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1 Introduction

Suppose that G is a finitely presentable group with a surjective homomorphism
to the free abelian group of rank l , eg, abelianization. Let ρ : G → GL(n;R)
be a linear representation. The twisted Alexander polynomial of G associated
to ρ was introduced in [10] and is defined to be a rational expression of l
indeterminates.

Let ϕ : G → G′ be a surjective homomorphism. Each representation ρ′ : G′ →
GL(n;R) naturally induces a representation of G, namely, ρ = ρ′ ◦ ϕ. In this
paper we prove the following:

Main theorem The twisted Alexander polynomial of G associated to ρ is

divisible by the twisted Alexander polynomial of G′ associated to ρ′ .

The corresponding fact about the Alexander polynomial is known [1].

We present two separate proofs of the main theorem. First we give a purely
algebraic proof in §3. If G is a knot group, the twisted Alexander polynomial
of G may be regarded as the Reidemeister torsion. In §4, we provide another

c© Geometry & Topology Publications



1316 Teruaki Kitano, Masaaki Suzuki and Masaaki Wada

proof of the main theorem in case when G and G′ are knot groups, from the
view point of the Reidemeister torsion.

In the last section, we show non-existence of surjective homomorphism between
certain knot groups, as an application of the main theorem.

2 Twisted Alexander polynomial

In this section, we recall briefly the definition of the twisted Alexander polyno-
mial.

Let G be a finitely presentable group. Choose and fix a presentation as follows:

G = 〈x1, . . . , xu | r1, . . . , rv〉.

We denote by α : G → Z
l a surjective homomorphism to the free abelian group

with generators t1, . . . , tl and ρ : G → GL(n;R) a linear representation, where
R is a unique factorization domain. These maps naturally induce ring homo-
morphisms ρ̃ and α̃ from Z[G] to M(n;R) and Z[t1

±1, . . . , tl
±1] respectively,

where M(n;R) denotes the matrix algebra of degree n over R. Then ρ̃ ⊗ α̃
defines a ring homomorphism

Z[G] → M
(

n;R[t1
±1, . . . , tl

±1]
)

.

Let Fu be the free group on generators x1, . . . , xu and

Φ: Z[Fu] → M
(

n;R[t1
±1, . . . , tl

±1]
)

the composite of the surjection Z[Fu] → Z[G] induced by the fixed presentation
and the map ρ̃ ⊗ α̃ : Z[G] → M(n;R[t1

±1, . . . , tl
±1]).

We define the v × u matrix M whose (i, j) component is the n × n matrix

Φ

(

∂ri

∂xj

)

∈ M
(

n;R[t1
±1, . . . , tl

±1]
)

,

where ∂/∂x denotes the Fox derivation. This matrix M is called the Alexander
matrix of the presentation of G associated to the representation ρ.

It is easy to see that there is an integer 1 ≤ j ≤ u such that detΦ(xj − 1) 6= 0.
For such j , let us denote by Mj the v × (u − 1) matrix obtained from M by
removing the j -th column. We regard Mj as an nv × n(u − 1) matrix with
coefficients in R[t1

±1, . . . , tl
±1]. Moreover, for an n(u − 1)-tuple of indices

I =
(

i1, i2, . . . , in(u−1)

)

,
(

1 ≤ i1 < i2 < · · · < in(u−1) ≤ nv
)
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we denote by M I
j the n(u− 1)×n(u− 1) square matrix consisting of the ik -th

row of the matrix Mj , where k = 1, 2, . . . , n(u − 1).

Then the twisted Alexander polynomial (see [10]) of a finitely presented group
G for a representation ρ : G → GL(n;R) is defined to be a rational expression

∆G,ρ(t1, . . . , tl) =
gcdI(det M I

j )

det Φ(xj − 1)

and moreover is well-defined up to a factor ǫt1
ε1 · · · tl

εl , where ǫ ∈ R×, εi ∈ Z.
See [10], [7], [2] and [3] for more precise definition and applications.

3 Main theorem and the algebraic proof

In this section, we prove the following main theorem of this paper.

Theorem 3.1 Let G and G′ be finitely presentable groups and α,α′ surjective

homomorphisms from G,G′ to Z
l respectively. Suppose that there exists a

surjective homomorphism ϕ : G → G′ such that α = α′ ◦ ϕ. Then ∆G,ρ is

divisible by ∆G′,ρ′ for any representation ρ′ : G′ → GL(n;R), where ρ = ρ′ ◦ϕ.

That is to say, the quotient of ∆G,ρ by ∆G′,ρ′ is a genuine polynomial.

Proof Choose and fix a presentation

G = 〈x1, x2, . . . , xu | r1, r2, . . . , rv〉.

