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A rational splitting of a based mapping space

KATSUHIKO KURIBAYASHI

TOSHIHIRO YAMAGUCHI

Let F�.X;Y / be the space of base-point-preserving maps from a connected finite CW
complex X to a connected space Y . Consider a CW complex of the form X [˛ ekC1

and a space Y whose connectivity exceeds the dimension of the adjunction space.
Using a Quillen–Sullivan mixed type model for a based mapping space, we prove that,
if the bracket length of the attaching map ˛ W Sk !X is greater than the Whitehead
length WL.Y / of Y , then F�.X [˛ ekC1;Y / has the rational homotopy type of the
product space F�.X;Y /��kC1Y . This result yields that if the bracket lengths of
all the attaching maps constructing a finite CW complex X are greater than WL.Y /
and the connectivity of Y is greater than or equal to dimX , then the mapping space
F�.X;Y / can be decomposed rationally as the product of iterated loop spaces.

55P62; 54C35

1 Introduction

Let X be a connected finite CW complex with basepoint and X[˛ ekC1 the adjunction
space obtained by attaching the cell ekC1 to X along a cellular map ˛W Sk ! X .
Let F�.X;Y / denote the space of base-point-preserving maps from X to a connected

space Y with basepoint. The cofibre sequence X
i
!X [˛ ekC1

j
! SkC1 gives rise

to the fibration

�kC1Y D F�.SkC1;Y /
j]

! F�.X [˛ ekC1;Y /
i]

! F�.X;Y /:

The aim of this article is to consider when the above fibration splits after localization at
zero. Roughly speaking, our main theorem described below asserts that such a splitting
is possible if a number which expresses complexity of the attaching map ˛W Sk !X

is greater than the nilpotency of the rational homotopy Lie algebra of Y . In order to
state the theorem more precisely, we first introduce the number associated with a map
˛W Sk ! X . Let L be a graded Lie algebra. We define a subspace ŒL;L�.l/ of L by
ŒL;L�.l/ D ŒL; ŒL; Œ:::; ŒL;L�:::�� (l –times) and ŒL;L�.0/ DL, where Œ ; � denotes the
Lie bracket of L. Observe that ŒL;L�.lC1/ is a subspace of ŒL;L�.l/ .
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Definition 1.1 Let X be a simply-connected space. The bracket length of a map
˛W Sk !X , written bl.˛/, is the greatest integer n such that the class of the adjoint
map ad.˛/W Sk�1!�X to ˛ is in ŒLX ;LX �

.n/ , where LX denotes the homotopy Lie
algebra ��.�X /˝Q. If the map ad.˛/ is in ŒLX ;LX �

.n/ for any n, then bl.˛/D1.

Recall the Whitehead length WL.Y / of Y which is the greatest integer n such that
ŒLY ;LY �

.n/ ¤ 0 (see for example Berstein and Ganea [1]).

In what follows, we assume that a space is based and its rational cohomology is locally
finite. The connectivity of a space Y may be denoted by Conn.Y /. For a nilpotent
space X , we denote by XQ the Q–localization of X . Our main theorem can be stated
as follows:

Theorem 1.2 Let ˛W Sk ! X be a cellular map from the k –dimensional sphere to
a simply-connected finite CW complex X , where k > 0. Let Y be a space such that
Conn.Y /�maxfkC 1; dim X g. If bl.˛/ >WL.Y /, then the fibration

(1–1) �kC1Y D F�.SkC1;Y /
j]

! F�.X [˛ ekC1;Y /
i]

! F�.X;Y /

is rationally trivial; that is, there is a homotopy equivalence

F�.X [˛ ekC1;Y /Q
'
! .F�.X;Y /��kC1Y /Q

which covers the identity map on F�.X;Y /Q .

Suppose that Y is a connected nilpotent space and X is a finite CW complex. Then
F�.X;Y / is a connected nilpotent space (Hilton, Mislin and Roitberg [6, Theorem 2.5,
Chapter II]). Moreover, F�.X;Y /Q is homotopy equivalent to F�.X;YQ/ [6, Theorem
3.11, Chapter II].

Suppose that ˛W Sk ! X is homotopic to the constant map. Then it is evident that
F�.X [˛ ekC1;Y /Q' .F�.X;Y /��kC1Y /Q . In this case, the bracket length of ˛ is
infinity. Thus we can regard that Theorem 1.2 explains such decomposition phenomena
of mapping spaces more precisely from the rational homotopy theory point of view.

As an immediate corollary, we have the following result on rational decomposition of a
mapping space.

Theorem 1.3 Let X be a simply-connected finite CW complex and Y a space such
that Conn.Y /� dim X . Suppose that the bracket length of each attaching map which
constructs X is greater than WL.Y /. Then F�.X;Y / is rationally homotopy equivalent
to the product space �k.�

kY /nk , where nk denotes the number of the k –cells of X .
In particular, F�.X;Y /Q is a Hopf space.
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In fact, by looking at the attaching maps with higher dimension in order and by applying
Theorem 1.2 repeatedly, we have the result.

As an example, we give a mapping space F�.X;Y / which admits the decomposition
described in Theorem 1.3. Construct a CW complex Xn (n� 0) inductively as follows:
Let X0 be the m0 –sphere Sm0 , where m0 � 2. Suppose that Xi is defined. We
fix k integers m.i/j (1 � j � k ) greater than 1. Moreover we choose an element
˛i 2 �deg˛i

.Xi/ and the generators �m.i/j 2 �m.i/j .S
m.i/j / (1� j � k ). Define a CW

complex XiC1 by

XiC1 D .Xi _Sm.i/1 _ � � � _Sm.i/k /[Œ˛i ;Œ�m.i/1 ���Œ�m.i/k�1
;�m.i/k ���� ��

eli ;

where li D deg˛iCm.i/1C� � �Cm.i/k �kC1. It follows that the bracket length of
each attaching map is greater than or equal to k . Let Y be a space which satisfies the
condition that k >WL.Y / and dim Xn � Conn.Y /. Then Theorem 1.3 enables us to
conclude that

F�.Xn;Y /'Q �
n�1
iD0.�

li Y ��m.i/1Y � � � � ��m.i/k Y /��m0Y:

We here describe an application of Theorem 1.3.

