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Joins of DGA modules and sectional category

LUCÍA FERNÁNDEZ SUÁREZ

PIERRE GHIENNE

THOMAS KAHL

LUCILE VANDEMBROUCQ

We construct an explicit semifree model for the fiber join of two fibrations pW E!B

and p0W E0!B from semifree models of p and p0 . Using this model, we introduce
a lower bound of the sectional category of a fibration p which can be calculated
from any Sullivan model of p and which is closer to the sectional category of
p than the classical cohomological lower bound given by the nilpotency of the
kernel of p�W H�.BIQ/!H�.EIQ/ . In the special case of the evaluation fibration
X I!X�X we obtain a computable lower bound of Farber’s topological complexity
TC.X / . We show that the difference between this lower bound and the classical
cohomological lower bound can be arbitrarily large.

55M30; 55P62

1 Introduction

The sectional category of a fibration pW E ! B , denoted by secatp , is the least
integer n such that the base space B can be covered by nC 1 open subspaces on
each of which p admits a section. If no such n exists one sets secatp D1. This
homotopy invariant of a fibration has been introduced by A S Schwarz [15] in the late
1950’s as a generalization of the Lusternik–Schnirelmann category of a space. The
Lusternik–Schnirelmann category of a space X , catX , is the least integer n such
that X can be covered by nC 1 open subspaces each of which is contractible in X

(if no such n exists one sets catX D1). If X is a path-connected space with base
point x0 and PX is the space of paths beginning at x0 then catX is precisely the
sectional category of the evaluation fibration ev1W PX !X; ! 7! !.1/. References
on Lusternik–Schnirelmann category and sectional category are Schwarz [15], James
[12; 13] and Cornea–Lupton–Oprea–Tanré [2].

The concept of sectional category has been used to introduce measures for the com-
plexity of certain problems. S Smale [16] (see also [2, sec. 9.4]) obtained re-
sults on the complexity of the root-finding problem for algebraic equations in terms
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of sectional category. Recently, M Farber [3; 4] defined the topological complex-
ity of a space X , TC.X /, to be the sectional category of the evaluation fibration
ev0;1W X

I ! X �X; ! 7! .!.0/; !.1//. This notion of topological complexity plays
an important role in the study of the motion planning problem in robotics.

In spite of the simplicity of the definition, it is very hard to calculate the sectional
category of a fibration pW E!B and therefore one will usually have to accept to work
with approximations. For a surjective fibration one easily shows that secatp � catB .
Hence all upper bounds of catB , such as the dimension of B or its cone-length, are
upper bounds of secatp as well. A classical cohomological lower bound of secatp is
nil ker p� , the nilpotency of the kernel of p�W H�.B/!H�.E/ (with respect to any
coefficient ring), i.e. the least integer n such that any (nC1)–fold cup product in ker p�

is trivial (cf. [2, Section 9.3]). There are, of course, examples where nil ker p�D secatp
but in general the inequality nil ker p� � secatp is strict. As is showing the case of
Lusternik–Schnirelmann category, that is, the special case where p is the evaluation
fibration ev1W PX ! X , the difference between the two numbers may actually be
infinite.

A far better lower bound of secatp than nil ker p� (at least when the coefficient
ring is Q) is the rational sectional category secat0p , i.e. the sectional category of
a rationalization of p . In her thesis [5], A Fassò Velenik gave a characterization of
secat0p in terms of a Sullivan model of p . Unfortunately, concrete computations
based on this characterization turn out to be rather difficult due to the complexity of the
algebraic manipulations involved. In the present article we introduce an approximation
of secatp which is not as good as secat0p in general but much easier to calculate.
This approximation, which we denote by Msecatp , is still a much better lower bound
of secatp than nil ker p� , if we consider coefficients in Q. Let us note here that we
work over the field Q in the algebraic part of this article and that all spaces we consider
are compactly generated Hausdorff spaces.

There is a classical equivalent definition of sectional category in terms of joins which
is more appropriate for our purpose than the original one. Denote by �n

B
E the n–

fold fiber join of the fibration pW E ! B and by j npW �n
B

E ! B the nth join
map. If B is normal then secatp � n if and only if j np has a section. We recall
this fact and the join construction in section 2. Let APL denote Sullivan’s functor
of polynomial forms from spaces to commutative cochain algebras. Consider the
morphism APL.j

np/W APL.B/!APL.�
n
B

E/ as a morphism of APL.B/–modules.
In section 5, we define the invariant Msecatp to be the least integer n for which
APL.j

np/D � ı i where � is a quasi-isomorphism of APL.B/–modules and i is a
morphism of APL.B/–modules which admits a retraction of APL.B/–modules. We
show that nil ker p� �Msecatp � secatp for fibrations with a normal base space (cf.
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Theorem 5.2). In the special case of the evaluation fibration ev1W PX !X of a simply
connected space of finite type, Msecat coincides with the well-known invariant McatX
(cf. Proposition 5.6) which in turn is known to be the rational category of X (cf. Hess
[11]). The invariant Msecat generalizes the invariant Mcat hence in the same way
as secat generalizes cat . The fact that Mcat is rational category does, however, not
generalize to Msecat and Msecat does not in general equal rational sectional category.

The computability of the invariant Msecat relies on an algebraic join construction
which we develop in sections 3 and 4. Let .A; d/ be a commutative cochain algebra. In
section 3, we define the join .M; d/�.A;d/ .N; d/ of two .A; d/–semifree extensions
.M; d/ and .N; d/ of .A; d/. This is an explicitly defined semifree extension of
.A; d/. Moreover, if .M; d/ and .N; d/ are minimal semifree .A; d/–modules, so is
.M; d/�.A;d/ .N; d/. Consider two fibrations pW E!B and p0W E0!B between
simply connected spaces of finite type and suppose that ˛W .A; d/ ��! APL.B/ is a
commutative cochain algebra model of the base space B and that .M; d/ and .N; d/
are semifree extensions of .A; d/ such that there exist quasi-isomorphisms of .A; d/–
modules .M; d/ ��!APL.E/ and .N; d/ ��!APL.E

0/ which extend APL.p/ı˛ and
APL.p

0/ı˛ . We establish in section 4 that the inclusion .A; d/! .M; d/�.A;d/.N; d/

is an .A; d/–module model of the topological join map E �B E0! B . Iterating the
join construction, we define the n–fold join �n

.A;d/
.M; d/ of .M; d/ and obtain an

explicit .A; d/–module model of the nth join map j npW �n
B

E ! B . The number
Msecatp is then the least n such that the inclusion .A; d/!�n

.A;d/
.M; d/ admits a

retraction of .A; d/–modules (cf. Theorem 5.4). Through this result one obtains an
effective method to compute the invariant Msecatp from a Sullivan model of p .

As an example we consider Farber’s topological complexity TC . Let X be a simply
connected space of finite type with Sullivan model .ƒV; d/. There is a well-known
explicit minimal model of the evaluation fibration ev0;1W X

I ! X �X which can be
determined from .ƒV; d/. This model and the algebraic join construction permit one
to calculate the invariant MTC.X /DMsecatev0;1 which is a lower bound of TC.X /.
Note that since ev0;1 is the mapping path fibration associated to the diagonal map
X ! X �X , ev�

0;1
can be identified with the cup product [W H�.X /˝H�.X /!