Since ϕ is surjective, then G′ is generated by ϕ(x1), . . . , ϕ(xu). Namely, G′

can be presented as

G′ = 〈ϕ(x1), ϕ(x2), . . . , ϕ(xu) | s1, s2, . . . , sv′〉.

For convenience, we also write xi for ϕ(xi), that is, we consider that G′ is
generated by x1, . . . , xu . By this notation, each relator ri is written as

ri =
∏

k

uks
εik

lik
u−1

k , i = 1, 2, . . . , v, 1 ≤ lik ≤ v′, uk ∈ Fu, εik = ±1,

since ϕ is a homomorphism. By applying the Fox derivation ∂
∂xj

and collecting

terms of ∂sk

∂xj
, we get

ϕ

(

∂ri

∂xj

)

=
v′

∑

k=1

Ai,k
∂sk

∂xj
. (1)
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Here Ai,k (1 ≤ i ≤ v) is a sum of some ε• ϕ(u•), which does not depend on j .
Let MG and MG′ be the Alexander matrices with the u-th column removed:

MG =











ρ̃ ⊗ α̃
(

∂r1

∂x1

)

· · · ρ̃ ⊗ α̃
(

∂r1

∂xu−1

)

...
. . .

...

ρ̃ ⊗ α̃
(

∂rv

∂x1

)

· · · ρ̃ ⊗ α̃
(

∂rv

∂xu−1

)











MG′ =











ρ̃′ ⊗ α̃′

(

∂s1

∂x1

)

· · · ρ̃′ ⊗ α̃′

(

∂s1

∂xu−1

)

...
. . .

...

ρ̃′ ⊗ α̃′

(

∂sv′

∂x1

)

· · · ρ̃′ ⊗ α̃′

(

∂sv′

∂xu−1

)











.

By (1), we have
MG = AMG′

where A = (ρ′(Ai,k)) is a nv × nv′ matrix. For I = (i1, i2, . . . , in(u−1)), as is
easily shown,

det M I
G = det

(

AIMG′

)

=
∑

K

±
(

detAI
K

) (

detMK
G′

)

where K = (k1, k2, . . . , kn(u−1)) and AI
K is the matrix consisting of the k1, k2,

. . . , kn(u−1) -th columns of AI . It follows that if detM I
G′ has a common divisor

P for all I , then so does detM I
G . Moreover, the denominator of ∆G,ρ is equal

to that of ∆G′,ρ′ . This completes the proof.

The corresponding fact about the Alexander polynomial is well known. Let
G(K) be the knot group π1(S

3 − K) of a knot K in S3 . For any knots
K,K ′ , if there exists a surjective homomorphism from G(K) to G(K ′), then
the Alexander polynomial of K is divisible by that of K ′ . Murasugi mentions
that if there exists a surjective homomorphism from a knot group G(K) to the
trefoil knot group, then the twisted Alexander polynomial of G(K) is divisible
by that of the trefoil knot group. The main theorem is a generalization of the
above.

We will now make a few remarks about geometric settings in which surjective
homomorphisms arise. First we consider the case of degree one maps. Let X
and Y be d-dimensional compact manifolds. Suppose that f : X → Y is a
degree one map. It is easy to see that its induced homomorphism f∗ : π1(X) →
π1(Y ) is a surjective homomorphism.

In the knot group case, there exist the following situations except for degree 1
maps. First, there exists a surjective homomorphism from any knot group to
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the trivial knot group which is the infinite cyclic group. Secondly, if a knot K is
a connected sum of K1 and K2 , then its knot group G(K) is an amalgamated
product of G(K1) and G(K2). Then there exists a surjection from G(K) to
each factor group. Thirdly, if a knot K is a periodic knot of order n, then
there exists a surjective homomorphism from G(K) to G(K∗) where K∗ is its
quotient knot of K .

4 Another proof from the view point of the Reide-

meister torsion

In this section, we prove our theorem in the knot group case. It is done by
using the Mayer-Vietoris argument of the Reidemeister torsion.

Here let us consider a knot K in S3 and its exterior E(K). For the knot group
G(K) = π1E(K), we choose and fix a Wirtinger presentation

G(K) = 〈x1, . . . , xu | r1, . . . , ru−1〉.

The abelianization homomorphism

αK : G(K) → H1(E(K), Z) ∼= Z = 〈t〉

is given by αK(x1) = · · · = αK(xu) = t. If we have no confusion, we write
simply α for αK as in the previous section. In this section, we take a unimodular
representation ρ : G(K) → SL(n; F) over a field F. As in the definition of the
twisted Alexander polynomial, we consider the tensor representation

ρ ⊗ α : G → GL(n; F[t, t−1]) ⊂ GL(n; F(t)).

