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Non-isotopic Heegaard splittings of Seifert fibered spaces

DAVID BACHMAN

RYAN DERBY-TALBOT

APPENDIX BY R WEIDMANN

We find a geometric invariant of isotopy classes of strongly irreducible Heegaard
splittings of toroidal 3–manifolds. Combining this invariant with a theorem of R
Weidmann, proved here in the appendix, we show that a closed, totally orientable
Seifert fibered space M has infinitely many isotopy classes of Heegaard splittings of
the same genus if and only if M has an irreducible, horizontal Heegaard splitting,
has a base orbifold of positive genus, and is not a circle bundle. This characterizes
precisely which Seifert fibered spaces satisfy the converse of Waldhausen’s conjecture.

57M27; 57N10, 57M60

1 Introduction

The recent proof of Waldhausen’s conjecture (Li [7]) (see also work of Jaco and
Rubinstein [6; 5]) establishes that a 3–manifold M admits infinitely many non-isotopic
Heegaard splittings of some genus only if M contains an incompressible torus. We are
interested in the converse of this statement. The only known examples of 3–manifolds
that admit infinitely many non-isotopic Heegaard splittings of the same genus are given
by Morimoto and Sakuma [11; 10]. However, these examples are somewhat special.
In this paper, we give a complete characterization of closed, totally orientable Seifert
fibered spaces that satisfy the converse of Waldhausen’s conjecture.

In light of Li’s result one would expect to use an essential torus when trying to
distinguish isotopy classes of Heegaard splittings. To this end we have the following
result, which is a weak version of Theorem 4.5.

Theorem 4.5 0 Let T be an essential torus in an irreducible 3–manifold M . Suppose
H is a strongly irreducible Heegaard surface in M whose minimal essential intersection
number with T is greater than two, and H 0 is any other Heegaard surface in M . If H

and H 0 meet T in different slopes then they are not isotopic.

The term essential intersection number refers to the value of jH \T j when the two
surfaces are isotoped to meet in a collection of loops that are essential on both. It is
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well known that any strongly irreducible Heegaard surface can be isotoped to meet any
essential surface in such a fashion.

Our primary goal is to distinguish non-isotopic splittings of Seifert fibered spaces. In
this context we prove the following strengthening of Theorem 4.5 0 :

Theorem 5.1 Let M be a closed, totally orientable Seifert fibered space which is
not a circle bundle with Euler number ˙1. Let H be a strongly irreducible Heegaard
surface in M and T be a non-separating, vertical, essential torus. Then the isotopy
class of H determines at most two slopes on T .

In particular, if three strongly irreducible Heegaard surfaces in such a Seifert fibered
space meet some essential torus in different slopes then at most two of them are isotopic.
This result is stronger than Theorem 4.5 0 because there is no assumption on how many
times any of these Heegaard surfaces meets the torus T .

Theorem 5.1 leaves open the possibility that a circle bundle over a surface may admit
an irreducible Heegaard splitting that can be isotoped to meet some vertical essential
torus in infinitely many slopes. The appendix, by R Weidmann, includes a proof that
this phenomenon does happen. Moreover, the Heegaard splitting in this case is unique:

1.1 Theorem (Weidmann) Suppose M is an orientable circle bundle over an ori-
entable surface of positive genus. Then M admits a unique irreducible Heegaard
splitting up to isotopy.

In addition to this Weidmann proves in the appendix an algebraic analog of the above
theorem when the Euler number is ˙1: Nielsen equivalence classes of the generating
sets of the fundamental group of such a manifold are equivalent. Interestingly, the
algebraic formulation of this theorem motivates his topological argument used to
establish Theorem 1.1.

The following characterization of Seifert fibered spaces that contain an infinite collection
of non-isotopic Heegaard splittings of some genus now follows from Theorems 5.1 and
1.1.

1.2 Theorem Let M be a closed, totally orientable Seifert fibered space. Then M

admits infinitely many non-isotopic Heegaard splittings of some genus if and only if

(1) M has at least one irreducible, horizontal Heegaard splitting,

(2) M has a base orbifold with positive genus, and

(3) M is not a circle bundle.
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See Section 2 below for the relevant definitions.

Proof Moriah and Schultens have shown that irreducible Heegaard splittings of totally
orientable Seifert fibered spaces are either vertical or horizontal [9]. It follows from
this classification and results of Lustig and Moriah [8] and Schultens [12] that a Seifert
fibered space can admit infinitely many non-isotopic Heegaard splittings of some genus
only if it admits an irreducible, horizontal Heegaard splitting. Precisely which Seifert
fibered spaces have irreducible horizontal Heegaard splittings have been classified by
Sedgwick in terms of the Seifert data [13]. In particular, however, note that Moriah
and Schultens had previously shown that a circle bundle can only admit an irreducible
horizontal Heegaard splitting if its Euler number is ˙1 (see [9, Corollary 0.5]).

An understanding of horizontal Heegaard splittings reveals that any infinite collection
must be obtained by Dehn twists in vertical tori (see, for example, Hatcher’s proof
that incompressible surfaces in Seifert fibered spaces are either vertical or horizontal
[3]). So the question of whether a given closed, totally orientable Seifert fibered space
admits an infinite collection of non-isotopic splittings of some genus is reduced to
determining when Dehn twisting a horizontal splitting in a vertical torus produces a
non-isotopic splitting. This is recognized by Sedgwick in the following:

The author suspects ... that some Seifert fibered spaces will posses an
infinite number of non-isotopic but homeomorphic splittings obtained by
twisting a given horizontal splitting in vertical tori [13, page 178, line -2].

