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Abstract Let G be a discrete group for which the classifying space for
proper G-actions is finite-dimensional. We find a space W such that for any
such G, the classifying space BG for proper G-bundles has the homotopy
type of the W -nullification of BG. We use this to deduce some results
concerning BG and in some cases where there is a good model for BG we
obtain information about the BZ/p-nullification of BG.
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1 Introduction

Let G be a discrete group. We will say that a G-CW-complex X is proper if
the isotropy groups of the action are finite.

In 1971, J.P. Serre introduced in [37] the “classifying space for proper actions”,
that can be described as the unique proper G-CW-complex EG, up to G-
homotopy, that enjoys the following universal property:

“If X is another proper G-CW-complex, there exists a G-map X −→ EG
which is unique up to G-homotopy”.

The space EG appears as the principal new feature in the reformulation of
the Baum-Connes conjecture stated in [3] by Baum-Connes-Higson. The con-
jecture, partially solved, asks if for a locally compact, Hausdorff and second
countable group G, the assembly map from the Kasparov K -homology groups
KG

j (EG) to the C∗ -algebra K -theory groups Kj(C
∗
r (G)) is an isomorphism for

j = 0, 1. The great amount of research that has emerged around this subject
has led to a growing interest in the theory of proper actions.

An important part of the efforts carried out in this direction has been devoted
to understand the relationship between the algebraic structure of G and the
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homotopy-theoretic properties of EG and its quotient space EG/G, which is
currently denoted by BG. Probably the greatest success has been reached by
interpreting correctly finiteness group-theoretic conditions over G in order to
build models of EG enjoying various types of finiteness conditions. See ([28],
section 5) for an excellent survey on this topic.

In the same way that happens with classical G-actions, the importance of EG
and in particular of BG does not come only because they reflect geometrically
the algebraic properties of the group G, but because the importance of these
spaces in the theory of G-bundles. Baum-Connes-Higson already pointed out
that BG classifes proper G-bundles (see [3], definition 8), and they described
how to obtain them by making pullback on maps X −→ BG, a method of a clear
classical flavor. Moreover, if G is a group for which Baum-Connes conjecture
holds, the knowledge of the homotopical structure of BG plays a rôle in the
computation of the K -theory of C∗(G), and in general gives information about
the integral homology of G. See ([28], section 8) for details about these results.

The most important attempt made so far to understand the homotopy type
and properties of BG is the paper of Leary-Nucinkis [24]. In it, the authors
prove that for every CW-complex X there exists a discrete group GX such that
BGX is homeomorphic to X . This “Kan-Thurston-like” result is proved using
essentially tools of the theory of graph of groups. As a by-product, they obtain
a precise description of the fundamental group of BG and a construction of BG
for some subgroups of right-angled Coxeter groups.

Although these results have been very useful for us (particularly the formula for
the fundamental group), our approach to the homotopy type of BG has been
different, and has been carried out with pure homotopy-theoretic tools. Our
idea is to find a functor F in the topological category that transforms models
of BG on spaces that are homotopy equivalent to models of BG. This functor
have enough good properties in order to read information about BG from BG
and vice versa.

The appropriate functor turns to be a nullification; a tool that was introduced
by Bousfield in [4] in order to study periodic phenomena in unstable homotopy
(in fact, he called it “periodization”), and that has been widely used since then.
The utility of this functor in this context comes from the fact that it will allow
us to apply all the machinery of localization developed in the 90’s by Bousfield
himself [4, 5], Dror-Farjoun [13], Chachólski [8] and others.

Our main result is the following:

Theorem 3.2 Let G be a discrete group such that there exists a finite-
dimensional model for BG. Let W∞ denote

∨

BZ/p, where the wedge is in-
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dexed by all primes. Then we have a homotopy equivalence PW∞
BG ≃ BG,

where PW∞
denotes the W∞ -nullification functor.

Observe that the condition concerning the existence of a model of BG with
finiteness conditions is not too restrictive, in account of the great quantity of
groups that have recently appeared for which these conditions hold.

Now we describe in more detail the contents of each of the sections of the
paper, and in particular we will comment a little bit the consequences of the
main theorem.

In section 2 we review the needed background and results concerning proper
actions, and we construct a particular model for the classifying space for families
EFG that will be very useful in the rest of the work; as a fundamental by-
product, we also obtain an appropriate model for BFG.

Section 3 constitutes the bulk of the work, because it is devoted to the proof of
the main theorem we stated before. The technique is the following: we apply
the functor PW∞

to a suitable model of BG, and we obtain that it is homotopy
equivalent to the W∞ -nullification of the nerve of some small category that
only depends on G. This nerve turns out to be the model built in the previous
section for BG, and we finish by checking that in the conditions of the theorem
BG is W∞ -null.

The rest of the paper is devoted to take out some consequences of the main the-
orem. So, in section 4 we describe the behaviour of the functor B with respect
to various fundamental constructions in homotopy theory, namely products,
wedges or colimits. Moreover, we identify in some cases the universal cover
of BG and we obtain some conditions about preservation of fibrations under
passing to classifying spaces.

We begin the following section with a short new proof of the well-known fact
that if G is a locally finite group which cardinal is smaller than ℵω , BG is
contractible (indeed, the statement is true for all locally finite groups, see [11]).
Later, we treat the case of groups for which the normalizer condition holds,
an ample class of discrete groups that include, for example, all the nilpotent
groups. We prove that if a group G in this class admits a finite-dimensional
model for BG, then BG ≃ BH for some quotient group H that we identify. In
particular, in this case BG is nilpotent as a space if G is nilpotent as a group.
We finish this paragraph by studying the BZ/p-nullification of classifying spaces
of supersoluble groups.

In section 6 we take the opposite point of view, showing that the main theorem
can give information in the two directions. More concretely, we focus our atten-
tion on groups of isometries of the real plane, and taking profit of well-known
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geometric properties of them we obtain via BG a lot of information on the
BZ/p-nullification of their classifying spaces.

Last section is devoted to the study of a canonical map BG −→ BFG (defined
previously) that always relates the classical and proper classifying spaces. More
concretely, we prove that the homotopy fiber of that map can be described as
a homotopy colimit of classifying spaces of groups of F over a contractible cat-
egory. We finish by proving a technical and interesting statement that appears
in the proof and concerns the localization of a comma category.

Acknowledgements I wish to thank Carles Broto, for turning my attention
to proper actions and the world of Geometric Group Theory, and for all the time
we have spent discussing about these topics. The results about crystallographic
groups were motivated by a suggestion of Ian Leary, whom I acknowledge his
interest in my work. I am also grateful to Emmanuel Dror-Farjoun, who pointed
out some very useful observations that enriched the results of last section. Fi-
nally, I would like to thank the Institute Galilée, Université Paris XIII, for their
hospitality in the seven months I spent there, and the referee, for the detailed
report and numerous suggestions. The author is partially supported by MCYT
grant BFM2001-2035.

2 Useful models for EFG and BFG

We will begin by recalling the definition of the classifying space for families.
Further information about proper actions and their classifying spaces can be
found in [3], [24], [33], or [12].

Definition 1 Suppose F is a family of subgroups of a discrete group G that
is closed under conjugation and taking subgroups. We will say that a G-CW-
complex Y is a model for EFG if the isotropy group of each point belongs to
F and for each H ∈ F , the fixed-point space Y H is contractible.

The G-space EFG is characterized by the following universal property:

Proposition 2.1 If X is a model for EFG, then for each G-CW-complex Y
whose isotropy groups lie in F there is a map Y −→ X which is unique up to G-
homotopy. Moreover, two models for EFG are always G-homotopy equivalent.
Conversely, if X is a G-CW-complex for which this universal property holds,
X is a model for EFG.
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The quotient space EFG/G is usually denoted by BFG. As EFG is unique up
to G-homotopy equivalence, BFG is unique up to homotopy equivalence; see
([24], section 2) for a review of the main properties of BFG.

