . (3.7)

3.2 Local systems

A rank one local system Lρ of K-vector spaces on M = M(m, s) corresponds
to a representation ρ : F(m) → K∗ , where ρ = (ρ1, ..., ρr) with ρi : Fmi

→ K∗

a representation of the free group Fmi
. We will apply Theorem 4.5 (2) in [11]

to express the dimensions of the cohomology groups H∗(M(m, s),Lρ) in terms
of the type m, s and the support of the representation

supp (ρ) = {1 ≤ i ≤ r | ρi 6= 1} .

This extends the results of Hattori from [15], where the case m1 = ... = mr = 1
is treated.

For the above representation ρ we define its Poincaré polynomial by the formula

Pρ(t) =
∑

q≥0

bq(ρ)tq (3.8)

where
bq(ρ) = dimK TorZF(m)

q (Z, Kρ) . (3.9)

To apply the aforementioned theorem, we will need the following standard com-
putation.
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Lemma 3.3 Let ρ : F(m) → K∗ be an arbitrary representation. Then

Pρ(t) =
∏

i/∈supp(ρ)

(1 + mit)
∏

i∈supp(ρ)

(mi − 1)t .

Proof Firstly, one has the following equality.

Pρ(t) =
∏

i=1,r

Pρi
(t) .

This equality follows via the Künneth formula from resolution (3.3) or, alter-
natively, from the Künneth formula for cohomology with sheaf coefficients, see
[7, p.117]. The case of a single free group is immediate, using the standard
minimal resolution.

Denoting by σi , 0 ≤ i ≤ r , the value of the i-th elementary symmetric function
on m = (m1, . . . ,mr), we may now state our next result.

Proposition 3.4 Lat M(m, s) denote the s–generic section of M(Â(m)), for
2 ≤ s ≤ r . Let ρ : π1(M(m, s)) = F(m) → K∗ be an arbitrary rank one local
system of K–vector spaces on M(m, s). Then

dimK Hj(M(m, s),Lρ) =





bj(ρ) , for j < s ;

σs +
∑s−1

i=0 (−1)i+s[σi − bi(ρ)] , for j = s ;
0 , for j > s ,

where the twisted Betti numbers {bi(ρ)}0≤i≤r are computed in Lemma 3.3. In
particular, for all 0 ≤ j ≤ s, one has

dimK Hj(M(m, s), K) = σj .

Proof As recalled in §3.1, M(Â(m)) ∼= Y and M(m, s) ∼= Y (s) , where Y
is a minimal complex. Obviously, the Poincaré polynomial of Â(m) equals∏

i=1,r(1 + mit). Therefore, χ(M(m, s)) =
∑

j=0,s(−1)jσj . Everything follows
now from [11, Theorem 4.5 (2)].

In the case of rank one twisted homology, where S = K, things are easy, since
we only need to perform computations involving the fundamental group, and
we may finish by using an Euler characteristic argument. In the sequel, S will
be the K–algebra of a cyclic group. To identify the S–module structure of

H∗(M,S) = H∗(S ⊗Zπ C≤s(Ỹ ))

(see [39, Ch.VI]), we need more, namely to replace S⊗ZπC•(Ỹ ) by S⊗ZπC•(π),
as explained in §3.1.
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3.5 The homology of the associated Milnor fiber

Let A′ be a central arrangement of n + 1 hyperplanes in CN+1 . Let f = 0
be a reduced defining equation for A′ in CN+1 . Then f is a homogeneous
polynomial of degree d = n + 1. The affine smooth hypersurface F given by
the equation f = 1 in CN+1 is called the associated Milnor fiber of the central
arrangement A′ . This space comes equipped with an order d diffeomorphism h,
the monodromy, given by h(x) = λ · x, where λ = exp(2π

√
−1/d). This diffeo-

morphism gives rise to an important (left) RZd–module structure on H∗(F,R),
for any commutative ring R. Our next goal is to describe completely this struc-
ture, for the generic section A = Â(m) ∩ U s and an arbitrary field R = K, in
terms of m and s.

Keeping the previous notation, we may do this as follows. Denote by ν : π → Z

the (unique) abelian character which takes the value 1 on the distinguished basis
of πab = F(m)ab . Note that KZd is a quotient ring of the principal ring KZ,
with Zπ–module structure coming from the change of rings Zπ

ν→ KZ ։ KZd .
One knows (see [4] and [7, (2.3.4)]) that H∗(F, K) = H∗(M, KZd), as KZd–
modules. It follows from §3.1 that

H∗(M, KZd) = H∗(KZd ⊗Zπ C≤s(π)) , (3.10)

as KZd–modules.

