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A rational splitting of a based mapping space

KATSUHIKO KURIBAYASHI
TOSHIHIRO YAMAGUCHI

Let 7« (X, Y) be the space of base-point-preserving maps from a connected finite CW
complex X to a connected space Y . Consider a CW complex of the form X Ug e% !
and a space Y whose connectivity exceeds the dimension of the adjunction space.
Using a Quillen—Sullivan mixed type model for a based mapping space, we prove that,
if the bracket length of the attaching map « : S¥ — X is greater than the Whitehead
length WL(Y) of Y, then Fyx(X Ug eXt!, Y) has the rational homotopy type of the
product space Fx(X,Y) x Q¥T1Y . This result yields that if the bracket lengths of
all the attaching maps constructing a finite CW complex X are greater than WL(Y)
and the connectivity of Y is greater than or equal to dimX', then the mapping space
F«(X,Y) can be decomposed rationally as the product of iterated loop spaces.

55P62; 54C35

1 Introduction

Let X be a connected finite CW complex with basepoint and X Uy ek +1 the adjunction
space obtained by attaching the cell ekt o X along a cellular map a: S k- x.
Let F«(X,Y) denote the space of base-point-preserving maps from X to a connected

. . i j L
space Y with basepoint. The cofibre sequence X — X Uy e¥t1 = Sk+1 gives rise
to the fibration

i i
QFFly = £ (S vy L Fux U ef L Y) S FuxL ).

The aim of this article is to consider when the above fibration splits after localization at
zero. Roughly speaking, our main theorem described below asserts that such a splitting
is possible if a number which expresses complexity of the attaching map «: S k> x
is greater than the nilpotency of the rational homotopy Lie algebra of Y . In order to
state the theorem more precisely, we first introduce the number associated with a map
a: S¥ — X . Let L be a graded Lie algebra. We define a subspace [L, L]!) of L by
[L,L]D =[L,[L,[....[L,L]...]] (I-times) and [L, L]® = L, where [, ] denotes the
Lie bracket of L. Observe that [L, L]¢*+1) is a subspace of [L, L]{).
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310 Katsuhiko Kuribayashi and Toshihiro Yamaguchi

Definition 1.1 Let X be a simply-connected space. The bracket length of a map
a: S*¥ — X, written bl(«), is the greatest integer n such that the class of the adjoint
map ad(er): SK=1 - QX to aisin [Ly, Lx]™, where Ly denotes the homotopy Lie
algebra 74 (Q2X) ® Q. If the map ad(«) is in [Lyx, Lx]™ for any n, then bl(er) = co.

Recall the Whitehead length WL(Y') of Y which is the greatest integer n such that
[Ly.Ly]™ # 0 (see for example Berstein and Ganea [1]).

In what follows, we assume that a space is based and its rational cohomology is locally
finite. The connectivity of a space Y may be denoted by Conn(Y). For a nilpotent
space X, we denote by Xg the (D—localization of X . Our main theorem can be stated
as follows:

Theorem 1.2 Let o: S — X be a cellular map from the k —dimensional sphere to
a simply-connected finite CW complex X, where k > 0. Let Y be a space such that
Conn(Y) > max{k + 1,dim X}. If bl(«) > WL(Y), then the fibration

T it
(1-1) Qk Ty — F (ST vy L Fu(X Ug LYY 5 Fu(x, Y)
is rationally trivial; that is, there is a homotopy equivalence
Fu(X Uy 11 Y)g S (Fu(X.Y) x QK1Y )g

which covers the identity map on F«(X,Y)q.

Suppose that Y is a connected nilpotent space and X is a finite CW complex. Then
F«(X,Y) is a connected nilpotent space (Hilton, Mislin and Roitberg [6, Theorem 2.5,
Chapter II]). Moreover, F«(X, Y )q is homotopy equivalent to Fy (X, Yg) [6, Theorem
3.11, Chapter IIJ.

Suppose that «: Sk X is homotopic to the constant map. Then it is evident that
Fa(X Ug ekt V) ~ (Fu(X,Y) xQKH1Y) . In this case, the bracket length of « is
infinity. Thus we can regard that Theorem 1.2 explains such decomposition phenomena
of mapping spaces more precisely from the rational homotopy theory point of view.

As an immediate corollary, we have the following result on rational decomposition of a
mapping space.

Theorem 1.3 Let X be a simply-connected finite CW complex and Y a space such
that Conn(Y') > dim X . Suppose that the bracket length of each attaching map which
constructs X is greater than WL(Y'). Then F (X, Y) isrationally homotopy equivalent
to the product space X (kY )", where nj, denotes the number of the k —cells of X .
In particular, F,(X,Y )q is a Hopf space.
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In fact, by looking at the attaching maps with higher dimension in order and by applying
Theorem 1.2 repeatedly, we have the result.