If there is no explicit mention against it, we will suppose from here that F is
the family of finite subgroups of G. In this case, it is standard to denote EFG
and BFG by EG and BG, respectively. In particular, it can be seen that every
group homomorphism G −→ G′ induces a G-map EG −→ EG′ (respectively
a map BG −→ BG′ ) which is unique up to G-homotopy (respectively up to
homotopy).

A number of geometric constructions for EFG and its quotient space is available
in the literature (see section 4 of [27] for a description of some of them), but
to describe the relationship between BG and BFG we will need to build these
spaces as nerves of small categories. This is the main goal of this section.

Recall first the definition of the orbit category associated to a group G and a
family of subgroups F : the objects are the homogeneous spaces G/H , with
H ∈ F , and the morphisms are the G-maps. It is not hard to see that there is
a bijective map

Mor(G/K,G/H) = {g ∈ G | g−1Kg ⊆ H}/H

given by f −→ f(eK), where e is the identity element of G. The key definition
we need for building the desired model of EFG is the following (see [15], section
2, for details):

Definition 2 Let D be a small category, Cat the category where the objects
are the small categories and whose morphisms are functors, and f : D → Cat

a functor. The Grothendieck construction Gr(f) associated to f is defined as
the category whose objects are the pairs (d, x), with x ∈ D and x ∈ f(d),
and where a morphism (d, x) → (d′, x′) is a pair (u, v) where u : d → d′ is a
morphism in D and v : f(u)(x)→ x′ is a morphism in f(d′). The composition
is made in the obvious way.

The main feature of this construction, due to Thomason, is the following:

Theorem 2.2 Let D be a small category, F : D −→ Cat a functor, and
Gr(F ) the Grothendieck construction of F . Then there exists a natural weak
homotopy equivalence:

N(Gr(F )) ≃ hocolim N(F )

where N denotes the nerve.
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Proof See [39], 1.2.

Now we can describe our model of the universal space EFG.

Proposition 2.3 Let G be a discrete group. Consider the functor

R : OF −→ Cat

that sends every homogeneous space G/H to the category G/H (whose ob-
jects are the elements of G/H and there is only identity morphisms), and the
morphisms to the obvious functors. In these conditions, we have that the nerve
of the Grothendieck construction of f is a model for EFG.

Proof For convenience, we will denote X = |N(Gr(R))|. This space has a
natural action of G given by the left action of G in every homogeneous space
G/H . We will prove firstly that for every x ∈ X the isotropy group Gx of x
belongs to F .

The action of G over X is simplicial and is induced from the action of G over
the homogeneous spaces, so by definition of nerve we will only need to study the
action of G over the vertices of X . Hence, let (G/H, a) be the pair associated
with the vertex x. It is clear that

Gx = {g ∈ G | gaH = aH} = {g ∈ G | ∃h ∈ H s. t. gah = a}

and this amounts to say that g ∈ aHa−1 . So, Gx = aHa−1 , that belongs to F
because H does.

Now we will see that for every K ∈ F , the set of fixed points XK is contractible.
Now, a point on a simplex is fixed by a subgroup if and only if all vertices are
fixed, because the action of G is defined over the vertices and then extended to
the rest of the simplices by linearity.

So, consider a vertex x ∈ X . This point is fixed by the action of K if, given the
pair (G/H, aH) associated to it, we have that, for every k ∈ K , kaH = aH .
Thus, we see that

XK =
⋃

H∈F

{(G/H, aH) | a−1Ka ⊆ H}/H.

So, for every element (G/H, aH) ∈ XK there exists one and only one morphism
(G/K, eK) −→ (G/H, aH), or in other words, XK can be identified with the
nerve of the undercategory (in the sense of [30], II.6) associated to the element
(G/K, eK) of the category Gr(R). This nerve is contractible, and then XK is
contractible too. So we are done.
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Note that if we consider the action of G over Gr(R) via functors, the objects of
Gr(R)/G are the homogeneous spaces G/H , H < G finite, and the morphisms
are the G-maps. So, this quotient category is identified in a natural way with
the orbit category OF , and in particular N(OF ) is a model for BFG.

Remark 2.4 Observe that if we take the realizations of the nerves of Gr(R)
and OF , we obtain models of EFG and BFG in the category of (topological)
spaces.

Remark 2.5 The idea of the construction comes from ([2], section 2), al-
though they only describe it in the case of G finite, being F the family of finite
subgroups of G, and with another purpose. In the language of that paper, we
have proved that X is the F -approximation to a point.

We conclude this section with a modification of the previous models that will
be useful in the sequel. So, if {H1, . . . ,Hn} are subgroups of G that belong
to F and such that for every 0 < i < n there exists a G-equivariant map
G/Hi −→ G/Hi+1 , we define G/H1 −→ . . . −→ G/Hn as the small category
whose elements are n-uples (a1H1, . . . , anHn) such that for every 0 < i < n
there exists a G-equivariant map fi : G/Hi −→ G/Hi+1 with fi(aiHi) =
ai+1Hi+1 , and whose morphisms are the identity maps. Now, if Γ is the poset
category of non-degenerate simplices of N(OF ), we define a functor S : Γop −→
Cat that takes the simplex represented by the chain of maps {G/H1 −→ . . . −→
G/Hn} to the category G/H1 −→ . . . −→ G/Hn , and the face maps to the
obvious functors. Then we have the following:

Proposition 2.6 In the previous conditions, hocolimΓN(S) is a model for
EFG, and N(Γ) is a model for BFG.

Proof By theorem 2.2, hocolimΓN(S) ≃ N(Gr(S)), and on the other hand,
the left action of G over every homogeneous space G/H , (H ∈ F ) induces, via
functors, another one over the categories G/H1 −→ . . . −→ G/Hn . Now, ob-
serve that N(Gr(S)) is the subdivision (in the sense of [19], III.4) of N(Gr(R)),
where R is the functor defined in proposition 2.3. In fact, if we take a non-
degenerate simplex of N(Gr(R)) that is represented by a chain of morphisms
(G/H1, a1H1) −→ . . . −→ (G/Hn, anHn), its barycenter is the vertex of the
nerve N(Gr(S)) represented by the object (G/H1 −→ . . . −→ G/Hn, a1H1

−→ . . . −→ anHn) of Gr(S). Then, by ([21] prop. 12-14), there exists a
homotopy equivalence |N(GrR)| ≃ |N(Gr S)|, that is a G-equivalence by con-
struction, and then N(GrS) is a model for EFG. A similar line of reason proves
that N(S) is a model for BFG.
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The main advantage of these models is that they reconstruct EFG and BFG as
homotopy colimits over a poset category, and in particular they have structure
of simplicial complexes. These facts will be very useful in the final section.

3 BG is homotopy equivalent to a nullification

Let G be a discrete group, F a family of subgroups of G closed under conjuga-
tion and taking subgroups. As a first step in our study of the relation between
the classical and proper classifying spaces, we will describe a canonical map
that always relates BG and BFG.

So, consider models of EG and EFG; both of them are G-spaces, and then we
can make the Borel construction EG×G EFG. Now, let p1 be the projection

EG×G EFG
p1

−→ EG/G ≃ BG.

The action of G over EG is free, so the map p1 is a fibration, and its homotopy
fiber EFG is contractible. Thus, p1 is a homotopy equivalence, and EG×GEFG
is a model of BG.

Consider now the projection over the second component

EG×G EFG
p2

−→ EFG/G ≃ BFG.

We have seen that EG ×G EFG and EFG/G are respectively models for BG
and BFG, and then p2 can be thought as a map BG −→ BFG that we will call
f in the rest of the section. The map f is not a fibration in general, because
the action of G over EFG is not free. In fact, if x ∈ BFG, we have that f−1(x)
has the homotopy type of EG ×G G/Hx , being Hx the isotropy group of x,
that belongs to F . Now, EG×G G/Hx is a model for BHx , and hence all the
fibers of the map f have the homotopy type of classifying spaces of groups of
F .