H�.X /. If X is a formal space, i.e. a space whose rational homotopy type is entirely
determined by its cohomology algebra, one has MTC.X /D nil ker[. But already for
the simplest example of a non-formal space, one calculates that MTC.X / D 3 and
nil ker[ D 2. We show finally that the difference between the two lower bounds is
unbounded.
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2 Sectional category and joins

Recall from the introduction that the category of spaces in which we shall work
throughout this article is the category of compactly generated Hausdorff spaces. All
categorical constructions (products, pullbacks etc.) are carried out in this category.

In this section we recall the link between joins and the sectional category mentioned in
the introduction.

Definition 2.1 The (fiber) join of two maps pW E ! B and p0W E0 ! B , denoted
by E �B E0 , is the double mapping cylinder of the projections E �B E0 ! E and
E�BE0!E0 , i.e. the quotient space ..E�BE0/�IqEqE0/=� where .e; e0; 0/�e ,
.e; e0; 1/ � e0 . The join map of p and p0 is the map jp;p0 W E �B E0 ! B defined
by jp;p0.Œe; e

0; t �/ D p.e/ D p0.e0/, jp;p0.Œe�/ D p.e/, and jp;p0.Œe
0�/ D p0.e0/. The

n–fold join and the nth join map of p are iteratively defined by �0
B

E DE , �n
B

E D

.�n�1
B

E/�B E , j 0p D p , and j np D jjn�1p;p .

Theorem 2.2 Let pW E! B be a fibration. If B is normal then secatp � n if and
only if j np has a section.

Proof The result is well-known, at least when B is paracompact (cf. James [12]). We
include a short proof for the convenience of the reader.

Suppose first that secatp � n. We show by induction that for each 0 �m � n there
exists an open cover U0; : : : ;Un�m of B such that j mp has a section on U0 and p

has a section on each of the remaining Ui . For mD 0 this is just the hypothesis that
secatp � n. Suppose that the assertion holds for 0�m< n. Then there exists an open
cover U0; : : : ;Un�m of B , a section �0W U0!�

m
B

E of j mp , and sections �i W Ui!E

of p .1 � i � n �m/. Since B is normal, there exist open covers V0; : : : ;Vn�m

and W0; : : : ;Wn�m of B such that xVi � Wi �
xWi � Ui . Set A0 D

xV0 \ .BnW1/,
A1 D

xV1 \ .BnW0/, and A2 D
xW0 \

xW1 \ . xV0 [
xV1/. Then A0 , A1 , and A2 are

closed subspaces of B , A0 [A1 [A2 D
xV0 [

xV1 , and A0 \A1 D ∅. Since B is
normal, by Urysohn’s Lemma, there exists a continuous map �W B ! I such that
�.A0/� f0g and �.A1/� f1g. Define a section � of j mC1p on xV0[

xV1 by

�.x/D

8<:
Œ�0.x/� ; x 2A0;

Œ�1.x/� ; x 2A1;

Œ�0.x/; �1.x/; �.x/� ; x 2A2:

Consider the open cover O0; : : :On�m�1 of B given by O0DV0[V1 and OiDUiC1 ,
i D 1; : : : ; n�m�1. On O0 , � is a section of j mC1p . On each of the remaining Oi ,
p has a section by hypothesis. This terminates the inductive step.
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Suppose now that j np has a section sW B!�n
B

E . By Lemma 2.4 below, �n
B

E can
be covered by nC 1 open subspaces U0; : : : ;Un on each of which the projection
xpnW .�

n
B

E/�B E!�n
B

E has a section. The inverse images s�1.Ui/ form a cover of
B by open subspaces on each of which p has a section. Therefore secatp � n.

Remark 2.3 If pW E ! B and p0W E0 ! B are fibrations, so is the join map
jp;p0 W E�B E0!B . Indeed, if �W E�B BI!EI and �0W E0�B BI!E0I are lifting
maps for p and p0 then a lifting map �W .E �B E0/�B BI ! .E �B E0/I for jp;p0 is
given by �.Œe; e0; t �; !/.s/ D Œ�.e; !/.s/; �0.e0; !/.s/; t �, �.Œe�; !/.s/ D Œ�.e; !/.s/�,
and �.Œe0�; !/.s/ D Œ�0.e0; !/.s/�. Note that � is continuous since we are working
with compactly generated spaces. It follows, by induction, that the nth join map of
a fibration is again a fibration and hence that it has a section if and only if it has a
homotopy section.

In the proof of Theorem 2.2 we used the following lemma. We shall need this lemma
again in the proof of the inequality Msecatp � nil ker p� (cf. Theorem 5.2).

Lemma 2.4 Consider a fibration pW E! B and form the pullback diagram:

.�n
B

E/�B E //

xpn

��

E

p

��
�n

B
E

jnp
// B

Then secat xpn � n.

Proof We proceed by induction. For nD 0, the map E!E �B E , e 7! .e; e/ is a
section of xpn . Suppose that n> 0 and that the assertion holds for n� 1. The spaces
E and �n�1

B
E are embedded as closed subspaces in �n

B
E and there are canonical

projections � W �n
B

En �n�1
B

E!E and z� W �n
B

EnE!�n�1
B

E . Let U0 be the open
subspace �n

B
En�n�1

B
E of �n

B
E . We have j npjU0

D p� . The inductive hypothesis
implies that �n�1

B
E can be covered by n open subspaces V1; : : : ;Vn such that each

restriction of the join map j n�1pjVi
W Vi ! B factors through p . Consider the open

subspaces Ui D z�
�1.Vi/ of �n

B
E . The nC1 open subspaces U0;U1 : : : ;Un of �n

B
E

cover �n
B

E . The restriction of the join map j np to any of these open subspaces factors
through p . Therefore the projection xpnW .�

n
B

E/�B E!�n
B

E has a section on each
Ui . This shows that secat xpn � n.
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3 Joins of semifree modules

The purpose of this section is to define joins of semifree extensions of a commutative
cochain algebra. Recall that we are working over Q. All graded vector spaces we
consider will be Z–graded with upper degree and all differential vector spaces will
be cochain complexes, i.e. the differential raises the upper degree by one. The nth
suspension s�nV of a graded vector space V is defined by .s�nV /i D V i�n .

Definition 3.1 Let .A; d/ be a differential algebra. A semifree extension of an .A; d/–
module .M; d/ is an .A; d/–module of the form .M ˚A˝X; d/ where the action
is the one of the direct sum, the differential on M is the differential of .M; d/,

and X admits a direct sum decomposition X D
1L

iD0

Xi such that d.X0/ �M and

d.Xn/ � M ˚ A˝ .
n�1L
iD0

Xi/ for n � 1. A semifree .A; d/–module is a semifree

extension of the trivial .A; d/–module 0.