Suppose, then, that V[H W is an irreducible, horizontal Heegaard splitting of a Seifert
fibered space M and T is a vertical torus. Assume first that T separates M into X

and Y . Then T separates H into a horizontal surface HX in X (say) and a surface
which is not horizontal in Y . But then HX is a union of fibers in a fibration of X over
S1 (see Jaco [4, Theorem VI.34]). Hence, the effect of Dehn twisting H about T can
be undone by pushing HX around the fibration. The conclusion is that a Dehn twist
about a separating, vertical torus produces an isotopic Heegaard splitting. In particular,
if the base orbifold of M is a sphere then every vertical torus separates, and hence M

has finitely many non-isotopic Heegaard splittings in each genus.

Now assume the base orbifold of M has positive genus. If M is a circle bundle, then
by Theorem 1.1 M admits finitely many Heegaard splittings, up to isotopy. Henceforth,
assume M is not a circle bundle.

It follows from Theorems 2.6 and 5.1 of Moriah–Schultens [9] that in Seifert fibered
spaces with positive genus base orbifold, all irreducible, horizontal Heegaard splittings
are strongly irreducible. Hence, the surface H is strongly irreducible. As the base

Algebraic & Geometric Topology, Volume 6 (2006)



354 David Bachman and Ryan Derby-Talbot

orbifold has positive genus, we may find a pair of non-separating vertical tori T1 and
T2 which meet in a single fiber f . A horizontal Heegaard surface such as H meets
each of these tori in loops that are transverse to f . Dehn twisting H about T2 has
the same effect, on T1 , as Dehn twisting H \T1 about f . Hence the new splitting
surface meets T1 in a different slope than the original splitting surface. Iterating the
Dehn twist about T2 thus produces an infinite collection of Heegaard splittings, all of
which meet T1 in distinct slopes. It now follows from Theorem 5.1 that this collection
contains infinitely many non-isotopic splittings.

The authors would like to thank Cameron Gordon and Yo’av Rieck for helpful comments,
and especially Richard Weidmann for providing the appendix.

2 Definitions

2.1 Essential curves, surfaces and intersections

A sphere in a 3–manifold is essential if it does not bound a ball. If a 3–manifold does
not contain any essential spheres then it is said to be irreducible.

A loop  on a surface F if called inessential if it bounds a disk in F and essential
otherwise. The intersection between surfaces H and T in a 3–manifold is compression
free if the surfaces are transverse and every loop contained in their intersection is either
essential or inessential on both surfaces. Their intersection is essential if every loop
contained in their intersection is essential on both.

If T is a torus then a slope on T is the isotopy class of an essential loop. If H is some
other surface then the slope of H \T is the slope of any component of H \T which
is essential on T . Note that this is only defined when there is such a component of
H \T .

Suppose F is embedded in a 3–manifold M . A compressing disk for F is a disk
D such that D \F D @D is essential on F . A surface is compressible if there is a
compressing disk for it, and incompressible otherwise. A surface of positive genus in a
3–manifold is said to be essential if it is incompressible and non-boundary parallel.

2.2 Heegaard splittings

A handlebody is a 3–manifold which is homeomorphic to the neighborhood of a
connected graph in R3 . An expression of a 3–manifold M as V [H W is called a
Heegaard splitting if V and W are handlebodies. The surface H is called the Heegaard
surface.
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A Heegaard splitting V [H W is said to be reducible if there are compressing disks
V � V and W �W for the surface H such that @V D @W , and irreducible otherwise.
A Heegaard splitting is said to be weakly reducible if there are similar disks V and W

such that V \W D∅, and strongly irreducible otherwise.

2.3 Seifert fibered spaces

A 3–manifold M is a Seifert fibered space if there is a projection map p WM !O ,
where O is a surface and p�1.x/ is a circle for each x 2O . The surface O is called
the base surface of the fibration, and inherits from p a natural structure as an orbifold.
If x is a cone point of O then we say p�1.x/ is an exceptional fiber. For all other x

we say p�1.x/ is a regular fiber. A Seifert fibered space M is totally orientable if it
is orientable and its base orbifold O is orientable.

A surface in a Seifert fibered space is horizontal if it is transverse to each fiber. The
following facts are known about horizontal surfaces. See, for example, Jaco [4].

(1) If a Seifert fibered space contains an essential surface with non-zero Euler
characteristic then it can be made horizontal.

(2) Every Seifert fibered space with boundary contains a horizontal surface.

(3) If a totally orientable Seifert fibered space M contains a connected, horizontal
surface F then M can be obtained from F � I by identifying F � f0g with
F � f1g via some homeomorphism.

(4) If a Seifert fibered space contains a horizontal surface which meets a regular
fiber once, then it contains no exceptional fibers.

A Heegaard splitting V [H W of a Seifert fibered space M is said to be horizontal
if the surface H can be obtained by the following construction. Let M.f / denote
the Seifert fibered space obtained from M by removing a neighborhood of some fiber
f . Then M.f / has boundary, and can therefore be obtained from some surface F

with connected boundary by forming F � I and identifying F � f0g with F � f1g

via some homeomorphism. Now take two parallel copies of F and join them by a
subannulus of @M.f / to form H . Let D denote a meridional disk for the solid torus
attached to M.f / to form M . The surface H obtained by the above procedure will
be a Heegaard surface in M when @D meets @F in a point.

