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Non-singular graph-manifolds of dimension 4
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Abstract A compact 4-dimensional manifold is a non-singular graph-
manifold if it can be obtained by the glueing T 2 -bundles over compact
surfaces (with boundary) of negative Euler characteristics. If none of glue-
ing diffeomorphisms respect the bundle structures, the graph-structure is
called reduced. We prove that any homotopy equivalence of closed oriented
4-manifolds with reduced nonsingular graph-structures is homotopic to a
diffeomorphism preserving the structures.
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Introduction

In the paper [18], Waldhausen introduced a class of orientable 3-manifolds
called graph-manifolds which can be obtained by glueing blocks that are Seifert
manifolds along homeomorphisms of their boundary tori. These manifolds are
not always sufficiently large, but for them one can introduce a notion of reduced
graph-structure (i.e. a structure in which no family of neighboring blocks can
be replaced by a single block), and then, with a few explicit exceptions, the ex-
istence of a homeomorphism between two 3-dimensional graph-manifolds with
reduced graph-structures implies the existence of a homeomorphism respecting
reduced graph-structures, which leads to a classification of such 3-manifolds.

3-dimensional graph-manifolds are important because they naturally arise as
the boundary of resolved isolated complex singularities of polynomial maps
(C2, 0) → (C, 0) [3], as the surfaces of constant energy of integrable hamil-
tonian systems with two degree of freedom [4], and as 3-manifolds admitting
an injective F -structure (a generalization of an injective torus action) [13].

Our goal is to study a class of smooth four-dimensional manifolds generalizing
three-dimensional graph-manifolds (with blocks without singular fibers) and
having fundamental groups of exponential growth (hence, to which the high-
dimensional techniques do not apply).
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1052 A. Mozgova

Definition 1) A (nonsingular) block is a T 2 -bundle over a compact surface
(with boundary) of negative Euler characteristic.

2) A (nonsingular) graph-manifold structure on a manifold is a decomposition
as a union of blocks, glued by diffeomorphisms of the boundary.

Note that the boundary of a block has the structure of a T 2 -bundle over a
circle.

Definition A graph-manifold structure is reduced if none of the glueing maps
are isotopic to fiber-preserving maps of T 2 -bundle.

Any graph-structure gives rise to a reduced one by forming blocks glued by
bundle maps into larger blocks.

Main theorem Any homotopy equivalence of closed oriented 4-manifolds
with reduced nonsingular graph-structures is homotopic to a diffeomorphism
preserving the structures.

The text is organized as follows. Section 1 contains the main technical result.
A standard fact about two incompressible surfaces in an orientable irreducible
3-manifold is that one can move one of them by isotopy in such a way that
the new intersection becomes π1 -injective. We provide a basis for doing a
similar thing for π1 -injective maps of 3-manifolds into a 4-manifold W with
π2(W ) = π3(W ) = 0 and for moving by (regular) homotopy. The gain is the
same: the intersection of images of 3-manifolds becomes completely visible in
π1(W ). Section 2 contains a recapitulation of facts about T 2 -bundles over
aspherical spaces. Section 3 introduces four-dimensional non-singular graph-
manifolds and proves the main theorem.

1 3-dimensional π1-injective submanifolds in 4-mani-

folds

Manifolds here will be C∞ . Denote the tangent map of f by df : TM → TW .
An immersion is a smooth map f : M → W such that at every point of M the
derivative df is an injective (linear) map. The set of immersions is open in the
C∞(M,W )-topology ([12], Theorem 3.10). A regular homotopy is a homotopy
through immersions. Any immersion F : M × I → W such that F |M×{0} = f0

and F |M×{1} = f1 gives a regular homotopy between f0 and f1 . The converse
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Non-singular graph-manifolds of dimension 4 1053

is false: two embedded not concentric circles in R
2 are regularly homotopic,

but their embeddings can not be extended into an immersion S1 × I → R
2 .

Construction of regular homotopies One particular method to construct
a regular homotopy between two immersions f0, f1 : M → W is to immerse
into W not M × I , but the image of an isotopy. Precisely, suppose one has a
manifold M which contains the image of an isotopy I between two embeddings
i0 : M →֒ M, i1 : M →֒ M, i.e. there is a map:

I : M × I → M such that I|M×0 = i0, I|M×1 = i1

and I|M×{t} ≡ It is an embedding. Suppose also that there is an immersion
J : M → W such that JI|M×0 = J i0 = f0 and JI|M×1 = J i1 = f1. Then
the map J I : M × I → W gives a smooth regular homotopy between the
immersions f0 and f1 (see Figure 1).

W

M
M × I

I J

Figure 1: Construction of a regular homotopy

We will refer to the above construction by saying “push f0(M) to f1(M) across
JI(M × I)”.

Extension of immersions Let H : M×I → W be a map such that H|M×{0}

is an immersion and dimM + 1 < dim W . The immersion H|M×{0} : M → W
determines a bundle injection

A : T (M × {0}) → (H∗TW )|M×{0} = (H|M×{0})
∗TW.

Suppose that this bundle injection can be extended to an injection AI : T (M ×
I) → H∗TW . Then, by the Immersion Theorem ([16], [8]) there exists an
immersion H : M × I → W which is homotopic to H , inducing the same
tangent bundle injection:

T (M × I)
AI //

dH &&MMMMMMMMMM
H∗TW

H∗TW

The immersion H can be chosen in such a way that H|M×{0} = H|M×{0} .
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Main technical result The following proposition is a generalization and a
detailed proof of the Proposition 2.B.2 of [17], where very few details of the
proof are given.

Proposition 1 Let W be a compact smooth oriented 4-dimensional manifold
with π2(W ) = 0 and M1, M2 be compact oriented 3-manifolds with π2(M1) =
π2(M2) = 0. Let f1 : M1 → W be a π1 -injective map and f2 : M2 → W be a
π1 -injective embedding.

