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Quantum link invariant from
the Lie superalgebra D2 1;˛

BERTRAND PATUREAU-MIRAND

The usual construction of link invariants from quantum groups applied to the superal-
gebra D2 1;˛ is shown to be trivial. One can modify this construction to get a two
variable invariant. Unusually, this invariant is additive with respect to connected sum
or disjoint union. This invariant contains an infinity of Vassiliev invariants that are not
seen by the quantum invariants coming from Lie algebras (so neither by the colored
HOMFLY-PT nor by the colored Kauffman polynomials).

57M25; 57M27, 17B37

Introduction

In his classification of finite dimensional Lie superalgebras [7], V G Kac introduces a
family of simple Lie superalgebras D2 1;˛ depending of the parameter ˛ 2Cn f0;�1g.
The notation evokes a deformation of the Lie superalgebra osp.4; 2/ which is obtained
for ˛ 2 f�2;�1

2
; 1g.

There is a method to construct framed link invariants with a deformation of an en-
veloping Lie algebras. It follows from work of Drinfel’d [4] that for a fixed simple Lie
algebra, all deformations give the same link invariant. This is not clear1 for the simple
Lie superalgebra D2 1;˛ . So we explore here two possibly different deformations
of U D2 1;˛ : the Kontsevich–Drinfel’d deformation and the quantum group UhD2 1

described by Y M Zou and H Thys [17; 14]. The two corresponding link invariants
will be denoted by the letters Z and Q.

First we will see that the quantum link invariants ZD2 1;˛;V obtained from any rep-
resentation V of the Lie superalgebra D2 1;˛ is determined by the linking matrix
(see Section 3.2.4 and Remark 3.4). Similarly the quantum link invariants QD2 1;˛;L

obtained from the adjoint representation of D2 1;˛ is constant equal to 1. (See Section
4.1.2).

A similar problem was encountered by J Murakami [10], Kashaev [8] and Degushi
[3]: the quantum invariants they considered factor by the zero quantum dimension (the

1At the time of writing this paper; but see Geer [5; 6] for new results.
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invariant of the unknot). The remedy is to “divide” by this quantum dimension by
considering .1; 1/–tangles instead of links. Here the invariant of the planar trivalent
tangle ‚ is zero and we give a construction to “divide” trivalent tangles and links by
this ‚.

From this we construct a map eZ in Section 3.3 that associates to each framed link
an element of the ring QŒŒa1; a2; a3��

S3

=.a1Ca2Ca3/
(quotient of the ring of symmetric

series in three variables) and in Section 4.2.2 we construct eQ that associates to each
framed link an element of the ring

ZŒ
1

2
; q1; q2; q3; Œ4�1

�1; Œ4�2
�1; Œ4�3

�1�=.q1q2q3 D 1/:

The existence and the invariance of eZ is easy to proof but one can hardly compute it.
On the other side, it takes much more work to proof that eQ is well defined but it can
be computed with an R–matrix.

It is natural to conjecture that the two deformations of U D2 1;˛ are equivalent. Knowing
this would implies that the two maps eQ and eZ would essentially be the same (setting
qi D e

ai
2 etc) and then their value would be in the intersection of these two different

rings.

The author thanks Y M Zou for sending his papers and C Blanchet for reading the first
version of this manuscript. The author also wishes to thank the referee for numerous
helpful comments.

1 Statement of the results

We work with framed trivalent tangles and knotted trivalent graphs which are gener-
alizations of framed tangles and links (they are embeddings of 1-3–valent graphs in
S3 ). Here are an example of a trivalent tangle and of a knotted trivalent graph (see
Section 3.1 for precise definition).

We will call a framed knotted trivalent graph “proper” if it has at least one trivalent
vertex.

The “adjoint” Kontsevich integral (cf Section 3.2.2) associate to each trivalent tangle
a series of 1-3–valent Jacobi diagrams. When composed with the weight function
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ˆD2 1
associated to the Lie superalgebra D2 1 (which is a generalization of D2 1;˛ ), it

gives an functor ZD2 1;L from the category of trivalent tangles to a completion of the
category of representation of D2 1 (here L denotes the adjoint representation of D2 1 ).

Proposition 1.1 On trivalent tangles, ZD2 1;L does not depend of the framing. Fur-
thermore, if N is a knotted trivalent graph then

ZD2 1;L.N /D

(
0 if N is a proper knotted trivalent graph;

1 if N is a link

The “adjoint” Kontsevich integral of a knotted trivalent graph lives in the space of
closed 3–valent Jacobi diagrams. This space has a summand isomorphic to the al-
gebra ƒ defined by P Vogel in [15] on which ˆD2 1;L is not trivial. Using this map
one can construct an invariant of knotted trivalent graph eZ with values in the ring
QŒŒa1; a2; a3��

S3

=.a1Ca2Ca3/
.

Proposition 1.2 ZD2 1;L and eZ are related by

ZD2 1;L

�
T

�
D eZ �

T
�
:ZD2 1;L

� �
for any trivalent tangle T with 3 1–valent vertices.

We state similar results for QD2 1;˛;L : The quantum group UhD2 1 has an unique
topologically free representation L whose classical limit is the adjoint representation of
D2 1;˛ . This module is autodual and there is an unique map (up to a scalar) L˝L�!L

whose classical limit is the Lie bracket. As usual, coloring a trivalent tangle with L

gives a functor QD2 1;˛;L from the category of trivalent tangles to the category of
representation of the quantum group UhD2 1 and, in particular, a knotted trivalent
graph invariant.

