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Quasiflats with holes in reductive groups

KEVIN WORTMAN

We give a new proof of a theorem of Kleiner–Leeb: that any quasi-isometrically
embedded Euclidean space in a product of symmetric spaces and Euclidean buildings
is contained in a metric neighborhood of finitely many flats, as long as the rank
of the Euclidean space is not less than the rank of the target. A bound on the size
of the neighborhood and on the number of flats is determined by the size of the
quasi-isometry constants.

Without using asymptotic cones, our proof focuses on the intrinsic geometry of
symmetric spaces and Euclidean buildings by extending the proof of Eskin–Farb’s
quasiflat with holes theorem for symmetric spaces with no Euclidean factors.

20F65; 20G30, 22E40

1 Introduction

We will give a new proof and a generalization of the following result:

Theorem 1.1 (Kleiner–Leeb) Let Em be m–dimensional Euclidean space, and sup-
pose 'W Em ! X is a .�;C / quasi-isometric embedding, where X is a product of
symmetric spaces and Euclidean buildings and m equals the rank of X . Then there
exist finitely many flats F1;F2; : : : ;FM �X such that

'.Em/� NbhdN

� M[
iD1

Fi

�
;

where M DM.�;X / and N DN.�;C;X /.

Theorem 1.1 was proved by Kleiner and Leeb in [5]. It can be used to give a new
proof of a conjecture of Margulis from the 1970s (also proved in [5]) that any self-
quasi-isometry of X as above is a bounded distance from an isometry when all factors
correspond to higher rank simple groups. For an indication as to how Theorem 1.1 can
be used to give a proof of this fact, see [3] where Eskin–Farb give a proof of Theorem
1.1 and Margulis’ conjecture in the case when X is a symmetric space.
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Our proof of Theorem 1.1 does not use asymptotic cones as the proof of Kleiner–
Leeb does. Rather, we adapt results of Eskin–Farb who used large-scale homology to
characterize quasiflats in symmetric spaces without Euclidean factors in a way that
allowed for the absence of large regions in the domain of a quasiflat (a “quasiflat with
holes”). Thus, we provide a marriage between the quasiflats theorems of Kleiner–Leeb
and Eskin–Farb: a quasiflats theorem that allows for products of symmetric spaces
and Euclidean buildings in the target of a quasiflat, and for holes in the domain; see
Theorem 1.2 below. Theorem 1.1 occurs as a special case.

Allowing for holes in our quasiflats leads to applications for the study of the large-scale
geometry of non-cocompact S –arithmetic lattices; see Wortman [9; 10].

Bibliographic note The full theorem of Kleiner–Leeb is more general than Theorem
1.1 as it allows for generalized Euclidean buildings in the target of ' . However,
Theorem 1.1 does include all of the standard Euclidean buildings that are naturally
acted on by reductive groups over local fields.

Quasiflats with holes For constants � � 1 and C � 0, a .�;C / quasi-isometric
embedding of a metric space X into a metric space Y is a function 'W X ! Y such
that for any x1;x2 2X :

1

�
d.x1;x2/�C � d.f .x1/; f .x2//� �d.x1;x2/CC:

For a subset of Euclidean space �� Em , we let

�.";�/ D fx 2� j By

�
"d.x;y/

�
\�¤∅ for all y 2 Em

�Bx.�/ g;

where we use the notation Bz.r/ to refer to the ball of radius r centered at z . Hence,
�.";�/ is the set of all points x 2 � which can serve as an observation point from
which all points in Em (that are a sufficient distance from x ) have a distance from �

that is proportional to their distance from x .

A special case to keep in mind is that if �D Em , then �.";�/ D Em for any "� 0 and
� � 0.

A quasiflat with holes is the image of �.";�/ under a quasi-isometric embedding
�W �!X .

Before stating our main result, recall that for a metric space X , the rank of X (or
rank.X / for short) is the maximal dimension of a flat in X . Now we have the following
generalization of Theorem 1.1:
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Theorem 1.2 (Quasiflats with holes) Let 'W �! X be a .�;C / quasi-isometric
embedding where X is a product of symmetric spaces and Euclidean buildings, ��Em ,
and m� rank.X /. There are constants M DM.�;X / and "0 D "0.�;X /, such that
if " < "0 , then there exist flats F1;F2; : : : ;FM �X such that

'.�.";�//� NbhdN

� M[
iD1

Fi

�
;

where N DN.�;C; �;X /.

Quasirank We remark that by comparing the volume of the domain and image of a
function ' satisfying the hypotheses of Theorem 1.2, it is clear that no quasi-isometric
embeddings exist of a Euclidean space into X when the dimension of the Euclidean
space is greater than the rank of X . This observation is not new and follows very
easily from the pre-existing quasiflats theorems. However, we choose to state our
theorem in this more general manner since the proof given below does not depend on
the dimension of the Euclidean space once its dimension at least equals the rank of X ,
and our proof will run more smoothly if we allow for dimensions larger than the rank
of X .

Applications for quasiflats One would like to characterize quasiflats as a starting
point for understanding quasi-isometries of a lattice as Mostow did for cocompact
lattices. (See Morse [6], Mostow [7], Pansu [8], Kleiner–Leeb[5], Eskin–Farb [3],
Eskin [2], Wortman [9; 10] for the details of this brief sketch.)

The basic example of a quasiflats theorem is the Morse–Mostow Lemma which states
that a quasi-isometric embedding of R into a rank one symmetric space has its image
contained in a metric neighborhood of a unique geodesic.

For general symmetric spaces and Euclidean buildings X , it is not the case that a quasi-
isometrically embedded Euclidean space is necessarily contained in the neighborhood
of a single flat. (Recall that a flat is an isometrically embedded Euclidean space.)
If, however, the dimension of a quasi-isometrically embedded Euclidean space is
equal to the dimension of a maximal flat in X , then its image will be contained in a
neighborhood of finitely many flats.

Quasiflats can be used in the study of quasi-isometries of cocompact lattices as follows.
First, we may assume that any self-quasi-isometry of a cocompact lattice in a semisimple
Lie group is a quasi-isometry of its orbit in an appropriate product of symmetric spaces
and Euclidean buildings, X . Second, since any flat in X is necessarily contained in a
metric neighborhood of the cocompact lattice orbit, we can restrict the quasi-isometry
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to any flat and examine its image. The space X has a boundary at infinity which is
defined in terms of the asymptotic behavior of flats, so in determining the images of
flats we are finding a map on the boundary of X . Finally—as long as X contains
no factors that are real hyperbolic spaces, complex hyperbolic spaces, or trees—one
can deduce from the properties of the boundary map that the quasi-isometry is a finite
distance from an isometry.

The story is different for non-cocompact lattices. Generic flats in X will not be
contained in a neighborhood of a non-cocompact lattice orbit. Hence, we cannot apply
the same proof technique.

However, the generic flat will have a substantial portion of its volume contained in a
neighborhood of a non-cocompact lattice orbit. With an eye towards this feature, Eskin–
Farb provided a foundational tool for studying quasi-isometries of non-cocompact
lattices in real semisimple Lie groups by defining and characterizing quasiflats with
holes in symmetric spaces.

Using quasiflats with holes in symmetric spaces, Eskin developed a boundary map in the
non-cocompact lattice case for real groups en route to proving that any quasi-isometry
of a higher rank arithmetic group is a finite distance from a commensurator.