Then

• f1 is homotopic to a map f̃1 such that each connected component of
f̃−1
1 (f2(M2)) is π1 -injective in M1 ;

• if π3(W ) = 0 and M1 is irreducible, then all the S2 -components of
f̃−1
1 (f2(M2)) can be eliminated by homotopy of f1 ;

• in addition, if f1 is an immersion, then the homotopies can be made
regular.

Proof Move f1 by a small (regular if f1 immersion) homotopy to make it
transverse to the submanifold f2(M2). Then F = f−1

1 (f2(M2)) is a closed 2-
dimensional surface which is embedded into M1 (and immersed into M2 if f1

is immersion):

M1

f1

$$HH
HH

HH
HH

HH
π1(M1)

f1∗

$$JJJJJJJJJ

F

;;wwwwwwwww

##GGGGGGGGG W π1(F )

::uuuuuuuuu

$$IIIIIIIII
π1(W )

M2

f2

::vvvvvvvvvv
π1(M2)

f2∗

::ttttttttt

As f2(M2) is closed and M1 is compact, the surface F has only a finite number
of connected components ([1], corollary 17.2(IV)).

Step 1 Construction of a map (resp. immersion) α : D2 × I → W —
the image of the future homotopy (resp. regular homotopy)

Suppose F ⊂ M1 is not π1 -injective, so F is compressible in M1 , i.e. there
exists an embedding β : D2 → M1 such that its boundary loop β(∂D2) is not
contractible in F but β(D2)

⋂
F = β(∂D2).
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Consider the map f1β : D2 → W . As F = f−1(f2(M2)) and β(∂D2) ⊂ F ,
hence f1β(∂D2) ⊂ f2(M2). Thus the map f1β is in fact

f1β : (D2, ∂D2) → (W,f2(M2)).

Note now that π2(W,f2(M2)) = 0 because for the embedding f2 the corre-
sponding map induced in the fundamental groups f2∗ : π1(M2) → π1(W ) is
injective and the homotopy sequence of the pair (W,f2(M2))

· · · // π2(W ) // π2(W,f2(M2)) // π1(M2)
f2∗ // π1(W ) // . . .

0 π1(f2(M2))

is exact. This implies that f1β is homotopic to a map D2 → f2(M2) which can
be written as f2β2 : D2 → f2(M2), i.e. there exists a map H : D2×I → W such
that H|D2×{0} = f1β, H|D2×{1} = f2β2 . More, the homotopy can be made in
such a way, that ∀t H|∂D2×{t} = H|∂D2×{0} = f1β|∂D2 .

Step 1.1 The case of ordinary homotopy In the case when f1 is just a
map and we are interested in an ordinary homotopy, put α := H . As D4 =
D3 × I retracts on D3 × {1

2} = (D2 × I) × 1
2 , we can say that α extends to a

map D4 → W 4 :

D3 × { 1

2
}

α

%%KKKKKKKKKK

retraction

��

W

D4 = D3 × I

OO�
�
�
�
�
�
�

99ssssssssss

and move to the next step.

Step 1.2 The case of regular homotopy In the case when f1 is an im-

mersion (with trivial normal bundle since everything is orientable) and we are
looking for a regular homotopy, let us show that this map H can be changed
to an immersion.

As H|D2×{0} = f1β : D2 → W is an immersion, its derivative dH|D2×{0} =
d(f1β) is correctly defined and gives a bundle injection

T (D2 × {0}) −→
(
H|D2×{0}

)∗
TW = H∗TW |D2×{0}.

Since D2 × I retracts to D2 × {0}, this bundle injection extends to a bundle
injection T (D2 × I) −→ H∗TW that on D2 × {1} restricts to a subbundle
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of (H|D2×I)
∗TM2

. Applying the Immersion Theorem gives an immersion α :
D2×I → W such that α|D2×{0} = H|D2×{0} = f1β and α(D2×{1}) ⊂ f2(M2).
Note that the immersion α is flat (D2 × I and W being oriented): there exists
a map

αε : D4 = (D2 × I) × I → W such that αε|(D2×I)×{ 1
2
} ≡ α.

As β is flat (being an embedding), we have in M1 an embedded 3-disk βε(D
2×

{0} × I) which is the normal bundle of β(D2). As αε|(D2×I)×{ 1

2
} ≡ α and

α|D2×{0}× 1
2

we can write αε|(D2×{0})×I = f1βε .

We will use the notation ∂D3 = S2
+ ∪ S2

− with S2
+ = D2 × {0} and S2

− =
(D2 × {1}) ∪ (∂D2 × I).

Step 2 Homotopy description

As the result of the above construction we have:

• an embedding of 2-disk β : D2 → M1 such that β(D2) ∩ F = β(∂D2),

• a map (respectively, a flat immersion) of 3-disk α : D3 = D2 × I → W
such that α|D2×{0} = f1β , α|D2×{1} ⊂ f2(M2) and α(∂(D2 × {0}))) =
α(∂(D2 × {1}))). ef1(M1)

f2(M2)

f1(M1)

f2(M2)

α(D3)

α(D2 × {0})

α(D2 × {1})

= α(∂(D2 × {1}))
α(∂(D2 × {0})) =

Figure 2: Pushing f1|βε(D2
×I) across αε(D

3 × I)

We will now change the map f1 firstly by pushing f1|βε(D2×I) across αε(D
3×I)

to a map (respectively, an immersion) into W whose image lies in f2(M2);
secondly we compose it with the pushing along the normal bundle of f2(M2)
in W in such a way that:

• in a small neighborhood U ⊃ βε(D
2 × I) the map (respectively, the

immersion) f1 is changed by homotopy (resp. regular homotopy) to a
map (respectively, an immersion) f̃1 such that f̃−1

1 (f2(M2)) := F ′ is F
surgered on the disk β(D2)

• and the map f1 does not change on the complement of U in M1 .
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Figure 3: Trace that the pushing of f1 makes on the intersection of images of f1 and
f2

The homotopy (resp. regular homotopy) works as follows.

