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Sweepouts of amalgamated 3–manifolds

DAVID BACHMAN

SAUL SCHLEIMER

ERIC SEDGWICK

We show that if two 3–manifolds with toroidal boundary are glued via a “sufficiently
complicated" map then every Heegaard splitting of the resulting 3–manifold is weakly
reducible. Additionally, suppose X [F Y is a manifold obtained by gluing X and Y ,
two connected small manifolds with incompressible boundary, along a closed surface
F . Then the following inequality on genera is obtained:

g.X [F Y /� 1
2
.g.X /Cg.Y /� 2g.F // :

Both results follow from a new technique to simplify the intersection between an
incompressible surface and a strongly irreducible Heegaard splitting.

57N10, 57M99; 57M27

1 Introduction

It is a consequence of the Haken Lemma [4] and the Uniqueness of Prime Decom-
positions, Kneser [8], that Heegaard genus is well behaved under connected sum. In
particular, 3–manifold genus is additive:

g.X #Y /D g.X /Cg.Y /

Here we discuss the Heegaard splittings of a manifold obtained by gluing together
manifolds along boundary components of higher genus.

To this end let X and Y be 3–manifolds with incompressible boundary homeomorphic
to a connected surface F . It is not difficult to show that if HX and HY are Heegaard
surfaces in X and Y then we can amalgamate these splittings to obtain a Heegaard
surface in X [F Y with genus equal to g.HX /C g.HY /� g.F / (see, for example,
Schultens [14]). Letting g.X /, g.Y /, and g.X [F Y / denote the minimal genus
among all Heegaard surfaces in the respective 3–manifolds, we find:

(1) g.X [F Y /� g.X /Cg.Y /�g.F /
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Bounds in the other direction are harder to obtain. When F Š S2 it follows from
the Haken Lemma [4] that the above inequality may be replaced by an equality. In
Section 4 we examine the case where F is a torus. We assume here that the map which
identifies @X to @Y is “sufficiently complicated,” in a sense to be made precise in
Section 4.

Theorem 4.1 Suppose that X and Y are knot manifolds and 'W @X ! @Y is a
sufficiently complicated homeomorphism. Then the manifold M.'/DX [' Y has no
strongly irreducible Heegaard splittings.

In particular it follows from this result that every Heegaard splitting of X [F Y is an
amalgamation of splittings of X and Y . In this situation Inequality (1) becomes an
equality.

In the case where the genus of F is at least two there is the following result of
Lackenby [9]:

Theorem Let X and Y be simple 3–manifolds, and let hW @X !F and h0W F ! @Y

be homeomorphisms with some connected surface F of genus at least two. Let
 W F ! F be a psuedo-Anosov homeomorphism. Then, provided jnj is sufficiently
large,

g.X [h0 nh Y /D g.X /Cg.Y /�g.F /:

Furthermore, any minimal genus Heegaard splitting for X [h0 nh Y is obtained from
splittings of X and Y by amalgamation, and hence is weakly reducible.

If  fails to be “sufficiently complicated” then there is no hope of an exact equality, as
in the previous theorem. Previous known lower bounds were obtained by Johannson
[7] when X and Y are simple

g.X [F Y /�
1

5
.g.X /Cg.Y /� 2g.F //:

Schultens has generalized this result to allow essential annuli [13].

By assuming the component manifolds X and Y are small we get a new bound. The
following statement is one case of Theorem 5.1:

Theorem 5.1 0 Suppose X and Y are compact, orientable, connected, small 3–manif-
olds with incompressible boundary homeomorphic to a surface F . Then

g.X [F Y /�
1

2
.g.X /Cg.Y /� 2g.F //:
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Both of our results follow from showing that a strongly irreducible Heegaard surface
H can be isotoped to meet the gluing surface F in a particularly nice fashion. Often
in these types of arguments one simplifies the intersection by making every loop of
H \F essential in both surfaces. In this paper, rather than focusing on the intersection
set H \F , we focus on the complimentary pieces HXN.F /. Our result is that H

and F may always be arranged so that almost every component H 0 of HXN.F / is
incompressible. On such a component every loop which is essential in H 0 is essential
in MXN.F /. There is at most one component H 00 which is compressible. In this case
we find that H 00 is strongly irreducible, in the sense that every essential loop which
bounds a disk on one side meets every essential loop bounding a disk on the other. See
Lemma 3.3.

2 Definitions

In this section we give some of the standard definitions that will be used throughout
paper.

2.1 Essential loops, arcs, and surfaces

A loop  embedded in the interior of a compact, orientable surface F is called essential
if it does not bound a disk in F . If F is embedded in a 3–manifold, M , a compressing
disk for F is a disk, D �M , such that F \D D @D , and such that @D is essential
on F . If we identify a thickening of D in MXN.F / with D � I then to compress F

along D is to remove .@D/� I from F and replace it with D � @I .

A properly embedded arc ˛ on F is essential if there is no subarc ˇ of @F such
that ˛ [ ˇ is the boundary of a subdisk of F . If F is properly embedded in a 3–
manifold, M , a boundary-compressing disk is a disk, D , such that @DD ˛[ˇ , where
F \D D ˛ is an essential arc on F and D \ @M D ˇ . If we identify a thickening
of D in MXN.F / with D � I then to boundary-compress F along D is to remove
˛� I from F and replace it with D � @I .

A properly embedded surface is incompressible if there are no compressing disks
for it. A properly embedded, separating surface is strongly irreducible if there are
compressing disks for it on both sides, and each compressing disk on one side meets
each compressing disk on the other side.