This fact gave us the intuition that the map we have studied could encode a
functorial way of passing from the usual classifying space of G to the classifying
space for proper G-bundles, and what is more important, to obtain valuable
information of the latter starting from the homotopy structure of BG, and
viceversa. More concretely, we searched for a functor F such that the following
conditions hold:

(1) F “kills” the homotopy fiber of f .

(2) F (f) is a weak equivalence.
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(3) F (BG) ≃ BG.

The two first conditions give the impression, according to ([13], 1.H.1 and
3.D.3), of F being a localization functor L in the sense of Dror-Farjoun, and
in fact, the functor we have found has been the A-nullification functor with
respect to a certain space A. For the main properties of these functors you can
look at [4], [8] or [13], although we will recall here the definition.

Let A and X be spaces; X is said A-null if the mapping space map(A,X) is ho-
motopy equivalent to X via the inclusion of constant maps X −→ map(A,X).
The A-nullification of X is a functor PA : Spaces −→ Spaces that takes
every space X to an A-null space PAX such that there exists a universal map
X −→ PAX which induces a weak homotopy equivalence

map(PAX,Y ) ≃ map(X,Y )

for every A-null space Y . It can be seen that any other A-null space X for
which the last property holds is indeed homotopy equivalent to PAX . So, we
have defined a functor in the category of unpointed spaces (that can also be
defined in the category of pointed spaces, although we we will only work here
with unpointed spaces), which is always coaugmented and idempotent, and kills
the structure of X that “depends” on A. In fact, PAX is the localization of X
with respect to the constant map A −→ ∗, and the spaces X for which PAX
is contractible are called A-acyclic.

Consider now the set of all prime numbers {p1, p2, p3 . . .} with the usual order,
and let X be a space. In the remaining of the paper we will denote by Wn the
space BZ/p1 ∨ . . . ∨ BZ/pn , and by W∞ the wedge

∨

BZ/p extended over of
the all prime numbers. The next key lemma is one strong reason that suggests
that the W∞ -nullification is the functor we need.

Theorem 3.1 If G is a finite group, then PW∞
BG is contractible.

Proof A point is always null, so we only need to prove that for every W∞ -null
space X there is an equivalence X ≃ map(PW∞

BG,X). But the W∞ -null
spaces are, in particular, Wn -null for every n; hence,

map(PW∞
BG,X) ≃ map(BG,X) ≃ map(PWnBG,X)

for every n. Now, suppose that |G| = pn1

j1
pn2

j2
. . . pnm

jm
, with j1 < . . . jm . Because

of ([17], 3.3), we know that PWk
BG is contractible for every k ≥ jm . This

implies
map(PW∞

BG,X) ≃ map(PWnBG,X) ≃ X

as we claimed.
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Now suppose that G is a discrete group; we are in position of stating our main
theorem:

Theorem 3.2 Let G be a group such that there exists a finite-dimensional
model for BG, and let W∞ be as before; we have that BG is homotopy equiv-
alent to PW∞

BG.

Proof Consider the model of EG given in section 2 as the realization of the
nerve of the Grothendieck construction of a functor

R : OF −→ Cat

described there. We have seen that EG ×G EG is a model of BG, so using
theorem 2.2 we obtain

BG ≃ EG×G EG ≃ EG×G (hocolimOF
R) ≃ hocolimOF

(EG×G R(−))

where the previous equivalence is a simple application of ([16], 6.5). Now, if
we apply the nullification functor PW∞

to the previous string of equivalences,
we obtain a weak equivalence PW∞

BG ≃ PW∞
hocolimOF

(EG ×G R(−)), and
the latter is equivalent, by ([13] 1.H.1), to PW∞

hocolimOF
PW∞

(EG×GR(−)).
Observe that the spaces that appear in the target of the functor

EG×G N(R(−)) : OF −→ Spaces

have the homotopy type of classifying spaces of finite subgroups of G. Hence,
if we apply the previous proposition, we have that PW∞

◦ (EG ×G R(−)) is
equivalent to the constant functor, and then

PW∞
BG ≃ PW∞

hocolimOF
∗ ≃ PW∞

(N(OF )) ≃ PW∞
(BG).

Then, by the solution of Miller to the Sullivan conjecture [31], we know that the
space map(W∞,BG) is homotopy equivalent to BG, and hence BG is W∞ -null.
This means that PW∞

BG is homotopy equivalent to BG, and we are done.

The following generalization, that will be widely applied in section 6, is an
immediate consequence of the proof of the previous theorem:

Corollary 3.3 If F is a family of finite subgroups of G closed under con-
jugation and taking subgroups, and PA is a nullification functor such that
PABH ≃ ∗ for every H ∈ F , then the map f : BG −→ BFG is an equivalence
after A-nullification.

If we particularize for the family of all the finite groups, we obtain the following:
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Corollary 3.4 If G is a discrete group, the classifying spaces BG and BG
are always equivalent after W∞ -nullification; moreover, the map f that was
described at the beginning of this section is, in fact, equivalent to the W∞ -
nullification map if G admits a finite-dimensional model for BG.

Proof The fact that BG and BFG are PW∞
-equivalent is a particular case

of the previous corollary. For the second statement, if we have the fibration

Fibf −→ BG −→ BFG

(where Fibf stand for the homotopy fibre of f ), the base is W∞ -null, and
then by ([13], 3.D.3) the fibration is preserved under W∞ -nullification. Now
the result is an easy consequence of ([8], 14.2).

It is worth to point out that the finiteness conditions under which the main
theorem holds is that there exists a model of BG for which map∗(W∞,BG)
is weakly contractible. This is weaker than having a finite-dimensional model
for BG, but the condition that will always hold for the groups that appear in
the rest of this note will be the latter, because it is the usual one that appears
in the literature of Geometric Group Theory. It would be interesting to find
cohomological conditions to be a Miller space (that is, spaces X for which
map(BZ/p,X) ≃ X) for all the primes at the same time, because we could
then apply the theorem to these spaces. Recall that there already exist well-
known cohomological conditions of this kind for isolated primes, as for example
the Lannes-Schwartz Theorem [23].

On the other hand, we cannot expect that theorem 3.2 holds for any G. To see
this, take a space X which is not W∞ -null. According to [24], there exists a
discrete group G such that X is a model for BG; so our result does not hold
for G.

We finish this section by showing that the discreteness of G is necessary in
theorem 3.2.

Example 3.5 Let us consider the classifying space of S1 . As the circle is
compact, the classifying space for proper S1 -bundles is a point by definition.
On the other hand, consider the rationalization map BS1 −→ K(Q, 2). By
the homotopy long exact sequence, the homotopy fibre of this map has the
homotopy type of K(⊕Zp∞, 1), where the direct sum runs over all primes. As
every Prüfer group Zp∞ is a colimit of a telescope of injections between p-
groups, the results ([13] 1.D.3) and ([17], 3.3) imply that PW∞

K(⊕Zp∞, 1) is
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contractible. Then, by ([13] 1.H.1) the rationalization is preserved by W∞ -
nullification, and as K(Q, 2) is clearly W∞ -null, we have that PW∞

BS1 ≃
K(Q, 2), which is non-contractible. In fact, it seems plausible to conjecture
that the W∞ -nullification of the classifying space of a compact Lie group is
homotopy equivalent to its rationalization.

4 The homotopy type of BG

In this paragraph we are going to prove some interesting consequences that the
main theorem 3.2 has over the homotopy type of BG. Essentially, the idea is to
use properties of the nullification functors for describing the classifying space
for G-proper bundles.