As an example, we give a mapping space F«(X,Y) which admits the decomposition
described in Theorem 1.3. Construct a CW complex X (n > 0) inductively as follows:
Let Xy be the mo—sphere S0, where my > 2. Suppose that X; is defined. We
fix k integers m(i); (1 < j =< k) greater than 1. Moreover we choose an element
0 € Tgega; (Xi) and the generators t,(); € Tm(); (S™Di) (1< j <k). Define a CW
complex Xj4q by

Xiz1 =X v SmD1 .y Sm(i)"') U[Ofi,[tm(i)l lmirye_y st 111 € i,

where /; =dego; +m(i); +---+m(i) —k + 1. It follows that the bracket length of
each attaching map is greater than or equal to k. Let ¥ be a space which satisfies the
condition that £ > WL(Y) and dim X, < Conn(Y). Then Theorem 1.3 enables us to
conclude that

Fe(Xn, Y) =g <125 QY xQmy x...x QmDky) x Qmoy,

We here describe an application of Theorem 1.3.

Corollary 1.4 Let X and Y be the spaces which satisfy the conditions in Theorem
1.3. Then, for any space Z , there exist bijections of sets

[Z A X Yol = [Z, Fu (X, Yo)ls = [Z, 1 (V)5 1s

= @ "z
m,k>0,7,,(Y)RQ#0

where ny, denotes the number of the k —cells of X .

We emphasize that a Quillen—Sullivan mixed type model for a based mapping space,
which is constructed out of a model for a free mapping space due to Brown and Szczarba
[2] (see Section 2), plays a crucial role in proving Theorem 1.2.

The paper is organized as follows: In Section 2, we recall a Sullivan model for a
mapping space constructed by Brown and Szczarba. The mixed type model mentioned
above is described in this section. Moreover, we introduce a numerical invariant
dy—depth(Y'), which is called the d;—depth for a simply-connected space Y, using a
filtration defined by the quadratic part of the differential of the minimal model for Y.
This invariant is equal to the Whitehead length of Y. Section 3 is devoted to proving
Theorem 1.2. In the appendix (Section 4), we prove that d;—depth(Y) = WL(Y). It
seems that the important equality is well known. However, we could not find until
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recently any reference in which the equality has been proved explicitly. Kaji [7] has
also proved it by looking at the nilpotency of the loop space QY . We wish to stress
that our proof of the equality in the appendix contains also a careful consideration on
the filtration which defines the d—depth.

We end this section by fixing some notations and terminology for this article. A graded
algebra A is defined over the rational field @ and is locally finite in the sense that
each vector space A’ is finite dimensional. Moreover it is assumed that an graded
algebra A is connected; that is, A° = Q and A’ = 0 for i < 0. We denote by Q{x;}
the vector space with a basis {x;}. The free algebra generated by a graded vector space
V is denoted by AV or Q[V]. For an algebra A and its dual coalgebra C, we define
AT and CT by AT = ®;=>94’ and Ct = @, -C;, respectively. Let (B, dp) be a
differential graded algebra (DGA). We call a DGA (B ® AV, d) is a relative Sullivan
algebra over (B, dp) if d|p = dp and there exists an increasing filtration {V (k)}r>¢
such that V = U, V(k) and d(V(k)) C B AV(k—1).

2 A Quillen—Sullivan mixed type model for a mapping space

Let (B,dp) beaDGA and (AV, d) aminimal DGA; that is, dv is decomposable for any
ve V. Let By denote the differential graded coalgebra defined by B; = Hom(B™ 4, Q)
for ¢ <0 together with the coproduct D and the differential dp,, which are dual to
the multiplication of B and to the differential dp, respectively. Let I be the ideal of
the free algebra Q[AV ® Bs] generated by 1 ® 1 — 1 and all elements of the form

aray ® B — Y _(—D121Bl @y ® B],) (a2 ® B,

where ay,a; € AV, Bs € By and D(B+) =) _; Bi, ® B/, . Observe that QAV ® By]
is a DGA with the differential d := d4 ® 1 == 1 ® dg«. The result of Brown and
Szczarba [2, Theorem 3.3] yields that (d4 ® 1 £1®dp«)(I) C I. Moreover it follows
from [2, Theorem 3.5] that the composition map

p: Q[V ® By] = Q[AV ® By] — Q[AV ® Bx]/1

is an isomorphism of graded algebras. Thus we define a differential § on Q[V ® Bx] by

1d 0, where d is the differential on Q[AV ® Bx]/I induced by d. The differential
8 is described explicitly as follows: For an element v € V and a cycle B« € By, if
d(v) =vq--- vy with v; € V, then

S (Bx) = v mBjyx @+ ® By

2-1 . .
e = X (DO By @ B B
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where D"~V (B,) = > Bjyx ® -+ ® B, « with the iterated coproduct D=1 and
the integer (—1)@tsVm-BiyBim=) ig defined by the formula

()t BB v By, v, = 1 om By By

in the graded algebra (AV) ® B using elements B;; (a <s < m) with degf;, =
—deg B .

We denote by A py (X) the DGA of the polynomial differential forms on a space X . Let
X be a connected finite CW complex and Y a connected space with dim X < Conn(Y).
We take a quasi-isomorphism (B, dg) — Apr(X) and a minimal model (AV, d) for
Y. By applying the construction mentioned above, we obtain a DGA of the form
(Q[V ® Bx«],8), which gives an algebraic model (not minimal in general) for F(X,Y)
the space of free maps from X to Y [2]. In fact, there exists a quasi-isomorphism which
connects A py (F(X,Y)) with the DGA (Q[V ® Bx«], §). Moreover, the realization of
(Q[V ® Bx], §) is homotopy equivalent to F (X, Yg) [2, Theorem 1.3] and hence to
F(X,Y)q. The result of the first author [9, Proposition 5.3] asserts that (Q[V ® Bx], §)
is a relative Sullivan algebra with the base Q[V']. Observe that (Q[V ® By], §) itself is
a Sullivan algebra [9, Reamrk 5.4]. Moreover the model for F(X, Y) leads to that for
the based mapping space F«(X,Y).