Proposition 1.3 On trivalent tangles, QD2 1;˛;L does not depend of the framing.
Furthermore, if N is a knotted trivalent graph then

QD2 1;˛;L.N /D

(
0 if N is a proper knotted trivalent graph;

1 if N is a link

We modify this invariant to the following:

Algebraic & Geometric Topology, Volume 6 (2006)
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Theorem 1.4 There is an unique invariant of proper knotted trivalent graph eQ , with
values in the ring ZŒ1

2
; q1; q2; q3; Œ4�1

�1; Œ4�2
�1; Œ4�3

�1�=.q1q2q3 D 1/ defined by the
property:

QD2 1;˛;L

�
T

�
D eQ �

T
�
:QD2 1;˛;L

� �
for any trivalent tangle T with 3 univalent vertices.

Theorem 1.5 There exists an invariant of framed links uniquely determined by:

eQ � �
� eQ � �

D eQ �
� C

1

2

�
C

��
and eQ .Unlink/D 0

Conjecture 1.6 eQ takes value in the polynomial algebra ZŒ�C; ��� where �C D
.q2

1
C q2

2
C q2

3
/ and �� D .q�2

1
C q�2

2
C q�2

3
/.

2 The superalgebra D2 1;˛

2.1 The Cartan matrix

Let ˛ 2 C n f0;�1g. The simple Lie superalgebra D2 1;˛ introduced by V G Kac [7]
has the following Cartan matrix

A˛ D .aij /1�i;j�3 D

0@ 0 1 ˛

�1 2 0

�1 0 2

1A ;
Where the first simple root is odd and the two others are even. So the superalgebra is
generated by the nine elements ei , fi , hi (i D 1 � � � 3) with the following relations:

Œhi ; hj �D 0 ; Œei ; fj �D ıi;j hi ; Œhi ; ej �D aij ej ; Œhi ; fj �D�aijfj ;

Œe2; e3�D Œf2; f3�D Œe1; e1�D Œf1; f1�D Œei ; Œei ; e1��D Œfi ; Œfi ; f1��D 0 for i D 1; 2

Its even part is isomorphic to the Lie algebra L D sl2 ˚ sl2 ˚ sl2 and the bracket
makes the odd part an L–module isomorphic to the tensor product of the three standard
representations of sl2 . So we can identify the set of weights with a subset of Z3 such
that the three simple roots are:

.1;�1;�1/ .0; 2; 0/ .0; 0; 2/

Then the set of positive roots is

fˇ1 D .0; 0; 2/; ˇ2 D .1;�1; 1/; ˇ3 D .1; 1; 1/; ˇ4 D .2; 0; 0/;
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ˇ5 D .1;�1;�1/; ˇ6 D .1; 1;�1/; ˇ7 D .0; 2; 0/g

2.2 The superalgebra D2 1

We use in Section 3.2.3 the following construction of D2 1 (see [15] and [16]):

Let R D QŒa˙
1
; a˙

2
; a˙

3
�=.a1Ca2Ca3/ the quotient of a Laurent polynomial algebra

in three variables. Let E1 , E2 and E3 be three two dimensional free R–modules
equipped with an non degenerate antisymmetric form: � ^ � W ƒ2Ei

�
�! R. We can

see Ei as a supermodule concentrated in odd degree equipped with a supersymmetric
form.

The superalgebra D2 1 is defined as a supermodule by

D2 1 D sp.E1/˚ sp.E2/˚ sp.E3/˚ .E1˝E2˝E3/

The bracket is defined by the Lie algebra structure on the even part, by the standard
representation of the even part on the odd part and for the tensor product of two odd
elements by the formula:

Œe1˝ e2˝ e3; e
0
1
˝ e0

2
˝ e0

3
�D 1

2

�
a1 e2 ^ e0

2
e3 ^ e0

3
.e1:e

0
1
/

Ca2 e1 ^ e0
1

e3 ^ e0
3
.e2:e

0
2
/C a3 e1 ^ e0

1
e2 ^ e0

2
.e3:e

0
3
/
�

where .ei :e
0
i/ 2 sp.Ei/ sends x 2Ei on ei ^x e0i C e0i ^x ei .

The non degenerate supersymmetric bilinear form on D2 1 is up to multiplication by
a scalar the orthogonal sum of � 4

ai
times the killing form of sp.Ei/ plus the tensor

product of the three antisymmetric forms on E1˝E2˝E3 .

If � WR�!C is a ring map, then the complex Lie superalgebra D2 1˝�C is isomorphic
to D2 1;˛ where ˛ D �.a3/

�.a2/
.

3 The Kontsevich–Drinfel’d invariant

In the following, if n 2 N we will denote by Œn� the set f1; 2; � � � ; ng.