Remark 4.1 From now on, we particularize for the case F being the family of
all the finite subgroups of G, although a great part of the results we obtain in
the next sections remains valid for any subfamily of F that is subgroup-closed
and conjugation-closed. Even if we do not mention it, we will also suppose that
the finiteness conditions of theorem 3.2 hold for all the groups that appear in
this section.

We begin by analyzing the behaviour of the functor B under products.

Proposition 4.2 Let G1 and G2 discrete groups which possess a finite dimen-
sional model for the classifying space for proper bundles. Then the following
holds:

• A model for B(G1 ×G2) is given by BG1 × BG2 .

• The wedge BG1 ∨ BG2 is a model for B(G1∗G2).

Proof It is known that B(G1 × G2) ≃ BG1 × BG2 . Using that BG1 × BG2

is W∞ -null (because the finiteness) and the preservation property ([13] 1.A.8,
prop. 4), we obtain that

B(G1 ×G2) ≃ PW∞
(B(G1 ×G2)) ≃ PW∞

(BG1)×PW∞
(BG2) ≃ BG1 × BG2.

The proof of the second statement is similar, using that B(G1∗G2) ≃ BG1∨BG2

and recalling that we can apply ([13], 1.D.5) because a wedge of a special case
of pointed homotopy colimit.
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It is worth to point out that these results are established in ([28], 4.9) without
any assumption on the dimension, although this way of proving them is probably
new. On the other hand, the second of them can be generalized to other colimits,
like some telescopes and pushouts.

Proposition 4.3 Let {Gi}i∈N be a collection of discrete groups which possess
a finite-dimensional model for the classifying space for proper bundles . Then
the following holds:

• If we have the pushout of groups

G1
α

//

β
��

G2

��

G3
// G

and the homomorphisms α and β are injective, then the pushout of the
induced diagram of classifying spaces for proper G-bundles is a model for
BG.

• If G1 −→ G2 −→ G3 −→ . . . is a telescope of groups where the maps are
injective and we denote by G the colimit of the telescope, we have that
the colimit of the telescope induced by B is a model for BG.

Proof To prove the first statement, recall that by Whitehead’s theorem ([7],
II.7.3) the pushout of the classical classifying spaces is the classifying space of
the pushout. As the inclusions BG1 →֒ BG2 and BG1 →֒ BG3 are cofibrations,
BG has the homotopy type of the homotopy pushout. If we apply now the
functor PW∞

to the diagram, the result is deduced from theorem 3.2, ([13],
1.D.3) and the fact that there exists a finite-dimensional model for the homotopy
pushout of the induced diagram

BG2 ←− BG1 −→ BG3.

The second statement can be proved in an analogous way using again the re-
lationship between localization and colimits given in ([13], 1.D.3) and the fact
that the strict colimit of a telescope of cofibrations has always the homotopy
type of the homotopy colimit.

As Whitehead’s theorem is not true if the maps that appear in the diagram are
not injective, it should not be expected that the functor B preserve colimits in
full generality.
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Recall now that for any discrete group G the fundamental group of BG can
be identified ([24], prop. 3) as the quotient of G by the (normal) subgroup
generated by the torsion elements. Using the main theorem 3.2, we can identify
in some cases the universal cover of BG.

Proposition 4.4 Let G be a discrete group which has a finite-dimensional
model for BG, and let T < G be the subgroup generated by the torsion ele-
ments. If the quotient G/T is torsion-free, then the universal cover of BG has
the homotopy type of the W∞ -nullification of BT .

Proof We know that T is normal in G, so we have a fibration

BT −→ BG −→ B(G/T ).

As G/T is torsion-free, its classifying space is W∞ -null. Thus the previous
fibration is preserved by W∞ -nullification, and we obtain another one:

PW∞
BT −→ BG −→ B(G/T ).

Note that, as T is a subgroup of G, every model for EG is also a model for ET .
Hence, BT is a model for PW∞

BT , and in particular π1(PW∞
BT ) = π1(BT ) =

{1}. This implies that PW∞
BT is simply-connected, and we are done.

The last important consequence of the main theorem that we are going to prove
here has to do with fibrations, and will have great importance in the remaining
of this note.

It is a well-known fact of basic algebraic topology that if we have a group
extension, then the sequence induced at the level of classifying spaces is a
fibration sequence. Using the description of theorem 3.2, we find sufficient
conditions that guarantee that the analogous result for BG holds, and we show
by means of an easy example that the statement does not need to be true if
those hypotheses fail to be fulfilled.

So, suppose we have a short exact sequence of groups

{1} −→ G1 −→ G −→ G2 −→ {1}

which have a finite-dimensional model for the classifying space for proper bun-
dles. Then the following result is true:

Proposition 4.5 If G2 is torsion-free or G1 admits a contractible model for
BG1 , the homotopy fiber of the induced map BG −→ BG2 is homotopy equiv-
alent to BG1.
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Proof It is enough to combine the results ([13], 1.H.1 and 3.D.3) of Dror-
Farjoun with our description of BG as a nullification (Theorem 3.2).

The next example, that was one of the first motivations for our work, will show
that the above conditions are necessary.

Example 4.6 Consider the group D∞ ×D∞ , and H the index two subgroup
whose elements are the words that can be written with an even number of
letters. We have an extension

H −→ D∞ ×D∞ −→ Z/2

that induces a sequence of maps

BH −→ B(D∞ ×D∞) −→ BZ/2.

It is not hard to see that a model for E(D∞ × D∞) is given by R2 , and the
quotient by the action of (D∞ × D∞) is a square, which is contractible. By
([24], prop. 8, see also lemma 6.1 below), BH is homotopy equivalent to the
2-sphere, and on the other hand, Z/2 is finite and so BZ/2 is contractible.
This means that the aforementioned sequence cannot be a fibration sequence.
Of course, neither of the conditions of the proposition hold in this case.

Observe that D∞×D∞ is a group of isometries of the plane. We will carefully
study these groups in section 6.

5 Homotopy models of BG for some classes of dis-

crete groups

In this section we will use the theorem 3.2 for describing the homotopy type
of BG for a wide range of groups. As a by-product, we will obtain that for
every G nilpotent such that it admits a finite-dimensional model for BG, BG
is nilpotent as a space, and we also determine, for p odd, the BZ/p-nullification
of classifying spaces of supersoluble groups. Let us start by considering the class
of locally finite groups.

5.1 Locally finite groups

It is known that the classifying space for proper G-bundles of a group G is
contractible if the group G is locally finite. We begin this section by presenting
an easy proof of this fact in an ample range of cases.
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Proposition 5.1 Let G be a locally finite group that admits a finite-dimen-
sional model for BG. Then BG is contractible.

Proof It is known (see for example [31], 9.8) that every locally finite group
is the colimit of the directed system of its finite subgroups. Thus, we have
a homotopy equivalence BG ≃ hocolimCBH , where C is a contractible poset
category (because it has an initial object given by the trivial group) and BH
represents all the classifying spaces of finite groups H of G. So, by ([13], 1.D.3),
we obtain

PW∞
BG ≃ PW∞

(hocolimCPW∞
BH) = PW∞

(|C|) = PW∞
(∗) = ∗

and we are done.

Remark 5.2 By [11], this result applies to all locally finite groups whose
cardinal is smaller than ℵω .

Now we can prove the following result, that concerns to the classifying space
for proper G-bundles of extensions of locally finite groups.

Proposition 5.3 Let

{1} −→ K −→ G −→ Q −→ {1}

be an extension of groups, K a locally finite group whose cardinal is smaller
than ℵω , and assume there is a bound on the order of finite subgroups of Q.
Then if Q admits a finite model for BQ, G admits a finite model for BG, and
then BQ is homotopy equivalent to BG.

Proof If we apply the results 3.2 and 5.1 we obtain the statement is true if
there is a finite-dimensional model for BG, and this happens by proposition 4.4
of [32].