A compact, orientable 3–manifold is said to be irreducible if every embedded 2–
sphere bounds a 3–ball. A 3–manifold is said to be small if it is irreducible and every
incompressible surface is parallel to a boundary component.
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2.2 Heegaard and generalized Heegaard Splittings.

A compression body is a 3–manifold C constructed in one of two different ways. The
first way is to begin with a collection of zero–handles and attach one–handles to their
boundaries, resulting in a manifold that may or may not be connected. In this case
we say the spine of C is a 1–complex † in C such that C is homeomorphic to a
thickening of †. We set @�C D∅ and @CC D @C .

The second way to construct a compression body is to begin with a closed (possibly
disconnected) orientable surface F with no sphere components, and let C be the
manifold obtained by attaching one–handles to the surface F � f1g � F � I . In this
case we say @�C D F � f0g and @CC D @CX@�C . The spine † is then the union
of @�C and a collection of arcs which are properly embedded in C , such that C is a
thickening of †.

A surface, H , in a 3–manifold, M , is a Heegaard surface for M if H separates M

into two compression bodies, V and W , such that H D @CV D @CW .

A generalized Heegaard splitting of a 3–manifold M , Scharlemann–Thompson [12],
is a sequence fHig

2n
iD0

of pairwise disjoint, closed surfaces in M such that

� @M DH0[H2n (if @M D∅ then H0 DH2n D∅) and

� for each odd i , the surface Hi is a Heegaard splitting of the submanifold
cobounded by Hi�1 and HiC1 .

We will call the set of surfaces with even index thin levels and the set with odd index
thick levels.

Generalized Heegaard splittings are associated to handle structures in the following way.
Given a generalized Heegaard splitting fHig

n
iD0

there is a sequence of submanifolds
fMig of M as follows:

� M0 is a union of zero–handles and 1–handles.

� For odd i between 1 and n, Mi is obtained from Mi�1 by attaching one–
handles.

� For even i between 2 and n � 1, Mi is obtained from Mi�1 by attaching
two–handles.

� Mn DM is obtained from Mn�1 by attaching two–handles and three–handles.

Conversely, given a handle structure for M there is an associated generalized Heegaard
splitting as above.
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Suppose HX and HY are Heegaard surfaces in 3–manifolds X and Y . Suppose
further that the boundaries of both X and Y are homeomorphic to a surface F .
Then f∅;HX ;F;HY ;∅g is a generalized Heegaard splitting of X [F Y . We may
now choose a handle structure associated to this generalized Heegaard splitting, and
re-arrange it so that handles are added in order of increasing index. The generalized
Heegaard splitting associated to this new handle structure will be of the form f∅;H;∅g,
where H is a Heegaard surface in X [F Y . In this case the Heegaard surface H is
the amalgamation of HX and HY , as defined by Schultens [14].

2.3 Normal and almost normal surfaces.

A normal disk in a tetrahedron is a triangle or a quadrilateral, as in Figure 1. Let X

be a 3–manifold equipped with a psuedo-triangulation. That is, X is expressed as a
collection of tetrahedra, together with face pairings.

Figure 1: Normal disks

A properly embedded surface in X is normal if it intersects every tetrahedron in a
collection of triangles and quadrilaterals. Normal surfaces were first introduced by
Kneser [8], and later used to solve several important problems by Haken [3].

A properly embedded surface in X is almost normal if it is normal everywhere, with
the exception of exactly one piece in one tetrahedron. The exceptional piece can either
be an octagon, two normal disks connected by an unknotted tube, or two normal disks
connected by a band along @X (see Figure 2). In the closed case, almost normal
surfaces were introduced by Rubinstein [10]. They were later generalized to surfaces
with non-empty boundary by the first author [1].

3 Labelling sweepouts

In this section we prove the technical lemmas on which Sections 4 and 5 rely.
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Figure 2: Exceptional disks in an almost normal surface

Lemma 3.1 (Scharlemann [11]) Let H be a strongly irreducible Heegaard surface,
and  be an essential curve on H . Suppose  bounds a disk D �M such that D is
transverse to H . Then  bounds a compressing disk for H .

Definition 3.2 Two surfaces H and F embedded in a 3–manifold are almost trans-
verse if they have exactly one non-transverse intersection point, and it is a saddle
point.

Lemma 3.3 Let M be a compact, irreducible, orientable 3–manifold with @M incom-
pressible, if non-empty. Suppose M D V [H W , where H is a strongly irreducible
Heegaard surface. Suppose further that M contains an incompressible, orientable,
closed, non-boundary parallel surface F . Then either

� H may be isotoped to be transverse to F , with every component of HXN.F /

incompressible in the respective submanifold of MXN.F /,

� H may be isotoped to be transverse to F , with every component of HXN.F /

incompressible in the respective submanifold of MXN.F / except for exactly
one strongly irreducible component, or

� H may be isotoped to be almost transverse to F , with every component of
HXN.F / incompressible in the respective submanifold of MXN.F /.

Remarks 3.4

(1) After applying the lemma every loop of H\F must be essential on both surfaces.
Otherwise there is such a loop that is inessential on F and essential on H . This
loop, after a small isotopy, bounds a compressing disk D for a component H 0

of HXN.F /. By the lemma, H 0 must then be strongly irreducible. But D is
disjoint from every compressing disk for H 0 on the opposite side, a contradiction.
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(2) In the case where F Š T2 it will follow from the proof that H may actually be
isotoped to be transverse to F . Here, only conclusions one or two of the lemma
occur.

Proof of Lemma 3.3 Choose spines †V of V and †W of W .

Claim 3.5 The surface F meets both †V and †W .