Corollary 1.4 Let X and Y be the spaces which satisfy the conditions in Theorem
1.3. Then, for any space Z , there exist bijections of sets

ŒZ ^X;YQ�� Š ŒZ;F�.X;YQ/�� Š ŒZ;�k.�
kY /

nk

Q
��

Š

M
m;k�0;�m.Y /˝Q¤0

eH m�k
.ZIQ/˚nk ;

where nk denotes the number of the k –cells of X .

We emphasize that a Quillen–Sullivan mixed type model for a based mapping space,
which is constructed out of a model for a free mapping space due to Brown and Szczarba
[2] (see Section 2), plays a crucial role in proving Theorem 1.2.

The paper is organized as follows: In Section 2, we recall a Sullivan model for a
mapping space constructed by Brown and Szczarba. The mixed type model mentioned
above is described in this section. Moreover, we introduce a numerical invariant
d1–depth.Y /, which is called the d1–depth for a simply-connected space Y , using a
filtration defined by the quadratic part of the differential of the minimal model for Y .
This invariant is equal to the Whitehead length of Y . Section 3 is devoted to proving
Theorem 1.2. In the appendix (Section 4), we prove that d1–depth.Y /DWL.Y /. It
seems that the important equality is well known. However, we could not find until
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recently any reference in which the equality has been proved explicitly. Kaji [7] has
also proved it by looking at the nilpotency of the loop space �Y . We wish to stress
that our proof of the equality in the appendix contains also a careful consideration on
the filtration which defines the d1–depth.

We end this section by fixing some notations and terminology for this article. A graded
algebra A is defined over the rational field Q and is locally finite in the sense that
each vector space Ai is finite dimensional. Moreover it is assumed that an graded
algebra A is connected; that is, A0 DQ and Ai D 0 for i < 0. We denote by Qfxig

the vector space with a basis fxig. The free algebra generated by a graded vector space
V is denoted by ^V or QŒV �. For an algebra A and its dual coalgebra C , we define
AC and CC by AC D˚i>0Ai and CC D˚i<0Ci , respectively. Let .B; dB/ be a
differential graded algebra (DGA). We call a DGA .B˝^V; d/ is a relative Sullivan
algebra over .B; dB/ if d jB D dB and there exists an increasing filtration fV .k/gk�0

such that V D[kV .k/ and d.V .k//� B˝^V .k � 1/.

2 A Quillen–Sullivan mixed type model for a mapping space

Let .B; dB/ be a DGA and .^V; d/ a minimal DGA; that is, dv is decomposable for any
v 2V . Let B� denote the differential graded coalgebra defined by BqDHom.B�q;Q/

for q � 0 together with the coproduct D and the differential dB� , which are dual to
the multiplication of B and to the differential dB , respectively. Let I be the ideal of
the free algebra QŒ^V ˝B�� generated by 1˝ 1� 1 and all elements of the form

a1a2˝ˇ��
X

i

.�1/ja2jjˇ
0
i
j.a1˝ˇ

0
i�/.a2˝ˇ

00
i�/;

where a1; a2 2^V , ˇ� 2B� and D.ˇ�/D
P

i ˇ
0
i�˝ˇ

00
i� . Observe that QŒ^V ˝B��

is a DGA with the differential d WD dA ˝ 1˙ 1˝ dB� . The result of Brown and
Szczarba [2, Theorem 3.3] yields that .dA˝1˙1˝dB�/.I/� I . Moreover it follows
from [2, Theorem 3.5] that the composition map

�W QŒV ˝B�� ,!QŒ^V ˝B��!QŒ^V ˝B��=I

is an isomorphism of graded algebras. Thus we define a differential ı on QŒV ˝B�� by
��1 zd� , where zd is the differential on QŒ^V ˝B��=I induced by d . The differential
ı is described explicitly as follows: For an element v 2 V and a cycle ˇ� 2 B� , if
d.v/D v1 � � � vm with vi 2 V , then

(2–1)
ı.v˝ .ˇ�// D

P
j v1 � � � vm � ǰ1�˝ � � �˝ ǰm�

D
P

j .�1/".v1;:::;vm; ǰ1�;:::; ǰm�/v1˝ ǰ1� � � � vm˝ ǰm�
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where D.m�1/.ˇ�/D
P

j ǰ1�˝ � � �˝ ǰm� with the iterated coproduct D.m�1/ and
the integer .�1/".v1;::;vm; ǰ1�;::; ǰm�/ is defined by the formula

.�1/".v1;::;vm; ǰ1�;::; ǰm�/v1 ǰ1
� � � vm ǰm

D v1 � � � vm ǰ1
� � � ǰm

in the graded algebra .^V /˝ B using elements ǰs
(a � s � m) with deg ǰs

D

� deg ǰs� .

We denote by APL.X / the DGA of the polynomial differential forms on a space X . Let
X be a connected finite CW complex and Y a connected space with dim X �Conn.Y /.
We take a quasi-isomorphism .B; dB/!APL.X / and a minimal model .^V; d/ for
Y . By applying the construction mentioned above, we obtain a DGA of the form
.QŒV ˝B��; ı/, which gives an algebraic model (not minimal in general) for F.X;Y /
the space of free maps from X to Y [2]. In fact, there exists a quasi-isomorphism which
connects APL.F.X;Y // with the DGA .QŒV ˝B��; ı/. Moreover, the realization of
.QŒV ˝B��; ı/ is homotopy equivalent to F.X;YQ/ [2, Theorem 1.3] and hence to
F.X;Y /Q . The result of the first author [9, Proposition 5.3] asserts that .QŒV ˝B��; ı/

is a relative Sullivan algebra with the base QŒV �. Observe that .QŒV ˝B��; ı/ itself is
a Sullivan algebra [9, Reamrk 5.4]. Moreover the model for F.X;Y / leads to that for
the based mapping space F�.X;Y /.