5.2 Groups with the normalizer condition

We study now the groups for which the normalizer condition holds. It is greatly
remarkable that this class contains all the nilpotent groups.

Recall that a group G is said to satisfy the normalizer condition if every proper
subgroup of G is distinct from its normalizer. In this case the following holds
(see [22], page 215):
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(1) For every prime p, there exists a normal p-group Tp such that if x ∈ G
and the order of x is a power of p, then x ∈ Tp .

(2) The elements of finite order of G form a normal subgroup of G which is
isomorphic to

∏

p prime Tp .

Throughout this section we will impose to the groups for which the normalizer
condition holds that the torsion p-subgroups Tp that we have just defined are
locally finite. We need this condition because it is not known if the BZ/p-
nullification of the classifying space of a general p-group is contractible if the
group is not locally finite. Among the few examples that have been described
of non-locally finite p-groups we can remark the Burnside groups B(n, e) for
n > 1 and e > 664 or the “monsters” of Tarski-Olshanskii. See [1] and [34] for
more information about these families of groups.

All these facts have the following interesting consequence:

Proposition 5.4 If G is a discrete group for which the normalizer condition
holds, and p1 . . . pn is a collection of primes, we have a homotopy equivalence
PBZ/p1∨...∨BZ/pn

BG ≃ B(G/Tp1
× . . . × Tpn). In particular, there is an equiva-

lence PW∞
BG ≃ B(G/

∏

p prime Tp).

Proof For simplicity, we will only prove the case of one prime p (the gener-
alization to a family is immediate). It is clear that BTp is BZ/p-acyclic, and
B(G/Tp) is BZ/p-null, so if we BZ/p-nullify the fibration

BTp −→ BG −→ B(G/Tp)

we obtain the desired homotopy equivalence.

If we suppose that G is such that exists a finite-dimensional model for BG we
have:

Corollary 5.5 BG ≃ B(G/
∏

p prime Tp).

So we have a complete description of the homotopy type of BG.

Other case that can be solved with the same tools is the following:

Proposition 5.6 Let G be a discrete group, H a normal subgroup of G for
which the normalizer conditions holds, and such that G/H does not have p-
torsion. If Tp is the p-torsion subgroup of H , then the BZ/p-nullification of
BG fits into the following fibration sequence:

B(H/Tp) −→ PBZ/pBG −→ B(G/H)

and hence it is an Eilenberg-MacLane space.
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Proof The base of the fibration

BH −→ BG −→ B(G/H)

is BZ/p-null, so by ([13], 3.D.3) the fibre is preserved under BZ/p-nullification.
The result now follows from proposition 5.4.

Taking into account the main theorem 3.2, the following corollary is immediate:

Corollary 5.7 In the hypotheses of the previous proposition, if G/H is tor-
sion-free, T is the torsion subgroup of H and there exists a finite-dimensional
model for BG , then the fibration

B(H/T ) −→ BG −→ B(G/H)

defines the classifying space for proper G-bundles, which is again an Eilenberg-
MacLane space.

We conclude this paragraph by focusing on nilpotent groups, that is a distin-
guished class of discrete groups for which the normalizer condition holds. The
following result proves that the BZ/p-nullification preserves nilpotency when
it is applied on classifying spaces of nilpotent groups, and in fact, the functor
B sends nilpotent groups (for which the finiteness conditions hold) to nilpotent
spaces.

Corollary 5.8 If G is a nilpotent group, the nullification PBZ/p1∨...∨BZ/pn
BG

is, for every set of primes {p1, . . . , pn}, the classifying space of a nilpotent group.
If moreover G admits a finite-dimensional model for BG, we obtain that BG is
again the classifying space of a nilpotent group, and hence nilpotent as a space.

Proof Using the previous results, it is enough recalling that the quotient of a
nilpotent group is always nilpotent, and that according to ([34], 2.7.1), every
nilpotent p-group is locally finite.

In particular, using ([32], 4.5) we have that the part of the previous corollary
that alludes to BG is always true if G is a nilpotent group whose cardinal is
smaller than ℵω and whose torsion-free rank is finite.
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5.3 Supersoluble groups

In this paragraph we will compute, for p odd, the BZ/p-nullification of classi-
fying spaces of supersoluble groups. In this case we obtain no result about the
homotopy type of BG (for reasons that will be explained at the end) but we
include here this computation because of its intrinsical interest, and because
the way it has been worked out generalizes in some sense the methods we have
used to compute the BZ/p-nullification in the previous sections.

Recall that a group G is called supersoluble if it has cyclic normal series of finite
length. It is known that every finitely generated nilpotent group is supersoluble,
and that every supersoluble group is polycyclic.

Our key result for computing PBZ/pBG is the following ([35], page 67):

Proposition 5.9 If G is a supersoluble group, there exists a characteristic
series 1 ELEM EG, in such a way that L is finite with odd order, M/L is a
finitely-generated torsion-free nilpotent group and G/M is a finite 2-group.

In the sequel we will use the notation of this proposition. Let p be an odd
prime, and consider the fibration:

BL −→ BM −→ B(M/L).

As M/L is torsion-free, its classifying space is automatically BZ/p-null, and
then by ([13], 3.D.3) we have the nullified fibration:

PBZ/pBL −→ PBZ/pBM −→ B(M/L).

Using ([17], 3.3), the fundamental group of PBZ/pBM is identified by an ex-
tension

L/TZ/pL −→ π1PBZ/pBM −→M/L

where TZ/pL is the minimal normal subgroup of L that contains all the p-
torsion (the Z/p-radical), and the universal cover of PBZ/pBM is homotopy
equivalent to Z[1/p]∞(BTZ/pL), where Z[1/p]∞ denotes Bousfield-Kan Z[1/p]-
completion (see [6] for a definition).

Now, we have the fibration that involves M and G:

BM −→ BG −→ B(G/M).

This fibration is again preserved under BZ/p-nullification, because G/M is a
2-group and p is odd. The long exact sequence of the nullified fibration proves
that the fundamental group of PBZ/pBG fits into the following exact sequence:

π1PBZ/pBM −→ π1PBZ/pBG −→ G/M
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where the kernel has already been described. On the other hand, the universal
cover of PBZ/pBG is the same as the universal cover of PBZ/pBM which is
Z[1/p]∞BTZ/pL, as we said before. Thus, we have described the desired nulli-
fication by means of a covering fibration. On the other hand, the fact that the
classifying space of the quotient G/M is not BZ/2-null makes these methods
useless for computing the BZ/2-nullification of BG. As an easy consequence
of this, B(G/M) is not W∞ -null (in the notation of theorem 3.2) and then we
cannot get any homotopical description of BG in this way.

6 Nullifying classifying spaces of groups of isome-

tries via proper actions

So far we have applied theorem 3.2 for obtaining results about BG using prop-
erties of the nullification functors. In this section we will go the other way
round, using geometric characteristics of the group G for describing topological
features of the classifying space.

Our analysis has been focused in some of the crystallographic groups of the
plane, also known as wallpaper groups. Recall that these are groups of isome-
tries of R2 that fix a pattern that is invariant under translations in the directions
of two lineally independent vectors. It is known that they are exactly seventeen
of these groups, and they are always finite extensions of Z⊕Z by a finite group.
The main references available about the structure of these groups are [36] (that
has been specially interesting for us because the big amount of pictures fun-
damental domains, mirror lines, rotation centers, generating regions, etc. that
can be found on it), [26], [25], [10], [14] and [9]; we refer the reader to them for
the details of the structure of the groups that in the sequel will stand without
any explicit proof.

The general idea is to describe, for a prime p and a discrete group G that has
p-torsion, the homotopy type of the BZ/p-nullification of the classifying space
of G using the main theorem 3.2. We have chosen wallpaper groups essentially
for two reasons: the first of them is the following structure result, that is a
particular case of proposition ([27], 5.2):

Lemma 6.1 Let G be one of the seventeen wallpaper groups. Then R2 ,
endowed with the natural action of G, is a model for EG.