Proof Suppose F \†V D∅. Then F lies in a compression body homeomorphic to
W . As the only incompressible surfaces in W are components of @�W , we conclude
that F is boundary parallel in M . This violates the hypotheses of Lemma 3.3.

Fix a sweepout of M : a continuous map ˆW H � I !M such that

� H.0/D†V ,

� H.1/D†W , and

� the restriction of ˆ to H � .0; 1/ is a smooth homeomorphism onto the comple-
ment of †V [†W .

Here H.t/Dˆ.H � t/. The map ˆ is a sweepout of M . (Note that this is a slightly
different definition than the one introduced by Rubinstein). Let V .t/ and W .t/ denote
the compression bodies bounded by H.t/ (where †V � V .t/).

The sweepout ˆ induces a height function hW F ! I as follows. Define h.x/D t if
x 2ˆ.H; t/. Perturb F so that h is Morse on FX.†V [†W /. Let ftigniD0

denote the
set of critical values of h. It follows from Claim 3.5 that t0 D 0 and tn D 1. We now
label each subinterval .ti ; tiC1/ with the letters V and/or W by the following scheme.
If, for some t 2 .ti ; tiC1/, there is a compressing disk for H.t/ in V .t/ with boundary
disjoint from F then label this subinterval with the letter V. See Figure 3. Similarly, if
there is a compressing disk in W .t/ with boundary disjoint from F then label with the
letter W .

Claim 3.6 If the subinterval .ti ; tiC1/ is unlabelled then the first conclusion of Lemma
3.3 follows.

Proof Suppose t 2 .ti ; tiC1/. First, we claim that all curves of H.t/\F are essential
on both or inessential on both. If not then, as F is incompressible, there is a loop
ı�H.t/\F that is inessential on F but essential on H.t/. The loop ı bounds a disk
D � F . Thus the hypotheses of Lemma 3.1 are satisfied. It follows that ı bounds a
compressing disk in V .t/ or in W .t/. Finally, ı may be isotoped inside of H.t/ by a
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H.t/

V .t/ W .t/

F

D

Figure 3: If D is a compressing disk for H.t/ in V .t/ with boundary disjoint
from F then the interval containing t would get the label V .

small pushout move to be disjoint from F . This violates the assumption that .ti ; tiC1/

is unlabelled. We deduce that all curves of H.t/\F are essential or inessential on
both.

As M is irreducible we may isotope H.t/ to remove those loops of H.t/\F which
are inessential on both surfaces, without affecting those loops of H.t/ \ F which
were essential on both. We now claim that after such an isotopy any essential loop of
H.t/XN.F / is essential on H.t/. We prove the contrapositive: Suppose E �H.t/

is an embedded disk with @E \F D∅. All curves of E \F are inessential on both
surfaces. Isotope E rel boundary to make E\F D∅. We conclude E �MXN.F /,
and hence @E is inessential on H.t/XN.F /.

Finally, we claim that the components of H.t/XN.F / are incompressible in the
respective submanifolds of MXN.F /. Suppose H 0 is a compressible component.
Then there is an essential loop  � H 0 which bounds a compressing disk for H 0 .
By the preceding remarks  is essential on H.t/ as well. By Lemma 3.1 the loop
 bounds a compressing disk for H.t/, which must be in V .t/ or W .t/. This now
contradicts the fact that .ti ; tiC1/ is unlabelled.

Claim 3.7 If the subinterval .ti ; tiC1/ has both of the labels V and W then the second
conclusion of Lemma 3.3 follows.

Proof Suppose t 2 .ti ; tiC1/. We begin as in the proof of Claim 3.6 by asserting that
all curves of H.t/\F are either inessential or essential on both. If not, then as above
there is a loop ı �H.t/\F which bounds a compressing disk for H.t/. Suppose ı
bounds a compressing disk in V .t/. (The other case is similar.) Since .ti ; tiC1/ has
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the label W there is a loop  on some component of H.t/XN.F / which bounds a
disk in W .t/. But then ı\  D∅ contradicts the strong irreducibility of H .

As in the proof of Claim 3.6 it now follows that we may isotope H.t/, preserving
the set of loops of H.t/\F which are essential on both, so that any loop which is
essential on H.t/XN.F / is also essential on H.t/.

Let H 0 be a component of H.t/XN.F / which contains a loop  bounding a com-
pressing disk for H.t/ in W .t/. By strong irreducibility of H.t/ any essential loop
of H.t/XN.F / which bounds a compressing disk in V .t/ must meet  , and hence
must also lie in H 0 . Furthermore, since the subinterval .ti ; tiC1/ has the label V, there
is at least one such loop � . By identical reasoning we conclude that any essential
loop of H.t/XN.F / which bounds a compressing disk in W .t/ must meet � , and
hence must also be on H 0 . We conclude that there are no loops on any other com-
ponent of H.t/XN.F / which bound compressing disks. Hence all components of
.H.t/XN.F //XH 0 are incompressible in the respective submanifolds of MXN.F /.
Furthermore, the strong irreducibility of H 0 follows from the existence of the V and
W labels and strong irreducibility of H.t/.

Claim 3.8 If the labelling of .ti�1; ti/ is different from that of .ti ; tiC1/ then the
critical value ti corresponds to a saddle tangency between H.ti/ and F .

Claim 3.9 The subinterval .0; t1/ is labelled V and the subinterval .tn�1; 1/ is labelled
W .

Proof For sufficiently small � the surface H.�/ looks like the frontier of a neigh-
borhood of †V . By Claim 3.5 the surface F meets †V . Hence, F contains small
compressions for H.�/ in V .�/. We can push these compressions off F , giving
compressions with boundary on a component of H.�/XN.F / in V .�/. Hence, the
label of .0; t1/ is V. A symmetric argument completes the proof of the claim.