3 Sweepouts

Let H denote a Heegaard surface in a 3–manifold M . Then there is a sweepout of
M by surfaces parallel to H . To be precise, there is a pair of graphs †0 and †1

embedded in M and a continuous map ˆ WH � I !M such that
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� ˆ.H � f0g/D†0 ,

� ˆ.H � f1g/D†1 ,

� there is an s such that ˆ.H � fsg/DH , and

� ˆ is a homeomorphism when restricted to H � .0; 1/.

Henceforth, we denote ˆ.H � fsg/ as Hs .

Now suppose M is irreducible, T is an essential torus in M and H is strongly
irreducible. The sweepout ˆ induces a height function h W T ! I as follows: if
x 2 T \Hs then h.x/D s . We assume ˆ is chosen so that h is Morse on h�1.0; 1/.

3.1 Lemma There are values s� < sC corresponding to saddle tangencies such that
Hs \T is compression free if and only if Hs is transverse to T and s� � s � sC .

The fact that there exists a regular value s such that Hs \T is compression free is a
well known result, and is established here in Claims 3.2 through 3.5 of the following
proof. The real content of Lemma 3.1 is that the closure of all s such that Hs \T is
compression free is a connected interval. This is established in Claim 3.6, which is
reminiscent of Bachman–Schleimer [1, Claim 6.7].

Proof For each s 2 .0; 1/ the surface Hs separates M into handlebodies Vs and Ws ,
where a< b implies Va � Vb . Let s0 D 0, fsig

n�1
iD1

the values of s where Hs is not
transverse to T , and sn D 1.

We now label the intervals Œsi ; siC1� as follows. If, for some value of s 2 .si ; siC1/,
the intersection set Hs \ T contains a loop which is essential on Hs and bounds a
disk in Vs then we label the interval Œsi ; siC1� with the letter “V ”. Similarly, if the
intersection set Hs \T contains a loop which is essential on Hs and bounds a disk
in Ws then we label the interval Œsi ; siC1� with the letter “W ”. Note that Hs \T is
compression free if and only if s is in an unlabeled interval.

3.2 Claim For every s 2 .0; 1/ the intersection Hs \ T contains a loop which is
essential on Hs .

Proof Suppose not. Then a standard innermost disk argument would show that T

may be isotoped to be disjoint from Hs , and hence lie in a handlebody. This is a
contradiction, as T is incompressible.

3.3 Claim The interval Œs0; s1� is labeled “V " and the interval Œsn�1; sn� is labeled
“W ".
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Proof Choose some s just larger than s0 D 0. Then Hs meets T in a collection of
loops which all bound disks in Vs . By the previous claim at least one of these loops
is essential on Hs , so the interval Œs0; s1� is labeled “V ”. A symmetric argument
completes the proof.

3.4 Claim No interval is labeled with both a “V " and a “W ".

Proof Suppose this is the case for the interval Œsi ; siC1�. Choose some s 2 .si ; siC1/.
Then there are loops in Hs \T bounding disks in Vs and Ws . This contradicts the
strong irreducibility of Hs .

3.5 Claim Intervals with the labels “V " and “W " cannot be adjacent.

Proof Suppose Œsi�1; si � and Œsi ; siC1� are adjacent intervals with different labels.
Then the surface Hsi

meets T in a saddle tangency. Let � denote the graph Hsi
\T

and N.�/ a regular neighborhood of this graph on Hsi
.

Without loss of generality assume the label of Œsi�1; si � is “V ”. For small � the
intersection Hsi�� \T contains a loop bounding a disk in Vsi�� (say), so there is a
loop of @N.�/ bounding a disk in Vsi

. Similarly, HsiC�\T contains a loop bounding
a disk in WsiC� , so there is a loop @N.�/ bounding a disk in Wsi

. As these loops
are either the same or are disjoint we again contradict strong irreducibility.

It follows from the preceding claims that there exists an unlabeled interval. The proof
of the lemma is then complete once we establish the following:

3.6 Claim The union of the unlabelled intervals is connected.

Proof Suppose Œsi ; siC1�; Œsj ; sjC1� and Œsk ; skC1� are intervals where i < j < k ,
Œsi ; siC1� and Œsk ; skC1� are unlabeled, and Œsj ; sjC1� has a label. Without loss of
generality assume the label of Œsj ; sjC1� is “V ”. Then there is a disk V � Vs such that
@V D ˛ �Hs \T for some s 2 .sj ; sjC1/. As T is incompressible an innermost disk
argument can be used to show that the loop ˛ bounds a disk V 0 � T .

Choose s0 2 .si ; siC1/. As i < j we have s0 < s . We claim that V 0\Hs0 contains a
loop which is essential on Hs0 . If not then an innermost disk argument would show that
V 0 can be isotoped to be disjoint from Hs0 . Now let ˛0 denote a loop of V 0\Hs which
is innermost (on V 0 ) among all loops which are essential on Hs (possibly ˛0 D ˛ ).
Let V 00 denote the subdisk of V 0 bounded by ˛0 . Then an innermost disk argument
shows that V 00 can be isotoped to a compressing disk for Hs , while still being disjoint
from Hs0 . As the region between Hs and Hs0 is a product it follows that V 00 �Ws .
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We conclude ˛ is a loop of Hs bounding a compressing disk in Vs and ˛0 is a loop
bounding a compressing disk in Ws , contradicting the strong irreducibility of Hs .

