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A volume form on the SU.2/–representation
space of knot groups

JÉRÔME DUBOIS

For a knot K in S3 we construct according to Casson—or more precisely taking
into account Lin’s [13] and Heusener’s [10] further works—a volume form on the
SU.2/–representation space of the group of K (see Section 3). We next prove that
this volume form is a topological knot invariant (see Section 4) and explore some of
its properties (see Section 5).

57M25; 57M05, 57M27

Motivation and main ideas

In 1985, A. Casson constructed an integer valued invariant of integral homology 3–
spheres. The original definition of Casson’s invariant is based on SU.2/–representation
spaces. Informally speaking, the Casson invariant of an homology 3–sphere M counts
algebraically the number of conjugacy classes of irreducible SU.2/–representations
of �1.M / in the same sense that the Lefschetz number of a map counts the number
of fixed points, see Akbulut–McCarthy [1] or Guillou–Marin [9]. In 1992, X-S Lin
used an analogue of Casson’s original construction to define an integer valued knot
invariant [13], where he indirectly proved that this invariant is equal to half the signature
of the knot. At first sight, this equality between two apparently different quantities
seems mysterious. In 2003, M Heusener explained Lin’s result using an orientation
on the representation space of knot groups. More precisely, given a knot K � S3

we let MK denote its exterior and GK D �1.MK / its group. In general the SU.2/–
representation space of GK has singularities; to avoid this difficulty, Heusener and
Klassen introduced the notion of a regular representation in [11]. An irreducible
representation � of GK in SU.2/ is called regular if the real vector space H 1

� .MK / is
1–dimensional (over R). Here H�� .MK / denotes the .Ad ı �/–twisted cohomology of
MK . We let Reg.K/ denote the set of conjugacy classes of regular representations of
GK in SU.2/. Heusener proved that Reg.K/ is a canonically oriented 1–dimensional
manifold (see [10, Section 1]).
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In this article, we investigate a volume form on Reg.K/. We prove that it is an
invariant of K and we explore some of its properties. The main result of this paper is
the following theorem.

Main Theorem The 1–dimensional manifold Reg.K/ carries a well-defined “cano-
nical" 1–volume form !K . This volume form is a knot invariant. It does not depend
on the orientation of K ; and if K� denotes the miror-image of K , then as oriented
manifolds equipped with the canonical volume form, we have

.Reg.K�/; !K�/D .�Reg.K/;�!K /:

The construction which enables us to define the “canonical” volume form !K on
Reg.K/ is motivated by the original construction of Casson’s invariant. In our con-
struction the Heegaard splitting will be replaced by a plat presentation of K and we
will not only compare orientations but “natural” volume forms on some appropriate
representation subspaces of GK (see Section 3).

It is possible to prove that the definition of !K can be reformulated as a “combinatorial
invariant”, ie, using the CW–complex structure of the exterior of K . Informally
speaking, this “combinatorial invariant” is a Reidemeister torsion form on H 1

� .MK /Š
TŒ�� bR.MK /. Its definition needs Turaev’s sign-determined Reidemeister torsion of
CW–complexes (see for example Turaev’s monograph [17]) and certain distinguished
bases for the twisted cohomology groups of MK . This property of !K is discussed
by the author in [8]. This equality between two apparently different topological
invariants—one by means of Reidemeister torsion and another using Casson’s original
construction—can be considered as an analogue of a result of E Witten about the
moduli space of a Riemannian surface. In [18], E Witten obtained a remarkable
formula to compute the volume of the moduli space of a Riemannian surface in terms
of a combinatorial invariant, namely a Reidemeister torsion form on the first twisted
cohomology group of the Riemannian surface. Finally, note that this reformulation of
the volume form !K using the Reidemeister torsion of MK gives another proof of its
invariance.

Organization

The paper is organized as follows. Sections 1–2 consist of a review of the notions
of SU.2/–representation spaces, volume forms and regularity for a representation of
a knot group. In Section 3 we describe in detail the construction of the “canonical”
volume form on Reg.K/. Section 4 contains the proof of the first part of the Main
Theorem ie, the invariance of the volume form (see Theorem 4.1). In Section 5 we
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finish the proof of the Main Theorem by proving some basic properties of the volume
form, we also establish a connected sum formula. We end the paper by an explicit
computation of the volume form associated to torus knots.