Following Claims 3.6 and 3.7 we now assume that every subinterval has a label.
Furthermore, we assume that every subinterval has exactly one label: either V or W ,
but not both. It then follows from Claim 3.9 that there is some first critical value
ti where the labelling changes from V to W . By Claim 3.8 this critical value must
correspond to a saddle tangency.

Claim 3.10 There is a surface H0 , isotopic to H.ti/, such that all components of
H0XN.F / are incompressible.
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Proof First, we claim that every component of H.ti/\F which is a loop is either
essential or inessential on both surfaces. If not, then as in the proof of Claim 3.6 there
is a loop component ı of H.ti/ \ F which bounds a compressing disk for H.ti/.
Assume that the compressing disk bounded by ı lies in W .ti/, as the other case is
similar. Pushing ı off of F along H.ti/ then yields a loop on H.ti/XN.F / bounding
a compressing disk in W .ti/. This implies that there is a loop on H.ti � �/XN.F /

that bounds a compressing disk for H.ti � �/ in W .ti � �/. This violates the fact that
the subinterval .ti�1; ti/ does not have the label W .

Now let �u denote the union of the inessential loops of H.ti/\F and �e the union
of the essential loops. The intersection set H.ti/\F thus consists of �u , �e , and a
figure eight curve C . Let NH .C / denote a closed neighborhood of C on H.ti/. If
some component ˛ of @NH .C / bounds a disk in H.ti/ that contains C then we say
C was inessential.

Let � W H � I !H denote projection onto the first factor. Let �H D � ıˆ
�1 . Then,

for each t 2 .0; 1/, the function �H jH.t/ is a map from H.t/ to H .

The sets �H .�u/ and �H .�e/ are isotopic to subsets of �H .H.ti � �/ \ F / and
�H .H.tiC �/\F /, for sufficiently small � . Such an isotopy induces an identification
of �u and �e with subsets of H.ti � �/\ F and H.ti C �/\ F . Furthermore the
loop ˛ (if it exists) can be identified with loops on H.ti � �/ and H.tiC �/ which are
disjoint from F .

Let H0 , H� and HC denote the surfaces obtained by isotoping H.ti/, H.ti � �/

and H.ti C �/, preserving �e , but removing �u . In each case these isotopies can be
achieved via a series of identical moves on innermost disks. Note that if the figure
eight C is inessential and surrounded by some loop of �u then it will disappear in the
course of these isotopies.

Now suppose C was inessential but did not disappear (and is therefore not surrounded
by some loop of �u ). By definition ˛ bounds a disk D on H0 (which can be identified
with disks on H� and HC ). As F is incompressible any intersection of D with F

can be removed by a further isotopy of H0 , H� and HC . Henceforth, we will assume
that if C is inessential then ˛ bounds disks in H0 , H� and HC which are disjoint
from F .

Let V0;W0;V�;W�;VC , and WC be the corresponding compression bodies bounded
by H0 , H� , and HC . By assumption the interval .ti�1; ti/ does not have the label W .
It thus follows that no essential loop of H� , disjoint from F , bounds a compressing
disk in W� . This is because only inessential loops are effected in the passage from
H.ti � �/ to H� . Similarly we may conclude that no essential loop of HC , disjoint
from F , bounds a compressing disk in VC .
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Assume, to obtain a contradiction, that E0 is a compressing disk for a component H 0

of H0XN.F /. Since every loop of H0\F is essential on H0 , and C was removed
if it was inessential, it follows that @E0 is essential on H0 . Furthermore, as only the
inessential intersection curves were effected in the passage from H.ti/ to H0 it follows
that @E0 is an essential loop on H.ti/, and is disjoint from F . It follows from Lemma
3.1 that there is a compressing disk E for H.ti/ with @E D @E0 . Hence @E is also
disjoint from F .

The loop @E can be identified with essential loops of both H.ti � �/XN.F / and
H.ti C �/XN.F / which bound similar compressing disks. We conclude the disk E

may be identified with a compressing disk for both H� and HC with boundary disjoint
from F . If E �W .ti/ then this violates the fact that there is no compressing disk for
H� in W� with boundary disjoint from F . On the other hand, if E � V .ti/, then
we contradict the fact that there is no compressing disk for HC in VC with boundary
disjoint from F .

We conclude that the components of H0XN.F / are incompressible in the respective
submanifolds of MXN.F /, as asserted by the third conclusion of the lemma.

The third conclusion of Lemma 3.3 follows. This completes the proof of Lemma 3.3.

We now use the above result to establish the following lemma.

Lemma 3.11 Let M be a compact, irreducible, orientable 3–manifold with @M

incompressible, if non-empty. Suppose M DX [F Y , where F is essential, connected,
and closed. Suppose M D V [H W , where H is a Heegaard surface. Then either H

is an amalgamation of splittings of X and Y or there are properly embedded surfaces
HX � X and HY � Y with boundaries on F such that at least one of the following
holds:

(1) The surfaces HX and HY are incompressible, not boundary parallel, @HX D

@HY and �.HX /C�.HY /� �.H /.

(2) After possibly exchanging X and Y the surface HX is incompressible, not
boundary parallel, the surface HY is strongly irreducible, @HX D @HY and
�.HX /C�.HY /� �.H /.

(3) The surfaces HX and HY are incompressible, not boundary parallel, @HX \

@HY D∅, and �.HX /C�.HY /� 1� �.H /.