The second feature of the wallpaper groups that we are going to use is that all
of them possess a well-known model for the orbit space R2/G, which in fact
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is always described as a finite-dimensional orbifold. A list of these standard
models can be found in [26]. According to the previous lemma, these spaces
can be also interpreted as models for BG, and using this we will apply theorem
3.2 for obtaining the value of the BZ/p-nullification of the classifying space of
G.

Now, if G is a wallpaper group that only has torsion in a family of primes
P = {p1 . . . pr}, it is an easy consequence of corollary 3.4 that every model
for BG is a model for BFG, being F the family of finite subgroups of G
whose order is divided only for primes of the family P . In particular, if G
has torsion only in P and admits a finite-dimensional model for BG, we have
BG = BFG ≃ PBZ/p1∨...∨BZ/pr

BG. We will frequently use this fact in the
sequel.

We are going to study here three of the wallpaper groups, namely pmm, p3

and p3m1 . The main reason of our choice is that they give examples in which
the BZ/p-nullification of the classifying space has homological dimension zero,
positive and infinite, respectively.

(1) The discope group pmm As a group of symmetries of the real plane,
this group is generated by two perpendicular translations and two reflections
whose axes are also perpendicular, and in fact it is isomorphic to D∞ ×D∞ .
Recall that this group already appeared in the construction of example 4.6.

The group pmm contains reflections and rotations, and as it can be seen in the
tables of [36], it tessellates the plane with rectangles. The orbit space of the
plane by the action of this group is also a rectangle, and hence the classifying
space for pmm-proper bundles is contractible. On the other hand, as the
rotations that appear in the group are of order two, the group only contains
torsion at the prime two, and thus Bpmm is a model for BF2

pmm. Now,
according to the main theorem 3.2, we conclude that PBZ/2Bpmm ≃ ∗.

(2) The tritrope group p3 This group is generated by two translations
whose directions form an angle of π/3 and a rotation of angle 2π/3. A presen-
tation with these generators is given by:

p3 = {x, y, z;xyx−1y−1 = 1, z3 = 1, zxz−1y−1x = 1, zyz−1x = 1}.

The distinguished isometries of this group are the 3-rotations, so we have no
reflections nor glide-reflections and the torsion is concentrated in the prime
three. The fundamental region of p3 (that is, the smallest region of R2 whose
images under the action of p3 cover the plane) is a rhombus, and the action gives
rise to a tessellation of R2 by hexagons; in fact, this is the simplest wallpaper
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group such that the induced tessellation is not by quadrilaterals. The quotient
R2/p3 has then the shape of a non-slit turnover with three corners and no
mirror points (see [25] for details), and in particular it has the homotopy type
of a 2-sphere. Hence, using an analogous argument to that of the previous case,
we obtain that the BZ/3-nullification of Bp3 is homotopy equivalent to S2 .

(3) The tryscope group p3m1 A convenient system of generators for this
group is given by the two usual translations (whose directions form again an
angle of π/3), a rotation of angle 2π/3, and a reflection whose axis is the
bisectrix of the vectors that determine the generating translations; in particular,
the reflection gives torsion in the prime two and the rotation gives it in the prime
three.

On the other hand, maybe the best way to understand this group is as the
group of reflections in the sides of an equilateral triangle. Hence, this is the
fundamental region, and the lattice is hexagonal, as in the previous example.
As one can see in [36], the orbit space by the action of p3m1 on R2 is a triangle,
and as this is a model for the classifying space for proper bundles, we have that
Bp3m1 is contractible. Applying one more time theorem 3.2, we obtain that
the BZ/2 ∨ BZ/3-nullification of the classifying space of p3m1 is a point.

Now we are also interested in the BZ/3-nullification of Bp3m1, and we need
to use a different strategy. The tryscope group can be seen as an extension of
Z⊕ Z by the symmetric group Σ3 , and a consequence of this is that p3 is an
index two subgroup of p3m1 . In particular, this gives rise to a fibration:

Bp3 −→ Bp3m1 −→ BZ/2.

The base space is BZ/3-null, so according to ([13], 3.D.3) and our previous
description of PBZ/3Bp3, the BZ/3-nullification of Bp3m1 is identified by a
covering fibration:

S2 −→ PBZ/3Bp3m1 −→ BZ/2.

Now observe that the map BZ/3 −→ ∗ is a F2 -homology equivalence, and
hence Hn(Bp3m1; F2) is isomorphic to Hn(PBZ/3Bp3m1; F2). But as p3m1

has 2-torsion, it has nontrivial F2 -cohomology in arbitrarily high degrees, and
then its BZ/3-nullification does, too. So, using universal coefficients theorem,
we obtain that PBZ/3Bp3m1 has infinite cohomological dimension. On the
other hand, as Bp3m1 is contractible and the rational homology of BG is that
of BG for any group G, the fact that BZ/3 −→ ∗ is a Q-homology equivalence
implies that the rational homology of PBZ/3Bp3m1 is trivial. In particular,

PBZ/3Bp3m1 is not homotopy equivalent to the product S2 × BZ/2.
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To conclude, note that in this context S2 should be seen as two copies of the
equilateral triangle glued along their edges, with the action of Z/2 swapping
them. Hence, the previous fibration is not orientable (in the sense of [38], page
344). However, PBZ/3Bp3m1 cannot be homotopy equivalent to the projective
plane, because this nullification has infinite cohomological dimension.

We think that the ideas developed in this section can give a lot of information
about BZ/p-nullification of classifying spaces of groups of symmetries, and we
plan to undertake in subsequent work its description for all the crystallographic
(wallpaper and hyperbolic) groups, and also other groups of symmetries as
rosette or frieze groups.

7 The homotopy fiber of the natural map BG −→

BFG

We conclude this note by describing to what extent the homotopy fiber of the
map f : BG −→ BFG defined at the beginning of section 3 can be built using
as pieces classifying spaces of subgroups of G that belong to the family F .
To make this decomposition, the main tools that we are going to use are the
left homotopy Kan extension of a functor and the Gabriel-Zisman localization.
Now we will recall briefly these definitions.

In the sequel C and D will be small topological categories. Let F : C → D be
a functor. If d is an object of D , then we define the overcategory F ↓ d as
the category whose objects are pairs (c, φ) such that c is an object of C and
φ : F (c) → d is a morphism in D . A morphism between two pairs (c, φ) and
(c′, φ′) is given by a map ψ : c→ c′ in C such that φ(F (c)) = φ′ ◦ F (ψ)(c′). In
the same way, the undercategory d ↓ F is defined as the category whose objects
are pairs (c, φ) with c ∈ C and φ : c → F (d) a morphism in D . A morphism
between ψ : (c, φ)→ (c′, φ′) is a morphism ψ′ : c→ c′ such that F (ψ′)◦φ = φ′ .
When F ↓ d (respectively d ↓ F ) is contractible for every object d in D we say
that F is left cofinal (respectively right cofinal).

Remark 7.1 The overcategory and undercategory are particular cases of
“comma categories”. For a complete study of the comma categories in the
general context of category theory see ([30], II.6).

From now on, and unless explicit mention against it, we will work in the category
Spaces of simplicial spaces (although most of the spaces that will appear will
have a simplicial complex structure)
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Let F : C → D be a functor. Segal defined another functor, induced by F ,

LF : Fun(C,Spaces) −→ Fun(D,Spaces),

whose value on every X : C → Spaces is given by LF (X)(d) = hocolimF↓dX◦p,
where p is the projection functor p : F ↓ d → C . The functor LF (X) is called
the homotopy left Kan extension of X along F .

