Volume 5, issue 3 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
The Kontsevich integral and quantized Lie superalgebras

Nathan Geer

Algebraic & Geometric Topology 5 (2005) 1111–1139

arXiv: math.GT/0411053


Given a finite dimensional representation of a semisimple Lie algebra there are two ways of constructing link invariants: 1) quantum group invariants using the R–matrix, 2) the Kontsevich universal link invariant followed by the Lie algebra based weight system. Le and Murakami showed that these two link invariants are the same. These constructions can be generalized to some classes of Lie superalgebras. In this paper we show that constructions 1) and 2) give the same invariants for the Lie superalgebras of type A–G. We use this result to investigate the Links–Gould invariant. We also give a positive answer to a conjecture of Patureau-Mirand’s concerning invariants arising from the Lie superalgebra D(2,1;α).

Vassiliev invariants, weight system, Kontsevich integral, Lie superalgebras, Links–Gould invariant, quantum invariants
Mathematical Subject Classification 2000
Primary: 57M27
Secondary: 17B65, 17B37
Forward citations
Received: 6 May 2005
Accepted: 15 August 2005
Published: 11 September 2005
Nathan Geer
School of Mathematics
Georgia Institute of Technology
Atlanta GA 30332-0160