Theorem 2.1 [9, Theorem 4.3] There exist a quasi-isomorphism from a Sullivan
algebra of the form .QŒV ˝ B��=.QŒV �

C/; ı/ D .Q ˝QŒV � QŒV ˝ B��; 1 ˝ ı/ to
APL.F�.X;Y //. Here .QŒV �C/ is the ideal of QŒV ˝B�� generated by QŒV �C .

From the explicit form (2–1) of the differential ı , we can deduce the following lemma.
The proof is left to the reader.

Lemma 2.2 Suppose that, for an element v˝ ˇ� 2 V ˝BC� , dv is in ^�mV and
D

m�1
.ˇ�/ D 0, where D

m�1
W BC� ! .BC� /

˝m denotes the (m � 1) fold reduced
coproduct. Then ı.v˝ˇ�/D 0. In particular, ı.v˝ˇ�/D 0 if ˇ� 2B� is a primitive
element.

We here recall, from Félix–Halperin–Thomas [4, Section 22], Quillen’s functor C�. /

from the category of connected differential graded Lie algebras (DGL’s) to the category
of simply-connected cocommutative differential graded coalgebras (DGC’s). Let
.L; dL/ be a DGL and ^.sL/ be the primitively generated coalgebra over the vector
space sL. We define the differentials dv and dh on ^.sL/ by

dv.sx1 ^ � � � ^ sxk/D�

kX
iD1

.�1/ni sx1 ^ � � � ^ sdLxi ^ � � � ^ sxk
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and

dh.sx1 ^ � � � ^ sxk/D
X

1�i<j�k

.�1/jsxi jCnij sŒxi ;xj �^ sx1 � � �bsxi � � �bsxj � � � ^ sxk ;

respectively. Here ni D
P

j<i jsxj j and sx1 ^ � � � ^ sxk D .�1/nij sxi ^ sxj ^ sx1 ^

� � �bsxi � � �bsxj � � � ^ sxk . We see that C�.L; dL/ D .^.sL/; dv C dh/ is a DGC. To
simplify, we may write C�.L/ for C�.L; dL/. By using the above DGC, we can
construct a more explicit model for a mapping space. Let .L; dL/ be a Lie model for a
space X ; that is, there exists a quasi-isomorphism C �.L; dL/D dual C�.L; dL/

'
!

APL.X /. We choose a minimal model .^V; d/ for Y . Then Theorem 2.1 implies
that the Sullivan algebra of the form .QŒV ˝ C�.L; dL/�=.QŒV �

C/; ı/ D .QŒV ˝

C�.L; dL/
C�; ı/ is a model for the mapping space F�.X;Y /. This model, which

is called a Quillen–Sullivan mixed type model for the based mapping space, is an
important ingredient for the proof of Theorem 1.2.

Remark 2.3 The Sullivan algebra of the form .QŒV ˝C�.L; dL/�; ı/ is regarded as
a mixed type model for the free mapping space F.X;Y /.

We close this section by introducing a numerical invariant which is called the d1 –depth
of a given space. We use the invariant to prove Theorem 1.2.

Let .^V; d/ be a minimal model for a simply-connected space Y . Then the differential
d is decomposed uniquely as d D d1C d2C � � � in which di is a derivation raising
the wordlength by i . We call d1 the quadratic part of d . We define a subspace V0 of
V by V0 D fv 2 V j d1.v/D 0g and put V�1 D 0. Moreover, define a subspace Vi

inductively by Vi D fv 2 V j d1.v/ 2 ^Vi�1g. It is readily seen that Vk�1 � Vk and
that if Vl D Vl�1 , then Vk D VkC1 for k � l .

Definition 2.4 The d1 –depth of Y , denoted d1–depth.Y /, is the greatest integer k

such that Vk�1 is a proper subspace of Vk .

It suffices to prove Theorem 1.2 by assuming that bl.˛/ > d1–depth.Y / instead of
the sufficient condition bl.˛/ >WL.Y /. The following theorem guarantees that the
replacement is valid.

Theorem 2.5 Let Y be a simply-connected space. Then d1–depth.Y /DWL.Y /.

Proof See the appendix.

Since the Whitehead length is a numerical topological invariant in the category of the
rational spaces, it follows that the d1 –depth of Y does not depend on the choice of
minimal models for Y and is also a topological invariant.
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3 A minimal model and Proof of Theorem 1.2

Before proving Theorem 1.2, we recall from [2] a result concerning construction of a
minimal model for a mapping space. Though the construction is for a free mapping
space, it is applicable to the model .QŒV ˝B��=.QŒV �

C/; ı/ for a based mapping
space F�.X;Y / which is described in Theorem 2.1. With the notation in Section 2, we
write QŒV ˝B��=.QŒV �

C/D QŒV ˝BC� �. Let fak ; bk ; cj g be a basis for BC� such
that d

B
C
�
.ak/D bk and d

B
C
�
.cj /D 0. Choose a basis fvig for V so that jvi j � jviC1j

and dviC1 2QŒVi �, where Vi is the subspace spanned by the elements v1; :::; vi . The
result [2, Lemma 5.1] states that there exist free algebra generators wij , uik and vik

such that

wij D vi ˝ cj Cxij ; where xij 2QŒVi�1˝BC� �;(3–1)

ıwij is decomposable and in QŒfwsl I s < ig�;(3–2)

uik D vi ˝ ak and ıuik D vik :(3–3)

Thus we have a decomposition QŒV ˝ BC� � D QŒwij �˝ QŒuik ; vik � of a differen-
tial graded algebra. Since QŒuik ; vik � is contractible, it follows that the inclusion
.QŒwij �; ı/ ! .QŒV ˝ BC� �; ı/ is a quasi-isomorphism. In consequence, we get a
minimal model of the form .QŒwij �; ı/ for the mapping space F�.X;Y /. Observe that
the vector space generated by the elements wij is isomorphic to the reduced homology
H�.B�/

C as a vector space.