We conclude that V 0\Hs0 contains a loop which is essential on Hs0 . Let ˇ denote
such a loop which is innermost (on V 0 ). Note that as V 0 � T we have ˇ �Hs0 \T .
Since the interior of the subdisk of T bounded by ˇ meets Hs0 in loops that are
inessential on both surfaces we may remove them by an innermost disk argument.
Hence, ˇ bounds a compressing disk for Hs0 , which must lie in either Vs0 or Ws0 . In
either case the interval Œsi ; siC1� would have had a label.

If, initially, the label of Œsj ; sjC1� was “W ” we would have chosen s0 2 .sk ; skC1/ and
used a symmetric argument.

4 Compression free isotopies

4.1 Definition Let T be an essential torus in a 3–manifold M . An isotopy H �I!

M is compression free with respect to T if, for all t 2 I such that Ht is transverse to
T , the intersection Ht \T is compression free.

4.2 Lemma Let H0 and H1 denote isotopic, strongly irreducible Heegaard surfaces
in an irreducible 3–manifold M . Let T be an essential torus in M . Suppose Hi \T

is compression free, for i D 0; 1. Then there is an isotopy from H0 to H1 which is
compression free with respect to T . Furthermore, there is such an isotopy such that the
tangencies of Ht \T which develop are either centers, saddles, or double-saddles.

Proof Let Ht denote any isotopy from H0 to H1 . We now define a two-parameter
family of Heegaard surfaces. Note that for each t the surface Ht defines a sweepout
ˆt W Ht � I ! M . We denote ˆt .Ht � fsg/ as H.t;s/ . This defines a map from
H � I � I into M , which we can choose to be continuous in s and t . Furthermore,
there are values s0 and s1 such that H.0;s0/ DH0 and H.1;s1/ DH1 .

Now suppose T is an essential torus in M . Let � denote the set of points in I � I

such that H.t;s/ is not transverse to T . According to Cerf theory [2] we may assume
� is a graph with vertices of valence two and four, and for each t at most one vertex of
� is contained in t � I . We say t is a regular value if there is no vertex of � in t � I .

Let S denote the closure of the set of points .t; s/ � I � I such that H.t;s/ \ T is
compression free. We now claim that there is a path from .0; s0/ to .1; s1/ in S .
Such a path defines the desired compression free isotopy from H0 to H1 . It may pass
through edges of � corresponding to center or saddle tangencies, or a valence four
vertex of � which will correspond to two saddle tangencies.
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Let � W I � I ! I denote projection onto the first factor. Let p and q denote paths in
S � I � I (ie, embedded intervals) such that

(1) .0; s0/ 2 p ,
(2) .1; s1/ 2 q ,
(3) the lengths of �.p/ and �.q/ are maximal.

4.3 Claim If the sum of the lengths of �.p/ and �.q/ is greater than one then there
is a path in S from .0; s0/ to .1; s1/.

Proof In this case there is an x 2 p and a y 2 q such that �.x/D �.y/ is a regular
value of t . By Lemma 3.1 the subinterval r of �.x/ � I connecting x to y is in
S . Let p0 denote the subpath of p connecting .0; s0/ to x and q0 the subpath of q

connecting y to .1; s1/. Then the path p0[ r [ q0 is the desired path from .0; s0/ to
.1; s1/.

4.4 Claim The lengths of �.p/ and �.q/ are equal to one.

Proof By way of contradiction, assume the length of �.p/ is less than one. Let
.t�; s�/ denote the endpoint of p which is not .0; s0/.

For each t there is at most one vertex of � in t � I . We may thus choose an � small
enough so that there is at most one vertex of � in the rectangle RD Œt���; t�C���I .
Let t� D t�� � and tC D t�C � . We may assume that t� and tC are regular values
of t . Finally, as � is chosen to be small we may assume that there is at most one
component of � \R which is not an arc connecting t� � I to tC � I .

Let p0 denote the closure of p nR. Let x denote the endpoint of p0 which is not
.0; s0/. Note that �.x/D t� (see Figure 1). Let S 0 be the closure of the component
of R n� that contains x . Since x 2 S it follows that S 0 � S . If S 0 meets the edge
tC � I of R then there is a path p00 in S 0 (and hence in S ) from x to a point of
tC � I . The path p0[p00 thus contradicts the maximality of the length of �.p/.

We assume then that S 0 does not meet tC�I . Let S 00 denote the closure of a component
of R n� which is a subset of S and meets the edge tC � I (such a component exists
by Lemma 3.1). By Lemma 3.1 the set S \ .t� � I/ is connected. Hence, if S 00 also
meets t� � I then as before we can extend the path p to tC � I , contradicting our
assumption that �.p/ is maximal.

We are now reduced to the case that S 0 does not meet tC � I and S 00 does not meet
t� � I . The only way in which this can happen is if S 0 meets S 00 in a valence four
vertex v of � . We conclude that there is a path p00 which goes from x , through S 0 ,
across v , through S 00 , and connects to tC� I . The path p0[p00 again contradicts the
maximality of the length of �.p/.
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p0

x

R

�

S 0
S 00

t� t� tC

�

Figure 1: The rectangle R

The preceding claims complete the proof of Lemma 4.2.

4.5 Theorem Let T be an essential torus in an irreducible 3–manifold M . Suppose
H0 and H1 are isotopic, strongly irreducible Heegaard surfaces which meet T essen-
tially. Then either H0 can be isotoped to meet a neighborhood of T in a toggle or H0

determines the same slope on T as H1 .