Step 3 Homotopy on a disk

Let us decompose ∂D4 as union of two 3-discs S3
+ and S3

− with S3
+∩S3

− = S2 .
Let I be an isotopy D3×I → D4 that sends 3-disk S3

+ on 3-disk S3
− as shown

on Figure 4.

S3
+

S3
−

D3 = D3 × { 1

2
}

S3
+

S2 = ∂S3
− = ∂S3

+

f1(M1)

f2(M2)

S3
−

Figure 4: Homotopy sending S3
+ on S3

−

Take now the composition αεI : D3 × I → D4 (αε being the flat extension
of α): it provides a homotopy (respectively, a regular homotopy) sending
αε|(D2×{0})×I ≡ f1βε(D

3) into f2(M2): we “push f1|β(D2) across αεI(D4)”.
Take then the composition of αεI with the pushing out along the normal bun-
dle of f2(M2) in W 4 (which is trivial, because f2(M2) and W 4 are orientable).
At this moment the map f1 will be changed not only on the 3-disc βε(D

2 × I),
but on its small neighborhood U ⊂ M1 .

Step 4 Change α to make α(
◦

D3) miss f2(M2)

Motivation If we want the homotopy described on the previous step to create
no new intersections of f1(M1) and f2(M2), we have to make the image of the
interior of the disk α(

◦
D3) disjoint from f2(M2). We have α−1(f2(M2)) =

S2
− ∪ G, where G are some closed surfaces.

Denote by ∆ the union of G and all components of D3 \G that do not contain
∂D3 . Note some components of G may be in the interior of ∆. Let Ĝ = ∂∆.
Since ∆ is an open subspace of a manifold, it is a manifold. Let us show that
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∆ is aspherical. If we show that π2(∆) = 0, it will give us the asphericity:
take the universal covering ∆̃, we have Hi(∆̃) = 0, i ≥ 3 because it’s an open
3-manifold; then, by Whitehead’s theorem, πi(∆̃) = 0, i ≥ 3, and we conclude
that πi(∆) = πi(∆̃) = 0. Suppose that π2(∆) 6= 0. Then, by the Sphere
Theorem, there exists an embedded S2 →֒ ∆ representing a non-trivial element
in π2(∆). This S2 bounds a ball in D3 . This ball must be contained in ∆,
therefore π2(∆) = 0.

Note that ∆ can be rather complex, for example, be a knot complement.

∆

G
G

S2
+

S2
−

D3
∆

Figure 5: Pre-image of f2(M2) by α: the cases of ∆ being handlebodies and a knot
complement

Extension of α|
Ĝ

on ∆ and change α Now, let’s show that we can always

extend the map α|
Ĝ

: Ĝ → f2(M2) to a map α′ : ∆ → f2(M2). As Ĝ and
∆ are aspherical, it will be enough to extend this map on the fundamental
group of each component of ∆. As f2 is a π1 -injective embedding, we have
π1(M2) ∼= π1(f2(M2)).

Ĝ
⊆ //

α|
Ĝ

��

∆
⊆ //

α|
∆

��

α′

||x
x

x
x

x D3

α
��~~

~~
~~

~~
π1(Ĝ)

a //

b

��

π1(∆)
d1 //

d

��

α′

∗

zzt
t

t
t

t
1

d2}}{{
{{

{{
{{

{

f2(M2) ⊆
// W 1 // π1(M2) c

// π1(W )

We have cb = d2d1a, so that Im cb = 1. As c is a monomorphism, it follows
that Im b = 1, thus, b ≡ 1. We can define the homomorphism α′

∗ : π1(∆) →
π1(M2) ∼= π1(f2(M2)) as being the constant 1, too.

So we can define a new map α̃ : D3 −→ W as follows:

α̃ =

{
α on D3\∆
α′ on ∆

Now the whole image α̃(∆) lies in f2(M2), hence we can push α̃(D3) off f2(M2)
across α′(∆) ⊂ f2(M2) using the normal bundle of f2(M2) in W . We have a
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new map (which for simplicity we still note by α) α : D3 −→ W such that the
image of the interiour α(

◦
D3) is disjoint from f2(M2).

Step 5 The number of disks in M1 , on which the homotopy of f1

must be done, is finite

Suppose we made the homotopy of the map f1 on one disk. Suppose that the
obtained surface F (whose topological type has changed) is still not π1 -injective
in M1 . After the surgery the new surface is still oriented, hence again there is
an embedded compressing disk in M1 , on which again one can do the surgery
by homotopy of f1 etc. After each surgery the topological type of the surface
F changes as follows: either the genus of one component of F decrements, or
one component splits into two components, the sum of genera of which is not
greater than the genus of the original component. As F is compact, the genera
of all its components are finite, and as it was pointed out before Step 1, the
number of components of F is finite, hence, the process will terminate after a

finite number of steps. This is the advantage that we get from replacing the
homotopic information (Ker g∗ 6= 0) by the geometric information (there exists
an embedded loop which is trivialized by an embedded disk): the infinite kernel
is killed in a finite number of steps.

As the result we obtain a surface that is π1 -injective in M1 , but which could
contain spheres among its components.