Theorem 2.1 [9, Theorem 4.3] There exist a quasi-isomorphism from a Sullivan
algebra of the form (Q[V ® B«]/(Q[V]").8) = (Q ®qpr] AV ® B«].1 ® §) to
Apr (F«(X,Y)). Here (Q[V]) is the ideal of Q[V ® B,] generated by Q[V]*.

From the explicit form (2—1) of the differential §, we can deduce the following lemma.
The proof is left to the reader.

Lemma 2.2 Suppose that, for an element v ® B« € V ® By, dv is in AZ"V and
Em_l(ﬂ*) = 0, where " B — (BF)®™ denotes the (m — 1) fold reduced
coproduct. Then §(v ® B+) = 0. In particular, §(v ® Bx) = 0 if Bx € By is a primitive
element.

We here recall, from Félix—Halperin—Thomas [4, Section 22], Quillen’s functor Cx( )
from the category of connected differential graded Lie algebras (DGL’s) to the category
of simply-connected cocommutative differential graded coalgebras (DGC’s). Let
(L,dr) be a DGL and A(sL) be the primitively generated coalgebra over the vector
space sL. We define the differentials d, and dj on A(sL) by

k
dy(SXy A+ ASXE) = —Z(—l)"”sxl Ao ASdpxi Ao ASX

i=1
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and

dp(sxy A= AsXp) = Z (—1)|sxf|+”ffs[xi,Xj]/\sx1---s/x\i---fﬂ---/\sxk,

1<i<j<k

respectively. Here n; = 3, _; [sx;| and sxq A--- Asxg = (=1)"75x; Asxj Asxy A

-+ 5Xj ++- SXj -+ Asxg. We see that Cy(L,dr) = (A(sL),dy + dj) is a DGC. To
simplify, we may write Cx(L) for C«(L,dr). By using the above DGC, we can
construct a more explicit model for a mapping space. Let (L, dr,) be a Lie model for a
space X ; that is, there exists a quasi-isomorphism C*(L,dy) = dual C«(L, dy) =
Apr(X). We choose a minimal model (AV,d) for Y. Then Theorem 2.1 implies
that the Sullivan algebra of the form (Q[V ® Cx(L,dr)]/(Q[V]1).8) = (Q[V ®
Ci«(L,d;)*],8) is a model for the mapping space Fx(X,Y). This model, which
is called a Quillen—Sullivan mixed type model for the based mapping space, is an
important ingredient for the proof of Theorem 1.2.

Remark 2.3 The Sullivan algebra of the form (Q[V ® C«(L, dL)],§) is regarded as
a mixed type model for the free mapping space F(X,Y).

We close this section by introducing a numerical invariant which is called the dy—depth
of a given space. We use the invariant to prove Theorem 1.2.

Let (AV,d) be a minimal model for a simply-connected space Y . Then the differential
d is decomposed uniquely as d = d; + dy +--- in which d; is a derivation raising
the wordlength by i. We call d; the quadratic part of d. We define a subspace V; of
V by Vo ={veV |d(v) =0} and put V_; = 0. Moreover, define a subspace V;
inductively by V; ={v e V | d{(v) € AV;_;}. Itis readily seen that V}_; C V; and
thatif V; = Vj_y, then Vi = Vi for k > 1.

Definition 2.4 The d—depth of Y, denoted d;—depth(Y), is the greatest integer k
such that Vj_; is a proper subspace of Vj.

It suffices to prove Theorem 1.2 by assuming that bl(«) > di—depth(Y) instead of
the sufficient condition bl(e) > WL(Y'). The following theorem guarantees that the
replacement is valid.

Theorem 2.5 Let Y be a simply-connected space. Then d;—depth(Y) = WL(Y).
Proof See the appendix. a

Since the Whitehead length is a numerical topological invariant in the category of the
rational spaces, it follows that the d{—depth of Y does not depend on the choice of
minimal models for ¥ and is also a topological invariant.

Algebraic € Geometric Topology, Volume 6 (2006)



A rational splitting of a based mapping space 315

3 A minimal model and Proof of Theorem 1.2

Before proving Theorem 1.2, we recall from [2] a result concerning construction of a
minimal model for a mapping space. Though the construction is for a free mapping
space, it is applicable to the model (Q[V ® Bx]/(Q[V]1),8) for a based mapping
space Fx(X,Y) which is described in Theorem 2.1. With the notation in Section 2, we
write Q[V ® B]/(Q[V]T) = Q[V ® By ]. Let {ay. bg. ¢j} be a basis for B such
that dB;L (ap) = by and dB;f (¢j) = 0. Choose a basis {v;} for V' so that |v;| < |vj41]
and dv;4+1 € Q[V;], where V; is the subspace spanned by the elements vy, ..., v;. The
result [2, Lemma 5.1] states that there exist free algebra generators wjj, u;; and v
such that

(3-1) w;j = v; @cj + x;j, where x;; € Q[V;_ ®B:_],
(3-2) gwij is decomposable and in Q[{w,;;s < i}],
(3-3) Ui = v; ® ag and Su; = vig.