By allowing for Euclidean building factors in the image of a quasiflat with holes, we
will be able to use this same approach to analyze quasi-isometries of non-cocompact
lattices in semisimple Lie groups over arbitrary local fields.

Outline Our proof of Theorem 1.2 in the case that X is a Euclidean building is
self-contained aside from results of Eskin–Farb on the large-scale homology of pinched
sets in Euclidean space and some consequences of those results. Hopefully, the reader
who is interested in only the case when X is a building can read through our proof
without having to consider symmetric spaces.

In the general case, when X is a nontrivial product of a symmetric space and a
Euclidean building, we rely heavily on the results of Eskin–Farb for symmetric spaces.
Our approach is to project the quasiflat with holes into the building factor Xp , and into
the symmetric space factor X1 . By projecting the quasiflat with holes to Xp , we can
apply arguments below that were created expressly for buildings while ignoring the
symmetric space factor. Conversely, by projecting the quasiflat with holes to X1 , we
can directly apply most of the content of [3] to analyze the image. After examining the
image in each factor, we piece together the information obtained in the full space X to
obtain our result.

Thus, in our approach to proving Theorem 1.2, we will try to avoid dealing with the
product space X . We do this since arguments for symmetric spaces and Euclidean
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buildings (although extremely similar in spirit) have to be dealt with using different
tools.

The approach of projecting to factors is taken from the work of Eskin–Farb as well.
Their test case for their general theorem was when X DH2 �H2 , and they used the
projection method to reduce most of the proof to arguments in the hyperbolic plane [4].

In Section 2 we will show that certain subspaces in X which behave like rank one
spaces cannot accommodate quasi-isometric embeddings of large Euclidean sets. This
fact will be formulated more precisely in terms of homology.

Some of the nearly rank one spaces are then glued together to give a “degenerate
space” in X which is a fattening of the singular directions in X with respect to a given
basepoint. (Recall that a direction is singular if it is contained in more than one flat.)
Using a Mayer–Vietoris sequence, it can be shown that the degenerate space cannot
accommodate quasi-isometric embeddings of large Euclidean sets of large dimension.
It is at this point where we apply our hypothesis that the dimension of Em equals, or
exceeds, the rank of X .

In Section 3 we begin to analyze the asymptotic behavior of quasiflats with holes. We
define—following Eskin–Farb—what it means for a direction in a quasiflat with holes
to limit on a point in the boundary at infinity of X .

The results of Section 2 show that the image of a quasiflat with holes must have a
substantial intersection with the complement of the degenerate space. (The complement
of the degenerate space is the region of X for which limit points are defined.) We
argue further to show that limit points exist.

Since the nondegenerate space behaves much like a rank one space itself, we can show
that the image of a quasiflat with holes in the nondegenerate space cannot extend in
too many directions (i.e. the number of limit points is bounded). We construct our
bound by contrasting the polynomial growth of Euclidean space with the high cost of
travelling out in different directions in a rank one space. It is from the finite set of limit
points that the finite set of flats from the conclusion of Theorem 1.2 is constructed.

Section 4 contains a few lemmas to insure that all definitions depending on basepoints
are well-defined up to a constant.

We conclude in Section 5 with a proof of Theorem 1.2. Results from Sections 2, 3 and
4 are used in the proof.

Definitions Recall that a polysimplex is a product of simplices. Replacing simplices
with polysimplices in the definition of a simplicial complex creates what is called a
polysimplicial complex.

Algebraic & Geometric Topology, Volume 6 (2006)



96 Kevin Wortman

A Euclidean building Xp is a polysimplicial complex endowed with a metric dp that
satisfies the four properties below:

(i) There is a family, fA˛g, of subcomplexes of Xp such that each A˛ is isometric
to Edim.Xp/ and Xp D

S
˛ A˛ . Each A˛ is called an apartment.

(ii) Any two polysimplices of maximal dimension (called chambers) are contained
in some A˛ .

(ii) If A˛ and Aˇ are two apartments each containing the chambers c1 and c2 , then
there is an isometric polysimplicial automorphism of X sending A˛ to Aˇ , and
fixing c1 and c2 pointwise.

(iv) The group of isometric polysimplicial automorphisms of Xp acts transitively on
the set of chambers.

Note that condition (iv) is nonstandard. Often one assumes the stronger condition that
a building be thick. We desire to weaken the thickness condition to condition (iv) so
that Euclidean space can naturally be given the structure of a Euclidean building.

Also notice that we do not assume Xp to be locally finite. Hence, we are including the
buildings for, say, GLn.C.t// in our examination.

Along with the nonstandard definition of a Euclidean building given above, we also
give the standard definition of a symmetric space as a Riemannian manifold X1 such
that for every p 2 X1 , there is an isometry g of X1 such that g.p/ D p and the
derivative of g at p equals �Id.

Conventions Throughout this paper we will be examining products of symmetric
spaces and Euclidean buildings. Since Euclidean space is a Euclidean building by our
definition, we may assume that our symmetric spaces do not have Euclidean factors.
This will allow us to more readily apply results from [3] where it is assumed that the
symmetric spaces have no Euclidean factors.

We may also assume that our symmetric spaces do not have compact factors. Otherwise
we could simply compose the quasi-isometry ' from Theorem 1.2 with a projection
map to eliminate the compact factors, then apply Theorem 1.2, pull back the flats
obtained to the entire symmetric space, and increase the size of N by the diameter of
the compact factors.

Notation If a and b are positive numbers we write a� b when there is a constant
� D �.X; �/ < 1 such that a < �b . If there are variables x1; : : : ;xn and a constant
�D �.X; �;x1; : : : ;xn/ < 1 such that a< �b , then we write a�.x1;:::;xn/ b . We will
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use the notation aDO.b/ to mean that a<�b for some constant �D �.X; �/ without
specifying the size of �.

Remarks With modification to only the conclusion of the proof of Lemma 3.6, our
results hold when Em is replaced by a 1–connected nilpotent real Lie group. For
example, this shows that a Heisenberg group cannot quasi-isometrically embed into
SL4.k/ for any locally compact nondiscrete field k .

Also the proof presented below can be modified in Lemma 3.2 to allow for the presence
of R–buildings in the target of the quasiflat with holes.
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this work was carried out. I thank him for suggesting this problem to me, and for his
constant support and encouragement. Thanks also to Alex Eskin for listening to many
of my ideas and for providing feedback. Thanks to Tara Brendle, Dan Margalit, Karen
Vogtmann and a referee for valuable comments made on an earlier draft. I would also
like to thank the University of Chicago for supporting me as a graduate student while
I developed the ideas in this paper, and Cornell University for the pleasant working
environment given to me while I completed the writing of this paper. I was supported
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2 Pinching functions and homology

Throughout the remainder, let Xp be a Euclidean building with a chosen basepoint
ep 2Xp , and let X1 be a symmetric space with basepoint e1 2X1 . We will assume
that X1 has no compact or Euclidean factors (see the conventions in the preceding
section).

We let X D X1 �Xp , and we define �1W X ! X1 and �pW X ! Xp to be the
projection maps. Define the point e 2X as the pair .e1; ep/.

Throughout we let n 2 N equal rank.X /.

Graded quasi-isometric embeddings We will put quasiflats with holes aside until the
final section of this paper. We concentrate instead on embeddings of entire Euclidean
spaces into X under a weaker assumption than our map is a quasi-isometry.