3.1 The category of trivalent tangles

Let X be a finite set. A X –diagram is a finite graph, whose vertices are either 1–valent
or 3–valent and oriented, with the data of an isomorphism between X and the set of
1–valent vertices. An orientation at a 3–valent vertex v is a cyclic ordering on the set
of the three edges going to x .
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Following [2] we define a trivalent tangle on � W X ,! R3 as an embedding of an
X –diagram in R3 , with image N � Œ0; 1��R2 together with a vector field along N

such that the points of N lying in the planes f0g�R2 and f1g�R2 are exactly �.X /.
Additionally, we require that the normal plane of N at an univalent vertex v is parallel
to the plane f0g � R2 , the vector field assigned to N at v is .0; 0; 1/, and at each
3–valent vertex, the orientation of the plane tangent to N given by the vector field
agree with the orientation of the 3–valent vertex of the underlying X –diagram. When
represented by planar graphs the framing is obtained by taking the vector field pointing
upward.

Two trivalent tangles T1 and T2 are equivalent if one can be deformed into the
other (within the class of trivalent tangles) by a smooth one parameter family of
diffeomorphisms of R3 .

A framed knotted trivalent graph is a trivalent tangle with no univalent vertices. We
will call a framed knotted trivalent graph “proper” if it has at least one trivalent vertex.

Let M be the non-associative monoid freely generated by one letter noted “ı”. If
m 2M , the length of m is the number of letter in m. This gives a partition M DF

n2N Mn .

The category Tp (resp. T ) is the Q–linear monoidal category whose set of object is
M (resp. N). If .m;m0/ 2Mn �Mn0 (resp. if .n; n0/ 2 N2 ), the set of morphisms
Tp.m;m

0/' T .n; n0/ is the vector space with bases the set of equivalence classes of
trivalent tangles on the map (� W Œn�t Œn0�' .f0g � Œn�� f0g/[ .f1g � Œn0�� f0g/� R3 .

The composition is just given by gluing the corresponding univalent vertices of the
tangles. The tensor product of morphism is given by the juxtaposition of tangles.

3.2 The Kontsevich integral for trivalent tangles and the functor ZD21;L

3.2.1 Category of Jacobi diagrams We represent an X –diagram (or “Jacobi dia-
gram”) by a graph immersed in the plane in such a way that the cyclic order at each
vertex is given by the orientation of the plane.

We define the degree of an X –diagram to be half the number of the vertices.

Let A.X / (resp. Ac.X /) denotes the completion (with respect to the degree) of
the quotient of the Q–vector space with basis the X –diagrams (resp. connected X –
diagrams) by the relations .AS/ and .IHX /:

(1) If two Jacobi diagrams are the same except for the cyclic order of one of their
vertices, then one is minus the other (relation called (AS) for antisymmetry).

C � 0
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(2) The relation (IHX) (or Jacobi) deals with three diagrams which differ only in
the neighborhood of an edge.

� �

As we want to work with D2 1 (which has superdimension 1), we add the relation
that identify the Jacobi diagram with only one circle with 1 (this will mean that the
superdimension of D2 1 is 1). So we can remove or add some circle to a Jacobi diagram
without changing its value in A.

Let D denote the Q–linear monoidal category defined by

(1) Obj.D/D fŒn�; n 2 Ng

(2) D.Œp�; Œq�/DA.Œp�q Œq�/
(3) The composition of a Jacobi diagram from Œp� to Œq� with a Jacobi diagram from

Œq� to Œr � is given by gluing the two diagrams along Œq�.

(4) The tensor product of two object is Œp�˝ Œq�D ŒpCq� and the tensor product of
two Jacobi diagrams is given by their disjoint union.

Remark 3.1 The composition map D.Œp�; Œq�/˝D.Œq�; Œr �/�!D.Œp�; Œr �/ has degree
�q .

The algebra ƒ is the sub-vector space of Ac.Œ3�/ formed by totally antisymmetric
elements for the action of the permutation group S3 .

ƒ has a natural commutative algebra structure and acts on each space Ac.X /: If u

lies in ƒ and K 2Ac.X / is a X –diagram, a Jacobi diagram representative for u:K is
obtained by inserting u at a 3–valent vertex of K . Exceptionally in ƒ, the degree will
be defined by half the number of vertices minus two so that the unit of ƒ has degree 0.

In the following, we will denote by AC and ACc (resp. by A0 and A0
c ) the subspaces

generated by Jacobi diagrams having at least one (resp. having no) 3–valent vertices.

For small n one can describe Ac.Œn�/ (cf [15]):

Ac.Œ1�/ is zero; ACc .Œ0�/ and ACc .Œ2�/ are free ƒ–modules with rank one, generated
by the following elements:

1 2

Let ‚ be this generator of ACc .∅/. Furthermore, we don’t know any counterexample
to the following conjecture: Ac.Œ3�/Dƒ.
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ƒ is generated in degree one by the element t :

t D D
1
2

3.2.2 The Kontsevich-adjoint functor Zad We follow here A B Berger and
I Stassen [2, Definition and Theorem 2.8] who have defined a unoriented universal
Vassiliev–Kontsevich invariant generalized for trivalent tangles (cf also Murakami and
Ohtsuki [11]). We just consider it for the “adjoint” representation so we compose their
functor (whose values are bicolored graph) with the functor that forget the coloring of
the edges.

Theorem 3.2 (cf [2]) There is an unique monoidal functor Zad W Tp �! D (the
universal adjoint Vassiliev–Kontsevich invariant) defined by the following assignments:

Zad.m/ WD Œn�, where m 2Mn is a non-associative word of length n.