Step 6 Elimination of S2 -components provided π3(W ) = 0 and M1 is
irreducible

If the obtained surface F contains S2 -components, then, as M1 is irreducible
and π2(M2) = 0, every such S2 -component bounds an embedded 3-disk in M1

and a homotopy 3-disk in M2 : there exist an embedding γ1 : D3 → M1 and a
map γ2 : D3 → M2 such that f1γ1(∂D3) = f2γ2(∂D3). Denote f1γ1(D

3) = S3
+

and f2γ2(D
3) = S3

−.

f2(M2)

S2 ef1(M1)

S3
−

S3
+

Figure 6: Elimination of S2 -components
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If π3(W ) = 0, then the map of 3-sphere, whose image is S3
+

⋃
S3
− , bounds

a homotopy 4-disk: there exists λ : D3 × I → W such that λ(D2 × {0}) =
S3

+, λ(D2 × {1} = S3
− and λ(∂D3 × I) = S3

+ ∩ S3
− , and which, in addition, can

be made an immersion on each D3 × {t}. In order to eliminate a chosen S2 -
component of F , push f̃1(γ1(D

3)) along λ(D3 × I) ⊂ W to make S3
+ coincide

with S3
− (see Figure 6), then, push it off f2(M2) along the normal bundle of

f2(M2) in W , then glue with the map on M1 \ S3
+ .

2 Torus bundles

A torus bundle here will be a fiber bundle f : M → B with fibers diffeomorphic
to T 2 , smooth if the base is a smooth manifold. The monodromy is the action
of π1(B) on H1 of the fiber:

π1(B, b) → Aut (H1(f
−1(b)); Z).

Choosing an identification of the fiber with T 2 (equivalently, a basis for H1(T
2))

identifies the automorphism group as GL(2, Z). The classifying map for a torus
bundle is B → BDiff(T 2) . There is a 2-stage Postnikov decomposition

K(Z ⊕ Z, 2) → BDiff(T 2) → BGL(2,Z)

([6], ch.4, p.51). If B is a surface with non-empty boundary, this implies that
a bundle is determined up to isomorphism by the conjugacy class of its mon-
odromy. However the nontrivial π2 in the classifying space shows bundles on
surfaces are not defined rel boundary by the monodromy. A fiber map is a pair
of maps, one on the total spaces and one on the bases so that the diagram

E1
//___

��

E2

��
B1

//___ B2

commutes. Bundle map is a fiber map so that on coordinate charts it is given
by function into the structure group. As the inclusion Diff(T 2) →֒ G(T 2) (the
monoid of self-homotopy equivalences of torus) is homotopy equivalence [5], the
existence of a bundle map between T 2 -bundles is equivalent to the existence of
a fiber map inducing homotopy equivalence on the fibers.

A fiber covering map of bundles here will be a fiber map, which is finite covering
on fibers. The degree of the covering on different fibers is clearly the same. If B
is aspherical, there exists a fiber covering map of T 2 -bundles with monodromies
ϕ1, ϕ2 if and only if there exists a monomorphism α : Z ⊕ Z → Z ⊕ Z with
αϕ1(γ) = ϕ2(γ)α for all γ ∈ π1(B).
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Lemma 1 Let f : E1 → E2 be π1 -injective map of T 2 -bundles over aspherical
spaces. Then f is homotopic to a fiber covering map if and only if the induced
map on π1 sends the fiber subgroup of π1(E1) into the fiber subgroup of π1(E2).

Proof The π1 condition is well-defined (independent of basepoints) because
the fiber defines a normal subgroup of π1 . A fiber covering map clearly verifies
the condition.

Now suppose f sends the subgroup of fiber of E1 into the subgroup of fiber
of E2 . Then it induces an homomorphism on quotient groups. This gives a
π1 -injective map of the base spaces and a commutative up to homotopy diagram

E1
f //

��

E2

��
G1

g // G2

Let E∗
2 be the pullback of E2 to G1 . Then f factors as f∗ : E1 → E∗

2 and
a map E∗

2 → E2 which is isomorphic on fibers, so it is sufficient to show that
f∗ is homotopic to a fiber covering map, which follows from the commutative
diagram of short exact sequences.

Proposition 2 Suppose E is homotopy equivalent to a T 2 -fibration over a
graph G. Then this structure is unique up to homotopy unless G ∼= S1 and
the monodromy is conjugate to

(
1 n
0 m

)
.

Proof According to the lemma 1 it is sufficient to show that there is a unique
normal subgroup isomorphic to Z ⊕ Z and with free quotient except when
G ∼= S1 and the monodromy has the specified form.

Case 0 G contractible, so E ∼= T 2 , and π1(E) ∼= Z ⊕ Z, then π1(E) is the
only such subgroup.

Case 1 G ∼= S1 . Then the fundamental group of the fiber is the unique
normal (Z ⊕ Z)-subgroup of π1(E) unless the monodromy has an eigenvector
with eigenvalue 1. This shows the monodromy is conjugate to

(
1 n
0 m

)
. In this

case either π1(E) ∼= Z
3 or the commutator subgroup is Z, with quotient Z

2 .
This means E is homotopic to an S1 -bundle over T 2 . Taking non-homotopic
fibering T 2 → S1 induces non-homotopic T 2 -bundle structure on E .
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Case 2 π1(G) is non-abelian free group. Consider the exact homotopy se-
quences of two T 2 -bundles on E . In the sequence of first bundle

0 // Z ⊕ Z
α // π1(E)

β // π1(G) // 0

0 // Z ⊕ Z

j

::uuuuuuuuu

we have Im j ⊂ Im α = Ker β , because β(Im j) ⊂ π1(G) is an abelian normal
subgroup, hence trivial (theorem 2.10 of [10]). Similarly, from the sequence of
the second bundle we have Im α ⊂ Im j , hence these subgroups coincide in
π1(E).

Corollary 1 If a 4-manifold is a T 2 -bundle over a surface with boundary
different from annulus and Möbius band, then this structure is unique up to
bundle homotopy.

Proof A surface with boundary has the homotopy type of a graph.

Proposition 3 Let f : E1 → E2 be a π1 -injective map between T 2 -bundles
over aspherical surfaces. Then f is homotopic to a fiber covering map unless
E1 either comes from S1 -bundle over 3-dimensional S1 -bundle over aspherical
surface (whose π1 contains a normal Z) or is T 4 or T 2 × K2 .