Thus we have a decomposition Q[V ® Bf] = Qwij] ® Qujk, vix] of a differen-
tial graded algebra. Since Qu;x, vix] is contractible, it follows that the inclusion
(Q[w;;],8) — (QV ® Bf],8) is a quasi-isomorphism. In consequence, we get a
minimal model of the form (Q[w;;], §) for the mapping space Fx (X, Y). Observe that
the vector space generated by the elements w;; is isomorphic to the reduced homology
H.(Bx)" as a vector space.

We rely on the following result to construct a minimal model for the mapping space
Fi(X,Y) from the Sullivan algebra (Q[V ® Cx(L,dy)™],§) in Section 2.

Lemma 3.1 [4, Proposition 22.8] For a DGL of the form (Ly, dr), let p1: Cix(Lyy)
= Asly — sl @ Q and p; : sLyy & Q — sW & Q be the maps obtained by
annihilating the factors A=2slLy and s([Lsz), respectively. Then the composition map
propr: Cu(ly,dr) — (W & Q, dy) is a quasi-isomorphism of complexes, where
dy denotes the linear part of dy, .

Recall a Lie model for an adjunction space. Let (.7, dr ) be a minimal Lie model for X .
By definition, there exists a quasi-isomorphism C*(Ly, dr) 34 pL(X). Moreover,
we have an isomorphism o7: H(Ly,dr) rd 7x(2X) ® Q of graded Lie algebras.
Define an isomorphism t7.: sH (L, dr) — 7+(X)®Q by composing the map o7 with
the inverse of the connecting isomorphism 0: 44+1(X) @ Q — 7, (QX) R Q. Let z,
be a cycle of Ly such that 7, sends the class s[zy] € sH (Lyy, dr) to [o] € m4(X) @ Q.
Then, as a Lie model for the adjunction space X U, ek *1 we can choose the graded
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Lie algebra (L gaw,}-d) with dyy = dp and d(wy) = zo [4, Theorem 24.7].
By applying the construction described in Section 2, we obtain a Sullivan model for
F(X Ug k1Y) of the form (A(V @ Cx(Liwaiw,} 4)),8)-

We need the following lemma to prove Theorem 1.2.

Lemma 3.2 Let
my: QV] = Q[V ® Cx(Lyy)]
and my: Q[V]— Q[V ® Cx (L gafwy})]
be the inclusions of relative Sullivan algebras. Let
n: QIV @ Cu(lw)] = Q[V Q Cu (L oafw, )]

be the map induced by the inclusion (Ly, d) — (L go{w,}» @) of DGL’s. Then there
exists a commutative diagram

1R

Qv]

o ” Aper—
2

QV ® Cy(Ly)] = Apr(F(X,Y)) ApL (eve)

\ l w
n ~

QV ® Cx(Lweaiway)] App(F(X Uy k1. 7))

Apr(Y)

in the category of DGA’s in which three horizontal arrows are quasi-isomorphisms.
Hence the map 7: Q[V ® C«(Ly) "] = Q[V ® Cx(Lwgoiw,) ] induced by 1 is a
Sullivan model for the map i*: Fy(X Ug %1, Y) — Fi(X,Y) [4, Definition, page
182].

Proof See the appendix. O

Proof of Theorem 1.2 Under the hypotheses in Theorem 1.2, we see that the space
F«(X,Y) is simply-connected and Fyx (X Ug 1, Y) is connected. We shall prove
the fibration (1-1) is rationally trivial if the inequality bl(«) > d{—depth(Y") holds.

Under the notation mentioned above, we assume that
Za = Y [0, Xy [Xip g o X0y Xig )]
i
with appropriate cycles x;; in Ly, where n = bl(a). By virtue of Lemma 3.2, we

see that the inclusion 7: A(V ® Cu (L, d)t) = A(V ® Cs(Lwgafwy ) d)T) is a
model for the projection i* of the fibration (1-1). Let ¢: (A(Z),d) - (A(V ®
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C«(Ly,d)™"),8) be the minimal model described before Lemma 3.1. Observe that ¢
is an inclusion and Z = V ® Hy(Cx (L. d)") = V @ sW. If A(Z') is a minimal
model for the Sullivan algebra (A(V ® Cx (L @ afwq}» d)™),§), then Z'is isomorphic
0 V@ Hy(Csk Ly g 0wy} d)* ) and hence to V @ s(W & Q{wg}). With this in mind,
we define a Sullivan algebra (/\Z d) by Z=V Rs(WdQ{wy}) = Zd(V Rswy),
d |, =d and d ly@sw, = 0- In order to ) prove Theorem 1.2, it suffices to show that
there exists a quasi-isomorphism : (/\Z d) — (A(V ® Cx(Lyy,d)™), 8) such that
the diagram

(NZ,d) (AZ,d)

iy -

AV @ Call . d)F).8) —> AV ® Cu(lwoatugy, 9)7).6)

is commutative, where [ is the inclusion. In fact, we then see that the map / is regarded
as a Sullivan model for i#. Moreover the Sullivan algebra (/\Z d ) is isomorphic to
(ANZ,d) @ (A(V ® swy), 0) as a DGA. Observe that (A(V ® swy), 0) is the minimal
model for QX+1Y.