Zad

�
W ..uv/w/! .u.vw//

�
WD ˆuvw

Zad

� �
WD ı e�

1
2

Zad

� �
WD ı .Id˝C

1
2 /

Zad

� �
WD .Id˝C

1
2 / ı

Zad

� �
WD r

Zad

� �
WD r

where

� e˙
1
2 WD

P1
nD0 .˙

1
2
/n 1

n!
ın

� The elements ˆuvw are constructed from an even rational horizontal associator
ˆ with ˆ321 Dˆ�1 as in [9].

� C := Φ

D Id C  with  2ƒ

� r can be any element of ƒ. We make the following normalization: r D 1 so that
Zad.‚ 2 Tp.∅;∅//D .1C 2t /‚ 2D.0; 0/

The difference with [2] for the image of the elementary trivalent tangles with one
3–valent vertex is because they use the Knizhnik–Zamolodchikov associator which has
not the good property for cabling (see [9]).
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The Kontsevich integral of the unknot has an explicit expression (see [1]) but it seems
difficult to give an explicit expression of  . Nevertheless it allows to say that  lives
in odd degree and starts with  D 1

24
t C � � � .

3.2.3 Weight functions Let < :; : >D2 1
denotes the supersymmetric invariant non

degenerate bilinear form on D2 1 ) and let � 2D2 1˝D2 1 be the associated Casimir
element.

Theorem 3.3 (cf [15]) There exists an unique Q–linear monoidal functor ˆD2 1

from D to the category ModD2 1
of representations of D2 1 such that:

(1) ˆD2 1
.Œ1�/DD2 1 (the adjoint representation).

(2) Its values on the elementary morphisms

are given by:
(a) The Casimir of D2 1 : � 2D2 1

˝2 ,!ModD2 1
.R; .D2 1/

˝2/

(b) The bilinear form < :; : >D2 1
WD2 1

˝2
�!R

(c) The Lie bracket seen as a map in ModD2 1
..D2 1/

˝2; .D2 1//

(d) The symmetry operators: D2 1
˝2
�! D2 1

˝2

x˝y 7! .�1/jxjjyjy˝x

Furthermore, there exists a graded character with value in eR DQŒŒ�2; �3�� (here we set
�2 D a1a2C a2a3C a3a1 and �3 D a1a2a3 ): �D2 1

Wƒ �! eR such that:

8u 2ƒ; 8K 2ACc .Œp�q Œq�/�D.Œp�; Œq�/; ˆD2 1
.uK/D �D2 1

.u/ˆD2 1;�.K/

One has �D2 1
.t/D 0 and the functor ˆD2 1

is zero on the generators of ACc .∅/ and
ACc .Œ2�/.

3.2.4 ZD2 1;L and the quantum Jacobi relation Composing the adjoint-Kontsevich
invariant with the weight function associated with D2 1 , one get a functor ZD2 1;L W

Tp �! ModD2 1
. For a simple Lie algebra, Drinfel’d equivalence results for quasi-

triangular quasi-Hopf algebra would imply for the two constructions to give equivalent
representations of Tp but this is not clear for D2 1;˛ . So we do the same work for Z :

The functor ZD2 1;L produces an invariant of framed knotted trivalent graphs with
values in eR .

Proof of Proposition 1.1 This is a consequence of the fact that ˆD2 1
is zero on any

closed Jacobi diagram having at least one trivalent vertex because ˆD2 1
is 0 on the

generator of ACc .∅/.
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Remark 3.4 This argument can be adapted for other choices of representations of
D2 1 to prove that the corresponding invariant is determined by the linking matrix. In
particular this is the case for the ˛ D s specialization of the Kauffman polynomial.

ZD2 1;L also verify the relations satisfied by QD2 1;˛;L in Theorem 4.1. In particular,
as for any simple quadratic Lie superalgebra, it satisfies the quantum Jacobi relation
for � D� 1

2r2 as we will show in a following paper.

3.3 Renormalization of ZD21;L

The adjoint Kontsevich integral of a knot K is of the form Zad.K/ D 1C �:‚ for
some � 2ƒ. If we apply the D2 1 weight system, we just get 1 since ‚ goes to zero.
But we can “divide by zero” defining eZ .K/ as the weight system applied to �. In the
following, we generalize this construction for links and knotted trivalent graphs.

Let us define A0 to be the quotient of A˝ƒ by the relation:

If a Jacobi diagram K D K1 tK2 t � � � tKn represents an element of A where
K1 is a connected Jacobi diagram such that K1 D u:K0

1
for u 2 ƒ then K ˝ v D

.K0
1
tK2 t � � � tKn/˝ u:v . (This extends the action of ƒ to disconnected Jacobi

diagrams.)

As before, we define D0 as the ƒ–linear monoidal category with the modules A0 as
morphisms.

Proposition 3.5 The quotient algebra A0.∅/ is isomorphic to the subalgebra Q˚

‚ƒŒ‚��ƒŒ‚�.

The functor ˆD2 1
factor through p WD �!D0 .

Proof Just see that A.∅/ is the symmetric algebra on the vector space Ac.∅/ '
Q˚ƒ‚.

ˆD2 1
naturally satisfy the additional relations of D0 as by Theorem 3.3, it sends via

�D2 1
the elements of ƒ on scalars.