We rely on the following result to construct a minimal model for the mapping space
F�.X;Y / from the Sullivan algebra .QŒV ˝C�.L; dL/

C�; ı/ in Section 2.

Lemma 3.1 [4, Proposition 22.8] For a DGL of the form .LW ; dL/, let �1W C�.LW /

D ^sLW ! sLW ˚ Q and �2 W sLW ˚ Q ! sW ˚ Q be the maps obtained by
annihilating the factors ^�2sLW and s.L�2

W
/, respectively. Then the composition map

�2 ı �1W C�.LW ; dL/! .sW ˚Q; d0/ is a quasi-isomorphism of complexes, where
d0 denotes the linear part of dL .

Recall a Lie model for an adjunction space. Let .LW ; dL/ be a minimal Lie model for X .
By definition, there exists a quasi-isomorphism C �.LW ; dL/

'
!APL.X /. Moreover,

we have an isomorphism �LW H.LW ; dL/
Š
! ��.�X /˝Q of graded Lie algebras.

Define an isomorphism �LW sH.LW ; dL/!��.X /˝Q by composing the map �L with
the inverse of the connecting isomorphism @W ��C1.X /˝Q! ��.�X /˝Q. Let z˛
be a cycle of LW such that �L sends the class sŒz˛ �2 sH.LW ; dL/ to Œ˛�2��.X /˝Q.
Then, as a Lie model for the adjunction space X [˛ ekC1 , we can choose the graded
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Lie algebra .LW˚Qfw˛g; d/ with djW D dL and d.w˛/ D z˛ [4, Theorem 24.7].
By applying the construction described in Section 2, we obtain a Sullivan model for
F.X [˛ ekC1;Y / of the form .^.V ˝C�.LW˚Qfw˛g; d//; ı/.

We need the following lemma to prove Theorem 1.2.

Lemma 3.2 Let
m1W QŒV �!QŒV ˝C�.LW /�

and m2W QŒV �!QŒV ˝C�.LW˚Qfw˛g/�

be the inclusions of relative Sullivan algebras. Let

�W QŒV ˝C�.LW /�!QŒV ˝C�.LW˚Qfw˛g/�

be the map induced by the inclusion .LW ; d/! .LW˚Qfw˛g; d/ of DGL’s. Then there
exists a commutative diagram

QŒV �
' //

m2

��

m1

uujjjjjjjjjjj APL.Y /

APL.ev�/

��

APL.ev�/

uujjjjjjjjjj

QŒV ˝C�.LW /�

� ))SSSSSSSSSS
' // APL.F.X;Y //

APL.i
]/

))TTTTTTTTT

QŒV ˝C�.LW˚Qfw˛g/�
' // APL.F.X [˛ ekC1;Y //

in the category of DGA’s in which three horizontal arrows are quasi-isomorphisms.
Hence the map �W QŒV ˝C�.LW /

C�! QŒV ˝C�.LW˚Qfw˛g/
C� induced by � is a

Sullivan model for the map i]W F�.X [˛ ekC1;Y /! F�.X;Y / [4, Definition, page
182].

Proof See the appendix.

Proof of Theorem 1.2 Under the hypotheses in Theorem 1.2, we see that the space
F�.X;Y / is simply-connected and F�.X [˛ ekC1;Y / is connected. We shall prove
the fibration (1–1) is rationally trivial if the inequality bl.˛/ > d1–depth.Y / holds.

Under the notation mentioned above, we assume that

z˛ D
X

i

Œxin
Œxin�1

Œxin�2
; :::; Œxi1

;xi0
�; :::���

with appropriate cycles xij in LW , where n D bl.˛/. By virtue of Lemma 3.2, we
see that the inclusion �W ^.V ˝ C�.LW ; d/

C/! ^.V ˝ C�.LW˚Qfw˛g; d/
C/ is a

model for the projection i] of the fibration (1–1). Let 'W .^.Z/; d/ ! .^.V ˝
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C�.LW ; d/
C/; ı/ be the minimal model described before Lemma 3.1. Observe that '

is an inclusion and Z Š V ˝H�.C�.LW ; d/
C/Š V ˝ sW . If ^.eZ 0/ is a minimal

model for the Sullivan algebra .^.V ˝C�.LW˚Qfw˛g; d/
C/; ı/, then eZ 0 is isomorphic

to V ˝H�.C�.LW˚Qfw˛g; d/
C/ and hence to V ˝s.W ˚Qfw˛g/. With this in mind,

we define a Sullivan algebra .^eZ ; ed / by eZ DV ˝s.W ˚Qfw˛g/ŠZ˚.V ˝sw˛/,ed jZ D d and ed jV˝sw˛
� 0. In order to prove Theorem 1.2, it suffices to show that

there exists a quasi-isomorphism  W .^eZ ; ed /! .^.V ˝C�.LW ; d/
C/; ı/ such that

the diagram

.^Z; d/� _

' '

��

I // .^eZ;ed/
' 

��

.^.V ˝C�.LW ; d/
C/; xı/

�
// .^.V ˝C�.LW˚Qfw˛g; d/

C/; xı/

is commutative, where I is the inclusion. In fact, we then see that the map I is regarded
as a Sullivan model for i] . Moreover the Sullivan algebra .^eZ ; ed / is isomorphic to
.^Z; d/˝ .^.V ˝ sw˛/; 0/ as a DGA. Observe that .^.V ˝ sw˛/; 0/ is the minimal
model for �kC1Y .

We shall construct the required map  . Put ^U D ^.V ˝ C�.LW˚Qfw˛g; d/
C/.