The term toggle refers to the configuration depicted in Figure 5. It can be constructed as
follows. Let ˛ and ˇ be essential loops on T which meet in a point p . Let † be the
graph .˛�f0g/[ .p�I/[ .ˇ�f1g/ in T �I . Then the frontier of a neighborhood of
† in T �I is a toggle. The word “toggle” comes from the fact that such a configuration
allows one to switch back and forth between two slopes in a neighborhood of T .

Proof By Lemma 4.2 we know that there is a compression free isotopy from H0 to
H1 . We now discuss the various tangencies with T that can develop during such an
isotopy, and how they effect the slope of Ht \T .

Center Tangencies The simplest is a center tangency. Such tangencies only introduce
or eliminate inessential loops, and hence do not change the slope of Ht \T .
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Saddle Tangencies The next type of tangency is a saddle. If H 0 is obtained from H

by passing through a saddle with T then there is a disk S such that @S D ˛[ˇ , where
S \T D ˛ and S \H D ˇ (see Figure 2). The surface H 0 is then obtained from H

by an isotopy guided by S . Hence the intersection set H 0\T can be obtained from
H \T by a band sum along the arc ˛ . We call such a disk S a saddle disk.

S

˛

ˇ

T

Figure 2: A saddle disk

Note that the only way that the slope of H \ T can be different from the slope of
H 0 \T is if somehow all of the essential loops of H \T were effected during the
saddle move. But the only such loops that will be effected are those that contain the
endpoints of ˛ . It follows that H \T contains exactly two essential loops, and ˛ is
an arc which connects them. But then a band sum along ˛ will produce an intersection
set with no essential loops on T . This is impossible, as H 0\T is compression free.

Double-saddle Tangencies Finally we consider what happens at double-saddles.
Suppose H 0 is obtained from H by passing through a double-saddle with T . Then
there are two saddle disks S1 and S2 , where @Si D ˛i [ ˇi , Si \ T D ˛i , and
Si \H D ˇi . The intersection set H 0\T is obtained from H \T by simultaneous
band sums along ˛1 and ˛2 .

In order for the slope of H 0 \T to be different from the slope of H \T all of the
essential loops of H\T must contain an endpoint of either ˛1 or ˛2 . This immediately
implies H \ T contains at most four essential loops. The possibility that there are
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one or three such loops is ruled out by the fact that H is separating. If there are four
such loops, and each contains an endpoint of ˛1 or ˛2 , then H 0 \ T contains only
inessential loops. This is ruled out by the fact that H 0\T is compression free.

We conclude that if the slope of H 0\T is different from that of H \T then H \T

contains exactly two essential loops, 1 and 2 . Up to relabeling, there are now the
following cases:

(1) @˛1 � 1 . Then a band sum along ˛1 transforms 1 into an essential loop  0
1

with the same slope on T , and an inessential loop ı . The arc ˛2 can either
connect 2 to itself, connect 2 to ı , or connect 2 to  0

1
. In the first two cases

a slope change does not occur. The third case implies H 0 \ T contains only
inessential loops, which cannot happen.

(2) Both ˛1 and ˛2 connect 1 to 2 . If ˛1 and ˛2 are on the same side of H

then a simultaneous band sum results in all inessential loops. We conclude ˛1

and ˛2 are are on opposite sides of H , as in Figure 3.

˛1

˛2

Figure 3: The set H \T when there is a slope change at a double saddle

Now that we have narrowed down the possibilities for H \T and ˛1 and ˛2 we must
analyze the saddle disks S1 and S2 . Before proceeding further note that if there are
any inessential loops on H \T they may be removed by an isotopy of H , as H \T

is compression free and M is irreducible. After performing such an isotopy let Ai be
the annulus on T bounded by 1[ 2 containing the arc ˛i . Let Di denote the disk
obtained by gluing two parallel copies of Si to the disk obtained from Ai by removing
a neighborhood of ˛i .

First note that if, for some i , the disk Di failed to be a compressing disk for H it
would follow that the component H� of HnT containing ˇi was an annulus which is
parallel into T . Hence, a further isotopy of H could push H� past T , removing all
intersections of H with T . As this is impossible, we conclude both D1 and D2 are
compressing disks for H .
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S1 S2

T

Figure 4: The surface H \N.T /

Now note that if S1 and S2 are incident to opposite sides of T then the disks D1 and
D2 would be disjoint. This violates the strong irreducibility of H . We conclude S1

and S2 are on the same side of T . Let N.T / denote a copy of T 2 � I embedded
in M so that T is the image of T 2 � f0g. We may thus assume that S1 and S2 are
contained in N.T /. This forces H \N.T / to be as depicted in Figure 4. It is now an
easy exercise to see that H \N.T / is a toggle, as depicted in Figure 5.

Figure 5: A toggle
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5 Toggles in Seifert fibered spaces

The results of the previous section leave open the possibility that if H can be isotoped
to meet T in a toggle then H may be isotoped to meet T in an arbitrarily large number
of slopes. In the appendix R Wedimann shows that this can, indeed, happen. Here we
prove that for “most” Seifert fibered spaces it does not. In particular, we prove the
following:

5.1 Theorem Let M be a closed, totally orientable Seifert fibered space which is
not a circle bundle with Euler number ˙1. Let H be a strongly irreducible Heegaard
surface in M and T be a non-separating, vertical, essential torus. Then the isotopy
class of H determines at most two slopes on T .