For the remainder of this section we fix a commutative cochain algebra .A; d/ and two
semifree extensions .M; d/D .A˚A˝X; d/ and .N; d/D .A˚A˝Y; d/ of .A; d/.
We define the join .M; d/ �.A;d/ .N; d/ of .M; d/ and .N; d/ which will again be
a semifree extension of .A; d/. Forgetting the differential, .M; d/ �.A;d/ .N; d/ is
the free graded A–module A˚A˝ s�1X ˝Y . In order to define the differential of
.M; d/�.A;d/ .N; d/, we decompose the differential in .M; d/ of an element m 2M

as
dmD d0mC dCm

where d0m 2 A and dCm 2 A˝X . Using the same notation, we decompose the
differential in .N; d/ of an element n 2N . Consider elements x 2 X and y 2 Y and
write

dCx D
X

i

ai ˝xi ; and dCy D
X

j

bj ˝yj :

The differential of the element s�1x˝y in .M; d/�.A;d/ .N; d/ is then defined by

d.s�1x˝y/D .�1/jxjd0xd0yC
X

i

.�1/jai jC1ai ˝ s�1xi ˝y

C

X
j

.�1/.jxjC1/.jbj jC1/bj ˝ s�1x˝yj :

We extend this differential to the whole join .M; d/�.A;d/ .N; d/ by setting

d.a˝ s�1x˝y/D da˝ s�1x˝yC .�1/jaja � d.s�1x˝y/:
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Proposition 3.2 below assures that d is indeed an .A; d/–module differential in
.M; d/ �.A;d/ .N; d/. It is an easy exercise to check that .M; d/ �.A;d/ .N; d/ is
a semifree extension of .A; d/. Moreover, if .A; d/ is augmented and .M; d/ and
.N; d/ are minimal semifree .A; d/–modules, i.e. the differentials in Q˝.A;d/ .M; d/

and Q˝.A;d/ .N; d/ are zero, then .M; d/�.A;d/ .N; d/ is also minimal.

Proposition 3.2 d2.s�1x˝y/D 0.

Proof Write dCxi D
P

k aik ˝xik and dCyj D
P

l bjl ˝yjl . Since

0D d2x

D d.d0xC
X

i

ai ˝xi/

D dd0xC
X

i

dai ˝xi C

X
i

.�1/jai jaid0xi C

X
i

.�1/jai jaidCxi ;

we have dd0x D�
P

i.�1/jai jaid0xi D
P

i.�1/jai jC1aid0xi andX
i

dai ˝xi D�

X
i

.�1/jai jaidCxi D

X
i;k

.�1/jai jC1aiaik ˝xik :

Similarly, dd0y D
P

j .�1/jbj jC1bj d0yj andX
j

dbj ˝yj D

X
j ;l

.�1/jbj jC1bj bjl ˝yjl :

Use � to denote the isomorphism

A˝X ˝Y !A˝ s�1X ˝Y; a˝x˝y 7! .�1/jaja˝ s�1x˝y

and T to denote the isomorphism

A˝X !X ˝A; a˝x 7! .�1/jajjxjx˝ a:

Applying � to the identity
P

i dai ˝xi ˝y D
P

i;k.�1/jai jC1aiaik ˝xik ˝y , one
obtains the identityX

i

.�1/jai jC1dai ˝ s�1xi ˝y D
X
i;k

.�1/jaik jC1aiaik ˝ s�1xik ˝y:

Applying � ı .T ˝ idY / to the identityX
j

x˝ dbj ˝yj D

X
j ;l

.�1/jbj jC1x˝ bj bjl ˝yjl ;
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one obtains the identityX
j

.�1/jxjCjbj jCjxjjbj jdbj ˝ s�1x˝yj

D

X
j ;l

.�1/jxjjbj jCjxjjbj l jCjbj l jbj bjl ˝ s�1x˝yjl :

Using the different formulae above one easily verifies that d2.s�1x˝y/D 0.

Definition 3.3 The n–fold join of .M; d/ is iteratively defined by �0
.A;d/

.M; d/ D

.M; d/ and �n
.A;d/

.M; d/D .�n�1
.A;d/

.M; d//�.A;d/ .M; d/.

Remarks 3.4 (i) Note that �n
.A;d/

.M; d/ is a semifree extension of .A; d/. More-
over, if .M; d/ is a minimal semifree .A; d/–module then �n

.A;d/
.M; d/ is a minimal

semifree .A; d/–module as well.

(ii) We have
�

n
.A;d/.M; d/D .A˚A˝ s�nX˝nC1; d/:

Consider elements x0; : : : ;xn 2X and write dCxi D
P
ji

aiji
˝xiji

. An easy induction

shows that

d.s�nx0˝ � � �˝xn/D .�1/

nP
kD1

.kjxn�k jCk�1/

d0x0 � � � � � d0xn

C

nX
iD0

X
ji

.�1/.jaiji
jC1/.jx0jC���Cjxi�1jCn/aiji

˝ s�nx0˝ � � �˝xiji
˝ � � �˝xn:

(iii) Consider a morphism of commutative cochain algebras .A; d/! .B; d/ and the
.B; d/–semifree extension of .B; d/ defined by .N; d/D .B; d/˝.A;d/ .M; d/. The
formula for the differential given in (ii) shows that

�
n
.B;d/.N; d/D .B; d/˝.A;d/ �

n
.A;d/.M; d/:

4 Topological versus algebraic joins

Our goal in this section is to show that the algebraic joins of the preceding section
model topological joins. In this and the following sections we make frequent use
of the homotopy theory of modules over a DGA and, in particular, of the following
well-known result:
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Theorem 4.1 Let .A; d/ be a differential algebra. The category of .A; d/–modules
is a proper closed model category where weak equivalences are quasi-isomorphisms,
fibrations are surjective morphisms, and cofibrations are morphims having the left lifting
property with respect to surjective quasi-isomorphisms. A morphism is a cofibration if
and only if it is a retract of the inclusion of a semifree extension.

We refer the reader to Goerss and Jardine [10] for the axioms of closed model cate-
gories. A closed model category is called proper if the class of weak equivalences is
closed under base change along fibrations and cobase change along cofibrations. As is
customary we denote weak equivalences by ��!, fibrations by �, and cofibrations
by �. For the convenience of the reader we include the following proof.

Proof of Theorem 4.1 We do not use the fact that we are working over Q and the
proof works for an arbitrary commutative ground ring. We first show that inclusions
of semifree extensions are cofibrations. Consider a semifree extension .M ˚A˝

.
1L

iD0

Xi/; d/ of an .A; d/–module .M; d/ and a commutative diagram of .A; d/–

modules

.M; d/

i ��

f // .P; d/

p�

����
.M ˚A˝ .

1L
iD0

Xi/; d/ g
// .Q; d/

where i is the inclusion. Suppose inductively that we have constructed a lifting � for

the diagram up to .M ˚A˝ .
nL

iD0

Xi/; d/. Let B �XnC1 be a basis and x 2 B . Then

�.dx/ is defined and d�.dx/D 0. Since p is surjective, there exists an element � 2P

such that p.�/D g.x/. Then �.dx/�d� is a cocycle in ker p . Since p is a surjective
quasi-isomorphism, ker p is acyclic and there exists an element y 2 ker p such that

dy D �.dx/� d� . Set �.x/D � C y . This defines � in .M ˚A˝ .
nC1L
iD0

Xi/; d/. It

follows that a lifting exists and hence that i is a cofibration. Axiom CM1 (existence of
finite limits and colimits) follows from the fact that the category of modules over the
ground ring is complete and cocomplete. The fact that the quasi-isomorphisms have the
“2D 3” property (CM2) and are closed under retracts follows from the corresponding
properties of isomorphisms. The fibrations are closed under retracts because surjective
maps are closed under retracts. It is a general fact that any class of morphisms in a
category which is defined by having the left lifting property with respect to another
class of morphisms is closed under retracts. Therefore the class of cofibrations is closed
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under retracts and CM3 holds. We check the factorization axiom CM5. Consider a
morphism f W .M; d/! .N; d/ of .A; d/–modules. Consider the acyclic semifree
.A; d/–module .A˝. zN˚s�1 zN /; ı/ where zN D

L
n2N

Q�n, ınD s�1n and ıs�1nD0.