The importance of that construction comes mainly from the next result:

Theorem 7.2 (Homotopy pushdown theorem) If F : C → D and X : C →
Spaces are functors, then there is a homotopy equivalence

hocolimDLF (X) ≃ hocolimCX.

Proof The proof is done making use of the description of the homotopy left
Kan extension as the classifying space of a category. See ([20], 5.5).

Now we will recall the classical definition of localization of a category.

Theorem 7.3 (Gabriel-Zisman) Let C be a category. There exists another
category L(C) and a functor C −→ L(C) such that the following conditions
hold:

• L inverts the morphisms of C.

• If F : C −→ D is another functor making the morphisms of C invertible,
there exists one and only one functor F ′ : L(C) −→ D such that F ′ ◦L =
F.

L(C) is called the category of fractions of C or simply the localization of C.

Proof See ([18], chapter 1).

Recall that if X is a simplicial complex, the simplex category ΓX is the category
whose objects are the simplices of X , and whose maps are the face maps (there
are no nontrivial degeneracies). We will assume in the rest of the section that
we will work with the model of BFG constructed in proposition 2.6. In the
problem we are interested, ΓBFGop will play the role of C , and D will be the
localization of ΓBFGop . From now on, we will use the model of BFG given
in Proposition 2.6, and it is not hard to see that in this case, the ΓBFG is
exactly the category Γ defined there.

Algebraic & Geometric Topology, Volume 5 (2005)



Nullification functors and the homotopy type of classifying spaces 1165

We have developed now all the ingredients we need, and we can give the de-
composition, that is based in the concept of “homotopy average”, proposed by
Dror-Farjoun (see [13], chapter 9). So, consider the map BG → BFG; if S is
the functor defined in section 2, call S the composition of N(S) with the Borel
construction EG×G (−). According to proposition 2.6 and ([16], 6.5), we have
that hocolimΓopS ≃ BG. Now, if L is the localization functor previously de-
fined, we can consider the left homotopy Kan extension LL(S). The homotopy
pushdown theorem 7.2 implies that we have a homotopy equivalence

hocolimΓopS ≃ hocolimL(Γop)LL(S).

So joining all these data we obtain a string of maps

hocolimL(Γop)LL(S) ≃ hocolimΓopS ≃ BG→ BFG. (1)

that, up to homotopy equivalence, is the map BG −→ BFG that we are an-
alyzing. So, we need to describe the inverse image of a simplex σ of BFG in
hocolimL(Γop)LL(S).

Consider first a simplex σ ∈ Γ; it can be identified with a chain G/H1 → . . .→
G/Hn , and then N(S)(σ) = G/H1 (as a discrete G-set). In a similar way, if

{G/Hi1 → . . .→ G/Hik} −→ {G/H1 → . . .→ G/Hn}

represents a morphism in Γ, its image by N(S) is represented by the corre-
sponding map G/H1 → G/Hi1 . Now, the explicit definition over a simplex of
N(S) is immediate.

Thus, if we identify now hocolimΓopS with the Grothendieck construction of
the nerve of S , every simplex of hocolimΓopS is represented ([16], 6.5) by a
triple (τ, σ1 ≤ . . . ≤ σn, aH1) where τ is a simplex of EG, σi is a simplex
of Γ, g ∈ G and σn = G/H1 → . . . → G/Hn . Observe that σ1 ≤ . . . ≤ σn

represents a simplex in N(Γ), which is a model for BFG, as we know. Now the
map BG −→ BFG that we are studying can be seen as the natural map

hocolimΓopS −→ hocolimΓop∗

induced by the natural transformation S → ∗. Hence the image of the previous
triple under this map is the simplex σ , and according to the definition of S
we can identify the inverse image of σ with the pair (σ, S(σn)). Observe that,
because of the definition of S , the latter is the same as (σ, S(σ)), which is in
fact a model for the classifying space of H1 .

It remains to identify the image of the pair (σ, S(σn)) under the map

hocolimΓopS ≃ hocolimL(Γop)LL(S)
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induced by the localization. As before, is is not hard to show that that
every simplex of hocolimL(Γop)LL(S) can be written as a pair (σ1 → . . . →

σn, LL(S)(σ1) → . . . → LL(S)(σn)), where σi → σi+1 is a morphism in Γ or
the formal inverse of a morphism in Γ. Now, from the definition of LL it can
be deduced that the image of (σ, S(σ)) is (σ,LLS(σ)). Note that in the latter
we are looking at σ in the localized category.

So we have checked that the inverse image of σ by the string of equivalences
(1) is exactly (σ,LLS(σ)). Hence, we can establish the following

Theorem 7.4 If f : BG→ BFG is the map previously defined, then

Fib|f | ≃ |LLS(σ)|

for any simplex σ of BFG. Here | | denotes the realization functor, and Fib|f |
stands for the homotopy fiber of |f |.

Proof As the category Γ is itself constructed as a nerve, N(Γ) has structure
of simplicial complex. So, every point of N(Γ) belongs to the interior of one
and only one simplex of N(Γ), and it is enough to verify that the fibers of the
simplices of N(Γ) are homotopy equivalent. On the other hand, a simplex is
always contractible, so we need only check that the homotopy type of |LLS(σ)|
does not depend on the simplex σ of BFG. We know, by the construction of the
Kan extension, that LL(S)(σ) = hocolimL↓σ(S ◦ p), where p is the projection
functor p : L ↓ σ → C . So, if σ and σ′ are two distinct simplices of BFG, it is
enough to see that the overcategories L ↓ σ and L ↓ σ′ are equivalent. In order
to check this, let g : σ → σ′ be a morphism in L(Γop), that always exist because
BFG is connected. In these conditions, g induces a natural transformation

Tg : L ↓ σ −→ L ↓ σ′

that sends every object (τ, φ) of L ↓ σ to (τ, g ◦φ) ∈ L ↓ σ′ and the morphisms
to the obvious ones. But the morphism g is invertible (because it is a morphism
in the localized category), and clearly the natural transformations Tg and Tg−1

are inverses one of each other. In other words, the two overcategories are
equivalent, and the corresponding homotopy colimits have the same homotopy
type. So we are done.

The following corollary is immediate:

Corollary 7.5 The homotopy fiber Fib|f | has the homotopy type of
|hocolimL↓σ (S ◦ p)|, and in particular it is a homotopy colimit of classifying
spaces of groups of F over a contractible category.
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We conclude this section by proving that the nerves of the two overcategories
that appear in the proof of the previous theorem are contractible. We think
that this question can have independent interest, and we would like to point
out that, although the result seems to be known (see [13], 9.E.3), we have found
no proof in the literature, so we give this one.

Proposition 7.6 Let X be a simplicial complex, and let L : ΓX −→ L(ΓX)
be the Gabriel-Zisman localization functor, where ΓX is the simplex category
of X . Then for every simplex σ ∈ X the overcategory L ↓ σ is contractible.

Proof The idea of the proof is to build, for every simplex σ ∈ X a homotopy
between the identity map Id|N(L↓σ)| and a constant map. In order to do this,
we will prove firstly the existence of a sequence of endofunctors

{Fn} : L ↓ σ −→ L ↓ σ

for every n ≥ 0 such that F0 = Id and for every (τ, φ) ∈ L ↓ σ there exists
a natural number n(τ,φ) in such a way that Fm((τ, φ)) = (σ, Id) for every
m ≥ n(τ,φ) .

In the sequel the maps in ΓX and their images in L(ΓX) will be denoted
indistinctly by iα , where α will be an appropriate subindex. The inverse of iα
in the localized category will be called jα .

It is plain from the definition of the localization functor that every element
(τ, φ) of L ↓ σ admits a unique expression of the form (τ, jn ◦ in−1 ◦ . . .◦j2 ◦ i1),
where we allow that jn or i1 can be the identity (but no one of the other maps
that appear), jt−1 6= i−1

t 6= jt+1 for every t.