Proof Denote the projection p : E2 → B and G := Im (p∗f∗). Let B2,G be
a covering of B2 corresponding to G, pG : E2,G → B2,G be the pullback of

p : E2 → B2 by B2,G → B2 , and f̂ : E1 → E2,G be a map covering f .

E1

f̂

||zz
zz

zz
zz

���
�

�
�

�
�

�
�

f

��
E2,G

//

pG

��

E2

p

��
B2,G

// B2

Denote the kernel of π1(E1) → π1(B1) by K1 and the kernel of (pGf̂)∗ :
π1(E1) → π1(B2,G) by K2 .

K1
// π1(E1) //

(pGf̂)∗ %%KKKKKKKKKK
π1(B1)

K2

;;xxxxxxxxx
π1(B2,G)
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Both kernels are isomorphic to Z⊕Z, and lemma 1 implies that f is homotopic
to a fiber covering map if and only if K1 = K2 .

Case 1 K1 ∩ K2 ≡ Z ⊕ Z.

As π1 of aspherical surface has no torsion, it means K1 = K2 . It gives a map
B1 → B2,G such that up to homotopy all the squares of the diagram commute

π1(E1)
(pGf̂)∗

%%KKKKKKKKKK

f∗

&&

��

f̂∗ // π1(E2,G) //

(pG)∗
��

π1(E2)

p∗

��
π1(B1) //___ π1(B2,G) // π1(B2)

and hence a map B1 → B2 which with f gives a fiber covering map.

Case 2 K1 ∩ K2 ≡ Z.

In this case π1(B1) contains Z as normal subgroup, hence B1 is T 2 , Klein bottle
K2 , S1 × I or Möbius band. As (K1 ∩K2) ⊳ π1(E1) and the monodromy acts
by conjugation, in this case the monodromy of E1 → B1 preserves a curve in
the fiber. This curve is embeded because there is no torsion in π1(B1) (and
hence K1/(K1 ∩ K2) ∼= Z). So that, E1 is a S1 -bundle over 3-dimensional
manifold W

K1 ∩ K2
// π1(E1) // π1(W )

and W itself is S1 -bundle over B1 . Denote K3 ⊳ π1(W ) the corresponding
fiber subgroup. The subgroup K2/(K1 ∩ K2) ∼= Z is normal in π1(W ) with
quotient isomorphic to π1(B). The subgroups K3 and K2/(K1 ∩ K2) coinside
if and only if f is fiber covering.

If K3 6= K2/(K1 ∩ K2), refiber W by S1 with fiber subgroup K2/(K1 ∩ K2).
Together with E1 → W it will give another T 2 -fibration of E1 , in which f will
be fiber-covering.

Case 3 K1 ∩ K2 ≡ 1.

In this case π1(B1) contains a normal Z⊕Z, hence B1 is T 2 or a Klein bottle,
and π1(E1) injects into π1(B1) × π1(B2,G). The monodromy of E1 → B1 is
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trivial, because in the diagram

0

��

0

��
K1

//

��

π1(E1) //

��

π1(B1)

π1(B2,G) // π1(B1) × π1(B2,G) // π1(B1)

the monodromy of the second line is trivial, the morphisms between the lines are
injective and the diagram commutes. There are obvious different T 2 -fibrations
of T 4 . For T 2 × K2 , diferent T 2 fibrations can be seen by taking in

T 2 × K2

��
K2 × K2 //

��

K2

K2

the projections of K2 × K2 onto different factors.

Corollary 2 Any π1 -injective map f : (E1, ∂E1) → (E2, ∂E2) of torus bundles
over surfaces with non-empty π1 -injective boundary is homotopic rel boundary
to a fiber-covering map.

Proof The condition on base implies that we are in the Case 1 of Proposition
3. Hence f is homotopic to a fiber-covering map. By the lemma 1 it means
that induced map on π1 ’s send the fiber subgroup of E1 into the fiber subgroup
of E2 . From where f |∂E1

is homotopic to a fiber-covering map too, because
∂Ei is a subbundle of Ei .

Denote the corresponding homotopies by {ft} : E1 × I → E2 and {gt} : ∂E1 ×
I → ∂E2 . For each t, the step maps ft and gt are both homotopic to f |∂E1×{0} .
Presenting E1 as (∂E1×[0; t])∪(∂E1×[t; 1])∪E1 , one can define a new homotopy
{Ht} : E1 × I → E2 of f as follows. On ∂E1 × [0; t], the step map Ht will
be the (reparametrized) homotopy between gt and f |∂E1×{0} followed by the
reparametrized homotopy between f |∂E1×{0} and ft . On (∂E1 × [t; 1]) ∪ E1 =
E1 , the map Ht will be ft .

The end map H1 : (∂E1 × [0; 1]) ∪ E1 → E2 is fiber covering on E1 and on
(∂E1 × {0}). Denote by γ0 and γ1 loops in B2 , subbundles over which are
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covered by H1(∂E1 ×{0}) and H1(∂E1 ×{1}). As γ0 and γ1 are homotopic in
B2 , the homotopy between H1|∂E1×{0} and H1|∂E1×{1} can made fiber covering,
and this new homotopy is homotopy to the old one. Then {Ht} followed by
the new homotopy gives a homotopy relatively to the boundary between f and
a fiber covering map.

Corollary 3 Any homotopy equivalence rel boundary of torus bundles over
surfaces with non-empty π1 -injective boundary is homotopic rel boundary to a
diffeomorphism.

Proof According to Corollary 2, both maps of the homotopy equivalence can
be made fiber covering maps by homotopy rel boundary. As both of them are
of degree ±1, they are isomorphisms on the fibers. This and the commutative
diagram of fundamental groups imply that the monodromies are conjugate,
hence the bundles are isomorphic. As the obtained diffeomorphism of aspherical
total spaces induces the same preserving peripheral structure isomorphism of
π1 ’s as the initial map, they are homotopic rel boundary.