Then the inclusion i W .M; d/! .M; d/˚ .A˝ . zN ˚ s�1 zN /; ı/ is both a cofibration
and a quasi-isomorphism. Let pW .M; d/˚ .A˝ . zN ˚ s�1 zN /; ı/! .N; d/ be the
morphism of .A; d/-modules defined by p.m/Df .m/, p.n/Dn, and p.s�1n/Ddn.
Obviously, p is surjective and f D p ı i . This shows one part of CM5. In the proof of
Félix–Halperin–Thomas, [8, 2.1(i)], it is shown that there is a factorization f D p ı i

where p is a surjective quasi-isomorphism and i is the inclusion of a semifree extension.
This shows the other part of CM5. We verify the lifting axiom CM4. One of the lifting
properties is the definition of cofibrations. For the other one consider a commutative
diagram of .A; d/–modules:

.M; d/
��
i�

��

f // .P; d/

p
����

.N; d/
g

// .Q; d/

Form the pullback .A; d/–module .N; d/�.Q;d/ .P; d/. Since p is surjective, so is
its base extension xpW .N; d/�.Q;d/ .P; d/! .N; d/. Choose a factorization of the
canonical morphism .i; f /W .M; d/! .N; d/�.Q;d/ .P; d/ in a quasi-isomorphism
j W .M; d/ ��! .R; d/ and a surjective morphism r W .R; d/! .N; d/�.Q;d/ .P; d/.
The composite xp ı r is a surjective quasi-isomorphism. Since i is a cofibration, there
exists a section s of xp ı r such that s ı i D j . Let xgW .N; d/�.Q;d/ .P; d/! .P; d/

be the base extension of g . Then the composite xg ı r ı s is a lifting for the above
square. It follows that the category of .A; d/–modules is a closed model category.

We have seen that an inclusion of a semifree extension is a cofibration. By CM3, any
retract of an inclusion of a semifree extension is a cofibration. Let i be a cofibration and
i D p ı j be a factorization such that j is the inclusion of a semifree extension and p

is a surjective quasi-isomorphism. We have already mentioned that such a factorization
exists. By CM4, there exists a section s of p such that s ı i D j . This implies that i

is a retract of j . Thus a morphism is a cofibration if and only if it is a retract of the
inclusion of a semifree extension. In particular, any cofibration is injective. Therefore
we may use the 5–lemma to show that the cobase extension of a weak equivalence
along a cofibration is a weak equivalence. Since, by definition, fibrations are surjetive,
the 5–lemma implies that base extension of a weak equivalence along a fibration is
a weak equivalence. It follows that the closed model category of .A; d/–modules is
proper.
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Consider two fibrations pW E! B and p0W E0! B where B , E , and E0 are simply
connected spaces of finite type. Simply connected spaces are understood to be non-
empty. A space is said to be of finite type if it has finite dimensional rational homology
in every dimension. Let APL be Sullivan’s functor from spaces to commutative cochain
algebras. Fix a commutative cochain algebra model ˛W .A; d/ ��!APL.B/. For any
continuous map f W S!B the morphism of commutative cochain algebras APL.f /ı˛

induces an .A; d/–module structure on APL.S/ such that APL.f /ı˛ is a morphism
of .A; d/–modules. Let .M; d/ D .A˚A˝X; d/ and .N; d/ D .A˚A˝ Y; d/

be semifree extensions of .A; d/ such that there exist quasi-isomorphisms of .A; d/–
modules .M; d/ ��! APL.E/ and .N; d/ ��! APL.E

0/ which extend APL.p/ ı ˛

and APL.p
0/ı˛ . As in the preceding section we write dDd0CdC for the differentials

of .M; d/ and .N; d/.

Theorem 4.2 (i) The morphism of .A; d/–modules APL.jp;p0/ ı ˛ extends to a
quasi-isomorphism of .A; d/–modules .M; d/�.A;d/ .N; d/

��!APL.E �B E0/.

(ii) The morphism of .A; d/–modules APL.j
np/ı˛ extends to a quasi-isomorphism

of .A; d/–modules �n
.A;d/

.M; d/ ��!APL.�
n
B

E/.

Proof The second part follows from the first by induction. The proof of (i) is divided
in 3 steps.

Step 1: A model of the pullback

Choose Sullivan models  W .A˝ƒV; d/ ��! APL.E/ and  0W .A˝ƒV 0; d/ ��!

APL.E
0/ of APL.p/ ı ˛ and APL.p

0/ ı ˛ . Since the inclusions .A; d/! .M; d/

and .A; d/ ! .N; d/ are cofibrations, by the lifting lemma (Baues [1, II.1.11]),
there exist quasi-isomorphisms of .A; d/–modules hW .M; d/ ��! .A˝ƒV; d/ and
h0W .N; d/ ��! .A˝ƒV 0; d/ which extend the inclusions of .A; d/. Form the pushout
of commutative cochain algebras:

.A; d/ //

��

.A˝ƒV; d/

��
.A˝ƒV 0; d/ // .A˝ƒV; d/˝.A;d/ .A˝ƒV 0; d/

It follows from Félix–Halperin–Thomas [9, 15(c)] that the morphisms APL.prE/ ı 

and APL.pr 0
E
/ ı 0 , where prE W E �B E0!E and prE0 W E �B E0!E0 are the

projections, induce a quasi-isomorphism of commutative cochain algebras

.A˝ƒV; d/˝.A;d/ .A˝ƒV 0; d/!APL.E �B E0/:
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By [9, 6.7], since h and h0 are quasi-isomorphisms between semifree .A; d/–modules,
the morphism

h˝A h0W .M; d/˝.A;d/ .N; d/! .A˝ƒV; d/˝.A;d/ .A˝ƒV 0; d/

is a quasi-isomorphism. Since A is commutative, .M; d/˝.A;d/ .N; d/ is an .A; d/–
module and h˝A h0 a quasi-isomorphism of .A; d/–modules. Note that

.M; d/˝.A;d/ .N; d/D .M ˝A N; d/D .A˚A˝ .X ˚Y ˚X ˝Y /; d/

contains both .M; d/ and .N; d/ as sub .A; d/–modules. Note also that if dCx DP
i ai˝xi and dCyD

P
j bj˝yj then the differential of x˝y in .M; d/˝.A;d/.N; d/

is given by

d.x˝y/D d0x˝yC
X

i

ai ˝xi ˝yC .�1/jxjjyjd0y˝x

C

X
j

.�1/jxj.jbj jC1/bj ˝x˝yj :

We have obtained the following commutative diagram of .A; d/–modules:

.A; d/
� //

&&NNNNNNNNNNN

��

APL.B/

''PPPPPPPPPPP

��

.N; d/
� //

��

APL.E
0/

��

.M; d/
�

//

&&NNNNNNNNNNN
APL.E/

''PPPPPPPPPPP

.M ˝A N; d/
�

// APL.E �B E0/

Step 2: A model of the join map

Consider the mapping cylinder factorization of the projection pr 0
E
W E �B E0!E0 in

a cofibration �W E �B E0!Z and a homotopy equivalence �W Z!E0 . We have the
following pushout:

E �B E0

prE

��

� // Z

��
E // E �B E0
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Let � be the inclusion .N; d/ ! .M ˝A N; d/. We construct the mapping path
factorization of � . Consider the .A; d/–module

.Q;D/D .M ˝A N ˚N ˚ s�1M ˝A N;D/

where the action on M ˝A N ˚ N is the one of the direct sum, a � s�1w D

.�1/jajs�1aw , and the differential is given by

D.m˝A n/D d.m˝A n/C s�1m˝A n;

DnD dnC s�1�.n/;

Ds�1w D�s�1dw:

Let i W .N; d/! .Q;D/ be the injection defined by i.n/D �.n/�n. One easily checks
that this is a morphism of .A; d/–modules. We show that i is both a cofibration and
a quasi-isomorphism. Set U DQ˚X ˚Y ˚X ˝Y where the elements of Q have
degree 0. Then M ˝A N is the free graded A–module A˝U . Consider the acyclic
semifree .A; d/–module .A˝ .U ˚ s�1U /; ı/ where ıu D s�1u and ıs�1u D 0.
Then the inclusion

.N; d/! .N; d/˚ .A˝ .U ˚ s�1U /; ı/

is both a cofibration and a quasi-isomorphism. Consider the isomorphism of .A; d/–
modules ˆW .N; d/˚ .A˝ .U ˚ s�1U /; ı/! .Q;D/ defined by ˆ.n/D �.n/� n,
ˆ.u/D u, and ˆ.s�1u/D duC s�1u. Since i is the restriction of ˆ to .N; d/, it is
both a cofibration and a quasi-isomorphism. Let � W .Q;D/! .M ˝A N; d/ be the
obvious projection. Then � is a surjective morphism of .A; d/–modules and � ı i D � .

Form the following commutative diagram of .A; d/–modules:

.N; d/
�

//
��
i�

��

APL.E
0/

APL.�/

�
// APL.Z/

APL.�/

��
.Q;D/

�
// .M ˝A N; d/

� // APL.E �B E0/

Since APL.�/ is surjective, there exists a lifting �W .Q;D/! APL.Z/ making the
diagram commutative. Note that � is automatically a quasi-isomorphism. Consider the
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following commutative cube of .A; d/-modules:

.A; d/
� //

''NNNNNNNNNNN

��

APL.B/

''PPPPPPPPPPPP

��

.Q;D/
� //

����

APL.Z/

����

.M; d/
�

//

&&NNNNNNNNNNN
APL.E/

''PPPPPPPPPPP

.M ˝A N; d/
�

// APL.E �B E0/

Form the pullback .A; d/–module .J;D/D .M; d/�.M˝AN;d/ .Q;D/ and the pull-
back cochain algebra APL.E/ �APL.E�BE0/ APL.Z/. By the dual of the gluing
lemma [1, II.1.2], [10, 8.13], the horizontal quasi-isomorphisms in the above cube
induce a quasi-isomorphism of .A; d/–modules

.J;D/ ��!APL.E/�APL.E�BE0/APL.Z/:

By [9, 13.5], the canonical morphism

APL.E �B E0/!APL.E/�APL.E�BE0/APL.Z/

is a quasi-isomorphism and we obtain the following commutative diagram of .A; d/–
modules:

.A; d/
� //

��

APL.B/

��

APL.B/

APL.jp;p0 /

��

Doo

.J;D/
�

// APL.E/�APL.E�BE0/APL.Z/ APL.E �B E0/:
�

oo

Step 3: A quasi-isomorphism .J; D/ ��! .M; d/�.A;d/ .N; d/

We have
.J;D/D .M ˚N ˚ s�1M ˝A N;D/:

The action on M ˚N is the one of the direct sum, a � s�1wD .�1/jajs�1aw , and the
differential is given by DmD dmC s�1 .m/, DnD dnC s�1�.n/, and Ds�1w D

�s�1dw . Here,  W M !M ˝A N is the inclusion. Let j W .A; d/! .J;D/ be the
canonical morphism. If we write aM for the elements of J which lie in the copy of A

coming from M and aN for the elements of J which lie in the copy of A coming
from N then j is given by j .a/D aM � aN . Since the join .M; d/�.A;d/ .N; d/ is
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a semifree extension of .A; d/, by the lifting lemma [1, II.1.11], in order to finish the
proof it is enough to construct a quasi-isomorphism of .A; d/–modules

f W .J;D/! .M; d/�.A;d/ .N; d/D .A˚A˝ s�1X ˝Y; d/

such that the composite of f ı j is the inclusion .A; d/! .M; d/�.A;d/ .N; d/. We

define the map f by f .aM / D
1

2
a, f .a˝ x/ D 0, f .aN / D �

1

2
a, f .a˝ y/ D 0,

f .s�1a/D 0, f .s�1a˝ x/D�
1

2
.�1/jajad0x , f .s�1a˝ y/D

1

2
.�1/jajad0y , and

f .s�1a ˝ x ˝ y/ D .�1/jaja ˝ s�1x ˝ y . It is straightforward to check that f
is A–linear and obvious that f ı j is the inclusion. Consider an element x 2 X

and write dCx D
P

i ai ˝ xi . As we have shown at the beginning of the proof of
Proposition 3.2, dd0xD�

P
i.�1/jai jaid0xi . Using this identity and a corresponding

one for y 2 Y , it is straightforward to check that f commutes with the differentials.
It remains to show that f is a quasi-isomorphism. Consider the pushout .A; d/–
module .R; d/D .A˚A˝X ˚A˝ Y; d/ of the inclusions .A; d/! .M; d/ and
.A; d/! .N; d/ and form the acyclic differential vector space

.R˚ s�1R;D/D .A˚A˝X ˚A˝Y ˚ s�1A˚ s�1A˝X ˚ s�1A˝Y;D/

where Dr D dr C s�1r and Ds�1r D�s�1dr . Define a map gW R˚ s�1R! J by

gaD
1

2
aM C

1

2
aN , g.a˝x/D a˝x , g.a˝y/D a˝y , g.s�1a/D s�1a,

g.s�1a˝x/D s�1a˝xC
1

2
.�1/jaj.ad0x/M �

1

2
.�1/jaj.ad0x/N ;

and

g.s�1a˝y/D s�1a˝y �
1

2
.�1/jaj.ad0y/M C

1

2
.�1/jaj.ad0y/N :

One easily checks that f ıg D 0. Write AM to denote the copy of A in J coming
from M . Then

J DAM ˚ img˚ s�1A˝X ˝Y:

Therefore g is an isomorphism onto kerf . Using once more the identity dd0x D

�
P

i.�1/jai jaid0xi , one checks that g commutes with the differentials. Since .R˚
s�1R;D/ is acyclic, this implies that f is a quasi-isomorphism. �
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5 The invariant Msecat

Definition 5.1 Let pW E!B be fibration. We define Msecatp to be the least integer
n such that there exists a commutative diagram of APL.B/–modules:

APL.B/

APL.j
np/

�� &&NNNNNNNNNNN
APL.B/

APL.�
n
B

E/ .P; d/
�

oo

OO

If no such n exists we set Msecatp D1.

We first show that Msecatp is a lower bound of secatp which is closer to the sectional
category than the classical lower bound nil ker p� :

Theorem 5.2 For any fibration pW E ! B , nil ker p� �Msecatp . If B is normal
then Msecatp � secatp .

Proof Suppose that Msecatp � n. We show that nil ker p� � n. Form the pullback:

�n
B

E �B E //

xpn

��

E

p

��
�n

B
E

jnp
// B

By Lemma 2.4, secat xpn � n. Therefore nil ker xp�n � n. Since Msecatp � n, the join
map j np is injective in cohomology. Now consider elements ˛0; : : : ; ˛n 2 ker p� .
Since nil ker xp�n � n, we have .j np/�.˛0[ � � � [˛n/D 0. Since .j np/� is injective,
˛0[ � � � [˛n D 0. This shows that nil ker p� � n.