Let ^sU be the vector subspace of ^U consisting of elements with wordlength
s and ^�sU the ideal of ^U generated by ^sU . Assume that v 2 Vm , where
mD d1–depth.Y /. We first choose a cycle

c˛ D sw˛ �
X

i

sxin
^ sŒxin�1

Œxin�2
; :::; Œxi1

;xi0
�:::��

in C�.LW˚Qfw˛g; d/ and define an element 
1 of ^U by 
1 D v˝ c˛ . Observe that
n > m by assumption. We set xin�1;::;i0

D Œxin�1
Œxin�2

; :::; Œxi1
;xi0

�:::��. It follows
from (2–1) that, in ^�2U ,

ı.
1/D�
�X

i;j1

.�1/
jsxin jjv

0
j1
j
.vj1
˝ sxin

/ � .v0j1
˝ sxin�1;::;i0

/

C

X
i;j1

.�1/
jsxin�1;::;i0

jjsxin jCjsxin�1;::;i0
jjv0
j1
j
.vj1
˝ sxin�1;::;i0

/ � .v0j1
˝ sxin

/
�

if d1.v/D
P

j1
vj1
v0j1

. We see that ı.
1/ belongs to ^2U and is determined without
depending on the term of .d � d1/.v/ because sxin

and sxin�1;::;i0
are primitive.

Observe that vj1
and v0j1

are in Vm�1 (see Lemma 4.4 for more polished result on the
image of d1 ).
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We next define an element 
2 2 ^
2U by


2 D

X
i;j1

.�1/"in;::;i0 .vj1
˝ sxin

/ � .v0j1
˝ sxin�1

^ sxin�2;::;i0
/

C

X
i;j1

.�1/
"0

in;::;i0 .vj1
˝ sxin�1

^ sxin�2;::;i0
/ � .v0j1

˝ sxin
/;

where "in;::;i0
and "0in;::;i0

denote the integers jsxin
jjv0j1
jCjvj1

˝sxin
jCjv0j1

jCjsxin�1
j

and jsxin�1;::;i0
jjsxin

jC jsxin�1;::;i0
jjv0j1
jC jvj1

jC jsxin�1
j, respectively. Since sxin

is primitive, it follows from Lemma 2.2 that ı.
1/D�ı.
2/ in ^2U .

In a similar fashion, we can define elements 
l 2 ^
lU so that ı.
l�1/D �ı.
l/ in

^lU and each term of 
l has the form

y �
�
vjl
˝ .sxin�lC1

^ sxin�l ;::;i0
/
�
;

where vjl
2 Vm�lC1 and y is an element in the ideal of ^U generated by elements of

the form u˝ sxis
for some u 2 V . Since ı.
l/ 2 ^

lU ˚^lC1U and ı.
mC1/D 0 in
^mC2U , it follows that 
v WD 
1C � � �C 
mC1 is a ı–cycle in ^U (see (3–4) below
in which ı1 denotes the linear part of the differential ı and ı2 D ı� ı1 ).

(3–4) 0


1

ı1

OO

ı2 // 0


2

ı1

OO

ı2 // 0


mC1
ı2 //

ı1

OO

0

Observe that the element 
2 C � � � C 
mC1 can be regarded as the element xij in
condition (3–1).

The same argument above works well to show that v˝ sw˛ is a cycle when v 2 Vl for
l <m since bl.˛/D n>mD d1–depth.Y /.

We here define a map  W .^eZ ; ed /! .^.V ˝C�.LW˚Qfw˛g; d/
C/; ı/ by  jZ D �'

and  .v˝ sw˛/D 
v for v˝ sw˛ 2 V ˝ sw˛ . The construction of QŒwij � described
before Lemma 3.1 tells us that  is a minimal model. Moreover we see that all the
required conditions for  hold. This completes the proof of Theorem 1.2.

Example 3.3 Let us consider the projective space CP2DS2[
 e4 , where 
 denotes
the Hopf map. Let Y be a 4–connected space with a minimal model .^V; d/ for
which V is a vector space with a basis fx1;x2;x3;yg, d.xi/D 0 and d.y/D x1x2x3 .
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Since 
 is decomposable in ��.S2/˝Q, it is evident that bl.
 / D bl.Œ�; ��/ D 1 >

0D d1–depth.Y /, where � is the generator of �2.S
2/. Thus Theorem 1.2 allows us to

conclude that the fibration �4Y ! F�.CP2;Y /!�2Y is rationally trivial.

Example 3.4 Let LP2 be the Cayley plane and CP2
i a copy of the complex projective

plane for i D 1; 2. Let �i denote the generator of �2.CP2
i /. The space CP2

1
_

CP2
2
[Œ�1;�2� e

4 has a CW–decomposition for which the bracket length of each attaching
map is greater than or equal to 1. Since H�.LP2IQ/ŠQŒx8�=.x

3
8
/, where deg x8D8,

it follows that WL.LP2/ D d1–depth.LP2/ D 0. Corollary 1.4 yields that, for any
based space Z ,

ŒZ ^ .CP2
1 _CP2

2 [Œ�1;�2� e
4/;LP2

Q�� Š .H
8�4.ZIQ/˚H 23�4.ZIQ//˚3

˚.H 8�2.ZIQ/˚H 23�2.ZIQ//˚2:

Example 3.5 Let G and H be a compact connected Lie group and a closed subgroup
of G , respectively. By considering the K.S–extension of the fibration G!G=H!BH ,
we see that the minimal model .^V; d/ for G=H satisfies the condtions: dV even D 0

and dV odd �^V even . This implies that d1–depth.G=H /�1. Let X and ˛W Sk!X

be as in Theorem 1.2. Suppose that Conn.G=H / � maxfk C 1; dim X g. Then the
fibration

�kC1Y D F�.SkC1;G=H /
j]

! F�.X [˛ ekC1;G=H /
i]

! F�.X;G=H /

is rationally trivial if bl.˛/ > 1.

Example 3.6 Recall from [4] that a simply-connected space Y is elliptic if dim��.Y /

˝Q < 1 and dim H�.Y IQ/ < 1. Let Y be an n–connected finite dimensional
elliptic CW complex with a minimal model .^V; d/. Let fvig be a basis of V . If
vis
2 Vs �Vs�1 , then deg vis

� .sC 1/nC 1 (see the Section 2 for the notation Vs ).
Put mD d1–depth.Y / and let v be an element of V with the maximal degree. Then
deg v is odd from Friedlander–Halperin [5, Theorem 1 and Lemma 2.5]. Therefore it
follows from [5, Corollary 1.3(3)] that

.mC 1/nC 1� deg vim
� deg v �

X
j Wodd

j � dim V j
� 2 dim Y � 1

and hence 2 dim Y=n>mC1D d1–depth.Y /C1. Theorem 1.2 enable us to conclude
that the fibration (1–1) is rationally trivial if bl.˛/C 1� 2 dim Y=Conn.Y /.