So, we begin with F0 = Id. Let us define the functor

F1 : L ↓ σ −→ L ↓ σ.

If (τ, jn ◦ in−1 ◦ . . . ◦ j2 ◦ i1) is an element of the overcategory, then we say
F1((τ, jn ◦ in−1 ◦ . . . ◦ j2 ◦ i1)) = (i1(τ), jn ◦ in−1 ◦ . . . ◦ j2), and the map induced
by a face map will be sent to the identity map between the images. It is easy
to see that this functor is well-defined.

Now, F2 : L ↓ σ −→ L ↓ σ will be defined as F2((τ, jn ◦ in−1 ◦ . . . ◦ j2 ◦ i1)) =
(j−1

2 ◦ i1(τ), jn ◦ in−1 ◦ . . . ◦ i3). Observe that this is well-defined because the
localization functor is, in this case, bijective over the objects. Again, the image
of every morphism by F2 will be the identity. It is clear again that this is a
functor.
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In an analogous way, we can define, for m odd, Fm((τ, jn ◦ in−1 ◦ . . . ◦ j2 ◦ i1)) =
(im ◦ jm−1 ◦ i1(τ), jn ◦ in−1 ◦ . . . jm+1), and for m even, Fm((τ, jn ◦ in−1 ◦ . . . ◦
j2 ◦ i1)) = (jm ◦ im−1 ◦ i1(τ), jn ◦ in−1 ◦ . . . im+1), and the image sends every
morphism to the identity map. This is the sequence we were looking for.

Our next goal will be to relate all these functors by natural transformations, in
order to obtain the desired homotopy.

Let m ≥ 0 be again a natural number. First we will define the transformation
T2m : F2m −→ F2m+1 . If (τ, jn◦in−1◦. . .◦j2◦i1) is an object of the overcategory,
we define the map F2m((τ, jn ◦ in−1 ◦ . . . ◦ j2 ◦ i1)) −→ F2m+1((τ, jn ◦ in−1 ◦ . . . ◦
j2 ◦ i1)) as the obvious map induced by

i2m : j2m−1 ◦ . . . ◦ i1(τ) −→ i2m ◦ j2m−1 ◦ . . . ◦ i1(τ).

On the other hand, we define, for every m ≥ 1, the natural transformation
T2m−1 : F2m −→ F2m−1 in the following way: F2m((τ, jn◦in−1◦. . .◦j2◦i1)) −→
F2m−1((τ, jn ◦ in−1 ◦ . . . ◦ j2 ◦ i1)) is the map induced by

i2m−1 : j2m−1 ◦ . . . ◦ i1(τ) −→ i2m−2 ◦ j2m−3 ◦ . . . ◦ i1(τ).

Recall the fact that, by definition of the j ’s, j−1 represents a morphism in ΓX.

By the previous arguments we have defined a string of natural transformations

Id = F0
T0−→ F1

T1←− F2
T2−→ F3

T3←− . . .

Before we continue, we shall do a couple of remarks.

• It is known ([16], I.5) the functors Fn define simplicial maps from nerves

N(Fn) : N(L ↓ σ) −→ N(L ↓ σ)

which, the same way, define maps |fn| from the realization of the nerve to
itself. The fact that Fn is always related to Fn+1 by a natural transforma-
tions means that fn is simplicially homotopic to fn+1 , and, in addition,
|fn| is homotopic to |fn+1|. The crucial point here is the homotopies
between the realization of the maps are first defined over the vertices of
the nerve of L ↓ σ×I (with the usual simplicial structure of the product)
and then extended by linearity to all the complex. We will use this fact
later.

• Let (τ, jn◦. . .◦i1) be an object of the overcategory. From the definitions of
the functors Fi we can deduce that Fn ◦ . . . ◦F1((τ, jn ◦ . . . ◦ i1)) = (σ, Id).
So, as the chain of maps jn ◦ . . . ◦ i1 is always finite, we can say that
for every (τ, φ) ∈ (L ↓ σ) there exists a minimal natural number n(τ,φ)

such that Fnτ,φ
◦ . . . ◦ F1((τ, φ)) = (σ, Id). At the level of nerves, we

are saying that for every vertex v ∈ N(L ↓ σ) there exists nv such that
fnv ◦ . . . ◦ f1(v) = N(σ, Id).
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For n even, let us call Hn the simplicial homotopy induced by the transforma-
tion Tn . If n is odd, we call H ′

n−1 the homotopy induced by Tn between fn

and fn−1 , and put Hn−1(x, t) = H ′
n−1(x, 1 − t), the homotopy that begins in

fn−1 and ends at fn .

Now we are prepared to define the homotopy between the identity and the
constant map from the realization to itself with value |N(σ, Id)| (in the rest we
will call this element ∗). So, consider a vertex v ∈ N(L ↓ σ). We define a map
H : |N(L ↓)σ| × I −→ |N(L ↓)σ| by

H(v, t) =



















|H0|(v, nvt) if t ∈ [0, 1
nv

]

|H1|(v, nvt− 1) if t ∈ [ 1
nv
, 2

nv
]

...
...

|Hn−1|(v, nvt− (n− 1)) if t ∈ [nv−1
nv

, 1]

The map H defined in this way lineally extends to all of |N(L ↓ σ)|. Let us see
that H is the desired map.

(1) If v is a vertex of N(L ↓ σ), H(v, 0) = H0(v, 0) = v . In the same way,
H(v, 1) = Hnv(v, 1) = ∗. As |H|i is defined by linear extension for every
i and the same happens with H , the previous equalities hold for every
point of the complex.

(2) H is continuous with respect to t because the homotopies |Hi| are, and
|Hj(x, 1)| = fj+1(x) = |Hj+1(x, 0)| for every x ∈ |N(L ↓ σ)|.

(3) Finally, H is continuous respect the first component because it is de-
fined by linear extension of a map defined on the vertices of a simplicial
complex.

These three statements prove that H is the homotopy between the identity and
the constant map we were looking for. So, L ↓ σ is contractible.
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ics 174, Birkhäuser Verlag, Basel (1999)

[20] J Hollender, RM Vogt, Modules of topological spaces, applications to homo-

topy limits and E∞ structures, Arch. Math. (Basel) 59 (1992) 115–129

Algebraic & Geometric Topology, Volume 5 (2005)



Nullification functors and the homotopy type of classifying spaces 1171

[21] JF Jardine, Simplicial approximation, Theory Appl. Categ. 12 (2004) No. 2,
34–72

[22] A.G. Kurosh, The theory of groups, vol. II, Chelsea publishing Co., 1960.
LOOKUP

[23] J Lannes, L Schwartz, Sur la structure des A-modules instables injectifs,
Topology 28 (1989) 153–169

[24] I J Leary, BE A Nucinkis, Every CW-complex is a classifying space for

proper bundles, Topology 40 (2001) 539–550

[25] X Lee,
http://www.xahlee.org/Wallpaper dir/c5 17WallpaperGroups.html

[26] S Levy,
http://www.geom.umn.edu/docs/reference/CRC-formulas/book.html

[27] W Lück, The type of the classifying space for a family of subgroups, J. Pure
Appl. Algebra 149 (2000) 177–203

[28] W Lück, Survey on classifying spaces for families of subgroups, Preprintreihe
SFB 478 - Geometrische Strukturen in der Mathematik, Heft 308, Münster
(2004)

[29] W Lück, R Stamm, Computations of K - and L-theory of cocompact planar

groups, K -Theory 21 (2000) 249–292

[30] S MacLane, Categories for the working mathematician, Springer-Verlag, New
York (1971)

[31] H Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of
Math. 120 (1984) 39–87

[32] G Mislin, On the classifying space for proper actions, from: “Cohomological
methods in homotopy theory (Bellaterra, 1998)”, Progr. Math. 196, Birkhäuser,
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(2003)
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