We now remark that the differential of the chain complex KZd⊗Zπ C•(π) equals

{(τ − 1) ⊗ ∂′
k : KZd ⊗ Ck → KZd ⊗ Ck−1}k , (3.11)

where ∂′ is described in (3.7) and τ − 1 is the multiplication operator by
(τ − 1) ∈ KZd , τ being the canonical generator of Zd . This follows from (3.5),
together with (3.6).

It follows from (3.11) that

ker
(
(τ −1)⊗∂′

k

)
=

(
KZd⊗ker (∂′

k ⊗K)
) ⊕(

(KZd)
Z ⊗ im (∂′

k ⊗K)
)
, (3.12)

where (KZd)
Z := ker (τ − 1) = K with trivial KZd–action, and

im
(
(τ − 1) ⊗ ∂′

k+1

)
= (τ − 1)KZd ⊗ im (∂′

k+1 ⊗ K) . (3.13)

We are thus led to compute the homology of (C•, ∂
′).

Lemma 3.6 For any coefficient ring R, H∗(C•, R) is concentrated in degree
∗ = r , where it is free of rank (m1 − 1) · · · (mr − 1).
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Proof Follows from equations (3.6)–(3.7), via the Künneth formula.

To state our main result in this section, we set

zj := σj +

j−1∑

i=o

(−1)i+jσi , for 0 ≤ j ≤ r . (3.14)

Theorem 3.7 Let F (m, s) denote the Milnor fiber of the generic s–section,
Â(m) ∩ U s . Set d = 1 + σ1 . Then

Hj(F (m, s), K) =





Kzj+zj−1 , for j < s ;
Kzs−1 ⊕ (KZd)

zs , for j = s ;
0 , for j > s ,

as KZd–modules, where K is an arbitrary field. In particular, H∗(F (m, s), Z)
is torsion–free and the integral monodromy action is trivial in degrees < s.

Proof An Euler characteristic argument may be used to infer from Lemma 3.6
that dimK ker (∂′

j ⊗ K) = zj , for j = 0, . . . , r . Recall that the KZd–module
H∗(F (m, s), K) may be computed from (3.10). The first assertion of the theo-
rem follows then from equations (3.11)–(3.13), together with Lemma 3.6. Since
the K–Betti numbers of F (m, s) are independent of K, the Z–homology has
no torsion.

Remark 3.8 From (3.14) we see that zr = (m1 − 1) · · · (mr − 1) is positive,
unless there is some mi equal to 1. We note that always zj > 0, if j < r . This
may be seen for instance as follows. If zj = 0, then ∂′

j+1 = 0. On the other
hand, plainly Ci 6= 0, for any i ≤ r . Pick then any basis element v ∈ Cj+1 and
compute ∂′

j+1(v) using (3.6)–(3.7) to obtain a contradiction.

Remark 3.9 The triviality of the monodromy action on H1(F (m, 2), C) was
obtained by the second author along different lines, using relations to the topol-
ogy of a polynomial mapping C2 → C, see [8, Corollary 3.3]. This was the
starting point of our interest in the class of split solvable line arrangements,
and their higher dimensional analogs.

The same triviality of the complex monodromy action holds in the dual case
when a line arrangement A has a line along which the only singularities are
nodes, see [26] and [3] for higher dimensional analogs of this result.

Note also that, for Milnor fibers associated to projective hypersurfaces, the triv-
iality of the complex monodromy may occur even when the integral monodromy
is not trivial, see [37].
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4 Homology and homotopy groups of infinite cyclic

covers

Let M be a connected complex. Any 1–marking of π := π1(M) gives rise to
an abelian character, ν : π → Z, which takes the value 1 on all elements of the
distinguished basis of πab . The Z–cover associated to ν , q : E → M , will be
called the Alexander cover, by analogy with the classical Alexander polynomial
theory (in one variable) for links. In this section, we will take M = M(m, s),
like in Section 3, endowed with the canonical 1–marking of π = F(m), and
compute two basic topological invariants of E .

4.1 Homology of the Alexander cover

The tools we have developed so far enable us to give the following complete
description of the homology with field coefficients, which involves only m and
s, as before.

Theorem 4.2 Denote by E(m, s), 2 ≤ s ≤ r , the Alexander cover of the
complement of the generic s–section of Â(m). Then

Hj(E(m, s), K) =





Kzj , for j < s ;
(KZ)zs , for j = s ;

0 , for j > s ,

as KZ–modules (where {zj}0≤j≤r are defined in (3.14)), for any field K.