Recall that a subgroup A is said to be square root closed in G if for every
element g ∈ G such that g2 ∈ A one has g ∈ A, too.

Proposition 4 Let B surface with boundary, S is a component of ∂B , E → B
a T 2 -bundle over B . Then the image π1(E|S) → π1(E) is square root closed
if and only if B is not a Möbius band.

Proof If B = D2 , the homomorphism π1(E|S) → π1(E) is onto and the
statement is obvious.

If B is different from the disc and Möbius band, π1(E|S) → π1(E) is injective.
As the diagram

0 // π1(E|S) //

��

π1(E)

��
0 // π1(S) // π1(B)

commutes, π1(E|S) ⊂ π1(E) is square root closed if and only if π1(S) ⊂ π1(B)
does. Suppose π1(S) ⊂ π1(B) is not square root closed. Choose a /∈ π1(S)
with a2 ∈ π1(S). As π1(B) is free, and square roots are unique in free groups,
so a2 must be an odd power of the generator of π1(S).
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Next observe that there is a Möbius band (M,∂M) → (B,S) with π1(M) →
a, π1(∂M) → a2 . Attach disks to M and B to get a map of RP 2 = M ∪D2 →
B ∪S D2 . This induces

Z2
∼= H1(RP 2; Z2) → H2(B ∪S D2; Z2) → H2(D

2, S; Z2) ∼= Z2.

The composition is the same as boundary map H1(∂M ; Z2) → H1(S; Z2) which
is an isomorphism because a is an odd power of the generator. Therefore we
conclude H2(B ∪S D2; Z2) ∼= Z2 and RP 2 → B ∪S D2 is an isomorphism on
H2 with Z2 coefficients. It follows that B ∪S D2 is closed and π1(RP 2) →
π1(B ∪S D2) has finite odd index. But RP 2 is the only closed surface with
finite π1 , so B ∪S D2 ∼= RP 2 , and B is a Möbius band.

3 Graph-manifolds

We use the term non-singular block for the total space of a T 2 -bundle over a
compact surface (with non-empty boundary) different from a 2-disc, an annulus
and a Möbius band (hence, a surface with free non-abelian fundamental group).
Boundary components of blocks are T 2 -bundles over S1 and are π1 -injective
in blocks.

Definition 1 A 4-dimensional closed connected compact oriented manifold is
a non-singular graph-manifold if it can be obtained by gluing several blocks by
diffeomorphisms of their boundaries.

Fot simplicity we will say “blocks” instead of “non-singular blocks” and “graph-
manifolds” instead of “non-singular graph-manifolds”.

Example The simplest examples of 4-dimensional graph-manifolds are T 2 -
bundles over closed hyperbolic surfaces (all the glueing diffeomorphisms being
trivial). A more interesting examples can be constructed by taking oriented S1 -
bundles over some 3-dimensional graph-manifolds: for instance, such that all
their blocks have π1 -injective boundary components (for exemple, lens spaces
are not good as bases) and all the blocks being locally trivial S1 -bundles (i.e.
no exceptional Seifert fibers).

Any decomposition as a union of blocks will be called a graph-structure. Topo-
logically, a graph-structure is determined by a system of embedded π1 -injective
T 2 -bundles over circles, called decomposing manifolds. A graph-structure is
reduced if all the glueing diffeomorphisms are not fiber-preserving, or, equiva-
lently, if the induced isomorphism of π1 ’s does not preserve the fiber subgroup.
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As the fiber subgroup is unique in π1 of the block, the notion of reduced struc-
ture is well defined.

Immediate properties Graph-manifolds are aspherical: since inclusions of
boundary components into blocks are π1 -injective, they are graphs of aspherical
spaces, and the universal covering of a graph of aspherical spaces is contractible
([14], prop. 3.6 p.156). The definition also implies that the Euler characteristic
of graph-manifolds is 0, because the Euler characteristic of block is 0, and glu-
ings are made along 3-manifolds. Finally, graph-manifolds can be smoothed:
the blocks are smooth, and gluings are made by diffeomorphisms of 3-manifolds.
More, a given graph-structure determines the smoothing in a unique way, be-
cause the smooth structure on a 3-manifold is unique and homotopic diffeo-
morphisms of torus bundles over S1 are isotopic [19].

Proposition 5 The signature of a closed oriented graph-manifold W 4 with re-
duced graph-structure all the blocks of which have orientable bases is σ(W 4) =
0.

Proof The blocks of an orientable graph manifold are orientable, and the
signature of the graph-manifold induces the orientations on the blocks. One can
assume that all the orientations of blocks are such that glueing diffeomorphisms
reverse the induced orientation of boundaries. The orientation on a block comes
from the orientation of its fiber plus the orientation of its base. Hence we
can speak about presentation of boundaries of blocks as some Mϕi

= (T 2 ×
I)/(x; 0) ∼ (ϕi(x); 1), ϕi ∈ SL(2, Z).

Determine first the signatures of blocks. In a reduced graph-structure, the
boundaries of all the blocks have many non-isotopic T 2 -bundle structures.
Hence the monodromies of all decomposing manifolds must be conjugate to(

1 ni

0 1

)
(Proposition 2). Thus by Meyer’s Theorem [11], the signature of a block

M4 of such a manifold is

σ(M4) =
1

3

k∑

i=1

ni.