We give examples which assert that the decomposition in Theorem 1.2 does not hold
in general when bl.˛/ �WL.Y /. To this end, we here recall the result [8, Theorem
1.2] due to Kotani.
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Let .^V; d/ be a minimal model for a simply-connected space Y . Consider the
decomposition d D d1C d2C � � � of the differential d as in Section 2. The d –length
of Y , denoted d –length(Y), is the least integer m such that di � 0 for i <m� 1 and
dm�1 6� 0. Observe that the d –length of Y is a topological invariant (see [8, Theorem
1.1]). As usual, we define the cup-length of a space X , c.X /, by the greatest integer
n such that there are elements ˛1 , ..., ˛n in HC.X IQ/ for which ˛1[ � � � [˛n ¤ 0.
Then the main result in [8] is stated as follows.

Theorem 3.7 [8, Theorem 1.2] Let X be a path connected, finite dimensional
CW complex and Y a connected space with Conn.Y / � dim X . Suppose that X is
formal. Then the cohomology algebra H�.F�.X;Y /IQ/ is a free algebra if and only
if d -length.Y / > c.X /.

Example 3.8 Consider the projective space CP3 D CP2 [˛ e6 . We observe that
˛ is indecomposable in ��.CP2/˝Q. Since d -length.Y / D 3 D c.CP3/, it fol-
lows from Theorem 3.7 that H�.F�.CP3;Y /IQ/ is not free. Thus F�.CP3;Y /

is not rationally homotopy equivalent to the product F�.CP2;Y / ��6Y because
H�.F�.CP2;Y /��6Y IQ/ is free. Observe that bl.˛/D 0D d1–depth.Y / in this
case.

Example 3.9 Let .^V; d/ D .^.x;y/; d/ be the minimal model for S6 , where

deg x D 6, deg y D 11, dx D 0 and dy D x2 . Consider the fibration �4S6
j]

!

F�.CP2;S6/
i]

! �2S6 which is induced from the cofibre sequence S2 i
! CP2 D

S2 [
 e4
j
! S4 . Let � be the generator in �2.S

2/˝Q. Observe that 
 D qŒ�; ��

for some nonzero rational number q . We can choose QŒV ˝C�.LQfz�;w
 g; d/
C� as a

Sullivan model for the function space F�.CP2;S6/, where z� denotes the element in
�1.�S2/˝Q corresponding to � via the connecting isomorphism �2.S

2/˝Q!

�1.�S2/˝Q. Put v4 D x ˝ sz�, v9 D y ˝ sz�, v2 D x ˝ .sw
 � q.sz� ^ sz�// and
v7 D y˝ .sw
 � q.sz�^ sz�//. Then a model for the above fibration is given by

.^.v4; v9/; 0/! .^.v4; v9; v2; v7/; ı/! .^.v2; v7/; 0/

where ı.v7/D�2qv4
2 and ı.vi/D 0 for i ¤ 7 (see the proof of Theorem 1.2 for the

construction). Therefore the fibration is not rationally trivial. It is readily seen that
bl.Œ�; ��/D 1D d1–depth.S6/ in this case.

Example 3.10 Let Y be a 6–connected space whose minimal model has the trivial
differential. Then the differentials of the minimal models for the spaces F�.CP2;Y /

and F�.CP3;Y / are also trivial. Moreover we see that �6Y
j]

! F�.CP3;Y /
i]

!
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F�.CP2;Y / is rationally trivial though bl.˛/D 0D d1–depth.Y /. This fact implies
that the converse assertion of Theorem 1.2 does not hold in general.

Acknowledgements The authors are grateful to Jean-Claude Thomas for useful com-
ments on the Whitehead length and the d1 –depth. They would like to thank Yasusuke
Kotani for explaining his result [8, Theorem 1.2] and wish to express their thanks to the
referee of the previous version of this article. His comments lead us to the examples
described in Section 3.

4 Appendix

We prepare to prove Theorem 2.5. Let .^V; d/ be the minimal model for a simply-
connected space Y . Recall the graded Lie algebra L associated with a minimal model
.^V; d/ for Y (see [4, Section 21, (e)]). The graded vector space L is defined by
sLDHom.V;Q/. We define a pairing h I iW V �sL!Q by hvI sxiD .�1/deg vsx.v/.
Moreover, using the pairing, define a trilinear map

h I ; iW ^2V � sL� sL!Q

by hv^wI sx; syi D hvI sxihwI syiC .�1/jvjjwjhwI sxihvI syi. Then the Lie bracket
Œ ; � in L is given by requiring that (4.1):

hvI sŒx;y�i D .�1/deg yC1
hd1vI sx; syi

for x;y 2L and v 2 V . The result [4, Theorem 21.6] asserts that L is isomorphic to
the homotopy Lie algebra LY . Therefore, in order to prove Theorem 2.5, it suffices
to show that the d1 –depth of Y is equal to the integer WL.L/, which is the greatest
integer n such that ŒL;L�.n/ ¤ 0. As in the proof of Theorem 1.2, we may write
xin;::;i0

for the element Œxin
Œxin�1

; :::; Œxi1
;xi0

��� in L.

Lemma 4.1 For any ˛ 2 Vn�1 and any xin;::;i0
2 ŒL;L�.n/ , h˛; sxin;:::;i0

i D 0.