Proof It follows from [39, Ch.VI] that

H∗(E, K) = H∗(KZ ⊗Zπ C≤s(Ỹ )) , (4.1)

as KZ–modules, where C•(Ỹ ) is as in (3.1) and the Zπ–module structure on
KZ is given by ν : Zπ → KZ. As explained in §3.1, equation (4.1) above may
be replaced by the simpler explicit form

H∗(E, K) = H∗(KZ ⊗Zπ C≤s(π)) , over KZ . (4.2)

From now on, the computation is almost identical to the one from the proof of
Theorem 3.7 from §3.5, with KZd replaced by KZ, except the fact that in the
case of the Alexander cover we have (KZ)Z = ker (τ − 1) = 0.
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4.3 Homotopy of the Alexander cover

Let us analyze now the homotopy groups of the Alexander cover, q : E(m, s) →
M(m, s). Set N(m) := π1(E(m, s)). Clearly, N(m) = ker (ν : F(m) ։ Z).
Since M(m, r) = M(Â(m)) is aspherical, E(m, r) = K(N(m), 1). We will
thus assume in the sequel that 2 ≤ s ≤ r − 1, and suppress m and s from
notation.

It follows from [10, Theorem 18(ii)] that πsE = πsM is the first higher non-
trivial homotopy group of E . Moreover, πsM has a finite free, minimal, Zπ–
resolution, obtainable from (3.1). In particular, πsM has the following finite,
minimal, Zπ–presentation

πsM = coker
(
ds+2 : Zπ ⊗ Cs+2 → Zπ ⊗ Cs+1

)
. (4.3)

Taking π–coinvariants in equation (4.3) (that is, passing from the group πsM to
its coinvariants (πsM)π := πsM/Iπ ·πsM , where Iπ ⊂ Zπ is the augmentation
ideal), we find out from minimality that

(πsM)π = Cs+1 , (4.4)

a finitely generated free abelian group, with combinatorially determined rank.

Guided by this result, we are going to look in the sequel at πsE as ZN –module,
more precisely at the N –coinvariants,

(
πsE ⊗ K

)
N

:= (πsE ⊗ K)/(IN ⊗ K) · (πsE ⊗ K) ,

with arbitrary field coefficients. Note that N is a normal subgroup of π , and the
ZN –module structure on πsE comes from the Zπ–module structure of πsM ,
by restriction of scalars. Consequently, (πsE ⊗ K)N has a naturally induced
KZ–module structure.

We will completely describe this structure, again solely in terms of m and s.
Here is our second main result in this section.

Theorem 4.4 Let E(m, s), 2 ≤ s < r , be the total space of the Alexander
cover of M(m, s), with respect to the canonical 1–marking of π1(M(m, s)) =
F(m). Set N(m) = π1(E(m, s)). Let K be an arbitrary field. Then the
KZ–module structure of the N(m)–coinvariants of the first higher non-trivial
homotopy group of E(m, s) is given by

(
πsE(m, s) ⊗ K

)
N(m)

=

{
(KZ)zs ⊕ Kzs+1 , for s < r − 1 ;

(KZ)σr , for s = r − 1 ,

where {σj := σj(m)}0≤j≤r are the elementary symmetric functions evaluated
at m, and {zj}0≤j≤r are defined by (3.14).
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Proof Firstly, we infer from (4.3) that
(
πsE ⊗ K

)
N

= coker
(
KZ ⊗Zπ ds+2 : KZ ⊗ Cs+2 → KZ ⊗ Cs+1

)
, (4.5)

as KZ–modules.

Once again, we may replace KZ ⊗Zπ C•(Ỹ ) by KZ ⊗Zπ C•(π), as explained in
§3.1 and §3.5, to arrive at

(
πsE ⊗ K

)
N

= coker
(
(τ − 1) ⊗ ∂′

s+2 : KZ ⊗ Cs+2 → KZ ⊗ Cs+1

)
, (4.6)

over KZ.

All assertions to be proved follow now from (4.6) above, by using Lemma 3.6
and the KZ analog of (3.13).

Remark 4.5 Upon applying Remark 3.8 to the above theorem, we see that
πsE(m, s) is not finitely generated over the group ring Zπ1(E(m, s)), if s < r .
This is in striking contrast with the strong finiteness property of πsM(m, s) =
πsE(m, s) over Zπ1(M(m, s)), recalled at the beginning of §4.3. The non–
finiteness of πr−1E(m, r − 1) over ZN(m), in the case when mi > 1, for all
i, is related to a certain non–finiteness homological property of the Bestvina–
Brady groups N(m), see [1], as first noticed by Stallings [38].
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