We will use the following map on A0.∅/ to get a new invariant:

ˆ0D2 1
WA0.∅/'Q˚‚ƒŒ‚� �!QŒŒ�2; �3��

zC‚�C‚2x 7! �D2 1
.�/

Where z 2Q, � 2ƒ and x 2ƒŒ‚�.
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Definition 3.6 For a knotted trivalent graph L seteZ .L/Dˆ0D2 1
.p.Zad.L///

The planar knotted trivalent graph ‚ is sent by Zad on .1 C 2t /‚ 2 A0.∅/ soeZ .‚/D 1.

Remark that the decomposition A0 'A00˚A0C is still valid.

Lemma 3.7 Let K D ıK0 for some K0 2D.Œ0�; Œ3�/ then

ˆD2 1
.K0/Dˆ0D2 1

.K/:ˆD2 1
. /

Furthermore, if K 2 A.Œn�/D D.Œ0�; Œn�/ is sent on zero by ˆD2 1
then for any K0 2

A0C.Œn�/�D0.Œn�; Œ0�/, one has ˆ0D2 1
.K0 ıK/D 0.

Remark that the second assertion is false for K0 2A00.Œn�/!

Theorem 3.8 Let T D ıT 0 for some T 0 2 Tp

�
∅; .ıı/ ı

�
then

ZD2 1;L.T
0/D eZ .T /:ˆD2 1

. /

Thus on proper knotted trivalent graph, eZ can be computed using ZD2 1;L . For links,
one can compute the variation of eZ when one changes a crossing with:

eZ �
�

�
D�

1

2
eZ �

� C
1

2

�
C

��
Furthermore, if L1 and L2 are links, L0

1
and L0

2
are proper knotted trivalent graphs,eZ .L1 tL2/D eZ .L1/C eZ .L1/, eZ .L01 tL0

2
/D 0 and eZ .L1 tL0

1
/D eZ .L0

1
/.

Conjecture 3.9 The value of eZ on the unframed unknot is obtained by removing
the term with degree �1 in �CC���6

4.�C���/
where �˙ is defined as in Conjecture 1.6 with

qi D e
ai
2 .

4 The quantum group invariant

4.1 The quantum group UhD2 1 and the functor QD21;˛;L

4.1.1 The quantum group UhD2 1 Remark that there is three simple root systems
for D2 1;˛ . Here and in Section 2.1, the presentations of the algebra are based on
the distinguish simple root system (with the smallest number of odd simple roots) of
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D2 1;˛ . Unfortunately, this simple root system (contrary to the simple root system with
three odd simple roots) breaks the symmetry that appear in Section 2.2. This symmetry,
hidden in the presentation of D2 1;˛ Section 2.1 seem totally lost with the deformation
UhD2 1 of Y.M. Zou [17].

An universal R–matrix for D2 1;˛ has been computed by H. Thys [14]. It depends of
the three parameters q1 , q2 and q3 where q3 D q˛

2
and q1q2q3 D 1.

In the following, we will adopt the following notation for i D 1 � � � 3:

Œn�i D qn
i � q�n

i

There exists an unique 17–dimensional irreducible representation � of UhD2 1 . Its
classical limit is the adjoint representation of the Lie superalgebras D2 1;˛ . This
UhD2 1 –module L is autodual (there is a (unique up to a scalar) bilinear map ˇ W
L˝L �! CŒŒh��), has the set of roots for set of weights, and has a (unique up to a
scalar) bilinear map  WL˝L �!L (whose classical limit is the Lie bracket).

We have computed using Maple the 172 � 172 R–matrix for L, the tensor realizing
the duality ˇ , its dual and the tensor  . For a good choice of a basis of L, and a
good normalization of ˇ and  , all the coordinates of these tensors are in the ring
ZŒ1

2
; q1; q2; q3; Œ4�1

�1; Œ4�2
�1; Œ4�3

�1�=.q1q2q3 D 1/. The computations with Maple
are available on the author’s web page.

4.1.2 QD2 1;˛;L and the quantum Jacobi relation As usual one has a functor
QD2 1;˛;L from T to ModUhD2 1

sending Œ1� 2 Obj.T / to the UhD2 1 –module L.
This givea an invariant of framed knotted trivalent graphs with values in

ZŒ
1

2
; q1; q2; q3; Œ4�1

�1; Œ4�2
�1; Œ4�3

�1�=.q1q2q3 D 1/:

Theorem 4.1 The following elements are in the kernel of QD2 1;˛;L :

� 1 ; � ; C and

Furthermore, ModUhD2 1
.L˝2;L˝2/ has dimension 6 and is generated by the images

by QD2 1;˛;L of the powers of the half twist. The “quantum Jacobi relation” is satisfied
by QD2 1;˛;L :

�
QD2 1;˛;L

D �

�
� C

1

2

�
C

��
where � depends of the normalization chosen for ˇ WL˝L�!CŒŒh�� and  WL˝L�!

L.
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Proof This is a computation made with Maple.

Proof of Proposition 1.3 Every proper knotted trivalent graph T can be written
T1 ıT2 with T1 2 T .0; 3/ and T2 2 T .3; 0/. But the spaces ModUhD2 1

.L˝p;L˝q/

with pCqD 3 are all isomorphic with dimension 1 so QD2 1;˛;L.T / is proportional to
the image by QD2 1;˛;L of the knotted trivalent graph ‚ which is 0. As a consequence,
the “quantum Jacobi relation” implies that QD2 1;˛;L is unchanged when one changes
the crossings of a link and so is constant equal to its value on the unlink which is 1.