For points x;y1;y2; : : : ;yn 2X and a number � � 0, we let

Dx.�Iy1;y2; : : : ;yn/Dmaxf�; d.x;y1/; : : : ; d.x;yn/g:
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For numbers � � 1, �� 0, and "� 0, we define a function �W X ! Y to be a .�; �; "/
graded quasi-isometric embedding based at x 2X if for all z; w 2X :

1

�
d.z; w/� "Dx.�I z; w/� d.�.z/; �.w//� �d.z; w/C "Dx.�I z; w/:

A function �W X ! Y is called .�; �/ radial at x 2X if for all z 2X :

1

2�
Dx.�I z/� d.�.z/; �.x//� .2�/Dx.�I z/:

Combining the two definitions above, �W X ! Y is a .�; �; "/ radial graded quasi-
isometric embedding (.RGQIE/ for short) based at x if it is a .�; �; "/ graded quasi-
isometric embedding at x , and � radial at x .

In the proof of Theorem 1.2, we will see that one can easily extend the domain of a
quasiflat with holes to all of Em in such a way that the extension is a .RGQIE/. From
the behavior of .RGQIE/’s that is characterized in Sections 2 through 4, we will be
able to characterize the image of a quasiflat with holes.

Until explicitly stated otherwise, let �W Em! X be a .�; "; �/ .RGQIE/ based at 0

with �.0/D e . The image of such a function is a graded quasiflat.

Pinching on rays in buildings Let

K D fg 2 Isom.X / j ge D e g;

and let pW Œ0;1/! fe1g �Xp be a geodesic ray with p.0/ D e . The space Kp

is a topological tree as can be seen by restricting the geodesic retraction Xp! fepg.
However, the tree Kp will often not be convex. These trees in X are negatively
curved, and our first goal is to show that large subsets of Euclidean space cannot
embed into them, or even into small enough neighborhoods of them. This in itself is
straightforward to show, but we shall want to handle this problem in a way that allows
us to conclude that large Euclidean sets cannot embed into fattened neighborhoods of
K translates of certain .n� 1/–dimensional spaces.

Let
Kp.ı/D fx 2 fe1g �Xp j d.x; t/ < ıd.x; e/ for some t 2Kp g;

so that Kp.ı/ is a neighborhood of Kp in fe1g �Xp that is fattened in proportion
to the distance from the origin by a factor of ı . We will want to project Kp.ı/ onto
Kp where calculations can be made more easily.

Define
�.p; ı/W Kp.ı/!Kp
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by choosing for any x 2Kp.ı/, some �.p; ı/.x/ 2Kp , such that

d.x; �.p; ı/.x//� ıd.x; e/:

By definition, �.p; ı/ only modifies distances by a linear error of ı , so composing
with � will still be a .RGQIE/. Precisely, we have the following:

Lemma 2.1 If " < ı < 1=2, then �.p; ı/ı�W �
�1.Kp.ı//!Kp is a .2�; �; 5�ı/

.RGQIE/ based at 0.

Proof Verifying that �.p; ı/ ı� is a graded quasi-isometric embedding is an easy
sequence of inequalities:

d
�
�.p; ı/ ı �.x/ ; �.p; ı/ ı�.y/

�
� d

�
�.p; ı/ ı�.x/ ; �.x/

�
C d

�
�.p; ı/ ı�.y/ ; �.y/

�
C d

�
�.x/ ; �.y/

�
� d

�
�.x/ ; �.y/

�
C 2ıDe

�
0I�.x/; �.y/

�
� �d

�
x;y

�
C "D0

�
�Ix;y

�
C 4�ıD0

�
�Ix;y

�
:

The other inequality is similar.

That �.p; ı/ ı� is radial is also straightforward:

d
�
�.p; ı/ ı�.x/ ; e

�
� d

�
�.p; ı/ ı�.x/ ; �.x/

�
C d

�
�.x/ ; e

�
� .1C ı/d

�
�.x/ ; e

�
� 2�.1C ı/D0

�
�Ix

�
:

Again, the other inequality is similar.

As in [3], for numbers r � 0, �> 1, and ˇ> 0, we define an .r; �; ˇ/ pinching function
on a set W � Em to be a proper, continuous function f W W ! R�0 such that for any
x;y 2W , we have d.x;y/ < ˇs whenever the following two properties hold:

(i) r � s � f .x/� f .y/� �s ;

(ii) there is a path  W Œ0; 1�!W such that  .0/D x ,  .1/D y , and s � f . .t//

for all t 2 Œ0; 1�.

If there exists an .r; �; ˇ/ pinching function on some W � Em , then we say that W is
.r; �; ˇ/–pinched.

Eskin–Farb used pinching functions as a means of showing that large Euclidean sets
cannot quasi-isometrically embed into certain negatively curved subspaces of symmetric
spaces. To show the analogous result for our general X , we will first construct a
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pinching function for ��1.Kp.ı//. Since Eskin–Farb constructed a pinching function
on the similarly defined sets ��1.K1.ı//, we will then be in a position to handle the
case for a general ray by pulling back pinching functions obtained through projection
to factors.

Our candidate for a pinching function on ��1.Kp.ı// is

f .p; ı/W �
�1.Kp.ı//! R�0;

where f .p; ı/.x/D d.�.p; ı/ ı�.x/; e/:

Lemma 2.2 If " < ı < 1=2, then f .p; ı/ is a .5��; 1C ı; 84�3ı/ pinching function
on the set ��1.Kp.ı//� Em .

Proof Note that we may assume �.p; ı/ ı � is continuous by a connect-the-dots
argument. Hence, f .p; ı/ is clearly continuous and proper. We assume x;y 2

��1.Kp.ı// are such that

5�� � s � f .p; ı/.x/� f .p; ı/.y/� .1C ı/s;

and there is a path  W Œ0; 1�! ��1.Kp.ı// with s � f .p; ı/. .t// for all t 2 Œ0; 1�.

By the radial condition of Lemma 2.1,

5�� � d
�
�.p; ı/ ı�.x/ ; e

�
� 4�D0.�Ix/:

It follows that � < d.x; 0/. Hence, by the radial condition of Lemma 2.1 and our
pinching assumptions,

d.x; 0/� 4�d
�
�.p; ı/ ı�.x/ ; e

�
� 4�.1C ı/s:

The existence of  implies that �.p; ı/ ı�.x/ and �.p; ı/ ı�.y/ are in the same
connected component of Kp�Be.s/. Therefore,

d
�
�.p; ı/ ı�.x/ ; �.p; ı/ ı�.y/

�
� 2ıs:

We may assume d.x; 0/� d.y; 0/. Then, by the graded condition of Lemma 2.1,

2ıs �
1

2�
d.x;y/� .5�ı/d.x; 0/�

1

2�
d.x;y/� .5�ı/4�.1C ı/s:

That is, d.x;y/ < 84�3ıs .