1 Preliminaries

In this section, we collect some well-known results about SU.2/–representation spaces,
volume forms and introduce the notation used throughout this paper.

1.1 Some notation

The fundamental group �1.W / of a connected CW–complex W is consider without
specifying a base point since all the constructions we perform are invariant under
conjugation (see Porti [16, page 9]).

The Lie group SU.2/ acts on its Lie algebra su.2/ via the adjoint representation
AdAW su.2/! su.2/ defined by AdA.x/DAxA�1 , where A2 SU.2/. As a manifold
SU.2/ is identified with the 3–sphere S3 . Furthermore we identify the 2–sphere S2

with the set of zero-trace matrices of SU.2/: S2DfA2SU.2/ jTr.A/D0g. Recall that
for each A 2 SU.2/ there are � 2 Œ0; �� and P 2 S2 such that AD cos.�/C sin.�/P .
Moreover the pair .�;P / is unique if and only if A ¤ ˙1. Note that AdA is the
rotation of angle 2� which fixes P . We always think of SO.3/ as the base space of
the usual two-fold covering SU.2/! SO.3/ given by A 7!AdA .

The Lie algebra su.2/ is equipped with the usual scalar product defined by hx;yi D
�1=2�Tr.xy/; and we identify su.2/ with the pure quaternions, ie, with the quaternions
of the form q D aiC bjC ck.

1.2 Representation spaces

Given a finitely generated group G we let R.G/D Hom.GISU.2// denote the space
of SU.2/–representations of G . Observe that R.G/ is a topological space endowed
with the compact–open topology. Here G is assumed to have the discrete topology and
SU.2/ the usual one. A representation � 2R.G/ is called abelian (resp. central) if its
image �.G/ is an abelian subgroup of SU.2/ (resp. is contained in the center f˙1g
of SU.2/). In the case of SU.2/, remark that a representation is abelian if and only
if it is reducible in the usual sense: � is reducible if there exists a non-trivial proper
subspace U � C2 such that �.g/.U /� U , for all g 2G . A representation is called
irreducible if it is not abelian. We let eR.G/ (resp. A.G/, C.G/) denote the subspace
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of irreducible (resp. abelian, central) representations. One can prove that eR.G/ is
open in R.G/.

The compact Lie group SU.2/ acts on R.G/ by conjugation. We write Œ�� for the
conjugacy class of the representation � 2R.G/ and we let SU.2/.�/ denote its orbit.
The action by conjugation factors through SO.3/D SU.2/=f˙1g as a free action on
the open subspace eR.G/ and we set bR.G/ D eR.G/=SO.3/. In this way, we can
think of the map eR.G/! bR.G/ as a principal SO.3/–bundle, see Guillou–Marin [9,
Section 3.A].

Notation For a connected CW–complex W , we write R.W /DR.�1.W //, eR.W /DeR.�1.W //, bR.W /D bR.�1.W // etc.

1.3 Representation space of knot groups

For a knot K � S3 let MK D S3 nN.K/ denote its exterior and GK D �1.MK /

its group. Here N.K/ is an open tubular neighbourhood of K . Recall that MK is a
compact 3–dimensional manifold whose boundary consists in a single 2–torus. The
meridian m of K is only defined up to conjugation and if K is oriented then m is
oriented by the convention `k.K;m/DC1, where `k denotes the linking number.

The abelianization GK=G0
K
ŠH1.MK IZ/ is generated by the meridian m of K . As

a consequence, each abelian representation of GK is conjugate to one and only one of
the '� W GK ! SU.2/ defined by '� .m/D cos.�/C sin.�/i, with 0 6 � 6 � .

1.4 Volume forms

Here we collect some well-known facts about volume forms, see Milnor [14, Section
3] and [15, Section 1] for details and proofs.