Suppose now that B is normal and that secatp � n. Then there exists a section
sW B ! �n

B
E of the join map j np . We therefore have the following commutative

diagram of APL.B/–modules:

APL.B/

APL.j
np/

�� ''OOOOOOOOOOO
APL.B/

APL.�
n
B

E/ APL.�
n
B

E/:

APL.s/

OO

It follows that Msecatp � n.
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The number Msecatp can be calculated using the algebraic join construction of the
previous sections. For the proof of this fact we need the following lemma:

Lemma 5.3 Let pW E ! B be a fibration, ˛W .A; d/ ��! APL.B/ be a commuta-
tive cochain algebra model, i W .A; d/! .Q; d/ be a cofibration of .A; d/–modules,
and �W .Q; d/! APL.�

n
B

E/ be a morphism of .A; d/–modules such that � ı i D

APL.j
np/ ı˛ . If Msecatp � n then i admits a retraction of .A; d/–modules.

Proof By definition, there is a commutative diagram of APL.B/–modules:

APL.B/

APL.j
np/

��

j

&&NNNNNNNNNNN
APL.B/

APL.�
n
B

E/ .P; d/
�

 

oo

r

OO

This is automatically a commutative diagram of .A; d/–modules. Form the following
commutative diagram of .A; d/–modules:

.A; d/
jı˛ //

��
i

��

.P; d/

 �

��
.Q; d/

�

// APL.�
n
B

E/

By the lifting lemma [1, II.1.11], there exists a morphism of .A; d/–modules �W .Q; d/
! .P; d/ such that �ıi D j ı˛ . We have obtained the following commutative diagram
of .A; d/–modules:

.A; d/
��

i
��

.A; d/

�˛

��
.Q; d/

rı�

// APL.B/

The lifting lemma [1, II.1.11] yields the required retraction of i .

Theorem 5.4 Let pW E ! B be a fibration between simply connected spaces of
finite type, ˛W .A; d/ ��! APL.B/ be a commutative cochain algebra model, and
.M; d/D .A˝ .Q˚X /; d/ be a semifree extension of .A; d/ such that there exists a
quasi-isomorphism of .A; d/–modules .M; d/ ��!APL.E/ extending APL.p/ ı˛ .
Then Msecatp � n if and only if the inclusion .A; d/ ! �n

.A;d/
.M; d/ admits a

retraction of .A; d/–modules.
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Proof Suppose first that Msecatp � n. By Theorem 4.2, the morphism of
.A; d/–modules APL.j

np/ ı˛ extends to a quasi-isomorphism of .A; d/–modules
�n
.A;d/

.M; d/ ��!APL.�
n
B

E/. By Lemma 5.3, the inclusion .A; d/!�n
.A;d/

.M; d/

admits a retraction of .A; d/–modules.

Suppose now that the inclusion .A; d/!�n
.A;d/

.M; d/ admits a retraction � of .A; d/–
modules. Then the morphism of APL.B/–modules APL.B/˝.A;d/ � is a retraction
of the morphism of APL.B/–modules

APL.B/DAPL.B/˝.A;d/ .A; d/!APL.B/˝.A;d/ �
n
.A;d/.M; d/:

By Theorem 4.2, the morphism of .A; d/–modules APL.j
np/ ı˛ extends to a quasi-

isomorphism of .A; d/–modules  W �n
.A;d/

.M; d/ ��! APL.�
n
B

E/. Consider the
following commutative diagram of APL.B/–modules:

APL.B/˝APL.B/APL.B/

APL.B/˝APL.B/
APL.j

np/

��

APL.B/˝.A;d/ .A; d/
APL.B/˝˛˛

��
APL.B/˝APL.B/APL.�

n
B

E/ APL.B/˝.A;d/ �
n
.A;d/

.M; d/
APL.B/˝˛ 

oo

Using [9, 6.10] one sees that APL.B/˝˛ is a quasi-isomorphism. The left hand ver-
tical morphism is precisely APL.j

np/. We have obtained the following commutative
diagram of APL.B/–modules:

APL.B/

APL.j
np/

�� ++VVVVVVVVVVVVVVVVVVVV APL.B/

APL.�
n
B

E/ APL.B/˝.A;d/ �
n
.A;d/

.M; d/�

APL.B/˝˛ 

oo

APL.B/˝.A;d/�

OO

This shows that Msecatp � n.

Note that we have not yet shown that Msecat is a homotopy invariant. This is contained
in the following proposition.

Proposition 5.5 Consider a commutative diagram

E
g //

p

��

E0

p0

��
B

f

// B0
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in which p and p0 are fibrations.

(a) If f is a homotopy equivalence then Msecatp0 �Msecatp .

(b) If f and g are homotopy equivalences then Msecatp0 DMsecatp .

(c) If the diagram is a pullback and all spaces are simply connected and of finite type
then Msecatp �Msecatp0 .

Proof (a) Suppose that Msecatp � n. Choose a factorization APL.j
np0/D  ı i

where i W APL.B
0/! .Q; d/ is a cofibration of APL.B

0/–modules and  W .Q; d/!
APL.�

n
B0

E0/ is a quasi-isomorphism of APL.B
0/–modules. Then APL.�

n
f

g/ı ıi D

APL.j
np/ ıAPL.f /. By Lemma 5.3, i admits a retraction of APL.B

0/–modules.
This shows that Msecatp0 � n.

(b) This is a formal consequence of (a). Indeed, by (a), Msecatp0 �Msecatp . But
if f and g are homotopy equivalences then the homotopy inverses can be used to
construct a commutative square

E0
' //

p0

��

E

p

��
B0

'
// B

showing Msecatp �Msecatp0 .

(c) Applying the functor APL to the given square we obtain the following commutative
diagram of commutative cochain algebras:

APL.B
0/

APL.f ///

APL.p
0/

��

APL.B/

APL.p/

��
APL.E

0/
APL.g/

// APL.E/

Let ˛W .A0; d/ ��!APL.B
0/ be a Sullivan model. Choose factorizations APL.f /ı˛D

 ı i and APL.p
0/ ı ˛ D � ı j such that i W .A0; d/ ! .A; d/ and j W .A0; d/ !

.M 0; d/ are inclusions of relative Sullivan algebras and  W .A; d/! APL.B/ and
�W .M 0; d/! APL.E

0/ are quasi-isomorphisms. Then, by [9, 15(c)], the induced
morphism of cochain algebras

.M; d/D .A; d/˝.A0;d/ .M
0; d/!APL.E/

is a quasi-isomorphism. Note that .M 0; d/ is a semifree extension of .A0; d/ and
.M; d/ is a semifree extension of .A; d/. Suppose that Msecatp0 � n. By the
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preceding theorem, the inclusion .A0; d/!�n
.A0;d/

.M 0; d/ admits a retraction � of
.A0; d/–modules. As remarked in Remarks 3.4(iii),

�
n
.A;d/.M; d/D .A; d/˝.A0;d/ �

n
.A0;d/.M

0; d/:

The morphism of .A; d/–modules

A˝A0 �W .A; d/˝.A0;d/ �
n
.A0;d/.M

0; d/! .A; d/˝.A0;d/ .A
0; d/D .A; d/

is a retraction of the inclusion .A; d/!�n
.A;d/

.M; d/. By the preceding theorem, this
implies that Msecatp � n.