Graded neighborhoods For a set Y � X , we can create a neighborhood of Y by
fattening points in Y in ı–proportion to their distance from e . In symbols, we let

Y Œı�D fx 2X j d.x;y/ < ıd.x; e/ for some y 2 Y g:
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Pinching on general rays Lemma 6.8 in [4] demonstrates a pinching function for
sets of the form ��1.K1.ı// where 1W Œ0;1/!X1�fepg is a geodesic ray, and
K1.ı/ � X1 � fepg is defined analogously to Kp.ı/ � fe1g �Xp . We can use
this pinching function along with the pinching function from Lemma 2.2 to show that
��1.K Œı�/ is a pinched set, where  W Œ0;1/!X is an arbitrary geodesic ray with
 .0/D e . Our argument proceeds by simply applying our already existing pinching
functions to the image of K Œı� under the projection maps onto the factors of X .

We want to define a real valued tilt parameter, � , on the space of geodesic rays
 W Œ0;1/! X with  .0/ D e . The parameter will measure whether  leans more
towards the Xp or the X1 factor. Notice that any such  can be decomposed as
 .t/D .1.t/; p.at// for some number a� 0, and all t � 0, where 1 �X1 and
p �Xp are unit speed geodesic rays based at e1 and ep respectively. Now we simply
set �. /D a. (For � to be defined everywhere we allow for the case when aD1,
which is just to say that  is contained in the building factor.) Hence, if �. / > 1 (resp.
< 1) then  is leaning towards the building factor (resp. symmetric space factor), and
when creating a pinching function on K Œı� it will be most efficient to project onto
the Xp (resp. X1 ) factor of X .

We begin with the following technical observation.

Lemma 2.3 Assume  W Œ0;1/ ! X is a geodesic ray with  .0/ D e and that
y 2K Œı�. Then,

(i) �p.y/ 2Kp

�
ı

q
1C cot2.j tan�1 �. /� sin�1 ıjC/

�
, and

(ii) �1.y/ 2K1

�
ı

q
1C cot2.j tan�1 1=�. /� sin�1 ıjC/

�
,

where jxjC Dmaxfx; 0g.

Proof By definition of K Œı� there exists a t � 0 and a k 2K such that

d
�
�p.y/ ; kp.�. /t/

�
D d

�
�p.y/ ; �p.k .t//

�
� d

�
y ; k .t/

�
< ıd.y; e/

� ı

q
d.�p.y/; ep/2C d.�1.y/; e1/2:

Using straightforward trigonometry it can be verified that

d.�1.y/; e1/� d.�p.y/; ep/ cot.j tan�1 �. /� sin�1 ıjC/:

Then (i) follows. The proof of (ii) is similar.
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We will use part (i) of the previous lemma to create a pinching function for geodesic
rays that tilt towards Xp . This is the content of Lemma 2.5, but we will first note that
the projection onto Xp does not significantly distort distances.

Lemma 2.4 Let  W Œ0;1/ ! X be a geodesic ray with  .0/ D e . If " < ı and
�. /� 1, then �p ı�W �

�1.K Œı�/!Xp is a .2�; �; �1/ .RGQIE/ where �1DO.ı/.

Proof Note that on K Œı�, �p is a .2; 0;O.ı// .RGQIE/ where 2 is an upper bound
given by our restriction on �. /. Composition with � completes the result.

Now for the pinching function:

Lemma 2.5 Let  W Œ0;1/!X be a geodesic ray with  .0/D e . For �. /� 1 and
" < ı� 1, the set ��1.K Œı�/� Em is .10��; 1C ı;O.ı//–pinched.

Proof Let ıpDmax
n
2�1; ı

q
1C cot2.tan�1 �. /� sin�1 ı/

o
, and note that our con-

ditions on �. / and ı imply that, say,

1<

q
1C cot2.tan�1 �. /� sin�1 ı/ < 2:

By Lemma 2.3, �p.K Œı�/�Kp.ıp/. Hence, we can choose our pinching function
gW ��1.K Œı�/! R�0 to be given by

g.z/D d.�.p; ıp/ ı�p ı�.z/; ep/:

Indeed, we can use Lemma 2.4 to replace � with �p ı� in Lemma 2.2. It follows that
g is a .10��; 1C ıp; 672�3ıp/ pinching function.

If �. /� 1, we can apply Lemma 2.3 to Lemma 6.8 of [3] and obtain a similar result.
Hence, we have a pinching function on ��1.K Œı�/ for any geodesic ray  that is
based at the origin. Precisely, we have the following:

Lemma 2.6 If "� ı� 1, then the set ��1.K Œı�/ � Em is .r0; 1CO.ı/;O.ı//–
pinched for any geodesic ray  W Œ0;1/!X with  .0/D e . Here r0 D r0.X; �; �; ı/.

Homology results of Eskin–Farb and their consequences Pinching functions were
introduced in [3] as a tool for showing that sets which simultaneously support Euclidean
metrics and “quasinegatively curved” metrics must be small and, hence, cannot have
any interesting large-scale homology. Precisely, we can use our Lemma 2.6 in the proof
of Corollary 6.9 from [3] to show:
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Lemma 2.7 There exists a �1 > 0 such that if 1�.�;ı;"/ r , while "� ı� 1 and
W � ��1.K Œı�/, then the homology of the inclusion map ��W Hp.W [B0.r//!

Hp.W Œ�1ı�[B0.r// is zero for all p � 1.

The above lemma can be used to show, for example, that the image of � cannot be
contained in K Œı�. Otherwise we could take a sphere of large radius in place of W

to arrive at a contradiction. This is an interesting fact, but we care to know more. We
are able to use this lemma to tell us that there are much larger subspaces of X that
spheres cannot embed into.

The larger subspaces are defined in terms of walls, so we begin by defining the latter.
A subset H �X is called a wall if it is a codimension 1 affine subspace of a flat that
is contained in at least two distinct flats. Note that the walls through the point e 2X

comprise the singular directions from e .

Our space X resembles a rank one space, from the vantage point of e 2 X , in the
regions bounded away from the singular directions. Properties of negative curvature
are a powerful tool, so we will want to show the image of � has a substantial portion
of its image bounded away from the singular directions.

It is time to define Xe.ı/ as the ı–nondegenerate space at e 2X consisting of those
points in X that are not contained in any ı–graded neighborhood of a wall containing
e . That is

Xe.ı/D
\

H2We

.H Œı�/c ;

where We is the set of walls in X that contain e .

The complement Xe.ı/
c of the ı–nondegenerate space is the ı–degenerate space. We

could repeat the definition for the special case that X is either a Euclidean building or a
symmetric space and obtain the sets Xp;ep.ı/, Xp;ep.ı/

c , X1;e1
.ı/, and X1;e1

.ı/c .

Our goal for this section is to show that the image of � is forced to travel in Xe.ı/.
We can use Lemma 2.7 along with a Mayer–Vietoris sequence to show that the image
under � of very large subsets of Em indeed cannot be contained in Xe.ı/

c . Note that
in the Tits boundary of X , Xe.ı/

c appears as a neighborhood of the .n� 2/–skeleton.
The spaces of the form K Œı� that we considered previously appear as neighborhoods
of a family of points in the Tits building. It is clear how one would want to use Lemma
2.7 and a Mayer–Vietoris argument to arrive at the following:

Lemma 2.8 There exists a constant �2 > 0, such that if 1�.�;ı;"/ r while "� ı� 1

and W ���1.Xe.ı/
c/, then the homology of the inclusion map ��W Hp.W [B0.r//!

Hp.W Œ�2ı�[B0.r// is zero for all p � n� 1.
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The basic idea of the proof is clear but there are some technicalities to consider. This is
essentially Lemma 5.6 of [3], whose proof takes place in the Tits boundary where there
is no difference between symmetric spaces and buildings. Hence, the proof carries over
completely to prove our Lemma 2.8.