Remark The hypotheses of Theorem 5.1 can be relaxed to include any 3–manifold
constructed in the following way. Begin with a Seifert fibered space which is not a
circle bundle, with exactly two boundary components T1 and T2 . Let fi denote a
regular fiber on Ti . Construct M by gluing T1 to T2 so that jf1 \ f2j ¤ 1. Let T

denote the image of T1 and T2 in M . If H is any strongly irreducible Heegaard
surface in M then the conclusion of Theorem 5.1 holds for the pair .T;H /.

Proof Let Ht be a compression free isotopy in which there are values t0 , t1 and t2
such H0 , H1 and H2 meet T in different slopes (where Hi DHti

). Assume that t0 ,
t1 , and t2 are consecutive with respect to this property, in the sense that there is no
value t 2 .t0; t2/ such that Ht meets T in some fourth slope.

Let N.T / denote a fibered, closed neighborhoood of T . Let T� and T� denote the
boundary tori of N.T /. By Theorem 4.5 we know there is some tx 2 .t0; t1/ such that
Htx

meets N.T / in a toggle. Let Hx D Htx
and �x and �x denote the slopes of

Hx \T� and Hx \T� , respectively. Similarly, there is a ty 2 .t1; t2/ such that Hty

meets N.T / in a toggle. Let Hy DHty and �y and �y denote the slopes of Hy \T�
and Hy \T� .

Let M.T / denote the closure of M nN.T /. As Hx\N.T / contains compressions on
both sides of Hx (the disks D1 and D2 from the proof of Theorem 4.5) it follows from
strong irreducibilty that Hx \M.T / is incompressible in M.T /. By [4, Theorem
VI.34] we may thus assume that each component of Hx \M.T / is horizontal or
vertical. Similarly, we may assume that each component of Hy \M.T / is horizontal
or vertical.

We now show that Hx \M.T / must be horizontal. First, note that since T is non-
separating M.T / is connected. It follows that if Hx\M.T / is not connected and one
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component is vertical then every component is vertical. This is because a horizontal
component will meet every fiber, and hence will meet the fibers contained in the vertical
components. We conclude the entire surface Hx\M.T / is either vertical or horizontal.
If it is vertical then �x and �x will be fibers, and hence will represent the same slope
on T . This contradicts the fact that they are on opposite sides of a toggle.

We conclude the surface Hx \M.T / is horizontal. We now assert that it consists of
precisely two components, each with a single boundary component on each component
of @M.T /. Suppose not. Then the surface Hx \M.T / is a connected, horizontal
surface. The two loops of Hx \T� inherit, from Hx \M.T /, orientations that agree
on T� . (In a totally orientable Seifert fibered space we can consistently orient each
fiber. This defines a normal vector at every point of a horizontal surface.) Inspection
of Figure 5 indicates that these two loops inherit, from Hx \N.T /, orientations that
disagree. As Hx is orientable we have thus obtained a contradiction.

A symmetric argument shows that Hy \M.T / is a horizontal surface, made up of two
components, each with one boundary component on each component of @M.T /. Any
two horizontal surfaces in a Seifert fibered space differ by Dehn twists in vertical annuli
and tori. (This is because given a spine † of the base orbifold †�S1 cuts M.T / into
solid tori. As a horizontal surface intersects each such solid torus in meridian disks
the only ambiguity arises from gluing the solid tori back together along vertical tori
and annuli.) A Dehn twist in a vertical torus, however, does not change the boundary
slopes of the surface. Similarly, as M.T / is totally orientable a Dehn twist in a vertical
annulus that has both boundary components on the same component of M.T / will
not change boundary slopes. We conclude that the pair .�y ; �y/ can be obtained from
the pair .�x; �x/ by Dehn twisting in annuli that have each of their boundary loops
on different components of @M.T /. In other words, .�y ; �y/ can be obtained from
.�x; �x/ by simultaneous Dehn twisting along fibers. It follows that if �x D �y then
�x D �y , which is not the case, since by assumption there are exactly three distinct
slopes among �x , �y , �x , and �y .

We conclude, then, that �x D �y or �y D �x . Without loss of generality assume the
former. Now note that �y meets �y in a point, as one is obtained from the other by
passing a toggle across T . Finally, this implies �x meets �y in a point. But �y is
obtained from �x by Dehn twisting along a fiber. This can only happen if �x (and
�y ) meets each fiber once. We conclude that each component of the horizontal surface
Hx \M.T / meets a regular fiber once, and hence M.T / has no exceptional fibers
(see Section 2.3 above).

Finally, note that M can be recovered from M.T / by identifying its boundary compo-
nents. But this must be done in such a way so that �x and �x meet in a point. Since
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these loops are at the boundary of a horizontal surface in M.T /, it must be the case
that the Euler number of M is positive or negative one.

Appendix A Irreducible Heegaard splittings of circle bundles
are unique (by R Weidmann)

The goal of this appendix is to prove Theorem 1.1. We denote the orientable circle
bundle over the orientable surface Sg of genus g � 1 with Euler number e by Mg;e .

In [9] Y Moriah and J Schultens show that all irreducible Heegaard splittings of Seifert
manifolds are isotopic to horizontal or vertical Heegaard splittings. Moreover in the
case of manifolds of type Mg;e they show (see [9], Corollary 0.5) that all irreducible
Heegaard splittings of Mg;e are vertical and of genus 2gC1 if e¤˙1 and horizontal
of genus 2g if eD˙1. They further show that in the case e¤˙1 the vertical splitting
is unique up to isotopy. To prove Theorem 1.1 it therefore suffices to show that all genus
2g horizontal Heegaard splittings of Mg;e with e D˙1 are isotopic. The algebraic
analogue of this statement is:

A.1 Theorem Let M be an orientable circle bundle over an orientable surface of
genus g � 1 with Euler number equal to ˙1. Then any two generating tuples for
�1.M / of cardinality 2g are Nielsen equivalent.