The next proposition shows that the invariant Msecat is a generalization of the well-
known invariant Mcat of spaces. Let B be a simply connected space of finite type
with Sullivan model .ƒV; d/. By definition, McatB is the least integer n such that
for some (equivalently: any) Sullivan model .ƒV ˝ƒW; d/ ��! .ƒV =ƒ>nV; d/ of
the projection .ƒV; d/! .ƒV =ƒ>nV; d/, the inclusion .ƒV; d/! .ƒV ˝ƒW; d/

admits a retraction of .ƒV; d/–modules. If no such n exists, McatB D1.

Proposition 5.6 Let B be a simply connected pointed space of finite type. Consider
the evaluation fibration ev1W PB! B , ! 7! !.1/. Then Msecatev1 DMcatB .

Proof Let ˛W .ƒV; d/ ��! APL.B/ be a Sullivan model of B . Denote the pro-
jection .ƒV; d/ ! .ƒV =ƒ>nV; d/ by qn and choose a factorization qn D � ı i

where i W .ƒV; d/! .ƒV ˝ƒW; d/ is the inclusion of a relative Sullivan algebra and
�W .ƒV ˝ƒW; d/! .ƒV =ƒ>nV; d/ is a quasi-isomorphism. Choose a factorization
APL.j

nev1/ı˛D ıj where j W .ƒV; d/! .ƒV ˝ƒX; d/ is the inclusion of a rela-
tive Sullivan algebra and  W .ƒV ˝ƒX; d/!APL.�

n
B

PB/ is a quasi-isomorphism. It
follows from Félix and Halperin [6] that there exist morphisms of commutative cochain
algebras � W .ƒV˝ƒX; d/! .ƒV˝ƒW; d/ and �W .ƒV˝ƒW; d/! .ƒV˝ƒX; d/

such that � ı j D i and � ı i D j . This implies that McatB � n if and only
if j admits a retraction of .ƒV; d/–modules. Let .M; d/ be a semifree exten-
sion of .ƒV; d/ such that there exists a quasi-isomorphism of .ƒV; d/–modules
.M; d/ ��!APL.PB/ which extends APL.ev1/ ı˛ . By Theorem 4.2, the morphism
of .ƒV; d/–modules APL.j

nev1/ ı ˛ extends to a quasi-isomorphism of .ƒV; d/–
modules �n

.ƒV;d/
.M; d/ ��!APL.�

n
B

PB/. Use the lifting lemma [1, II.1.11] to con-
struct quasi-isomorphisms of .ƒV; d/–modules ˇW �n

.ƒV;d/
.M; d/ ��! .ƒV ˝ƒX; d/

and  W .ƒV ˝ ƒX; d/ ��! �n
.ƒV;d/

.M; d/ such that ˇ extends j and  ı j is
the inclusion of .ƒV; d/. We obtain that McatB � n if and only if the inclusion
.ƒV; d/!�n

.ƒV;d/
.M; d/ admits a retraction of .ƒV; d/–modules. By Theorem 5.4,

this is the case if and only if Msecatev1 � n.
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Recall that an upper bound for the sectional category of a surjective fibration is given by
the Lusternik–Schnirelmann category of the base space. The following is the analogous
result for Msecat and Mcat .

Proposition 5.7 Let B be a simply connected space of finite type. For any surjective
fibration pW E! B , Msecatp �McatB .

Proof Recall that for us simply connected spaces are non-empty. Fix any base point in
B and consider the evaluation fibration ev1W PB! B . Since p is surjective, E 6D∅.
Since PB is contractible, there exists a continuous map �W PB!E such that p ı�D

ev1 . By Proposition 5.5(a) and Proposition 5.6, Msecatp �Msecatev1 DMcatB .

Remark 5.8 K Hess [11] has shown that the invariant Mcat coincides for simply
connected spaces with rational Lusternik–Schnirelmann category. This result does not
generalize to sectional category. Indeed, D Stanley [17] has constructed a fibration p

with fiber S2 whose rational sectional category is 1. By Vandembroucq [18], any such
fibration satisfies Msecatp D 0.

6 Topological complexity

In [3] and [4], M Farber defined the topological complexity of a space X , TC.X /, to be
the sectional category of the evaluation fibration ev0;1W X

I!X�X; ! 7! .!.0/; !.1//.
This invariant has proved to be very useful in the study of the motion planning problem
in robotics. Note that Farber’s definition of TC differs by 1 from the one given here.
In this section we study the invariant

MTC.X /DMsecat.ev0;1W X
I
!X �X /:

In order to simplify the presentation we restrict our attention to simply connected spaces
of finite type having the homotopy type of CW complexes.

The evaluation fibration ev0;1W X
I!X �X is the mapping path fibration associated to

the diagonal map �W X !X �X . We may therefore identify the map ev�
0;1
W H�.X �

X /!H�.X I / with the cup product [W H�.X /˝H�.X /!H�.X /.

Proposition 6.1 We have nil ker[ �MTC.X / � TC.X / and McatX �MTC.X /
� 2McatX .

Proof The first inequalities follow from Theorem 5.2. By Proposition 5.7 and [9,
30.2], MTC.X / �Mcat.X �X /D 2McatX . For the remaining inequality consider
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the map f W X ! X �X , x 7! .�;x/ where � 2 X is any base point and form the
following pullback diagram:

PX //

ev1

��

X I

ev0;1

��
X

f

// X �X

By Proposition 5.6 and Proposition 5.5(c), McatX D Msecatev1 � Msecatev0;1 D

MTC.X /.

Consider a space X with Sullivan model .ƒV; d/. A Sullivan model of the product
space X�X is then given by .ƒ.V˚V 0/; d/D .ƒV; d/˝.ƒV 0; d/ where .ƒV 0; d/ is
second copy of .ƒV; d/. As is shown in [9, pages 206–207], a model of the evaluation
fibration (and the diagonal map) is given by the inclusion

.ƒ.V ˚V 0/; d/! .ƒ.V ˚V 0/˝ƒV ; d/

where

d.xv/D v0� v�

1X
iD1

.�d/i

i !
.v/:

Here, � is the derivation of degree �1 defined by �.v/D �.v0/Dxv and �.xv/D0. Using
this explicit semifree extension of .ƒ.V ˚V 0/; d/ and the formula for the differential
of the iterated join given in Remarks 3.4(ii), one can calculate the invariant MTC.X /
from .ƒV; d/. We remark that d0xv D v

0� v and that d0x D 0 for x 2ƒ>1V . Note
also that if .ƒV; d/ is the minimal Sullivan model of X then .ƒ.V ˚V 0/˝ƒV ; d/

is a minimal semifree .ƒ.V ˚V 0/; d/–module.

The following proposition provides an upper bound for MTC .

Proposition 6.2 Let .A; d/ be a commutative cochain algebra model of X with
multiplication �. Then MTC.X /� nil ker�.