Unbounded, nondegenerate components of graded quasiflats Note that the above
lemma tells us that large metric .n� 1/–spheres in Em cannot map into Xe.ı/

c under
� . In Lemma 5.8 of [3], this idea is extended to show that unbounded portions of Em

map into Xe.ı/ under � . The arguments there only involve an application of what is
our Lemma 2.8 to the homology of Euclidean sets. The proof applies verbatim to yield:

Corollary 2.9 There is a constant �3> 1, such that if "� ı� 1 and z 2 ��1.Xe.ı//

with 1�.ı;";�/ r �d.z; 0/, then the connected component of ��1.Xe.ı=�3//\B0.r/
c

that contains z is unbounded.

Lemma 2.8 and Corollary 2.9 are the only results from this section that will be used in
the remainder of this paper. We will apply Lemma 2.8 in Section 5 during the proof of
Theorem 1.2. Corollary 2.9 is used in the proof of Proposition 3.5 below to create a
path in the graded quasiflat that avoids the nondegenerate space and accumulates on a
point in the boundary of X .

3 Limit points in Euclidean buildings

Boundary metric A subset of a Euclidean building S�Xp is called a sector based
at x 2 Xp , if it is the closure of a connected component of an apartment less all the
walls containing x .

Let yXp be the set of all sectors based at ep . For any S 2 yXp , let SW Œ0;1/!S be
the geodesic ray such that S.0/D ep , and such that S.1/ is the center of mass of
the boundary at infinity of S with its usual spherical metric. We will also use S to
denote the image of SW Œ0;1/!S.

We endow yXp with the metric ydp where

ydp.Y;Z/D

(
�; if Y\ Z D fepg;
1

jY\Zj
; otherwise.

In the above, jY\ Zj is the length of the geodesic segment Y\ Z .
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Note that ydp is invariant under the action of the stabilizer of ep and is a complete
ultrametric on yXp . That ydp is an ultrametric means that it is a metric, and

ydp.Y;Z/�maxf ydp.Y;X/; ydp.X;Z/g for any Y;Z;X 2 yXp:

We will use at times that

Z 2 BS.r/ implies BZ.r/D BS.r/;

which is a reformulation of the ultrametric property.

Measuring angles We also introduce a notion of angle between two points in a
building as measured from ep . We first define ˆpW Xp! P. yXp/ by

ˆp.x/D fS 2 yXp j x 2S g;

where P. yXp/ denotes the power set of yXp .

Then for any x;y 2Xp; we define

‚p.x;y/D inf
˚
ydp.Sx;Sy/ jSx 2ˆp.x/ and Sy 2ˆp.y/

	
:

We think of ‚p.x;y/ as measuring an angle between x and y .

We will also be measuring angles formed by triangles in a single apartment. Since
apartments are Euclidean spaces, we can simply use the Euclidean measure of angle. If
A�Xp is an apartment and x;y; z 2A, we let ]Az .x;y/ be the standard Euclidean
angle in A between x and y as measured at z . For any subset H � A, and points
x; z 2A, we let

]Az .x;H /Dminf]Az .x; h/jh 2H g:

Core of a sector From here on we will assume that 0� ı � 1. For any S 2 yXp , we
let

S.ı/D fx 2S j d.@S;x/� ıd.e;x/ g:

We refer to S.ı/ as the ı–core of S. Note that[
S2 yXp

S.ı/DXp;ep.ı/;

where Xp;ep.ı/ is the ı–nondegenerate space of Xp at ep .

Relations between angles and distances It is clear that geodesic rays based at ep and
travelling into the core of a sector travel transversely to walls. We need a quantitative
form of this fact which is the substance of the following:
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Lemma 3.1 Suppose S 2 yXp and S � A for some apartment A. Assume that
x 2S.ı/, z 2 S , and Hz �A is a wall containing z . Then

]Az .x;Hz/� sin�1.ı=2/

whenever d.x; ep/� r and d.z; ep/� .ır/=2.

Proof Notice that ]Az .x;Hz/ is minimized when x 2 @S.ı/, d.x; ep/ D r , and
Hz is parallel to a wall Hep that bounds S. Therefore, we will assume these three
statements are true. Clearly, ]Az .x;Hz/D ]Az .x; �Hz

.x// where �Hz
W A! Hz is

the orthogonal projection.

Note that d.Hz;Hep/� d.z; ep/�
ır

2
;

and d.x;Hep/D d.x; @S/D ır:

Therefore,

d.x; �Hz
.x//D d.x;Hep/� d.Hep ;Hz/� ır �

ır

2
D
ır

2
:

We conclude the proof by observing that

]Az .x; �Hz
.x//D sin�1

hd.x; �Hz
.x//

d.x; z/

i
� sin�1.ı=2/

since d.x; z/� d.x; ep/� r .

The next lemma shows that deep points in the nondegenerate region of Xp at ep that
are separated by a large angle measured at ep must be a large distance apart. A form
of notation we will use in the proof is Œep; z� to denote the geodesic segment with
endpoints at ep and z .

Lemma 3.2 Suppose x;y 2 Xp;ep.ı/ and ‚p.x;y/ � 2=.ır/, while d.x; ep/ � r

and d.y; ep/� r . Then d.x;y/� .ır/=2 as long as ı � 1.

Proof Choose sectors Sx;Sy 2
yXp such that Sx 2 ˆp.x/ and Sy 2 ˆp.y/. Let

z 2 Xp be such that x \ y D Œep; z�. Then, we have d.ep; z/ � .ır/=2 since
ydp.Sx;Sy/� 2=.ır/.

Choose an apartment Ax containing Sx . Note that Sy \Ax is a convex polyhedron
P in Ax that is bounded by walls. Since z 2 @P , there must be a wall Hz �Ax such
that z 2Hz and Ax �Hz has a component which does not intersect Sy . Choose a
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chamber cz �Sx containing z whose interior lies in this component, and such that
F D cz \Ay is a codimension 1 simplex in cz .

Let cy � Sy be a chamber containing y . Note that Œz;y�[ cz � B.cz; cy/, where
B.cz; cy/ is the union of minimal galleries from cz to cy . Hence, Œz;y�[cz is contained
in an apartment (see e.g. [1] VI.6). Therefore, %.Ax; cz/jB.cz ;cy/ is an isometry, where
%.Ax; cz/W Xp!Ax is the building retraction corresponding to the pair .Ax; cz/.

Since F �Ay , there is a unique wall H 0z �Ay containing F . Since F �Hz as well,
we have ]Ay

z .y;H 0z/D]Ax
z .%.Ax; cz/.y/;Hz/.

Since %.Ax; c/ is distance decreasing, and since Hz separates x from %.Ax; cz/.y/,
we have using Lemma 3.1:

d.x;y/� d
�
%.Ax; cz/.x/ ; %.Ax; cz/.y/

�
D d

�
x; %.Ax ; cz/.y/

�
� d

�
x;Hz

�
C d

�
%.Ax; cz/.y/ ; Hz/

D sinŒ]Ax
z .x;Hz/�d.z;x/C sinŒ]Ax

z .%.Ax; cz/.y/;Hz/�d
�
z; %.Ax; cz/.y/

�
D sinŒ]Ax

z .x;Hz/�d.z;x/C sinŒ]Ay

z .y;H 0z/�d.z;y/

�
ı

2

�
d.x; ep/� d.ep; z/

�
C
ı

2

�
d.y; ep/� d.ep; z/

�
� ır

�
1�

ı

2

�
�
ır

2
:

Our next lemma states that, after deleting a large compact set, if the core of two sectors
based at ep have a nontrivial intersection, then the two sectors are close in the boundary
metric.