Remark 3.12 If H is assumed to be strongly irreducible then we will show that each
of the above inequalities can be replaced by equalities.
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Proof By Scharlemann–Thompson [12] we may untelescope the Heegaard splitting
H . That is, there is a generalized Heegaard splitting fHig

2n
iD0

of M with thick and
thin levels obtained from H by some number of compressions. Furthermore, we can
find such a generalized Heegaard splitting such that each thick level Hi is strongly
irreducible in the submanifold of M cobounded by Hi�1 and HiC1 . It is shown in
[12] that in such a generalized Heegaard splitting each thin level is incompressible in
M .

Isotope F to meet the set of thin levels of fHig in a minimal number of curves. Suppose
first that for some i , the surface F is parallel to a component of the thin level H2i .
Then the components of fHig which meet X form an untelescoped Heegaard splitting
of X , and the components which meet Y form an untelescoped Heegaard splitting of
Y . Telescoping (the operation which is the inverse of untelescoping) now produces
Heegaard splittings of X and Y with amalgamation H . Hence, the first conclusion of
Lemma 3.11 follows.

Now suppose F intersects the thin level H2i . Then F divides H2i into subsurfaces
HX � X and HY � Y . We claim that HX is incompressible in X and HY is
incompressible in Y . If not, then there is some compressing disk D for HX (say)
in X . As H2i is incompressible in M , @D bounds a disk E in H2i . Since @D is
essential in HX but inessential in H2i the surface F must intersect the disk E �H2i .
As M is irreducible we can now do a sequence of isotopies to remove all curves of
E \F , reducing the number of times F meets the set of thin levels.

Since F meets all thin levels minimally it also follows that neither HX nor HY are
boundary parallel. Finally, since H2i DHX [HY , and H2i is obtained from H be
some number of compressions, we have �.HX /C�.HY /� �.H /. Hence, Case (1)
of the conclusion of Lemma 3.11 follows.

We are now reduced to the case where F misses all thin levels, and is parallel to none.
Hence, F is completely contained in a submanifold with incompressible boundary
which has a strongly irreducible Heegaard splitting, obtained from H by some number
of compressions. It suffices, then, to prove Lemma 3.11 in the case where H is strongly
irreducible.

Use Lemma 3.3 to isotope H so that it is transverse or almost transverse to F , and so
that the conclusion of Lemma 3.3 follows. If H is transverse to F then let HX DH\X

and HY DH \Y , and Case (1) or (2) of the lemma at hand follows.

The remaining case is when H meets F almost transversally. Let p denote the saddle
point of H \ F . Isotope H by pushing the point p slightly into Y , to obtain the
surface H 0 . Hence, H 0 is transverse to F . Furthermore, any compressing disk for
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HX DH 0\X is a compressing disk for H \X , so there must be none by Lemma 3.3.
We conclude HX is a properly embedded, incompressible surface in X . Similarly, by
pushing p slightly into X we may obtain from H a properly embedded, incompressible
surface HY � Y .

H

F
X

Y

p
HX

HY

Figure 4: H differs from HX [HY by a pair of pants.

As H and F are orientable, it follows that HX \ F may be made disjoint from
HY \F . Furthermore, the only essential difference between HX [HY and H is a
pair of pants, having Euler characteristic negative one (see Figure 4). Hence, Case (3)
of the conclusion of Lemma 3.11 now follows.

4 Manifolds with no strongly irreducible Heegaard splittings

A knot manifold is a compact, orientable, irreducible three–manifold with a single
boundary component, which is incompressible and homeomorphic to a torus. The goal
of this section is to prove the following theorem:

Theorem 4.1 Suppose that X and Y are knot manifolds and 'W @X ! @Y is a
sufficiently complicated homeomorphism. Then the manifold M.'/DX [' Y has no
strongly irreducible Heegaard splittings.
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Note the similarity of Theorem 4.1 to Cooper and Scharlemann’s result [2]. That paper
proves that if a 3–manifold is constructed by identifying the boundary components
of T 2 � I via a “sufficiently complicated” map then there are no strongly irreducible
Heegaard splitting of the resulting 3–manifold.

To make the statement of Theorem 4.1 precise we must give a reasonable definition of
the term sufficiently complicated. To this end fix, once and for all, psuedo-triangulations
of X and Y with one vertex. (A psuedo-triangulation is a decomposition into simplices
where any two such simplices intersect in a collection of lower dimensional simplices.)
Let �.X / be the set of slopes in @X which are the boundary of some normal or almost
normal surface in X . Note that �.X / is finite, by a result of Jaco and Sedgwick [6]
(see also Theorem 9.7 of Bachman [1] for a discussion of the almost normal case).
Define �.Y / similarly.

Recall now the definition of the Farey graph, F.X /. The vertices of F.X / are all
slopes in @X . Two slopes are connected by an edge if they intersect once. The distance
between two slopes is then defined to be the minimal number of edges required in a
path connecting them. The distance between two sets of slopes is the minimal distance
between their elements.

Definition 4.2 A map 'W @X ! @Y is sufficiently complicated if the distance between
�.X / to '�1.�.Y // inside of F.X / is at least two.

Remark 4.3 Note that, as �.X / and �.Y / are finite, “most” elements of MCG.T2/

ŠSL.2;Z/ are sufficiently complicated, in the above sense. In particular any suffi-
ciently large power of an Anosov map is sufficiently complicated. The same holds for
all but a finite number of Dehn twists.

Before giving the proof of Theorem 4.1 we must discuss boundary compressions.
Suppose G �N is a properly embedded, two–sided surface in a compact, orientable,
irreducible three–manifold N . We suppose further that @N is incompressible in N .
Suppose D �N is a boundary compression for G .

Definition 4.4 The boundary compression D is honest if D \ @N is essential as a
properly embedded arc in @NX@G . If D is not honest it is dishonest.