Proof We argue by induction on n. From the formula (4.1), we see that h˛; sxi1;i0
iD0

for any ˛ 2 V0 . Suppose that hˇ; sxin�1;:::;i0
i D 0 for any ˇ 2 Vn�2 . Let ˛ be an

element of Vn�1 . Then we can write d1.˛/D
P

j ǰˇ
0
j with some elements ǰ and

ˇ0j of Vn�2 . Thus it follows from the definition of the trilinear map h I ; i that

h˛; sxin;:::;i0
i D ˙hd1˛I sxin

; sŒxin�1
; :::Œxi1

;xi0
��i

D ˙h

X
j

ǰˇ
0
j I sxin

; sŒxin�1
; :::Œxi1

;xi0
��i D 0:
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Proposition 4.2 d1–depth.Y /�WL.L/.

Proof Suppose that ŒL;L�.m/ ¤ 0. We choose a nonzero element xim;:::;i0
of

ŒL;L�.m/ . Let vm be an element of V such that hvm; sxim;:::;i0
i ¤ 0. Lemma 4.1

yields that vm 62 Vm�1 and hence the d1–depth.Y /�m.

In order to complete the proof of Theorem 2.5, it remains to prove that d1–depth.Y /
is less than or equal to WL.L/. To this end, we first characterize the vector space V0

using the space S of indecomposable elements of L. One can express the vector space
as LD S ˚ ŒL;L�.

Lemma 4.3 sS D Hom.V0;Q/.

Proof Let fxig and fyj g be bases for S and ŒL;L�, respectively. Let f.syj /
�g [

f.sxi/
�g be the basis of V which is the dual to the basis fsyj g[fsxig of sL. It suffices

to prove that V0 is the vector space spanned by f.sxi/
�g. Since hd.sxi/

�I sx; syi D

h.sxi/
�I sŒx;y�i D 0 for any x;y 2 V , it follows that .sxi/

� 2 V0 . For any v 2 V0 ,
we write v D

P
i �i.sxi/

�C
P

j �j .syj /
� and syj D

P
kj

sŒakj ; bkj � for some akj

and bkj in L. It follows that

0 D
X
kj

hdvI sakj ; sbkj i D h

X
i

�i.sxi/
�
C

X
j

�j .syj /
�;
X
kj

sŒakj ; bkj �i

D h

X
i

�i.sxi/
�
C

X
j

�j .syj /
�; syj i D �j :

Thus we have v D
P

i �i.sxi/
� .

We here study a fundamental property of the quadratic part of the differential d . Write
Vn D Vn˚Vn�1 and fix a basis fwj g for Vn .

Lemma 4.4 For any u 2 VnC1 , there exist elements ej 2 V0 and fs;gs 2 Vn�1 such
that

d1uD
X

j

ejwj C

X
s

fsgs:

Proof The result for nD 0 is immediate. Let us assume that n� 1. We can write

d1uD
X
i�j

�ijwiwj C

X
j

ejwj C

X
s

fsgs
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with some elements ej ; fs , gs 2 Vn�1 and �ij 2Q. By applying the differential d1

to the equality, we have

0D d1d1uD
X
i�j

�ij d1.wi/wj C

X
i�j

.�1/jwi j�ijwid1.wj /C
X

j

d1.ej /wj CZ

D

X
j

�X
i

�ij d1wi C d1ej

�
wj CZ

in which �ii D 2�ii , �ij D �ij for i < j , �ij D .�1/jwj jCjwj jjd1wi j�ij for i > j and
Z is an appropriate element of ^�2Vn�1 . Thus we see that

P
i �ij d1wi C d1ej D 0

for any j . Since d1ej 2 ^Vn�2 , it follows that
P

i �ijwi is in Vn�1 and henceP
i �ijwi D 0. The fact enables us to conclude that �ij D 0 for any i , j and that ej

is in V0 . We have the result.

Lemma 4.3 allows us to choose a basis fsxkgk2J for sS and its dual basis fekgk2J

for V0 . Let fwmgm2M be a basis for V1 . We can write d1wmD
P

k1;k0
�
.m/

k1;k0
ek1

ek0
,

where �.m/
k0;k0

D 0 if jek0
j is odd.

Lemma 4.5 Let fv.n/p g1�p�ln
be a basis for Vn , where n � 1. Then there exist

rational numbers �v
.n/
p

kn;::;k2;m
for all kn; ::; k2 and m such that

.�1/
jsŒxkn�1

Œ:::;Œxk1
;xk0

�:::��j
hv.n/p ; sŒxkn

; Œxkn�1
Œ:::; Œxk1

;xk0
�:::���i D

X
m

�
v
.n/
p

kn;::;k2;m
�
.m/

k1;k0

and the matrix
�
�
v
.n/
p

kn;::;k2;m

�
with ln columns is of full rank; that is, the column

vectors obtained from the matrix are linearly independent. Here, we regard the set
f.kn; ::; k2;m/g as the ordered set fIig by using the lexicographic order on elements

.kn; ::; k2;m/. Then the .i;p/ component of the matrix
�
�
v
.n/
p

kn;::;k2;m

�
is given by �v

.n/
p

Ii
.

Proof We argue by induction on n. In the case where nD 1, the result is immediate.

We assume that n� 2 and that the assertion is true up to n. To simplify, we write vp
for v.nC1/

p . Thanks to Lemma 4.4, we can express

d1vp D
X

1�k�q;1�j�r

�
vp

kj
ekv

.n/
j C

X
s

fsgs

with some elements fs and gs in Vn�1 , where �vp

kj
2Q. Then it follows that

.�1/"hvp; sxknC1;:::;k0
i D h

X
k;j

�
vp

kj
ekv

.n/
j C

X
s

fsgs I sxknC1
; sxkn;:::;k0

i DW �;
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where "D jsxkn;:::;k0
j. Lemma 4.1 allows us to deduce that

� D
X
kj

�
vp

kj
hek ; sxknC1

ihv
.n/
j ; sxkn;:::;k0

i

D

X
j

�
vp

knC1j

�X
m

�
v
.n/

j

kn;::;k2;m
�
.m/

k1;k2

�
D

X
m

�X
j

�
vp

knC1j
�
v
.n/

j

kn;::;k2;m

�
�
.m/

k1;k2

We put �vp

knC1;::;k2;m
D
P

j �
vp

knC1j
�
v
.n/

j

kn;::;k2;m
and consider the matrix

�
�
vp

knC1;::;k2;m

�
.