Here F(t) denotes the rational function field over F. If ρ ⊗ α is an acyclic
representation over F(t), that is, all homology groups over F(t) of E(K) twisted
by ρ⊗α are vanishing, then the Reidemeister torsion of E(K) for ρ⊗α can be
defined. Furthermore the following equality holds. See [3, 4] for more details of
definitions and proofs.

Theorem 4.1 If ρ ⊗ α is an acyclic representation, then we have

τρ⊗α(E(K)) = ∆G(K),ρ(t)

up to a factor ±tnk (k ∈ Z) if n is odd, and up to only tnk if n is even.

From this theorem, we prove the main theorem as divisibility of the Reidemeis-
ter torsion in the knot group case. Here we take a surjective homomorphism
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ϕ : G(K) → G(K ′). By changing the orientation of meridians if we need, we
may assume that αK ′◦ϕ = αK . Let ρ′ : G(K ′) → SL(n; F) be a representation.
For simplicity, we write the composition ρ = ρ′ ◦ ϕ.

Now we consider 2-dimensional CW-complexes X(K) and X(K ′) defined by
their Wirtinger presentations. It is well-known that these complexes are simple
homotopy equivalent to the knot exteriors. Then these Reidemeister torsions of
X(K) and X(K ′) are equal to the twisted Alexander polynomials respectively.
Here we consider twisted homologies of these complexes by using their CW-
complex structure. The coefficient V is a 2n-dimensional vector space over a
rational function field F(t). When V is regarded as a G(K)-module by using
ρ, it is denoted by Vρ .

The surjective homomorphism ϕ induces a chain map ϕ∗ : C∗(X(K), Vρ) →
C∗(X(K ′), Vρ′). We take a tensor representation ρ⊗αK : G(K) → GL(n; F(t)).
Assume that ρ ⊗ αK and ρ′ ⊗ αK ′ are acyclic representations. Then we can
prove the following.

Theorem 4.2 The quotient τ(X(K);Vρ⊗αK
)/τ(X(K ′);Vρ′⊗αK′

) is a polyno-

mial in F[t, t−1].

We show the following proposition first.

Proposition 4.3 The chain map

ϕ∗ : C∗(X(K), Vρ⊗αK
) → C∗(X(K ′), Vρ′⊗αK′

)

is surjective.

Proof It is clear that ϕ induces an isomorphism on the 0-chains, and a sur-
jection on the 1-chains. Then we only need to prove this proposition on the
2-chains.

We take a non-trivial 2-chain z ∈ C2(X(K ′), Vρ′⊗αK′
). By the acyclicity of the

chain complex C∗(X(K ′), Vρ′⊗αK′
), the boundary map ∂ : C2(X(K ′), Vρ′⊗αK′

)
→ C1(X(K ′), Vρ′⊗αK′

) is injective. Then the image ∂z is non-trivial in C1 . On
the other hand, by the surjectivity of

ϕ : C1(X(K), Vρ⊗αK
) → C1(X(K ′), Vρ′⊗αK′

),

there exists a 2-chain w ∈ C2(X(K), Vρ⊗αK
) such that ϕ∗(w) = z . By the

commutativity of maps, in C2

ϕ∗(∂w) = ∂ϕ∗(w) = ∂∂z = 0.
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Then we have ∂w = 0. By the acyclicity, there exists w̃ ∈ C∗(X(K), Vρ⊗αK
)

such that ∂w̃ = w . Again by the commutativity, ϕ(w̃) = z . Therefore ϕ∗ is
surjective.

Proof of Theorem 4.2 From the above proposition, we can take the kernel
D∗ of this chain map ϕ∗ and obtain a short exact sequence

0 → D∗ → C∗(X(K), Vρ⊗αK
) → C∗(X(K ′), Vρ′⊗αK′

) → 0.

Here we recall the following fact. For a short exact sequence 0 → C ′
∗ → C∗ →

C ′′
∗ → 0 of finite chain complexes, if two of them are acyclic complexes, then

the third one is also acyclic. Furthermore, the torsion satisfies

τ(C∗) = τ(C ′
∗)τ(C ′′

∗ )

up to some factor.

By applying the property of the product of torsion, we have

τ(X(K);Vρ⊗αK
) = τ(X(K ′);Vρ′⊗αK′

)τ(D;Vρ⊗αK
).

We only need to prove that τ(D;Vρ⊗αK
) is a polynomial. From the definition

we see that D0 vanishes, since

ϕ∗ : C0(X(K), Vρ⊗αK
) → C0(X(K ′), Vρ′⊗αK′

)

is isomorphism. Hence by definition, its torsion is the determinant of D2 → D1 .
Therefore it is a polynomial.

Remark 4.4 By a similar argument, we can prove that if ϕ : G(K) → G(K ′)
is an injective homomorphism, then τ(X(K ′);Vρ⊗αK′

)/τ(X(K);Vρ⊗αK
) is a

polynomial.