We prove this theorem first, as the proof motivates the proof of Theorem 1.1.

Let G be a group and T D .g1; : : : ;gn/ and T 0 D .g0
1
; : : : ;g0n/ be two tuples of

elements. Recall that T and T 0 are called elementary equivalent if one of the following
holds.

(1) There exists some � 2 Sn such that g0i D g�.i/ for 1� i � n.

(2) g0i D g�1
i and g0j D gj for j ¤ i .

(3) g0i D gig
"
j for some i ¤ j and " 2 f�1; 1g. Furtermore g0

k
D gk for k ¤ i .

We further say that T and T 0 are Nielsen equivalent if there exists a sequence of tuples
T D T0; : : : ; Tk D T 0 such that Ti�1 and Ti are elementary equivalent for 1� i � k .

Proof of Theorem A.1 Let g � 1 and e D˙1. Note that

�1.Mg;e/D ha1; : : : ; a2g; f j Œa1; f �; : : : ; Œa2g; f �; Œa1; a2� � : : : � Œa2g�1; a2g�f
e
i:

Let further

p W �1.Mg;e/! �1.Sg/D hxa1; : : : ; xa2g j Œxa1; xa2� � : : : � Œxa2g�1; xa2g�i
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be the projection given by ai 7! xai and f 7! 1. Recall that ker p D hf i.

Note that .a1; : : : ; a2g/ is a generating tuple of �1.Mg;e/. To prove Theorem A.1
it suffices to show that any generating tuple .y1; : : : ;y2g/ of �1.Mg;e/ is Nielsen
equivalent to .a1; : : : ; a2g/.

A theorem of Zieschang [14] states that in �1.Sg/ any is Nielsen equivalent to
.xa1; : : : ; xa2g/. It follows that for any generating tuple
.y1; : : : ;y2g/ of �1.Mg;e/ the tuple .p.y1/; : : : ;p.y2g// is Nielsen equivalent to
.xa1; : : : ; xa2g/. Thus .y1; : : : ;y2g/ and .a1f

z1 ; : : : ; a2gf
z2g/ are Nielsen equivalent

for some zi 2 Z for 1� i � 2g .

It clearly suffices to show that for any i D 1; : : : ; 2g and � 2 f�1; 1g there exists a
sequence of Nielsen equivalences that replaces the tuple .a1f

z1 ; : : : ; a2gf
z2g/ with

.a1f
z1 ; : : : ; a

zi�1

i�1
; aif

ziC�; a
ziC1

iC1
; : : : : : : ; a2gf

z2g/, ie, that replaces aif
zi with

aif
ziC� and leaves all other elements unchanged. Note first that there is a cyclic

conjugate r of the relator Œa1; a2� � : : : � Œa2g�1; a2g�f
e if �D�e and of its inverse if

�D e such that (after using the fact that f commutes with the ai )

r D f ��a�1
i w1aiw2

where w1 and w2 are words in a1; : : : ; ai�1; aiC1; : : : ; a2g such that any of the aj

(j ¤ i ) occurs in w1 and w2 once with exponent C1 and once with exponent �1. In
particular we have the identity aif

� D w1aiw2 in G .

With appropriate Nielsen moves (left and right multiplication with the elements ajf
zj )

we can replace aif
zi with w1aiw2f

zi . (Note that the f ˙zj cancel out as every
ajf

zj occurs once with exponent C1 and once with exponent �1.) As w1aiw2f
zi D

aif
�f zi D aif

ziC� this proves the claim as all these Nielsen moves have left the
ajf

zj with j ¤ i untouched.

We illustrate the main step of the above proof with an example. Suppose that g D 2

and e D 1 and that we want to show that

.a1f
z1 ; a2f

z2 ; a3f
z3 ; a4f

z4/

is Nielsen equivalent to

.a1f
z1 ; a2f

z2C1; a3f
z3 ; a4f

z4/;

this is the case with i D 2 and �D 1.

Note that the inverse of the long relation from the presentation of �1.M2;1/ is

f �1a4a3a�1
4 a�1

3 a2a1a�1
2 a�1

1 ;
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a cylic conjugate is
a�1

2 a�1
1 f �1a4a3a�1

4 a�1
3 a2a1:

As f commutes with all ai we have the relation

r D f �1a�1
2 w1a2w2

with w1 D a�1
1

a4a3a�1
4

a�1
3

and w2 D a1 . Clearly a1 , a3 and a4 all occur twice in
w1 and w2 , once with exponent C1 and once with exponent �1.

It follows that by applying six Nielsen moves (where each takes one of the elements
a1f

z1 , a3f
z3 , a4f

z4 or their inverse and multiplies the second element in the tuple
from the left or right we can replace .a1f

z1 ; a2f
z2 ; a3f

z3 ; a4f
z4/ by

.a1f
z1 ; .a1f

z1/�1.a4f
z4/.a3f

z3/.a4f
z4/�1.a3f

z3/�1

a2f
z2.a1f

z1/; a3f
z3 ; a4f

z4/

All the f ˙zj with j ¤ 2 cancel in the second element of the tuple, it follows that this
new tuple is nothing but

.a1f
z1 ; a�1

1 a4a3a�1
4 a�1

3 a2f
z2a1; a3f

z3 ; a4f
z4/

D .a1f
z1 ; w1a2w2f

z2 ; a3f
z3 ; a4f

z4/D .a1f
z1 ; a2f �f

z2 ; a3f
z3 ; a4f

z4/

D .a1f
z1 ; a2f

z2C1; a3f
z3 ; a4f

z4/

Proof of Theorem 1.1 As mentioned above, to prove Theorem 1.1 it suffices to show
that any two genus 2g horizontal Heegaard splittings of M DMg;e with e D˙1 are
isotopic. We illustrate our proof of this assertion in Figure 6, in the case where the
base orbifold of M is a torus. The higher genus case is more difficult to see.