Definition 4.5 Let N be a knot manifold. We now define the banding, bD , of a
boundary compression D for G . First assume D is honest. Then D \ @N meets
distinct boundary components of @G , as G is orientable. These components of @G
cobound an annulus A� @N such that D\@N �A. Let D0 denote the disk obtained
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from A by removing a neighborhood of D\ @N and attaching two parallel copies of
D . Isotope D0 to be disjoint from @N while maintaining @D0 �G . The resulting disk
is the desired banding bD of D .

Now suppose D is dishonest. Then the arc D\ @N cobounds, with a subarc of @G , a
subdisk D0 of @N . The disk bD is obtained by pushing D00DD[D0 into the interior
of N , while maintaining @D00 �G .

Note that when C is a compressing disk and D is a boundary-compressing disk (honest
or dishonest) if C \D D∅ then C \ bD D∅.

Lemma 4.6 If D is a boundary compression for G and @N D T2 then G is either
compressible or the component of G meeting D is a boundary parallel annulus.

Recall that by a strongly irreducible surface we mean a properly embedded, two–
sided surface which compresses on both sides and all pairs of compressing disks on
opposite sides must meet. We now strengthen this definition to account for boundary
compressions, as in Bachman [1].

Definition 4.7 A properly embedded, separating surface is @–strongly irreducible if

(1) every compressing and boundary-compressing disk on one side meets every
compressing and boundary-compressing disk on the other side, and

(2) there is at least one compressing or boundary-compressing disk on each side.

Lemma 4.8 Let N be a knot manifold. Let G be a separating, properly embedded,
connected surface in N which is strongly irreducible, has non-empty boundary, and is
not peripheral. Then either G is @–strongly irreducible or @G is at most distance one
from the boundary of some properly embedded surface which is both incompressible
and boundary-incompressible.

Proof Suppose G divides N into V and W . If G is not @–strongly irreducible
then there are disjoint disks D � V and E � W such that at least one, say D , is
a boundary-compressing disk. The disk E is either a compression or a boundary
compression.

Since G is not a boundary parallel annulus we know by Lemma 4.6 that the banding
disk bD is a compressing disk for G . If E is a compressing disk then E \D D ∅
implies that E \ bD D ∅, contradicting strong irreducibility. We conclude E is a
boundary compression.

Algebraic & Geometric Topology, Volume 6 (2006)



186 David Bachman, Saul Schleimer and Eric Sedgwick

Let G0 denote the result of boundary-compressing G along both D and E . Let V 0

and W 0 denote the sides of G0 which correspond to V and W . We now claim that
G0 is incompressible. Suppose D0 is a compressing disk for G0 in V 0 . Then D0 must
have been a compressing disk for G in V which was disjoint from E , and hence
disjoint from bE . This contradicts the strong irreducibility of G . By symmetry we
conclude G0 is incompressible.

We now claim G0 is boundary incompressible as well. Suppose C is a boundary-
compressing disk for G0 . Since G0 is incompressible we know bC is not a compressing
disk, so it follows from Lemma 4.6 that G0 must be a boundary parallel annulus.
It follows that all of G was isotopic into a neighborhood of @N , contradicting our
hypotheses.

It remains only to show that @G is at a distance of at most one from @G0 . In order for
the slope of @G0 to be different from the slope of @G all of the loops of @G must meet
either D or E . This immediately implies j@Gj � 4. The possibility that j@Gj is one
or three is ruled out by the fact that G is separating. The fact that D and E are on
opposite sides of G rules out j@Gj D 4, since we are assuming that every component
of @G meets either D or E .

If j@Gj D 2, both D and E are dishonest, and each meets different components of @G
then bD \ bE D∅. This violates the strong irreducibility of G .

There are three remaining cases. In each of these cases j@Gj D 2 and both boundary
loops are affected by the transition to G0 . See Figure 5. In the top picture both D and
E are honest. The two loops of @G are transformed into two loops, both distance one
from the original. In the middle picture exactly one of the disks D or E is dishonest,
and the boundary slope remains unchanged. The configuration depicted at the bottom
of Figure 5 cannot happen, since it represents a situation in which bD is disjoint frombE , contradicting the strong irreducibility of G .

We conclude with:

Proof of Theorem 4.1 Suppose that X and Y are triangulated knot manifolds, as
above. Fix a gluing 'W @X ! @Y . Suppose that H �M.'/DX [' Y is a strongly
irreducible Heegaard splitting surface. Let F ŠT2 be the image of @X inside of
M.'/.

Now apply Lemma 3.3 and Remark 3.4 to the pair H and F in M.'/. Let HX be a
component of H \X which is incompressible and not a boundary parallel annulus,
if such exists. If no such component exists take HX to be the non-boundary parallel
component of H \X . In this case HX is strongly irreducible. (At least one component
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Figure 5: Possible effects of boundary-compression on @G

of H \X is not boundary parallel. Otherwise H is isotopic into Y , a contradiction.)
Choose HY similarly and note that, by Lemma 3.3, not both of HX and HY are
strongly irreducible. Note that @HX and '�1.@HY / have the same slope.

Suppose that HX and HY are both incompressible. As @X Š @Y ŠT2 it follows from
Lemma 4.6 that HX and HY are also boundary incompressible. So HX and HY may
be normalized with respect to the given triangulations Haken [3]. It follows that the
sets �.X / and '�1.�.Y // intersect and thus ' is not sufficiently complicated.