Then, by definition, we see that the matrix is decomposed as

�
�
vp

knC1;::;k2;m

�
D

�
�
vp

knC1;Ii

�
D

0BBBBBBBBBBBB@

�
vp

1I1

:::

�
vp

1Is

: : : �
vp

2I1
: : :

:::
:::

�
vp

qIs

1CCCCCCCCCCCCA
D

0BBB@
A

A
: : :

A

1CCCAB;

where

AD
�
�
v
.n/

j

Ii

�
and B D

0BBBBBBBB@

�
vp

11
:::

�
vp

1r

: : : �
vp

21
: : :

:::

�
vp

qr

1CCCCCCCCA
:

Since the set fvpg is a basis for VnC1 , it follows that the matrix B is of full rank.
By assumption, A is of full rank and hence so is

�
�
vp

knC1;::;k2;m

�
. This completes the

proof.

Theorem 2.5 follows from Proposition 4.2 and the following proposition.

Proposition 4.6 d1–depth.Y /�WL.L/.

Proof Put nD d1–depth.Y /. It suffices to prove that the inequality holds in the case
where n� 1. Let fv.n/p g1�p�ln

be a basis for Vn . We assume that

hv.n/p ; sŒxkn
; Œxkn�1

Œ:::; Œxk1
;xk0

�:::���i D 0
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for any kn; :::; k1; k0 . Then it is readily seen that
P

m �
v
.n/
p

kn;::;k2;m
�
.m/

k1;k0
D 0, where

�
v
.n/
p

kn;::;k2;m
are rational numbers described in Lemma 4.5. Consider the linear combina-

tion
P

m �
v
.n/
p

kn;::;k2;m
wm with the basis fwmg for V1 . We have

d1.
X
m

�
v
.n/
p

kn;::;k2;m
wm/D

X
m

�
v
.n/
p

kn;::;k2;m
d1.wm/

D

X
m

�
v
.n/
p

kn;::;k2;m

X
k1;k0

�
.m/

k1;k0
ek1

ek0

D

X
k1;k0

.
X
m

�
v
.n/
p

kn;::;k2;m
�
.m/

k1;k0
/ek1

ek0
D 0:

It follows that
P

m �
v
.n/
p

kn;::;k2;m
wm 2 V0 and hence �v

.n/
p

kn;::;k2;m
D 0 for any m. Conse-

quently, �v
.n/
p

kn;::;k2;m
is zero for any m; kn; :::; k2 , which is a contradiction.

In the rest of this section, we shall prove Lemma 3.2. To this end, we first prepare a
lemma.

Lemma 4.7 The map �W QŒV ˝C�.LW /�!QŒV ˝C�.LW˚Qfw˛g/� in Lemma 3.2
is the inclusion of a relative Sullivan algebra.

Proof We write LW˚Qfw˛g D LW ˚Z with appropriate vector space Z . Then the
C�.LW˚Qfw˛g/ is decomposed as C�.LW˚Qfw˛g/D^.sLW /˝^.sZ/D^.sLW /˝

1˚^.sLW /˝^.sZ/C . We see that V ˝C�.LW˚Qfw˛g/D V ˝C�.LW /˚V ˝U

and hence QŒV ˝ C�.LW˚Qfw˛g/� D QŒV ˝ C�.LW /� ˝ QŒV ˝ U �, where U D

^.sLW /˝^.sZ/C . Let U.j/ be the vector subspace of U consisting of elements with
ordinary homology degree j , namely U.j/ D .^.sLW /˝^.sZ/C/j . Put V .k/ D

˚iCj�kVij , where Vij D V i ˝U.j/ . It is readily seen that [kV .k/ D V ˝U and
ı.V .k//�QŒV ˝C�.LW /�˝QŒV .k � 1/�. Thus we have the result.

Proof of Lemma 3.2 Let i W X!X [˛ ekC1 be the inclusion map and l W C�.LW /!

C�.LW˚Qfw˛g/ the DGC map induced by the natural inclusion L! LW˚Qfw˛g . Then
there exists a homotopy commutative diagram

APL.X / APL.X [˛ ekC1/
APL.i/oo

C �.LW /

'

OO

C �.LW˚Qfw˛g/;
l�oo

'

OO
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where two vertiacal arrows are quasi-isomorophisms and l� denotes the dual map to l .
By considering a Sullivan model C �.LW˚Qfw˛g/

// // D for l� and applying Lifting
lemma [3, Lemma 3.6], we have a commutative diagaram

APL.X / APL.X [˛ ekC1/
APL.i/oo

D

OO

��

C �.LW˚Qfw˛g/
oo

OO

D
��

C �.LW / C �.LW˚Qfw˛g/
l�oo

in which vertial arrows are quasi-isomorophisms. Thus from the naturality of the model
due to Brown and Szczarba, we can construct a commutative diagram

QŒV �

m1

��

'
// �

��

� � � � �
'

oo

��

'
//

��

�

��

APL.Y /'
oo

APL.ev�/
��

QŒV ˝C�.LW /�

�
��

'
// �

��

� � � � �
'

oo

��

'
//

��

�

��

APL.F.X;Y //'
oo

APL.i
]/

��
QŒV ˝C�.LW˚Qfw˛g/� '

// � � � � � �
'

oo
'

// � APL.F.X [˛ ekC1;Y //
'

oo

in the category of DGA’s in which all the horizontal arrows are quasi-isomorphisms (for
the DGA’s represented by dots, see [2] and also [9, Section 3], the previous and ensuring
discussions). The reslts [9, Proposition 5.3] and Lemma 4.7 assert that m1 and � are
the inclusions of relative Sullivan algebras. Thus by applying Lifting lemma repeatedly,
we have the two front commutative squares in Lemma 3.2. The commutativity of the
back square follows from that of the two side triangles. This completes the proof.
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