Now apply the Novikov’s additivity to get σ(W 4) by adding the signatures of
the blocks. When one glues the blocks, Mϕ can be glued either with Maϕa−1

or with Maϕ−1a−1 for some a ∈ SL(2, Z). As Meyer’s characteristic function
Ψ : SL(2, Z) → Z is invariant under conjugation in SL(2, Z), for the signature
calculation one can assume that Mϕ can be glued either with Mϕ or with
Mϕ−1 . There exists an orientation reversing diffeomorphism Mϕ → Mϕ if and
only if the Euler number of S1 -bundle of Mϕ with a triangular ϕ is 0 [15],
i.e. if ϕ =

(
±1 0
0 ±1

)
. But the boundary component with such monodromy gives
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contribution 0 into the signature. There always exists an orientation reversing
diffeomorphisms Mϕ → Mϕ−1 , but Ψ

(
1 n
0 1

)
+ Ψ

(
1 −n
0 1

)
= n + (−n) = 0 and

Ψ
(
−1 n
0 −1

)
+ Ψ

(
−1 −n
0 −1

)
= n + (−n) = 0, hence every such pair also gives the

contribution 0 in the signature. Hence after adding the signatures of all the
blocks we will obtain σ(W 4) = 0.

Lemma 2 Let M be a T 2 -bundle over surface with non-empty π1 -injective
boundary. Then any non-fiber-covering π1 -injective map

f : (T 2 × I; ∂(T 2 × I)) → (M ; ∂M)

sending ∂(T 2×I) into the same boundary component is homotopic rel boundary
to a map into ∂M .

Proof Denote the component of ∂M containing f(T 2 × ∂I) by Mϕ . Fix a
point t ∈ T 2 . As T 2 × I is aspherical, we have to show that f |t×I : (I, ∂I) →
(M,Mϕ) is homotopic to a map into Mϕ .

Denote the projections p : M → B2 , pb : Mϕ → S1 and natural inclusions
l : Mϕ → M , lp : p(Mϕ) → B2 . Take a path in Mϕ that joins f(t × {0}) and
f(t×{1}); the union of this path with f(t× I) is an element of π1(M ; b) where
b = f(t × {0}).

In the diagram

0

""EE
EE

EE
EE

E

Z ⊕ Z

f∗

%%JJJJJJJJJ 0

��

0

��
0 // Z ⊕ Z // π1(Mϕ)

pb∗ //

l∗
��

Z //

lp
∗

��

0

0 // Z ⊕ Z // π1(M)
p∗ // π1(B

2) // 0

denote G = Im f∗ ; pb∗(G) is non-trivial (by assumption). We have γl∗f∗(G)γ−1

⊂ Im l∗, hence

p∗(γ) lp∗pb∗(G) p∗(γ
−1) ⊂ Im (lp∗pb∗)

∼= Z.

As lp∗pb∗(G) is abelian and non-trivial, and Im (lp∗pb∗) is generated by prim-
itive element of π1(B

2), we conclude that p∗(γ) ∈ Im (lp∗) [9], hence γ ∈
Im l∗ .
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Proposition 6 Let W = ∪Wi and W ′ = ∪W ′
k be non-singular graph-manif-

olds with reduced graph-structures. Then any π1 -injective map f : W → W ′

is homotopic to
⋃

fi , where each fi : (Wi, ∂Wi) → (W ′
j , ∂W ′

j) is fiber covering
map.

Proof

Step 1 Any π1 -injective map of torus bundle over circle f : Mϕ → W ′ is
homotopic to a fiber covering map into one block.

By Main Technical Result, one can move f by homotopy such that the inverse
image by f of decomposing submanifolds becomes disjoint union of π1 -injective
2-tori, embedded in Mϕ . Then Mϕ cut along them is either

⋃
i(T

2 × I)i or⋃
i(T

2 × I)i ∪ (K2×̃I) ∪ (K2×̃I), each summand lying in a block (K2×̃I is
twisted oriented I -bundle over Klein bottle).

Case 1 Mϕ cut along preimages of decomposing submanifolds is
⋃

i(T
2 × I).

First observe that if f sends T 2 × {0} and T 2 × {1} into different boundary
components of a block, then f is homotopic to a fiber-covering map. Indeed,
denote the block p : M → B and choose a base point b ∈ f(T 2 × {0}). Then
p∗f∗(Z⊕Z) lies in the subgroup of π1(B, p(b)) corresponding to the component
of ∂B containing pf(T 2 × {0}), and in the conjugation class of the subgroup
corresponding to the component of ∂B containing pf(T 2×{1}). But conjugate
classes of different boundary components can intersect only if B is an annulus,
because the conjugation defines a map S1 × I → B of non-zero degree. Hence
p∗f∗(Z ⊕ Z) = 1 which means that f sends the fiber subgroup of T 2 × I into
the fiber subgroup of the block. Hence f is homotopic to fiber-covering map.

Remark 1 This observation implies that in a reduced graph-structure the
fibers of different blocks are not homotopic. Indeed, if a graph-manifold has
just 2 blocks, then the claim comes from the definition of the reduced graph-
structure. If there are more blocks, take one of them, its fiber satisfies the
conditions of the previous observation in all the neighboring blocks. Hence, in
every neighboring block this fiber is not homotopic to any torus in the remaining
boundary components. But in these components lie in particular the fibers of
the next neighboring blocks etc.

As the graph-structure is reduced, in all the neighboring blocks f is not homo-
topic to a fiber-covering map and hence f(∂(T 2 × I)) lie in the same boundary
component. Hence one can apply Lemma 2 to the neighboring (T 2 × I)’s and
move them into the block where the fiber-covering f(T 2 × I) lies.

Algebraic & Geometric Topology, Volume 5 (2005)



1070 A. Mozgova

Figure 7: Shrinking in one block

Case 2 Mϕ cut along preimages of decomposing submanifolds is
⋃

i(T
2× I)∪

(K2×̃I) ∪ (K2×̃I).