Suppose now that HX is incompressible and thus boundary incompressible. Suppose
that HY is a strongly irreducible surface. Then, by Lemma 4.8, either HY is @–
strongly irreducible or @HY intersects the boundary of some incompressible, boundary
incompressible surface H 0

Y
at most once. In the latter case H 0

Y
may be normalized,

and hence @H 0
Y
2�.Y /. In the former case it follows from work of the first author

(Corollary 8.9 of [1]) that the surface HY is properly isotopic to an almost normal
surface, and so @HY 2 �.Y /. In either case we see @HX (an element of �.X /) is
within distance one from some element of '�1.�.Y // and hence ' is not sufficiently
complicated.
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5 Amalgamating small manifolds

Let X be a manifold with boundary. The tunnel number of X , t.X / is the minimal
number of properly embedded arcs that need to be drilled out of X to obtain a han-
dlebody; i.e. so that XXN.arcs/ is a handlebody. The handle number of X is the
minimal number of properly embedded arcs that need to be drilled out of X to obtain
a compression body; i.e. so that XXN.arcs/ is a compression body. If j@X j D 1 then
t.X /D h.X /.

Let M DX [F Y be a manifold obtained by gluing X and Y , two connected small
manifolds with incompressible boundary, along a collection of boundary components
homeomorphic to a surface F . The goal of this section is to show that the Heegaard
genera of X and Y are bounded in terms of the Heegaard genus of M D X [F Y .
More specifically, we establish:

Theorem 5.1 Let M be a compact, orientable 3–manifold with incompressible
boundary. Suppose M is obtained by gluing two connected, small manifolds along a
union of incompressible boundary components, M D X [F Y . Then the following
statements hold:

(1) g.M /� 1
2
.h.X /C h.Y //

(2) if M is closed and F is connected, g.M /� 1
2
.t.X /C t.Y //

(3) g.M /� 1
2
.g.X /Cg.Y /� 2g.F //.

The theorem is motivated by the fact that a properly embedded, incompressible surface
cuts a small manifold into one or two compression bodies.

We begin with the following definitions. Let F be an orientable surface, possibly with
boundary components, and possibly disconnected. Let C be the manifold obtained
by forming F � I and attaching one handles to the surface F � f1g. Then C is a
relative compression body. We label the boundary as follows: the negative boundary is
@�C D F �f0g, the vertical boundary is @V C D @F � I , and the positive boundary
is @CC D @CX.@�C [ @V C /. The vertical boundary is a collection of annuli. It is
important to note that a given manifold may admit many relative compression body
structures. For example, if F is a surface with boundary and C D F � I , then C can
be thought of as a relative compression body with @�C DF�f0g, or C can be thought
of as a handlebody with @�C D∅. In fact, given a relative compression body C , it is
always possible to think of C as a (non-relative) compression body by promoting all
non-closed components of @�C and all components of @V C to the positive boundary.
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A relative Heegaard splitting is the union of two relative compression bodies, identified
along their positive boundaries. The splitting will be considered non-trivial if neither
relative compression body is a product; i.e. both compression bodies have 1–handles.

Lemma 5.2 Let X be a manifold that admits a non-trivial, strongly irreducible and
relative Heegaard splitting X D C1[C2 . Then @�C1 and @�C2 are incompressible in
X .

Proof An examination of the proof of the Haken Lemma [4] (see also Jaco [5]) will
reveal that it applies directly to the case of relative Heegaard splittings. In particular, if
either @�C1 or @�C2 has compressible boundary, then there is a compressing disk D

for the boundary component that meets the splitting surface in a single closed loop. The
loop decomposes the compressing disk into a vertical annulus in one compression body,
say C1 , and a disk D2 � C2 . Since C1 is not a product we can find a compressing
disk D1 for @CC1 , disjoint from the annulus, and hence disjoint from D2 . The pair
.D1;D2/ contradicts strong irreducibility of the relative Heegaard splitting.

Lemma 5.3 An irreducible connected small manifold with compressible boundary is
a compression body.

Proof Let X be a connected small manifold with compressible boundary. In an
optimistic fashion, denote a compressible boundary component by @CX and all other
components by @�X . Since @CX is compressible it bounds a (not properly embedded)
submanifold C of X which is a compression body, so that @CC D @CX . Choose C to
be maximal in this regard. Precisely, choose C so that @�C contains no 2–spheres (X
is irreducible) and so that

P
.1��.Si// is minimal, where fSig are the components

of @�C .

If S is a component of @�C then S is incompressible in C . Suppose D is a com-
pressing disk for S in XXC . Then D is the core of a 2–handle that we can attach
to C to obtain a new compression body with negative boundary “smaller” than that
of C . This contradicts our minimality assumption. We conclude S is incompressible
in XXC . As X is small, S must be peripheral, and since C is not a product, it is
parallel in XXC to a component of @�X . The (possibly disconnected) surface @�C

separates the components of @�X from @CX , so each component of @�X is in fact
parallel to a component of @�C . The parallelism yields an isotopy between X and C .
X is therefore a compression body. Note that only one boundary component, @CX , is
compressible.
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Theorem 5.4 Let HX be a non-peripheral, connected, incompressible surface that is
properly embedded in a connected, small manifold X . Then h.X /� 1��.HX /. If X

has a single boundary component or HX meets every boundary component of X , then
this applies to the tunnel number: t.X /� 1��.HX /.

Proof Let @1X denote those boundary components of X that meet HX and @2X

denote those boundary components which do not meet HX .

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

@1X
@2X

X1

X2

HX

H 0X

Figure 6: Labelling the boundary components of X

Let X1DN.HX [ @1X / and X2DXXX1 . This decomposes X into X DX1[H 0
X

X2 ,
where H 0

X
is the common boundary of X1 and X2 . See the schematic in Figure 6.