We shall construct the required map . Put AU = A(V @ Cx(Lygaiw,} d)").
Let ASU be the vector subspace of AU consisting of elements with wordlength
s and AZSU the ideal of AU generated by ASU. Assume that v € Vj,, where
m = dj—depth(Y). We first choose a cycle

Coq = SWq — Z SXi, AS[Xi_ [Xip_ns oo [Xiy s Xig)--]]
i
in Cx(Lwga{w,}>d) and define an element y; of AU by y; = v ® ¢y. Observe that

n > m by assumption. We set X;,_, ..o = [Xi,_[Xi,_ps - [Xiy» Xig)--.]]. 1t follows
from (2-1) that, in AZ2U,

S(n) =— (Z(—l)‘sxi"”v“ (), @ sxi,) - (v}, ® $Xi,_y,..i0)

isjl

+ Z(_l)\sx,-n_l,...iollsxin 18Xy, _y i1V (v, ® §Xi,_y,.i0) " (v}1 ® Sx,'n))

iajl
if di(v) =>_ i Vi v}l . We see that 3()/1) belongs to A2U and is determined without
depending on the term of (d — d;)(v) because sx;, and sx;,_,,.i, are primitive.
Observe that v;, and v}l are in V,,_; (see Lemma 4.4 for more polished result on the
image of dy).
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We next define an element y, € A2U by

2= Z(_l)sin""io (vj, ® sxi,) - (v}l ® $Xiyy_y N SXiy_s,..,ip)
isjl
gl .
+ Z(_l) 10 (Vjy @ SXiyy_y N SXiy_s,.i0) * (U}l ® 5Xi,,),
iyjl

where &, and & denote the integers |sx,-n||vj/.1 |+ v, ®sxi, | +]v} |+ sx4,_,

sl
and |sx;,_,,.iollSXi, | + |sx,~n_1,,.,,-0||v]’-l| + |vj, | + |sxi,_, |, respectively. Since sx;,

is primitive, it follows from Lemma 2.2 that §(y;) = —g()/z) in A2U.

In a similar fashion, we can define elements y; € AU so that §(y;_y) = —3()/1) in
AU and each term of y; has the form

Y- (vjl ® (8Xiy_y4q A Sxin—l,--aio))’

where vj, € Vj,_;41 and y is an element in the ideal of AU generated by elements of
the form u ® sx;, for some u € V. Since 5(y) e NU® AU and g()/m+1) =0in
AT2U | it follows that y :=y; + -+ VYm+1 1S @ g—cycle in AU (see (3—4) below
in which Sl denotes the linear part of the differential § and 32 =§— 31 ).

(3-4)

> ()
st
H 8>
Ym+1 —— 0

Observe that the element y, + -+ + y41 can be regarded as the element x;; in
condition (3-1).

The same argument above works well to show that v ® swy, is a cycle when v € V; for
| < m since bl(a) =n > m = dj—depth(Y).

We here define a map : (/\Z, 57) — (A(V Q@ Cx(Lwgafw,} - 4) 7). 8) by ¥, =T¢
and ¥ (v @ swy) = Yy for v @ swy € V ® swy . The construction of Q[w;;] described
before Lemma 3.1 tells us that v is a minimal model. Moreover we see that all the
required conditions for ¥ hold. This completes the proof of Theorem 1.2. |

Example 3.3 Let us consider the projective space CP? = S? Uy e*, where y denotes

the Hopf map. Let Y be a 4—connected space with a minimal model (AV,d) for
which V' is a vector space with a basis {x1, x5, x3, y}, d(x;) =0 and d(y) = x1xx3.
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Since y is decomposable in 74(S?) ® Q, it is evident that bl(y) = bl([t,¢]) = 1 >
0 = d;—depth(Y), where : is the generator of 75 (S?). Thus Theorem 1.2 allows us to
conclude that the fibration Q*4Y — F,(CP2,Y) — Q2Y is rationally trivial.

Example 3.4 Let £P? be the Cayley plane and G:Pl.2 a copy of the complex projective
plane for i = 1,2. Let ¢; denote the generator of 7, ((IZPiZ). The space <CP12 \Y
CP22 Ul ,e0] e* has a CW—decomposition for which the bracket length of each attaching
map is greater than or equal to 1. Since H*(£P?; Q) = @[xg]/(xg), where deg xg =8,
it follows that WL(L P?) = d;—depth(£P?) = 0. Corollary 1.4 yields that, for any
based space Z,

[Z A(CPEVCPE UL, €Y, LPA = (HY4(Z;Q) @ H?®4(Z; ) ®?
®(H8—2(Z; @) D H23_2(Z; @))692.

Example 3.5 Let G and H be a compact connected Lie group and a closed subgroup
of G, respectively. By considering the K.S—extension of the fibration G — G/H — BH ,
we see that the minimal model (AV, d) for G/H satisfies the condtions: dV¢V¢" =0
and dV°?4 C AVeYe" This implies that d;—depth(G/H) <1.Let X and a: Sk — X
be as in Theorem 1.2. Suppose that Conn(G/H) > max{k + 1,dim X'}. Then the
fibration

QFHY = F (SFTY, G/H) L Fu(X Uy 51, G/H) S Fu(X, G/H)
is rationally trivial if bl(a) > 1.