1.4.1 Volume forms and compatibility Let E be a n–dimensional real vector space.
A volume form v on E is a generator of the nth exterior power

Vn
E� , where

E� D HomR.E;R/ is the dual space of E . Let E0;E00 be two real finite dimensional
vector spaces and let v0; v00 be volume forms on E0;E00 respectively. The direct sum
E0˚E00 inherits a canonical volume form denoted v0 ^ v00 .
Consider now a short exact sequence 0 //E0 i //E

j //E00 //0 of real finite dimen-
sional vector spaces. Let v0 , v and v00 be volume forms on E0 , E and E00 respectively.
Let s denote a section of j so that i˚sW E0˚E00!E is an isomorphism. We say that
the previous three volume forms are compatible with each other if v0^v00D .i˚s/�.v/:
It is easy to verify that the notion of compatibility does not depend on the chosen
section s . Finally, the following very useful lemma is quite clear.
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Lemma 1.1 Let 0 //E0 //E //E00 //0 be an exact sequence of real finite dimen-
sional vector spaces. If any two of the vector spaces E0 , E and E00 are endowed with a
volume form, then the third is endowed with a unique well-defined volume form which
is compatible with the two others.

In particular, if v; v00 are volume forms on E;E00 respectively, we will write v0D v=v00
the unique compatible volume form on E0 to indicate its dependence on v and v00 .
Compatibility will be used in order to build up “new” volume forms (see Section 3.4).

1.4.2 The “base ^ fiber" condition A volume form v on a n–dimensional manifold
is a nowhere vanishing differential n–form. In the sequel, we will make use of the

“base ^ fiber” condition, which is the following. Given two volume forms v and w
on the manifolds M m and N n respectively, a submersion f W M ! N and a point
y 2 N , then the subspace f �1.y/ �M is a submanifold of dimension m� n, the
tangent space Txf

�1.y/ is the kernel of Dxf and we have the short exact sequence

0 //Txf
�1.y/

i //TxM
Dxf //TyN //0:

The submanifold f �1.y/ is endowed with the unique volume form ! such that, for
each x 2 f �1.y/ one has !x D vx=wy ie, !x^wy D .i˚ s/�.vx/, s being a section
of Dxf .

2 Notion of regularity

In this paper we will not consider the singular points of the semi-algebraic set bR.MK /

and only focus on the so-called regular representations. This section recalls the definition
of regularity for SU.2/–representations of knot groups, see Boyer–Zhang [3], Heusener–
Klassen [11], Porti [16, Definition 3.21] and Heusener [10, Section 1] for more details
on this notion.

Notation For a CW–complex W and a representation �W �1.W / ! SU.2/, let
H�� .W / D H�.W I su.2/Adı�/ denote the cohomology of W with coefficients in
the adjoint representation Ad ı � . This cohomology is called the .Ad ı �/–twisted
cohomology of W . When H�� .W /D 0 we say that � is acyclic.

2.1 Non-acyclicity of representation of knot groups

The long exact sequence in .Ad ı�/–twisted cohomology corresponding to the pair
.MK ; @MK / and Poincaré duality imply dim H 1

� .MK />1. So a SU.2/–representation
of a knot group is never acyclic.
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If �W GK ! SU.2/ is irreducible, then H 0
� .MK /D 0 (because H 0

� .MK / is equal to
the subgroup of su.2/ consisting of elements fixed by Ad ı �.GK /). Moreover, we
have dim H 2

� .MK /D dim H 1
� .MK / becauseX

i

.�1/i dim H i
�.MK /D 3�.MK /D 0:

2.2 Regular representations

An irreducible representation � of GK is called regular if dim H 1
� .MK /D 1. One can

easily prove that this notion is invariant by conjugation. In the sequel, we let Reg.K/
denote the set of conjugacy classes of regular representations of GK in SU.2/.

Example 1 If K denotes a torus knot or the figure eight knot, then any irreducible
representation of GK in SU.2/ is regular (see [7, Example 1.43] or [8]).

M Heusener and E Klassen proved [11, Proposition 1] that Reg.K/ is a 1–dimensional
manifold (which may be empty). If � is regular, then its conjugacy class Œ�� is a smooth
point of bR.MK /, dim bR.MK / D 1 in a neighbourhood of Œ�� and TŒ�� bR.MK / is
isomorphic to H 1

� .MK / (see [8, Section 4]). In Section 3.3, we will see another
formulation of the concept of regularity in terms of transversality of some appropriate
representation subspaces of bR.MK /.

3 Construction of the volume form

In this section, we explain in details the Casson-type construction of the “canonical”
volume form on Reg.K/, see [6] and [7, Chapter 3]. First, let us make a digression on
the construction of Casson’s invariant.