Lemma 3.3 Let S1;S2 2
yXp , and suppose that S1.ı/\S2.ı/\Bep.r/

c ¤∅. Then
ydp.S1;S2/� 2=.ır/.

Proof We prove the contrapositive. That is, we assume that S1
\S2

D Œep; z� where
d.ep; z/ < .ır/=2.

Choose an apartment A with S2 � A. We pick a wall, Hz , with z 2 Hz � A and
such that S1\S2 �

xJ , where J is a component of A�Hz and xJ is the closure of
J .
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By Lemma 3.1, x 2 S2.ı/\Be.r/
c implies that ]Az .x;Hz/ � sin�1.ı=2/. Hence,

any such x must be bounded away from Hz and, thus, from xJ . We have shown

S1.ı/\S2.ı/\Be.r/
c
� xJ \S2.ı/\Be.r/

c
D∅

as desired.

To travel in the nondegenerate space between two deep points separated by a large
angle, one must pass near the origin. More precisely we have the following:

Lemma 3.4 (No shifting) Suppose there is a path cW Œ0; 1�! Xe.ı/\Be.r/
c . Then

‚p.c.0/; c.1//� 2=.ır/.

Proof Since Œ0; 1� is compact, it is contained in finitely many sectors S0;S1; : : : ;Sk

2 yXp: We may assume that these sectors are ordered so that there exists a partition
of Œ0; 1� of the form 0 D t0 < t1 < : : : < tk D 1 with c.0/ 2 S0 , c.1/ 2 Sk , and
cŒti ; tiC1��Si .

Notice that our partition requires that c.ti/ 2Si \SiC1 . Hence, we can apply Lemma
3.3 to obtain that ydp.Si ;SiC1/� 2=.ır/ for all i . Therefore,

‚p.c.0/; c.1//� ydp.S0;Sk/�maxf ydp.Si ;SiC1/g �
2

ır
:

Limit points Let yX1 be the Furstenberg boundary of X1 . That is, we let yX1 be
the space of all Weyl chambers up to Hausdorff equivalence. We endow yX1 with the
standard metric, yd1 , invariant under the stabilizer of e1 . We let ˆ1W X1;e1

.ı/!
yX1 be the function that sends a point to its image at infinity. As X is the product of

X1 and Xp , we define yX D yX1 � yXp .

A ı–limit point of � from e is a boundary point .C;S/2 yX , such that there exists a path
 W Œ0;1/! ��1.Xe.ı// that escapes every compact set, limt!1ˆ1 ı� ı .t/D C,
and limt!1ˆp ı � ı .t/D fSg. If this is the case we call  a limit path from e ,
and we write that  limits to .C;S/. We call the set of all ı limit points of � from e ,
the ı–limit set of � from e . We denote the ı–limit set of � from e by L�;e.ı/.

Existence of nondegenerate visual directions For the next result of this section, we
return to the material of Section 2 and in particular to Corollary 2.9.

Later we will want to show there are a finite number of limit points in the limit set of
� to create the finite number of flats for the conclusion of Theorem 1.2. This plan will
only succeed if there is a limit point to start with. The results of Section 2 were derived
for the purpose of showing that limit points exist. By the Proposition below, we not
only know they exist, we also have precise information on how to construct them.
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Proposition 3.5 (Deep points extended to limit points) Let �3 be as in Corollary 2.9.
There is a constant �2 D �2.�; ı/, such that if "� ı� 1 and z 2 ��1.Xe.ı// with
1�.ı;";�/ r � d.z; 0/, then there exists a boundary point .C;S/ 2 L�;e.ı=�3/, such
that

ydp

�
S; ˆp ı�p.z/

�
�

2

ır

and
yd1
�
C; ˆ1 ı�1.z/

�
� e��2r :

Proof Let U be the connected component of ��1.Xe.ı=�3//\B0.r/
c that contains z .

From Corollary 2.9 we know that U is unbounded, so there exists a path  W Œ0;1/!U

with  .0/D z and such that  escapes every compact set.

Applying Lemma 3.4, we have that the diameter of ˆp ı �p ı .Œs;1// is at most
2=.ıRs/, where Rs D d.0;  .Œs;1///. Notice that Rs!1 as s!1, and

ˆp ı�p ı 
�
Œt;1/

�
�ˆp ı�p ı 

�
Œs;1/

�
when 0� s � t . Therefore, lims!1ˆp ı�p ı .s/ exists. Call this limit fSg.

We conclude by remarking that ydp.S; ˆp ı�p.z//� 2=.ır/ since

ˆp ı�p

�
z
�
Dˆp ı�p ı 

�
0
�
2ˆp ı�p ı 

�
Œ0;1/

�
and R0 D r .

The second part of the proposition is the content of Proposition 5.9 from [3].

A bound on visual directions for annuli Once we show that there is a bound on the
number of directions at infinity that a graded quasiflat can extend in, we can produce
a finite collection of flats that will be our candidates for satisfying the conclusion of
Theorem 1.2.

Before showing that the number of asymptotic directions a graded quasiflat travels in
is bounded, we will show that the number of directions is bounded for a quasi-annuli.
This bound is independent of the size of the quasi-annuli. We will then be in a position
to apply the no shifting Lemma in a limiting argument to show that the same bound
exists for the number of directions of a graded quasiflat.

Let AR �Xp be the annulus centered at ep , with inner radius R and outer radius 2R.
Let �1 D �1 ı� , and let �p D �p ı� .

Before proceeding, note that �1.Xe.ı//DX1;e1
.ı/ and �p.Xe.ı//DXp;ep.ı/.
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Lemma 3.6 The image of �p

�
�.AR/\Xe.ı/

�
under ˆp can be covered by cp D

O.1=ı2m/ disjoint balls of radius .4�/=.ı2R/ for R> � and "� ı .

Proof Let Si 2
yXp be such that [iBSi

. 4�
ı2R

/D yXp , and BSi
. 4�
ı2R

/\BSj
. 4�
ı2R

/D∅
if i ¤ j . That the balls can be chosen to be disjoint is a consequence of the ultrametric
property for yXp .

We will twice make use of the fact that if x 2AR \�
�1.Xe.ı//, then

d.�p.x/; ep/D d
�
�.x/ ; .�1.x/; ep/

�
(1)

� ıd.�.x/; e/

�
ı

2�
D0.�Ix/

�
ıR

2�
:

We claim that for any x 2AR \�
�1.Xe.ı//,

ˆp.�p.x//� BSi

� 4�

ı2R

�
for some i:

Indeed, suppose Z;Y 2 ˆp.�p.x//, and that Z 2 BSi
. 4�
ı2R

/. Notice that �p.x/ 2

Xp;ep.ı/, so we can apply (1) and Lemma 3.3 to obtain

ydp.Z;Y/�
4�

ı2R
:

Therefore, ydp.Y;Si/�maxf ydp.Y;Z/; ydp.Z;Si/g �
4�

ı2R

as claimed.