Example 3.6 Recall from [4] that a simply-connected space Y is elliptic if dim 774 (Y")
®Q < oo and dim Hy(Y; Q) < co. Let Y be an n—connected finite dimensional
elliptic CW complex with a minimal model (AV,d). Let {v;} be a basis of V. If
vi, € Vs — Vi1, then degv;, > (s + 1)n + 1 (see the Section 2 for the notation V).
Put m = d;—depth(Y) and let v be an element of V' with the maximal degree. Then
deg v is odd from Friedlander—Halperin [5, Theorem 1 and Lemma 2.5]. Therefore it
follows from [5, Corollary 1.3(3)] that

(m+1)n+1=<degv;, <degv = Z j-dimV/ <2dimY —1
j:odd
and hence 2dim Y /n > m+ 1 = d;—depth(Y) + 1. Theorem 1.2 enable us to conclude
that the fibration (1-1) is rationally trivial if bl(e) + 1 > 2dim Y /Conn(Y).

We give examples which assert that the decomposition in Theorem 1.2 does not hold
in general when bl(c) < WL(Y). To this end, we here recall the result [8, Theorem
1.2] due to Kotani.
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Let (AV,d) be a minimal model for a simply-connected space Y. Consider the
decomposition d = dj + dy + - -- of the differential d as in Section 2. The d-length
of Y, denoted d—length(Y), is the least integer m such that d; =0 for i <m —1 and
dy—1 £ 0. Observe that the d —length of Y is a topological invariant (see [8, Theorem
1.1]). As usual, we define the cup-length of a space X, ¢(X), by the greatest integer
n such that there are elements oy, ..., o, in HT(X;Q) for which oy U---Ua, # 0.
Then the main result in [8] is stated as follows.

Theorem 3.7 [8, Theorem 1.2] Let X be a path connected, finite dimensional
CW complex and Y a connected space with Conn(Y) > dim X'. Suppose that X is
formal. Then the cohomology algebra H*(F«(X,Y); Q) is a free algebra if and only
if d-length(Y) > ¢(X).

Example 3.8 Consider the projective space CP3 = CP? Uy %. We observe that
o is indecomposable in 74 (CP?) ® Q. Since d-length(Y) = 3 = ¢(CP?), it fol-
lows from Theorem 3.7 that H*(F4«(CP3,Y); Q) is not free. Thus Fx(CP3,Y)
is not rationally homotopy equivalent to the product Fx(CP2,Y) x Q°Y because
H*(F«(CP2,Y)xQ8Y;Q) is free. Observe that bl(e) = 0 = d;—depth(Y) in this
case.

Example 3.9 Let (AV,d) = (A(x, y),d) be the minimal model for S¢, where
it
degx = 6, degy = 11, dx = 0 and dy = x2. Consider the fibration Q456 2>

.n .
F+(CP2%, 5% 5 Q256 which is induced from the cofibre sequence S2 — CP2? =

S2 Uy e* . 8% Let ¢ be the generator in 7,(S?) ® @. Observe that y = ¢[t, (]
for some nonzero rational number g. We can choose Q[V ® Cx(Logw, ), )Tl asa
Sullivan model for the function space Fx(CP2, S®), where T denotes the element in
71(R25?) ® Q corresponding to ¢ via the connecting isomorphism 7, (S?) ® Q —
11(2S?) ® Q. Put vg = x Q@ 57, v9g = y ® ST, V3 = x ® (swy, —q(sT A 57)) and
v7 =y ® (swy —q(st A st)). Then a model for the above fibration is given by

(A(v4,09),0) = (A(v4, Vg, V2, 7),8) = (A(v2,v7),0)

where 8(v7) = —2qv42 and 8(v;) = 0 for i # 7 (see the proof of Theorem 1.2 for the
construction). Therefore the fibration is not rationally trivial. It is readily seen that
bl([t,]) = 1 = dy—depth(S°®) in this case.

Example 3.10 Let Y be a 6—connected space whose minimal model has the trivial
differential. Then the differentials of the minimal models for the spaces F«(CP2, Y )

and F,(CP3,Y) are also trivial. Moreover we see that Q6Y 2 —> F(CP3Y) S
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F«(CP2,Y) is rationally trivial though bl(e) = 0 = d;—depth(Y'). This fact implies
that the converse assertion of Theorem 1.2 does not hold in general.

Acknowledgements The authors are grateful to Jean-Claude Thomas for useful com-
ments on the Whitehead length and the ¢ —depth. They would like to thank Yasusuke
Kotani for explaining his result [8, Theorem 1.2] and wish to express their thanks to the
referee of the previous version of this article. His comments lead us to the examples
described in Section 3.

4 Appendix

We prepare to prove Theorem 2.5. Let (AV, d) be the minimal model for a simply-
connected space Y . Recall the graded Lie algebra L associated with a minimal model
(AV,d) for Y (see [4, Section 21, (e)]). The graded vector space L is defined by
sL =Hom(V, Q). We define a pairing (; ): V xsL — Q by (v;sx) = (—1)%sx(v).
Moreover, using the pairing, define a trilinear map

(;,): AV xsLxsL —Q
by (vAw;sx,sy) = (v;sx)(w;sy) 4+ (=PI (w: sx) (v;sy). Then the Lie bracket
[, ]in L is given by requiring that (4.1):
(vslx, y]) = (=D)*> T d v sx, 5p)
for x, y € L and v € V. The result [4, Theorem 21.6] asserts that L is isomorphic to
the homotopy Lie algebra Ly . Therefore, in order to prove Theorem 2.5, it suffices
to show that the d;—depth of Y is equal to the integer WL(L), which is the greatest

integer n such that [L, L]"™ % 0. As in the proof of Theorem 1.2, we may write
Xip,..,io for the element [x;,[x;,_,, ..., [Xi;, Xj,]]] in L.