Proof Suppose that nil ker�� n. We show that the inclusion

i W .ƒ.V ˚V 0/; d/!�n
.ƒ.V˚V 0/;d/.ƒ.V ˚V 0/˝ƒV ; d/

admits a retraction of .ƒ.V ˚ V 0/; d/–modules. Choose a quasi-isomorphism of
commutative cochain algebras ˛W .ƒV; d/ ��! .A; d/. Consider the tensor product
algebra .A; d/˝ .A; d/ D .A˝ A; d/ and the .A˝ A; d/–semifree extension of
.A˝A; d/ defined by

.M; d/D .A˝A; d/˝.ƒ.V˚V 0/;d/ .ƒ.V ˚V 0/˝ƒV ; d/D .A˝A˝ƒV ; d/:
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We have

�
n
.A˝A;d/.M; d/D .A˝A˚A˝A˝ s�n.ƒCV /˝nC1; d/:

Consider an element s�nx0 ˝ � � � ˝ xn 2 s�n.ƒCV /˝nC1 . If one of the xi lies in
ƒ>1V then d.s�nx0˝� � �˝xn/ has no term in A˝A. Since nil ker�� n, this also
holds if all xi 2 V . We can thus define an .A˝A; d/–module retraction r of the
inclusion j W .A˝A; d/! �n

.A˝A;d/
.M; d/ by sending A˝A˝ s�n.ƒCV /˝nC1

to 0. By Remarks 3.4(iii), the map j is obtained by applying the functor .A ˝
A; d/˝.ƒ.V˚V 0/;d/� to the inclusion i . Consider the following commutative diagram
of .ƒ.V ˚V 0/; d/–modules:

.ƒ.V ˚V 0/; d/
��

i
��

.ƒ.V ˚V 0/; d/

�˛˝˛

��
�n
.ƒ.V˚V 0/;d/

.ƒ.V ˚V 0/˝ƒV ; d/
rı..˛˝˛/˝id id/

// .A˝A; d/

The lifting lemma [1, II.1.11] yields the required retraction of i .

Note that the number nil ker� is in general not the same for different commutative
cochain algebra models of X . Given a commutative graded algebra A with multiplica-
tion �, the number nil ker� can be determined using the following lemma:

Lemma 6.3 Let ƒW be a commutative graded algebra and I �ƒW be an ideal such
that ADƒW =I . Let ƒW 0 be a second copy of ƒW and J �ƒ.W ˚W 0/DƒW ˝

ƒW 0 be the ideal I ˝ƒW 0CƒW ˝ I 0 where I 0 is the ideal of ƒW 0 corresponding
to I . Let finally B be a basis of the graded vector space W . Then nil ker�� n if and
only if, for all w0; : : : ; wn 2 B , .w0

0
�w0/ � � � .w

0
n�wn/� 0 mod J .

Proof Denote the multiplication ƒ.W ˚W 0/DƒW ˝ƒW 0!ƒW by m. We have
A˝A D ƒ.W ˚W 0/=J and ker� D ker m=.J \ ker m/. It suffices to show that
ker m is the ideal of ƒ.W ˚W 0/ generated by the elements w0�w , w 2 B . Denote
this ideal by K . Obviously, K � ker m. Note also that K\ƒW D 0. In order to show
the equality K D ker m we show that ƒW ˚K Dƒ.W ˚W 0/. For this it is enough
to show that for each n � 1, ƒW ˝ƒnW 0 � ƒW ˚K . We proceed by induction.
Consider w 2 B and � 2ƒW . We have �w0 D �wC �.w0�w/ 2ƒW ˚K . Suppose
the assertion holds for some n � 1. Consider � 2 ƒW ˝ƒnW 0 and w 2 B . By the
inductive hypothesis, � 2ƒW ˚K . Write � D � C k with � 2ƒW and k 2K . By
the inductive hypothesis, �w0 2ƒW ˚K . Since K is an ideal, kw0 2K . It follows
that �w0 2ƒW ˚K . This closes the induction and the result follows.
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Recall that a space X is called formal if H�.X / is a commutative cochain algebra
model of X . Proposition 6.2 immediately implies the following:

Proposition 6.4 If X is formal then MTC.X /D nil ker[.

Example 6.5 The simplest example of a non-formal space is the space

X D S3
a _S3

b [ e8
[ e8

where the 8–cells are attached by means of the iterated Whitehead products
ŒS3

a ; ŒS
3
a ;S

3
b
�� and ŒS3

b
; ŒS3

a ;S
3
b
��. We show that this space satisfies MTC.X / D 3

and nil ker[D 2. For degree reasons, the space X has the same cohomology algebra
as the wedge of spheres S3_S3_S8_S8 . Therefore X satisfies nil ker[D2. Indeed,
since TC � 2cat , the topological complexity of a wedge of spheres is � 2. On the
other hand, any space with at least two cohomology generators satisfies nil ker[� 2:
if � and � are two cohomology generators then .�˝1�1˝�/.�˝1�1˝�/ is a non-
trivial product in ker[. The minimal Sullivan model of X is the algebra .ƒ.V /; d/
where the graded Q–vector space V is generated by cocycles a and b of degree 3,
an element u of degree 5 with du D ab , and elements of degree > 8. Consider
the d –stable ideal I D .ƒV /�9 and form the quotient algebra .A; d/D .ƒV =I; d/.
Since .I; d/ is acyclic, the projection .ƒV; d/! .ƒV =I; d/ is a quasi-isomorphism.
Consider the ideal J D I ˝ƒV 0CƒV ˝ I 0 �ƒ.V ˚V 0/ as in Lemma 6.3. We have
.a0� a/.b0� b/.u0�u/ 6� 0 mod J . Since a; b;u are of odd degree, any longer non-
zero product of the form .v0

0
� v0/ � � � .v

0
n� vn/ must contain at least one factor v0i � vi

with jvi j � 9. For n� 3 any such product is therefore an element of J . By Proposition
6.2 and Lemma 6.3, this implies that MTC.X / � 3. We show that MTC.X / > 2.
The differential of the generators xa, xb , and xu of the model .ƒ.V ˚V 0/˝ƒV ; d/ of
X I is given by dxaD a0 � a, dxb D b0 � b , and dxuD u0 � uC ˛˝xaCˇ˝ xb where
˛; ˇ 2ƒ.V ˚V 0/ are some elements of degree 3. A straightforward calculation shows
that ˛ D�1

2
.bC b0/ and ˇ D 1

2
.aC a0/. This information is, however, not needed for

the calculations. It suffices to show that the inclusion

.ƒ.V ˚V 0/; d/!�2
.ƒ.V˚V 0/;d/.ƒ.V ˚V 0/˝ƒV ; d/

D .ƒ.V ˚V 0/˚ƒ.V ˚V 0/˝ s�2ƒCV ˝ƒCV ˝ƒCV ; d/

is not injective in cohomology. The element z D .a0� a/.b0� b/.u0�u/ is a cocycle
of degree 11 in ƒ.V ˚V 0/ which is not a coboundary. In the 2–fold join, however, we
have

d.s�2.xa˝xb˝xuCxb˝xu˝xaCxu˝xa˝xb�xa˝xu˝xb�xb˝xa˝xu�xu˝xb˝xa//D�6z

so that Œz�D 0 2H 11.�2
.ƒ.V˚V 0/;d/

.ƒ.V ˚V 0/˝ƒV ; d//.
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Our last result is the fact that the difference MTC.X /� nil ker[ can be arbitrarily
large:

Proposition 6.6 (i) For any n 2 N there exists a finite CW–complex X such that
MTC.X /� nil ker[ � n.

(ii) There exists a space X such that MTC.X /D1 and nil ker[<1.

Proof (i) Let Z be a simply connected finite CW–complex having the same co-
homology algebra as a wedge of spheres Y and satisfying McatZ D 3. Such a
space has for instance been constructed by Kahl and Vandembroucq [14]. Let X

be the n–fold product of the space Z , X D Zn . Then X is a finite CW–complex
which has the same cohomology algebra as Y n and satisfies nil ker[ � TC.Y n/ �

2cat.Y n/ � 2ncatY D 2n. On the other hand, by Proposition 6.1 and [9, 30.2],
MTC.X /�Mcat.X /D nMcat.Z/D 3n.

(ii) It suffices to take a space X such that McatX D1 and nilHC.X / <1. Such a
space has been constructed by Félix, Halperin and Thomas [7].
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