Take the first copy of K2×̃I, I = [−1; 1], denote the decomposing manifold, in
which the image under f of its boundary lies, by Mϕ1

. Its boundary torus
is a two-fold covering of the Klein bottle in the base and if π1(K

2×̃I) =
π1(K

2) = 〈a, b|aba−1 = b−1〉, then the boundary torus corresponds to the
subgroup 〈a, b2〉. As the subgroups of boundary components are square root
closed in the fondamental groups of the blocks (Proposition 4), the subgroup
f∗(π1(K

2×̃I), x) must lie in the subgroup corresponding to Mϕ1
, because

f∗(π1(∂(K2×̃I)), x) lies there. As K2×̃I is aspherical, f |K2e×I can be moved
by homotopy in Mϕ1

and, hence, out of its original block in the neighboring
one. Repeat the previous reasonnings for the union of (K2×̃I) with the next
T 2 × I gives a new (K2×̃I). In the end it will be two copies of (K2×̃I), and
the image of each of them under f can be moved into the same decomposing
manifold. Hence, in this case f is homotopic to a map into a decomposing
manifold.

Once f(Mϕ) is shrinked in one block, look at the homomorphism that f induces
on π1 ’s. The image of the subgroup of the fiber of Mϕ vanishes when projecting
on π1 of the base of M , because it is abelian normal subgroup of non-abelian
free group. Hence, by lemma 1 the map is homotopic to a fiber covering one.

Step 2 Any π1 -injective map of a block f : M → W ′ is homotopic to a map
into one block of W ′ .

Any block retracts on a torus bundle over a wedge of circles. Torus bundle
over a wedge of circles can be obtained from a torus bundle over circle (with
the monodromy equal to the product of the monodromies of the petals) by
identifying some fibers. Change the map of this “big” single torus-bundle by
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homotopy given by Step 1. The images of fibers that are identified are two by
two homotopic by two kinds of homotopy. The first are given by petals and now
lies in one block M ′ . The second comes from identification and still lies in the
whole W ′ . In order to identify the images, one has to shrink these homotopies
into M ′ .

Apply the Main Technical Result to each of these homotopies, this will make
their intersections with decomposing submanifolds W ′ π1 -injective.

If the tori that must be identified are fiber-covering in M ′ , the corresponding
homotopies can lie only in the neighboring blocks, where they are not-fiber-
covering, hence by Lemma 2 can be shrinked in M ′ .

If the tori that must be identified are not fiber-covering in M ′ , then the homo-
topies lie in the union of M ′ with its neighboring blocks, because if the part
of the homotopy in the neighboring block does fiber-covering, then in the fol-
lowing blocks it does not and Lemma 2 does apply. More, all this homotopies
must lie in just one neighboring block of M ′ , because elsewhere we would have
a π1 -injective map (T 2×I, ∂(T 2×I)) → (M ′, ∂M ′)) which would be non-fiber-
covering but sending ∂(T 2 × I) into different components of ∂M ′ . Then the
remaining parts of homotopies and the images of all the petals can be shrinked
in this neighboring block.

Step 3 For all i, change f |Wi
according to Step 2, denote it by fi . Let

Wi,Wk ⊂ W be neighboring blocks. For each component of Wi ∩ Wk , by
Step 1, the block in which it lies is unique. As fi|Wi∩Wk

and fk|Wi∩Wk
are ho-

motopic, one conclude that the corresponding W ′
i and W ′

k are neighboring and
fi|Wi∩Wk

, fk|Wi∩Wk
are homotopic to a map into W ′

i ∩W ′
k . Use the correspond-

ing homotopy inside W ′
i to define the new fi : Wi = Wi

⋃
((Wi∩Wk)×I) → W ′

i

being the homotopy on (Wi∩Wk)×I part and the old fi on Wi part; then make
the same for fk . By doing it on all pairs of neighboring blocks, one obtain the
map f =

⋃
fi with fi : (Wi, ∂Wi) → (W ′

i , ∂W ′
i ). Apply Corollary 2 to every fi

to make it fiber covering. It remains to bind the new fi|Wi∩Wk
and fk|Wi∩Wk

by
a fiber covering homotopy inside the correponding W ′

i ∩ W ′
k , which is possible

because they covers the same subbundles of W ′
i ∩W ′

k with the same degree. We
obtain a map f =

⋃
fi : W → W ′ such that every fi : (Wi, ∂Wi) → (W ′

i , ∂W ′
i )

is fiber covering.

Theorem 1 Any homotopy equivalence between non-singular graph-manifolds
with reduced graph-structures is homotopic to a diffeomorphism.

Proof Take the collars of decomposing manifolds in the blocks, the blocks
without this collars remain the blocks. For each decomposing manifold Mϕ ,
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the union of its collars on both side is Mϕ × I , call it “double collar of Mϕ” in
the graph-manifold.

According to Proposition 6, both maps of the homotopy equivalence f : W →
W ′, g : W ′ → W can be moved by homotopy such that their restrictions on
blocks without collars are rel boundary fiber covering maps. As after homo-
topies we still have gf ∼ idW , the fiber of a block (without collars) M is
homotopic to its image by gf . Hence, by Remark 1, gf(M) ⊂ M for every
block of W , i.e. the restrictions of f and g gives the homotopy equivalences rel
boundary of blocks without collars. According to Corollary 3, these resrictions
are homotopic rel boundary to diffeomorphisms. One has to bind the obtained
block’s diffeomorphisms on the double collars of the decomposing manifolds.
For this note that the diffeomorphisms, that are the restricions of f and g
on the boundaries of blocks without collars, are homotopic. Hence restric-
tions of f and g on double collars of decomposing manifolds are homotopy
equivalences rel boundary that are diffeomorphism on the boundaries. As de-
composing manifolds are sufficiently large, these homotopy equivalences are
homotopic rel boundary to diffeomorphisms, by homotopies that are constant
on the boundaries. [19].
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33, rue Louis Pasteur, 84000 Avignon, France and
Laboratoire Emile Picard, UMP 5580, Université Paul Sabatier
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