Lemma 4.1 Forany o € V,,_y and any x;,,. i, € [L. L](”), (o0, 8xi,,....i0) = 0.

Proof We argue by induction on 7. From the formula (4.1), we see that (e, sx;, ;) =0
for any « € V4. Suppose that (8,sx;,_,,...iy) =0 forany B € V,,_,. Let o be an
element of V,,_;. Then we can write dy(a) = > i Bj ,3} with some elements $; and
ﬂ} of V,—5. Thus it follows from the definition of the trilinear map ( ; , ) that

(o0, 8Xiy,....00) = Eldra; X5, S[Xi,_ 1y [Xip s Xip]])

=D BB sxi,. s[Xi,_y o [xiy Xi]) = 0. O
J
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Proposition 4.2 d;—depth(Y) > WL(L).

Proof Suppose that [L,L](”’) # 0. We choose a nonzero element Xx;,,, . ;, of
[L,L]". Let vy, be an element of V such that (v, sx;,. i) # 0. Lemma 4.1
yields that vy, € V,,—; and hence the d{—depth(Y) > m. |

In order to complete the proof of Theorem 2.5, it remains to prove that d;—depth(Y)
is less than or equal to WL(L). To this end, we first characterize the vector space Vj
using the space S of indecomposable elements of L. One can express the vector space
as L=S@®[L, L]

Lemma 4.3 5SS = Hom(V, Q).

Proof Let {x;} and {y;} be bases for S and [L, L], respectively. Let {(sy;)*} U
{(sx;)*} be the basis of V' which is the dual to the basis {sy;}U{sx;} of sL. It suffices
to prove that Vj is the vector space spanned by {(sx;)*}. Since (d(sx;)*;sx,sy) =
((sx;)*;s[x, y]) =0 for any x, y € V, it follows that (sx;)* € Vy. Forany v € Vj,

we write v =} ; A (sx;)* + > _; pj(sy;)* and sy; = ij slag; . bx,] for some ay;
and by, in L. It follows that

0 = D {dvisag;.sbi) = (Y hilsx)™ + Y mj(swp)*. Y slaw; by )
kj i J k;j
= () hilsx)* + Y wiGsy)* o sy) = w.
i J

Thus we have v =) ; A; (sx;)*. O

We here study a fundamental property of the quadratic part of the differential d. Write
Va =V, ® V,_1 and fix a basis {wj} for V,.

Lemma 4.4 Forany u € V,, there exist elements ej € Vyy and fs, g5 € V,—1 such

that
diu = Zejwj —i—Zfsgs.
Jj N

Proof The result for n = 0 is immediate. Let us assume that n > 1. We can write

diu= Zkijwiwj +Zejwj +Zfsgs
s

i=j J
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with some elements e;, fs, gs € Vy—1 and A;; € Q. By applying the differential d;
to the equality, we have

0=didyu=Y hijdi(ww; + Y (D" hjwidi(wj) + ) di(ej)wj + Z

i<j i<j J
= Z (Z/Lijdlwl' +dyej)w; + Z
i

in which p;; =2A;;, pij = Aij fori < j, pij = (—l)lwf|+|wf”d1w"|)»ij fori > j and
Z is an appropriate element of A=2V;,_;. Thus we see that }_; uijd w; +dej =0
for any j. Since djej € AV,_, it follows that ) ; u;jw; is in V,_; and hence
> i mijw; = 0. The fact enables us to conclude that ;; = 0 for any i, j and that e;
is in V. We have the result. O

Lemma 4.3 allows us to choose a basis {sxj }rcy for sS and its dual basis {ex }res
for Vy. Let {wym }menr be a basis for V. We can write dyw, = Zkl ko k,(cr:')koekleko,

where A{") =0 if [e,| is odd.

Lemma 4.5 Let {vl(,")}lf p<l, be a basis for V,, where n > 1. Then there exist

(n)
rational numbers 9:: om for all ky, .., k> and m such that

v
D L OO RN RSN Y C et || M (O
m

(n)

and the matrix (9;:” ks ) With I columns is of full rank; that is, the column
MNosees k]

vectors obtained from the matrix are linearly independent. Here, we regard the set

{(kn, .., ko,m)} as the ordered set {I;} by using the lexicographic order on elements
(n)

(n)
(kn, .., ko, m). Then the (i, p) component of the matrix (9:5’“’,{2,,”) is given by Q}Ji”

Proof We argue by induction on 7. In the case where n = 1, the result is immediate.