Let f be a fiber of M . Note that yM DM �N.f /� S�g �S1 where S�g � Sg is the
once punctured orientable surface of genus g .

Let further ˛1; : : : ˛2g � S�g be a canonical system of curves of Sg with common base
point x . Thus � D [˛i is a wedge of 2g circles and Sg �� is a disk. Clearly we
can assume that xai D Œ˛i � for 1� i � 2g if

�1.Sg;x/D hxa1; : : : ; xa2g j Œxa1; xa2�; : : : ; Œxa2g�1; xa2g�i:

Let now S be a horizontal Heegaard surface of genus 2g . After an isotopy of S we
can assume that S is horizontal at the fibre f . Thus we can assume that M DV [S W

where V is the regular neighborhood in yM of a horizontal surface. In particular there
exists a Heegaard graph y� (a core of V ) that gets mapped homeomorphically to �
under the projection map � W yM ! S�g � Sg , .x; z/ 7! x , in particular y� is a wedge
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Curve that
bounds disk

in solid torus

Slide handle through
back face of cube

isotopy

Heegaard
surface

Dehn twist in torus
(right face of cube)

Pass spine across
solid torus

Spine of Heegaard splitting

Figure 6: In M1;˙1 Dehn twisting a horizontal Heegaard splitting about
a vertical torus produces an isotopic splitting.
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of 2g circles with single vertex yx of valence greater than 2. Denote the arc of y� that
gets mapped to ˛i by ˇi .

It is clear that the (ambient) isotopy class and in fact the homotopy class of such a
graph y� is determined by the homotopy classes Œˇi �D aif

zi of the ˇi in

�1.M; yx/D ha1; : : : ; a2g; f j Œa1; f �; : : : ; Œa2g; f �; Œa1; a2� � : : : � Œa2g�1; a2g�f
e
i:

In particular we have a one to one correspondence between these types of Heegaard
graphs and generating tuples .a1f

zi ; : : : ; a2gf
z2g/ of �1.M; yx/.

As in the proof of Theorem A.1 it suffices to show that for any i and � 2 f�1; 1g the
Heegaard graph y�1 corresponding to the tuple .a1f

zi ; : : : ; a2gf
z2g/ of �1.M; yx/ is

isotopic to the graph y�2 corresponding to the tuple

.a1f
z1 ; : : : ; a

zi�1

i�1
; aif

ziC�; a
ziC1

iC1
; : : : : : : ; a2gf

z2g/:

Choose a relation r D f ��a�1
i w1aiw2 as in the proof of Theorem A.1. Recall that

Œ ǰ �D ajf
zj for 1� j � 2g . Let yw1 and yw2 be the words obtained from w1 and w2

by replacing every occurence of a˙1
j by Œ ǰ �

˙1 . As the fibre commutes with all a1 it
follows that we have the relation

yr D f ��Œˇi �
�1
yw1Œˇi � yw2:

Let xw1 and xw2 be the path in Mg;e obtained from w1 and w2 by replacing ai with
ˇi . Let further xf be the fibre over x , clearly Œ xf �D f .

We have Œ xwi �D ywi for i D 1; 2. Now there exists a map h WD!Mg;e of a disk D

such that h.@D/ is the path xf ��ˇ�1
i xw1ˇi xw2 , such that h is injective on the interior

D0 of D and the projection onto the base space maps h.D0/ homeomorphically onto
Sg �� .

To see this note that any lift z of  D xf ��ˇ�1
i xw1ˇi xw2 to the universal covering of

M is a simple closed curve that is contained in the boundary of the closure xN of some
component zN �D2 �R of the preimage of N DM �� �S1 �D2 �S1 under the
covering map. Clearly z bounds a properly embedded disk D in xN . Note that z is
transverse to the induced foliation of xN by lines except in the subpath which is the lift
of xf �� . This subpath is contained in a leaf of the foliation. It follows that D can be
chosen to be horizontal in its interior, ie, transverse to the foliation. In particular the
interior of D intersects every line of the foliation of zN (the intrior of xN ) exactly once.
If follows that the restriction of the covering projection to D is the desired map h.

We can now slide the edge ˇi over xw1 and xw2 which yields a new edge homotopic to
ˇi
xf � . No other edge is moved and the new edge can again be isotoped to map to ˛i .

Algebraic & Geometric Topology, Volume 6 (2006)



Non-isotopic Heegaard splittings of Seifert fibered spaces 371

D

-
xw1

�
�
�
�
�
�

�ˇi

A
A
A
A
A
A

U ˇi

�
�

�
�

�
�

�
�

+
xw2

Q
Q
Q
Q
Q
Q
Q
Q

s
xf �

This proves the claim as the homotopy class of the new edge is Œˇi
xf ��D Œˇi �Œ xf

��D

aif
zif � D aif

ziC� .
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