Suppose i ¤ j . If ˆp.�p.x// � BSi
. 4�
ı2R

/ and ˆp.�p.y// � BSj
. 4�
ı2R

/ for a pair
of points x;y 2AR \�

�1.Xe.ı//, then BSi
. 4�
ı2R

/\BSj
. 4�
ı2R

/D∅. Hence, by the
ultrametric property of yXp we have

ydp

�
ˆp ı�p.x/ ; ˆp ı�p.y/

�
�

4�

ı2R
D

2

ı.ıR=2�/
:

Therefore, d
�
�p.x/ ; �p.y/

�
�
ı.ıR=2�/

2
D
ı2R

4�
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by (1) and Lemma 3.3. Thus,

d.x;y/�
1

�
d.�.x/; �.y//� "D0.�Ix;y/

�
1

�
d.�p.x/; �p.y//� "D0.�Ix;y/

�
ı2R

4�2
� "2R

�
ı2R

5�2
:

In summary, we have shown that

d.Bi ;Bj /�
ı2R

5�2
.i ¤ j /(2)

where

Bi DAR \�
�1
h
��1

p

h
ˆ�1

p

h
BSi

� 4�

ı2R

�ii
\Xe.ı/

i
:

If �m is Lebesgue measure on Em , then

�m

�
AR \�

�1.Xe.ı//
�
� �m

�
AR

�
< �m

�
B0.1/

�
.2R/m:(3)

Combining (2) and (3) tells us that the number of nonempty Bi is bounded above by

.10�2/m.2R/m

.ı2R/m
D

20m�2m

ı2m
:

We will also need to know that projecting onto the symmetric space factor will produce
a bound on the visual angles there. This is Lemma 4.2 in [3] which we state as

Lemma 3.7 There exists a constant �3 D �3.�; ı/, such that the image of
�1

�
�.AR/\Xe.ı/

�
under ˆ1 can be covered by c1 D O.1=ı2m/ balls of radius

e��3R for 1�.�;ı/ R and "� ı .

Note that in [3] there is no building factor. Thus, the statement of Lemma 4.2 in [3] does
not mention the projection map �1 . Also note that the number of balls in [3] Lemma
4.2 is bounded by the smaller term O.1=ım/. When projecting, a factor of ı makes its
way into the proof from the inequality d.�1.x/; e1/� ıd.x; e/ for x 2Xe.ı/. The
extra factor of ı influences c1 by adjusting the bound from O.1=ım/ to O.1=ı2m/,
and our constant �3 is proportional to the corresponding constant in [3]. Aside from
these minor adjustments, the proof carries through without modification.
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A bound on visual directions for entire quasiflats Using the bound on the number
of visual directions for annuli, we are prepared to pass to the limit and produce a bound
for the number of ı–limit points of � .

Proposition 3.8 (Finite limit set) For ı sufficiently small, jL�;e.ı/j< c1cp .

Proof Assume there are c1cpC1 limit points f.Ci ;Si/g
c1cpC1

iD1
. We will arrive at a

contradiction.

There are two cases to consider as eitherˇ̌
fCig

c1cpC1

iD1

ˇ̌
> c1 or

ˇ̌
fSig

c1cpC1

iD1

ˇ̌
> cp:

We will begin by assuming the latter.

After possibly re-indexing, let S1;S2; : : :ScpC1
be distinct elements of fSig

c1cpC1

iD1
.

Let ˛ Dmini¤j f
yd.Si ;Sj /g. By assumption, there are paths

 i W Œ0;1/! ��1.Xe.ı//

such that limt!1ˆp ı�p ı i.t/D fSig. Pick ti > 0 such that[
ˆp ı�p ı i.Œti ;1//� BSi

�˛
2

�
for all 0� i � cpC 1:(4)

We will need a more uniform choice for the ti to allow us to apply Lemma 3.6, so we
let

RDmax
n 8�

˛ı2
; d
�
 1.t1/; 0

�
; d
�
 2.t2/; 0

�
; : : : ; d

�
 cpC1

.tcpC1
/; 0
�o
:

Then we take t 0i > 0 such that d. i.t
0
i/; e/DR for all 0� i � cpC 1.

By our choice of ˛ ,

BSi

�˛
2

�
\BSj

�˛
2

�
D∅ for i ¤ j:

Therefore, by (4),
BZi

�˛
2

�
\BZj

�˛
2

�
D∅ for i ¤ j ;

where Zi 2
yXp is a sector containing �pı i.t

0
i/. In particular, Zi 62BZj

.˛=2/ for i¤ j .
However, we can apply Lemma 3.6 to obtain a proper subset P of f1; : : : ; cpC1g such
that

fZig
cpC1

iD1
�

[
i2P

BZi

�˛
2

�
:

This is a contradiction.

If we assume
ˇ̌
fCig

c1cpC1

iD1

ˇ̌
> c1 , we can arrive at a similar contradiction using Lemma

3.7. The details are carried out in Proposition 5.2 in [3].
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4 Independence of basepoint

So far we have limited ourselves by considering a fixed basepoint e . The proof of
Theorem 1.2 will require us to hop around from point to point in our quasiflat with
holes, and to treat several points as basepoints for the nondegenerate space and, hence,
for the limit set of � . We will need to know therefore, that all of the corresponding
nondegenerate spaces and limit sets are compatible with each other—that they are the
same up to minor modifications of ı .

The following lemma is essentially Lemma 5.3 from [3].

Lemma 4.1 Let r > 0 be given and let e0 2 X be such that d.e; e0/ � r . If x 2

��1.Xe.ı// and d.x; 0/ � maxf�; .6�r/=ıg for some x 2 Em , then x 2

��1.Xe0.ı=2// as long as ı � 1=3.

The next lemma is a short technical remark used in the final lemma of this section.

Lemma 4.2 There exists a constant �4D �4.Xp/ such that if S�Xp is a sector based
at e , and S0 � Xp is a sector based at e0 2 Xp with Hd.S;S0/ <1, then there is a
sector Z�S\S0 such that Hd.Z;S/� �4d.e; e0/.

Proof Let S be contained in an apartment A. Then there are isometries a; n1; n2;

: : : ; nk 2 Isom.Xp/ such that a stabilizes A, each ni stabilizes a half-space of A
containing a subsector of S0 , and k is bounded by a constant depending only on X .

It is clear that the result holds if S0 D aS or S0 D niS. Hence the result for the
general S0 holds by the triangle inequality.

We are prepared to show that the ı–limit set of � is as independent of the choice of
basepoint as one would expect. First though we need to identify the boundaries of Xp

created using two different basepoints. Previously we had defined yXp in a way that
depended on ep . This was done mostly for notational convenience, but the dependence
on a basepoint would now be a hindrance for us.

Our solution is to give an equivalent definition of yXp as the space of all sectors with
arbitrary basepoints modulo the equivalence that two sectors be identified if they are
a finite Hausdorff distance from each other (this is equivalent to the condition that
the intersection of the two sectors contains a third sector). Now the metric on yXp is
determined by a choice of a basepoint (only up to a Lipschitz equivalence though), but
the space yXp itself is independent of that choice.
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Lemma 4.3 Let e0 D �.00/ for some 00 2 Em , and suppose � is a .�; �; "/ .RGQIE/
based at 00 as well as at 0. If ı� 1, then L�;e0.ı/� L�;e.ı=2/.