We will need the following:

Corollary 4.2 If r� W T .2; 2/ �! T .2; 2/ is the map induced by the rotation around
the line f1

2
g � f

3
2
g �R by � then one has QD2 1;˛;L ı r� DQD2 1;˛;L on T .2; 2/.

4.2 Renormalization of QD21;˛;L

The idea is to define a renormalization eQ of QD2 1;˛;L using some relation between
the two as in Theorem 3.8. The demonstration of the invariance is then not trivial2 but
it is made by analogy to some demonstrations for weight functions. We give the steps
of the demonstration:

� eQ is well defined on proper knotted trivalent graphs.

� Using the quantum Jacobi relation, it can be extended to an invariant of singular
links with one double point.

� This invariant can be integrated to a link invariant eQ .

4.2.1 eQ for Proper knotted trivalent graphs and Singular Link

Theorem 4.3 Let LD ıT for some T 2 T .0; 3/ then the scalar eQ.L/ defined
by QD2 1;˛;L.T /D

eQ.L/:QD2 1;˛;L. / is independent of T .

Proof First remark that by Theorem 4.1, QD2 1;˛;L.T / does not depend of the framing
of T and that the braid group B3 � T .3; 3/ acts on QD2 1;˛;L.T .0; 3// by multiplica-
tion by the signature (a braid b with projection � 2S3 act by the multiplication by
the signature of � 2S3 (cf the third relation of Theorem 4.1)). So it is easily seen that
QD2 1;˛;L.T / depends only of the choice of the trivalent vertex of L that is removed
in T .

2We remark that according to the new results of [6], the invariance of eZ implies the existence and the
invariance of eQ
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Second, if L is a disjoint union of knotted trivalent graph then clearly, QD2 1;˛;L.T /D

0.

Third, by Corollary 4.2 applied to a tangle P 2 T .2; 2/, one has:

QD2 1;˛;L

�
P

�
DQD2 1;˛;L

�
P

�
DQD2 1;˛;L

�
P

�
So eQ.L/ is unchanged when one chooses any 3–vertex in the same connected com-
ponent of L and the theorem is proved for connected knotted trivalent graph.

Last, consider two trivalent tangles T and T 0 in T .0; 3/ giving the same knotted
trivalent graph. One can find a trivalent tangle T 2 T .0; 6/ such that

T D .Id˝3
˝ / ıT and T 0 D . ˝ Id˝3/ ıT

Now one can use the quantum Jacobi relation to change the crossing in T and find a
sum of trivalent tangles eT such that QD2 1;˛;L.T /DQD2 1;˛;L.

eT / and the trivalent
tangles that appear in eT are either the tensor product of two trivalent tangles in T .0; 3/
(so do not contribute to QD2 1;˛;L.T / nor to QD2 1;˛;L.T

0/) or are trivalent tangles
with at least one component intersecting both the sets of univalent vertices f1; 2; 3g
and f4; 5; 6g (so they contribute for the same as they give connected knotted trivalent
graph).

Remark 4.4 By Theorem 4.1, eQ is independent of the framing.

Definition 4.5 If L is a framed oriented link with one double point, we define eQ.L/
by the following substitution:

eQ � �
D eQ �

� C
1

2

�
C

��
Remark that the orientation of L is forgotten in the right hand side.

Proposition 4.6 For framed oriented links with one double point as follow, one has

eQ � �
D 2

For a framed link L, let w.L/ denotes the diagonal writhe of L (ie, the trace of the
linking matrix of any orientation of L). Then w extends to an invariant of framed
oriented links with one double point which also satisfies:

w
� �

D 2
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4.2.2 Integration of eQ In [13, Theorem 1] T Stanford gives local conditions for a
singular link invariant to be integrable to a link invariant: specialized in our context, it
gives:

Theorem 4.7 (Stanford) Let L.1/ be the set of isotopy classes of singular links in
R3 with one double point and let k be a field of characteristic zero.

Then, for any finite type singular link invariant f W L.1/ �! k , there exists a link
invariant F W L �!R, such that

f
� �

D F
� �

�F
� �

iff

(1) f
� �

D 0 and f .L�C/�f .L��/D f .LC�/�f .L��/

(where L�� denotes some desingularisations of a any singular link L�� with two
double points).

Theorem 4.8 eQ�w satisfies the two conditions (1) of Theorem 4.7 and so eQ extends
in an unique way to a framed link invariant which takes value zero on the unlink.

Furthermore, eQ takes value in the ring QŒq1; q2; q3; Œ4�1
�1; Œ4�2

�1; Œ4�3
�1�=q1q2q3D1

and satisfy eQ.L#L0/D eQ.L/C eQ.L0/ where L#L0 denotes a connected sum of L

and L0 along one of their components.

Proof For a singular link L�� with two double points, the two terms eQ.L�C�L��/

and eQ.LC� �L��/ are equal to eQ.K0/ where K0 is the sum of knotted trivalent
graphs obtained by replacing the two singular points of L�� as in Definition 4.5.