5 Examples

In this section, we show some examples of the twisted Alexander polynomials
and an application of Theorem 3.1. We consider the problem: Is there a sur-
jective homomorphism from G(K) to G(K ′) for two given knots K,K ′? The
problem has been investigated by Murasugi when K ′ is the trefoil knot 31 (c.f.
[8]). Here we study the problem in case when K ′ is the figure eight knot 41 .
The numbering of the knots follows that of Rolfsen’s book [9].

If the classical Alexander polynomial of K can not be divided by that of K ′ ,
we know that there are no surjective homomorphisms from G(K) to G(K ′).
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In the knot table in [9], up to 9 crossings, the classical Alexander polynomial
of each knot is not divisible by that of G(41) except for 818, 821, 912, 924, 937,
939 and 940 . That is to say, except for 818, 821, 912, 924, 937, 939 and 940 , there
exists no surjective homomorphisms from such a knot group to G(41).

Next, we consider a representation ρ : G(K) → SL(2; Z/pZ) and the twisted
Alexander polynomial associated to ρ. Theorem 3.1 says that if the numerator
of ∆G(K),ρ for all representations ρ : G(K) → SL(2; Z/pZ) for some fixed prime
p cannot be divided by the numerator of ∆G(K ′),ρ′ for a certain representation
ρ′ : G(K ′) → SL(2; Z/pZ), then there exists no surjective homomorphisms from
G(K) to G(K ′).

Let us compute the twisted Alexander polynomials ∆G(41),ρ′ for a certain rep-
resentation ρ′ : G(41) → SL(2; Z/7Z). The knot group G(41) admits a presen-
tation

G(41) = 〈x1, x2, x3, x4 | x4x2x
−1
4 x−1

1 , x1x2x
−1
1 x−1

3 , x2x4x
−1
2 x−1

3 〉.

We can check easily that the following is a representation of G(41):

ρ′(x1) =

(

1 1
0 1

)

, ρ′(x2) =

(

1 0
3 1

)

,

ρ′(x3) =

(

4 4
3 5

)

, ρ′(x4) =

(

2 4
5 0

)

.

Then we obtain the Alexander matrix:

M =

















6 0 2t 4t 0 0 6t + 1 6t
0 6 5t 0 0 0 0 6t + 1

3t + 1 3t t t 6 0 0 0
4t 2t + 1 0 t 0 6 0 0
0 0 3t + 1 3t 6 0 t 0
0 0 4t 2t + 1 0 6 3t t

















The numerator P of the twisted Alexander polynomial ∆G(41),ρ′ is the deter-
minant of M4 obtained from M by removing the last two columns. Then we
get

P = t4 + t3 + 3t2 + t + 1.

Moreover, we calculate the numerator of the twisted Alexander polynomials of
G(821) for all representations G(821) → SL(2; Z/7Z) and get 24 polynomials.
These calculations are made by author’s computer program and the same results
are obtained by Kodama Knot program [6]. None of them can be divided
by P , so we conclude that there exists no surjective homomorphisms from
G(821) to G(41). By similar arguments using SL(2; Z/pZ)-representations for
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p = 5, 7, we get the conclusion that there exists no surjective homomorphisms
from G(912), G(924), G(939) to G(41). On the other hand, 818 is a periodic
knot of order 2 with quotient knot 41 . Furthermore, G(937) has a presentation

G(937) =
〈

y1, y2, y3, y4, y5,
y6, y7, y8, y9

∣

∣

∣

∣

y8y1y
−1
8 y−1

2 , y7y2y
−1
7 y−1

3 , y9y4y
−1
9 y−1

3 , y3y4y
−1
3 y−1

5 ,

y1y6y
−1
1 y−1

5 , y5y6y
−1
5 y−1

7 , y2y7y
−1
2 y−1

8 , y4y9y
−1
4 y−1

8

〉

and the following mapping ϕ : G(937) → G(41) is a surjective homomorphism:

ϕ(y1) = x2, ϕ(y2) = x3, ϕ(y3) = x1x4x
−1
1 , ϕ(y4) = x3, ϕ(y5) = x1,

ϕ(y6) = x−1
1 x4x1, ϕ(y7) = x4, ϕ(y8) = x1, ϕ(y9) = x4.

Similarly, we can give an explicit surjective homomorphism from the knot group
G(940) to G(41). Thus we have surjective homomorphisms from knot groups
G(818), G(937), G(940) to G(41). Hence we can determine whether or not there
exists a surjective homomorphism from the group of each knot with up to 9
crossings to G(41).

In [5], we see a complete list of whether there exists a surjective homomorphism
between knot groups for 10 crossings and less.
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