Proof Suppose .C0;S0/ 2 L�;e0.ı/. Then there is a path  W Œ0;1/! ��1.Xe0.ı//

such that the path �p ı W Œ0;1/!X�p.e0/.ı/ escapes every compact set and limits
to fS0g when observed from �p.e

0/.

Let S be the sector based at ep such that Hd.S0;S/ <1. Our goal is to show that
�p ı limits to S when observed from ep .

To this end, for a given t > 0, let St be a sector based at ep such that �p ı .t/ 2St .
Let S0t be a sector based at �p.e

0/ such that Hd.S0t ;St / <1. Note that, by Lemma
4.2, �p ı .t/ 2S0t for sufficiently large values of t . Hence, the family S0t limits to
S0 from the vantage point of �p.e

0/.

Therefore, for any number r >0 and sufficiently large values of t , we have S0.r/2S0t .
Recall that S0 is the geodesic ray in S0 based at �p.e

0/ that travels down the center
of S0 and is used for measuring distances between points in yXp from the vantage point
of �p.e

0/.

By Lemmas 4.1 and 4.2, S0.r/ 2St .ı=2/\S.ı=2/. Now applying the no shifting
Lemma gives us that

ydp.St ;S/! 0

as t !1. Therefore,
lim

t!1
ˆp ı�p ı .t/D fSg

as desired.

For the symmetric space part of the proof, see Lemma 5.4 of [3].

5 Proof of Theorem 1.2

Using the tools we have assembled thus far (in particular large-scale homology of
pinched sets, the no shifting Lemma, extending deep points to limit points, the bound on
limit points, and the independence of basepoints) we can retrace the proof of Eskin–Farb
given in [3] to prove the quasiflats with holes theorem. Since this proof is essentially
contained in [3], we will at times only sketch the arguments.

Proof of Theorem 1.2 Since �.";�0/ � �.";�/ when �0 < � , we may assume that
1�.C / � . We let " and ı be positive numbers such that "� ı� 1.
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As in the proof of Theorem 8.1 of [3], if x 2 �.";�/ , we can use a connect-the-dots
construction to define a continuous map �x W Em ! X such that d.�x.y/; '.y// �

O."/Dx.�Iy/. Hence, �x is a .�; �;O."// .RGQIE/ based at x .

Let @X be the Tits building for X . Because yX can be identified with the simplices
of maximal dimension in @X , we can measure their distances under the Tits metric.
It is well known that if a pair of points in yX have maximal Tits distance (“opposite
points”), then there is a unique flat that contains the pair up to Hausdorff equivalence.
Let F1; : : : ;FM be the flats so obtained from pairs of opposite points in L�x ;�x.x/.ı/.
Note that M � .c1cp/

2 where c1 and cp are as in Lemmas 3.6 and 3.7.

We will show that �x.x/ is contained in a bounded neighborhood of [M
iD1

Fi , but first
we want to demonstrate that the limit set, and hence our choice of flats, is independent
of x .

Suppose z 2�.";�/ and �z is constructed as �x to be a .�; �;O."// .RGQIE/ of Em

based at z .

By construction, we have for any point y 2X :

d.�z.y/; �x.y//�O."/
�
Dz.�Iy/CDx.�Iy/

�
:(5)

It follows that �z is a .2�; �C2d.x; z/;O."// .RGQIE/ based at x . Hence, we obtain
through Lemma 4.3 that

L�z ;�z .z/.ı/� L�z ;�z .x/.ı=2/:

If .C;S/ 2 L�z ;�z .x/.ı=2/, then there is a corresponding limit path  W Œ0;1/ !

��1
z .X�z .x/.ı=2// that limits to .C;S/.

It follows from (5) that  .t/ 2 ��1
x .X�x.x/.ı=4// for sufficiently large values of t .

By projecting  onto factors and applying Lemma 3.2 of this paper and Lemma 4.1.i
of [3] respectively, we see that

‚p;�x.x/

�
�p ı�x ı .t/; �p ı�z ı .t/

�
! 0

and
‚1;�x.x/

�
�1 ı�x ı .t/; �1 ı�z ı .t/

�
! 0

as t!1. The function ‚p;�x.x/ above is defined analogously to ‚p with a basepoint
of �p.�x.x// rather than ep , and ‚1;�x.x/ is the Furstenberg angle between points
in X1 measured at the point �1.�x.x//.

Therefore, it must be that .C;S/ 2 L�x ;�x.x/.ı=4/, and hence,

L�z ;�z .x/.ı=2/� L�x ;�x.x/.ı=4/:
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Joining this inclusion with the previous inclusion of limit sets we have

L�z ;�z .z/.ı/� L�x ;�x.x/.ı=4/:

This shows that our choice of flats is well defined up to replacing ı with ı=4.

Now we return to the task of showing that �x.x/ is within a bounded distance of
[M

iD1
Fi . For the remainder of the proof we let � D �x .

For a fixed 1�.�;ı;"/R there must be a y 2��1.X�.x/.ı// such that d.�.y/; �.x//D

2R. Otherwise, we could apply Lemma 2.8 with W � Em equal to the sphere centered
at x with radius d.x;y/ to obtain a contradiction.

Let e D .e1; ep/ be the midpoint of the geodesic between �.y/ and �.x/ so that
�.x/; �.y/ 2Xe.ı/. We project to each factor. Again we will examine the case of a
building.

By Proposition 3.5, there are limit points .Ci ;Si/ 2 L�;e.ı/ for i D 1; 2 such that
ydp.S1; ˆp ı�p.x//� 2=.ıR/ and ydp.S2; ˆp ı�p.y//� 2=.ıR/. This implies that in
the link at ep—denoted by Lep � Xp—the chambers S1 \Lep and S2 \Lep are
opposite. Therefore, S1 and S2 are opposite in yXp under the Tits metric, and there is
a unique apartment A12 �Xp that contains subsectors of S1 and S2 .

We also note that the geodesic segments Œep; �p.x/� and Œep; �p.y/� can be extended to
geodesic rays x �S1 and y �S2 respectively. The bi-infinite path x [ y is a
local geodesic, so it is a global geodesic which we name  .

As  is a convex subset of Euclidean space, it is contained in an apartment A0 �Xp .
Since  �A0 , we have that A0 contains subsectors of S1 and S2 . Hence,

ep 2  �A0 DA12:

Therefore,
d
�
�p.x/;A12

�
� d

�
�p.x/; ep

�
�R:

In the proof of Theorem 1.1 of [3], it is shown that there is a constant ƒ, depending only
on X1 , and a flat F12 �X1 that contains C1 and C2 up to Hausdorff equivalence,
and such that

d
�
�1.x/;F

12
�
�

1

2

�
�RCC

�
Cƒ:

Combining this inequality with its building analogue above yields:

d
�
�.x/;F12

�A12
�
�

r
R2C

�1

2

�
�RCC

�
Cƒ

�2
:
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The proof of Theorem 1.2 is completed by observing that F12 �A12 � X is the
unique flat that contains .C1;S1/ and .C2;S2/ up to Hausdorff equivalence. Hence,
F12 �A12 2 fFig

M
iD1

. We take the constant N in the statement of Theorem 1.2 to beq
R2C .1=2.�RCC

�
Cƒ/2 .
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