We assume that n > 2 and that the assertion is true up to n. To simplify, we write v,
for vl(,nﬂ). Thanks to Lemma 4.4, we can express

b= X alen?+ Y s
S

1<k=q,1<j=<r

with some elements f; and gg in V,_;, where 'U“lt? € Q. Then it follows that

(=D (0 Sy 1oee) = (D k0 + Y i85t 5%y Xy k) =1 -
k’j s
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where & = [sxg, k|- Lemma 4.1 allows us to deduce that

6= Z“k (ex Xk, Nv; . $Xky..d)
kj
)

(
s m) (m)
—Z“kn+1] Z owshcam kT,kz Z Z“kn+u kpsoska, m))\k':l,kz

(n)

. . v,
We put le’;_l, oo Z] 'ukn+11 kn, Jea,m and consider the matrix (0k5+1,- ,kz,m)'
Then, by definition, we see that the matrix is decomposed as
v
( 91;1
’ 4
i A
v, v p
(0k5+1,..,k2,m) = (9k§+1,1i) = 0211 = B,
' A
v
9‘1117s )
where
Up
Ky
(n) bﬂ
=(9’) and B = ’u},;
Tt
T
Since the set {v,} is a basis for V., it follows that the matrix B is of full rank.
By assumption, A4 is of full rank and hence so is (Gk” s m) This completes the
proof. O

Theorem 2.5 follows from Proposition 4.2 and the following proposition.
Proposition 4.6 d;—depth(Y) < WL(L).

Proof Put n = d;—depth(Y). It suffices to prove that the inequality holds in the case
where n > 1. Let {vl(,")}lfpsln be a basis for V},. We assume that

(0. st [t Lo Dty g ) = 0
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)
for any ky, ..., k1, ko. Then it is readily seen that ), 6, v” o )‘l(cr?)ko = 0, where

(n)
v . . . .
Ok” koum AT€ rational numbers described in Lemma 4.5. Consider the linear combina-
Nosees s

(n) —
tion ), 9;::,..,k2,mwm with the basis {wy,} for V;. We have
U;n) Uﬁn)
dl (Z 9kna-->k2=mwm) = Zek}’la"ak2=md1 (wm)
m

(m)
- kn Jko,m Z )Lkl koekl ekO
k1,ko

— vy (m) _
- Z (Z eks,..,kz,m)\kl,ko)ekleko =0.

kikg m

(n) (n)
vp Up —
It follows that ), Qk _ko.mWm € Vo and hence Gkn,..,kz,m = 0 for any m. Conse-

nsesi2,
(n)

quently, 9;:” Ko is zero for any m, ky, ..., k», which is a contradiction. O
1 ERES] )

In the rest of this section, we shall prove Lemma 3.2. To this end, we first prepare a
lemma.

Lemma 4.7 The map n: Q[V ® C«(Ly)] — Q[V ® Cx(Liwpfw,})] in Lemma 3.2
is the inclusion of a relative Sullivan algebra.

Proof We write Ly go{w,} = Lw ® Z with appropriate vector space Z. Then the
Cx(Lwgafwy)) is decomposed as Cx (L gaqw,}) = AGLw) @ A(sZ) = AlsLy) ®
1 AGSLp) @ A(sZ)T. We see that V @ Cu(Lgaiw,}) =V @ Cx(Lp) ®V @ U
and hence Q[V ® Cx(Lwgaw,})] = QV ® C«(Ly)] ® Q[V ® U], where U =
AGLp)@A(sZ) ™. Let U(j) be the vector subspace of U consisting of elements with
ordinary homology degree ;j, namely Uy = (A(sLy) ® A(sZ)T)j. Put V(ik) =
®i+j<k Vij, where Vj; = Vi U(jy- It is readily seen that Ug V(k) =V ® U and
S(V(k)) CcQIV @ Cu(Lp)] ® Q[V (k — 1)]. Thus we have the result. ad

Proof of Lemma 3.2 Leti: X — X Uy ekt! be the inclusion map and /: Cx(Ly) —
Cx«(Lwga{w,}) the DGC map induced by the natural inclusion L — Ly gq(w,}- Then
there exists a homotopy commutative diagram

(i)
Apr(X) 275D g (X Ug ekt

:T I~

l*
C*(Lw) =— C*(Lwgoaiwy))
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where two vertiacal arrows are quasi-isomorophisms and /* denotes the dual map to /.
By considering a Sullivan model C*(Lw gq{w,})>—> D for /* and applying Lifting
lemma [3, Lemma 3.6], we have a commutative diagaram

App (i)
App(X) <8 App(X Uy ekt

T T

D C*(Lwgofwe})

| |-

l*
C*(Lw) =— C*(lwoaiws))

in which vertial arrows are quasi-isomorophisms. Thus from the naturality of the model
due to Brown and Szczarba, we can construct a commutative diagram

Q[v] = o<_eo o> .~ ApL(Y)
T
QV ® Cu(Lw)] o<——_eo-c0——e AprL(F(X.Y))
T
QlV ® Cx (L gaiw,))] e <—_e.0 —>e0<— Ap (F(X Uy ek+1 YY)

in the category of DGA’s in which all the horizontal arrows are quasi-isomorphisms (for
the DGA’s represented by dots, see [2] and also [9, Section 3], the previous and ensuring
discussions). The reslts [9, Proposition 5.3] and Lemma 4.7 assert that m2; and 7 are
the inclusions of relative Sullivan algebras. Thus by applying Lifting lemma repeatedly,
we have the two front commutative squares in Lemma 3.2. The commutativity of the
back square follows from that of the two side triangles. This completes the proof. O
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