Conjecture 4.9 Relation between eZ and eQ 3

(1) For any proper knotted trivalent graph L one has eQ.L/D eZ .L/.
(2) For any framed link L with n components,4

eQ.L/D 2eZ .L/� n
�CC ��� 6

2.�C� ��/

(3) eQ takes value in the polynomial algebra ZŒ�C; ��� where �CD .q2
1
Cq2

2
Cq2

3
/

and �� D .q�2
1
C q�2

2
C q�2

3
/.

Remark that 1 implies 2 (with Conjecture 3.9), and the fact that the values of eQ are
symetrics in the three variables.

3The first part of this conjecture is now proven by N Geer in [6].
4after removing the term of degree �1
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5 Properties of the invariants

5.1 The common specialisation with the Kauffman polynomial

Remember that the specialisation ˛2f�2;�1
2
; 1g of D2 1;˛ give a Lie superalgebra iso-

morphic with osp.4; 2/. So in this case, UhD2 1 admit a 6–dimensional representation
which satisfies the skein relations of the Kauffman polynomial:

K
�

�

�
D .s�s�1/K

�
�

�
and K

� �
D˛K

� �
for ˛ D s .

As these skein relations determine the tangle invariant, the specialisations of the functor
ZD2 1

obtained by setting a1 D a2 D a, a3 D �2a (or any permutation of this) and
the specialisations of the functor QD2 1;˛;L obtained by setting ˛ 2 f�2;�1

2
; 1g (ie,

q1D q2D s�1 , q3D s2 ) are both equivalent to the ˛D s specialisation of the “adjoint”
Kauffman skein quotient which is obtained by cabling each component of a tangle with
the following projector of T .Œ2�; Œ2�/:

1

sC s�1

 
s � �

s� s�1

˛s�1C 1

!
and imposing the Kauffman skein relations.

Let Kad be the framed link invariant obtained by cabling each component of a framed
link with the previous projector and computing its Kauffman polynomial then:

Theorem 5.1 Let � be the specialisation �.q1/D �.q2/D s�1 , �.q3/D s2 (so that
�.�C/D 2s�2C s4 and �.��/D 2s2C s�4 ). Then for any framed link L, �. eQ.L//
and �.eZ .L// are related as in Conjecture 4.9 and

Kad.L/j˛Ds D 1�
Kad.L/� 1

˛� s

�ˇ̌̌̌
˛Ds

D
2

s
�.eQ.L//

5.2 The common specialisation with the HOMFLY-PT polynomial

It would be more difficult to make appear the common specialisation of eQ with
the HOMFLY-PT polynomial. This should appear for the degenerate specialisation
˛ 2 f0;�1;C1g of D2 1;˛ . We state the existing relation between eZ and HOMFLY-
PT and we just state a conjecture for the relation between eQ and HOMFLY-PT5.

5This conjecture now follows from the work of N Geer (see [6]).
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The HOMFLY-PT polynomial of an oriented link L ¤ ∅ is an element P .v; z/ 2

ZŒv˙; z˙� which is equal to 1 for the unknot and satisfy the skein relation:

v�1P
� �

� vP
� �

D zP
� �

If W denotes the total writhe of an oriented framed link L (ie, the total algebraic number
of crossing of L) then we get an oriented framed link invariant of L: H.�; v; z/ 2

ZŒ�˙; v˙; z˙� by the formula

H.L/D
ˇ̌̌

1 if LD∅�W .L/P .L/� v
�1�v

z
else

H satisfy the skein relations:

.v�/�1H
� �

� .v�/H
� �

D zH
� �

and H
� �

D �H
� �

We define the adjoint HOMFLY-PT polynomial Had of a framed unoriented link L as
the H polynomial of the framed oriented link obtained by cabling each component of
L with the following: � �

7!
�

�∅
�

Remark that the cabled link has total writhe 0, so Had.L/ is proportional to P .v; z/ of
the cabled link on L and so lies in ZŒv˙; z˙�. One can also compute Had.q

n; q�1�q/

by the way of a quantum group Uq.sln/ and its “adjoint” .n2 � 1/–dimensional
representation (here “adjoint” mean the quantum analogue of the adjoint representation
of sln ) or equivalently by composing Zad with the sln weight system.

In fact f ıH DˆslıZ where the weight function ˆsl takes values in the ring QŒı˙; h�

and f is the ring morphism such that f .v/D e�
h
2
ı , f .z/D 2 sinh.h=2/D e

1
2

h
� e�

1
2

h

and f .�/D e
h
2
.ı� 1

ı
/ . Remark that there exists a character �sl on ƒ associated with

ˆsl and whose values belong to QŒŒıh; h2��.

We show in [12] that on ƒ, the map �sl modulo ı and �D2 1
modulo �3 were both

zero and that �sl modulo ı2 and �D2 1
modulo �2

3
were equal up to renormalization:

For � 2ƒ of degree 2pC 1� 3, if �D2 1
.�/D �.�/�3.�2/

p�1CO.�2
3
/

then ˆsl.�/D .�1/p�.�/ıh2pCO.ı2/. (Here and after, O.x/ denotes an element
of the ideal generated by x ).

We call  the specialization defined by  .�3/ D �ıh
2 ,  .�2/ D �h2 (So that

 .�˙/D 1C ehC e�h�
ı
2
.ehC e�h�2/CO.ı2/D f .z2C 3� ı

2
z2/CO.ı2/).