Note that @1X and HX are contained in X1 and @2X is contained in X2 . Since HX

is connected it follows that X1 is connected. If HX separates X then X2 will have
two components.

The surface H 0
X

will have two components if HX separates and one component
otherwise. Since X is a small manifold, each component of H 0

X
is either compressible

in X or peripheral to a boundary component of X .

Claim If a component of H 0
X

is compressible, it is compressible into X2 .

Proof If there is a compressing disk for the compressible component of H 0
X

then
there is one that is disjoint from HX . This is because any intersection could be
removed by surgery. If H 0

X
has two components then HX separates them. Hence our

chosen compressing disk does not meet the other component of H 0
X

. Therefore, our
compressing disk is properly embedded in either X1XN.HX / or X2 . But, X1XN.HX /
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is a product and has incompressible boundary. It follows that a compressible component
of H 0

X
is compressible into X2 .

Claim No component of H 0
X

is peripheral into @1X .

Proof If this occurred, X1 would be contained in a product neighborhood of a
boundary component. This in turn implies that HX was peripheral.

Claim Each component of X2 is a compression body.

Proof Suppose that a component X 0 of X2 contains a closed non-peripheral essential
surface G . Since X is small, G is either compressible in X or parallel to a component
G0 of @XX@X 0 . In the latter case G0 � @1X or G0 � @2XX@X 0 . If G0 � @2XX@X 0

then HX separates G from G0 .

Since HX is incompressible, any compressing disk D � X for G can be isotoped
so that it does not intersect HX , and so can be isotoped to miss X1 . Therefore G

is compressible in X2 , contradicting the essentiality of G . If G0 � @1X or G0 �

@2XX@X 0 then there is a product containing HX . In particular, this implies that HX

is contained in a product neighborhood of @X , contradicting the fact that HX is not
peripheral. Thus, X2 is small.

Each component of H 0
X

is therefore compressible into X2 or parallel to a component
of @2X . In either case, by Lemma 5.3 or by parallelism, H 0

X
D @CX2 , where X2 is

either one or two compression bodies.

It is now straightforward to build a handle system for X (tunnel system in the case
that @1X D @X ). Choose � , a minimal collection of arcs that are properly embedded
in HX and that cut HX into a single disk D . The collection � contains 1��.HX /

arcs. Moreover, � is a handle system that induces a Heegaard splitting, X D C1[C2 ,
where C1 DN.@1X [ �/ and C2 DXXC1 . Clearly C1 is a compression body. C2 is
a compression body because it is formed by attaching a 1–handle (a neighborhood of
the cocore of D ) to the positive boundary of the compression body/bodies X2 . This
completes the proof of Theorem 5.4.

Theorem 5.5 Let HX be a non-peripheral, bi-compressible, connected, strongly
irreducible surface properly embedded in a connected, small manifold X . Then h.X /�

1� �.HX /. If X has a single boundary component, then this applies to the tunnel
number: t.X /� 1��.HX /.
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Proof We may apply the previous theorem if X also contains a non-peripheral
incompressible surface with boundary whose negative Euler characteristic is less than
that of HX . We may therefore assume that HX is a separating surface; if not we
may compress HX to obtain such an incompressible surface. As before we will let
@1X denote those boundary components of X that meet HX and @2X denote those
boundary components which do not meet HX .

By compressing HX maximally to both sides, we define a relative Heegaard splitting
of a submanifold X 0 D C1[HX

C2 �X . Since we have compressed maximally, the
negative boundary components of C1 and C2 are incompressible outside X 0 . They
are incompressible inside X 0 by Lemma 5.2. If any component is non-peripheral, we
have our conclusion via Theorem 5.4. Each component of @�Ci ; i D 1; 2 is therefore
peripheral. It now follows from the fact that HX is non-peripheral that X 0 is isotopic
to X .

As in the earlier theorem, this structure defines a handle system for X . Choose � , a
minimal collection of arcs that are properly embedded in HX and that cut HX into a
single disk D . Now, � is a handle system for X that induces the Heegaard splitting,
X DC 0

1
[C 0

2
, where C 0

1
DN.@1X [ �/ and C 0

2
DXXC 0

1
. Clearly C 0

1
is a compression

body. C 0
2

is a compression body because it can be obtained by first promoting the
vertical and non-closed negative boundary components of C1 and C2 and then joining
the positive boundary of these (non-relative) compression bodies with a 1–handle (a
neighborhood of the cocore of D ).

The handle number of X is thus bounded by 1��.HX /.

Proof of Theorem 5.1 Let H be a minimal genus splitting of M . If H is an
amalgamation of splittings of X and Y , then the result holds trivially. Otherwise,
by Lemma 3.11 we can construct properly embedded non-boundary parallel surfaces
H 0

X
� X and H 0

Y
� Y so that each is either incompressible or strongly irreducible.

As neither surface is boundary-parallel they contain components HX � H 0
X

and
HY � H 0

Y
which are non-boundary parallel and either incompressible or strongly

irreducible. Furthermore, �.HX /C �.HY / � �.H / D 2� 2g.M /, or equivalently,
g.M /� 1

2
.2��.HX /��.HY //.

By either Theorem 5.4 or Theorem 5.5, X and Y admit handle systems that are
attached to components of F and so that the number of handles is at most 1��.HX /

and 1��.HY /, respectively. The first two assertions of Theorem 5.1 follow.

Our induced splitting of X is obtained by attaching 1� �.HX / handles to F . The
genus of X is therefore bounded by

g.X /� g.F /C 1��.HX /:
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Since a symmetric bound holds for g.Y / we obtained the third conclusion of Theorem
5.1.
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