For a knot K closure of T 2 T .Œ1�; Œ1�/, we have

Zad.T /D 1C w.K /
2

C t.w.K /
2
/2 �V2.K/t C�: 2D.Œ1�; Œ1�/
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where w.K/ is the writhe of K , V2.K/ is the (standardly normalized) type 2 Vassiliev
invariant of the knot K (ie, the coefficient of z2 in P .1; z/) and � 2 ƒ, � nul in
degree � 1.

So ˆsl.Zad.T //D 1Cw.K/ıhC
�
w.K /2

2
� 2V2.K/

�
ı2h2C 2ı�sl.�/

whereas eZ .K/D eZ .U0/C
w.K /

2
C�D2 1

.�/ (with U0 the unknot).

So we get

f .Had.K//

f .Had.U0//
D 1C ı2

 
w.K/2

2
� 2V2.K/

!
C 2ı .eZ .K/� eZ .U0//CO.ı3/

So using 1) and 3) of Conjecture 4.9 one has

Conjecture 5.2 For K a 0–framed knot,6

f .Had.K //
f .Had.U0//

� 1�
v� 1

v

�2

ˇ̌̌̌
ˇ̌̌
vD1

D�2V2.K/�
1

z2

eQ.K/
�C� ��

ˇ̌̌̌
ˇ
�CD��Dz2C3

5.3 Example of computation

With some computations on Maple, we found that in the base of ModUhD2 1
.L˝2;L˝2/

given by .U;T �2;T �1; Id;T;T 2/ where T DQD2 1;˛;L

� �
is the positive half

twist and U DQD2 1;˛;L

� �
, one has

(2) QD2 1;˛;L

� �
D

266666664

1� 2.�C� ��/

0

�2C ��
�1C 2.�C� ��/

2� ��
1

377777775
Furthermore,

(3) QD2 1;˛;L

�
T 3
�
D

266666664

4 .�C� ��/

1

2� �C
1� 2�CC ��
�1� �CC 2��
�2C ��

377777775
6This conjecture now follows from the work of N Geer (see [6]).
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Let K2nC1 be the knot obtained as the closure of T 2nC1 and In be the knotted trivalent
graph obtained as the closure of I ıT n where I D .

So by Theorem 1.5 one has:

eQ.K2nC1/� eQ.K2n�1/D

�
.�1/2n

� eQ.I2n/C
1

2
.�eQ.I2n�1/� eQ.I2nC1//

�
D 1�

1

2

�eQ.I2n�1/C 2eQ.I2n/C eQ.I2nC1/
�

witheQ.K1/D 1D�eQ.K�1/; eQ.I0/D 0; eQ.I˙1/D�1eQ.I2/D 2.�C� ��/; eQ.I�2/D�2.�C� ��/ by equation (2)eQ.InC3/D 4.�C� ��/C eQ.In�2/C .2� �C/eQ.In�1/C .1� 2�CC ��/eQ.In/

C .�1� �CC 2��/eQ.InC1/C .�2C ��/eQ.InC2/ by equation (3)

Thus one can compute:eQ.K3/D 3� .�C� ��/.2C ��/eQ.K5/D 5C .�C� ��/.�6C 2�C� 4��C 2�C��� 2�2
�� �

3
�/

:::

The same method gives eQ.Hopf link/D ��� �C .
And to compare with Theorem 5.1, (with U0 the unframed unknot) we see that:

Kad.U0/D

�
˛2� 1

� �
s3C˛

�
.s˛� 1/ s

˛2
�
s4� 1

� �
s2� 1

�
D 1C

.˛� s/
�
˛3s2C˛2.s5C s3� s/C˛.s4� s2� 1/� s3

�
˛2
�
s4� 1

� �
s2� 1

�
Kad.U0/� 1

˛� s

ˇ̌̌̌
˛Ds

D
s4C 4 s2C 1

s
�
s4� 1

�
Kad.K3/

Kad.U0/
D .˛2

� s2/

 
s12C s8C s6C 1

s10
C

�
s4� 1

� �
s6C 1

�
s7˛

�
s12� s10� s8C 2 s6� s2C 1

s6˛2
�

�
s4� 1

� �
s6� s2C 1

�
s3˛3

�

�
s4� 1

� �
s2� 1

�
˛4

!
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Kad.K3/� 1

˛� s

ˇ̌̌̌
˛Ds

D
2

s

 
�.eQ.K3//C

s4C 4s2C 1

s
�
s4� 1

� !
And to compare with Section 5.2

Had.U0/D

�
v2C zv� 1

� �
v2� zv� 1

�
z2v2

D�1C

�
v� 1

v

�2

z2

Had.K3/

Had.U0/
D 1� 3

�
v�

1

v

�
C

�
v�

1

v

�2 �
vC 4

vC 1
C

�
v2
C 4

�
z2
C z4

�
f

�
Had.K3/

Had.U0/

�
D 1C 3ıC

�
5

2
C 5z2

C z4

�
ı2
CO.ı3/

D 1C 3ıC ı2

�
9

2
� 2

�
C ı2z2

�
2C .z2

C 3/
�
CO.ı3/

D 1C ı2

�
W .K3/

2
�V2.K3/

�
C ı .eQ.K3//CO.ı3/
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