Let M be an oriented integral homology 3–sphere. The original construction of
Casson’s invariant is based on SU.2/–representation spaces. More precisely, consider a
Heegaard splitting M DH1[F H2 of M , where Hi is a handlebody and F DH1\H2

is a surface of genus g . The construction of Casson’s invariant is based on the fact that
such a splitting of M gives rise to embeddings bR.M / ,! bR.Hi/ and bR.Hi/ ,! bR.F /.
Furthermore, bR.M / can be viewed as the intersection of the images of bR.H1/ andbR.H2/ inside bR.F /. The crucial point is that the spaces bR.Hi/ and bR.F / are
canonically oriented manifolds. Informally speaking, the Casson invariant �.M / is
the “algebraic intersection number” of bR.H1/ and bR.H2/ in bR.F /. The technical
difficulties of the construction are to make sense of the algebraic intersection number
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of these proper open submanifolds and to show that it is independent of the Heegaard
splitting (see [9] for details).

In our construction the Heegaard splitting will be replaced by a splitting of the knot
exterior induced by a plat presentation of the knot and the orientations will be replaced
by volume forms. Moreover, we will not only consider groups but marked groups.
A marked group is a pair .G;G/ where G is a finitely generated group and G is a
fixed finite set of generators of G . We will associate to marked groups appropriate
representation subspaces. All this material will be discuss in the following subsections.

Convention The 3–sphere S3 is assumed to be oriented.

3.1 Plat presentation and splitting of knot exteriors

Each knot K � S3 can be presented as a 2n–plat y� , where y� is obtained from the
2n–braid � 2B2n by closing it with 2n half circles as in Figure 1. Explicitly, assume
that the 3–sphere S3 D R3 [ f1g is oriented. We choose � 2 f˙1g such that the
basis .e1; e2; e3/ represents the induced orientation of R3 , where e1 D �iD ."; 0; 0/,
e2 D jD .0; 1; 0/, e3 D kD .0; 0; 1/. For j D 1; : : : ; 2n, set

pj D
(
.j ; 0/ 2 R2 if "D 1;

.2nC 1� j ; 0/ 2 R2 if "D�1:

Let J D Œ1; 2�, H1 D f.x;y; z/ 2 R3 j z 6 1g, H2 D f.x;y; z/ 2 R3 j z > 2g and let
Q denote the cube Œ0; 2nC 1�� Œ�1; 1��J � R2 �J . We assume that � is contained
in Q and in a small neighbourhood of the plane R� f0g �R. We also assume that
� \ .R2 � fig/ D p � fig, i D 1; 2, where p D .p1; : : : ;p2n/. The 2n–plat y� is
obtained from � by closing it with two systems of n half-circles Ci D fc.i/k

g16k6n �
Hi \ .R � f0g � R/, i D 1; 2. We assume that the endpoints of c

.i/

k
are exactly

p2k�1 � fig;p2k � fig in @Hi , see Figure 1.

Such a presentation of K as a 2n–plat y� gives rise to a splitting of its exterior of
the form My� D B1 [S B2 , where B1;B2 are two handlebodies of genus n and

S D B1 \B2 D S2 nN.y�/ is a 2n–punctured 2–sphere (cf [10, Section 3]). To be
more precise, S D S2 nN.y�/D .R2 nN.p/�f1g/[f1g, B1D .H1 nN.C1//[f1g
and B2 D ..H2[R2 �J / nN.C2[ �//[f1g, see Figure 1.

This decomposition is similar to the Heegaard splitting used in the construction of
Casson’s invariant. It also gives rise to special systems of generators (depending
on the orientation of S3 ) for �1.Bi/, i D 1; 2, and �1.S/ respectively denoted

Algebraic & Geometric Topology, Volume 6 (2006)



380 Jérôme Dubois

H1

H2

R2 � f1g

R2 � f2g

M O� D B1 [S B2

Q

c
.2/
1

c
.1/
1

x0

t
.2/
2

s
.2/
1

s
.1/
1

s
.1/
4

t
.1/
2

Figure 1: Special systems of generators with "DC1 .

Ti D ft .i/j ; 1 6 j 6 ng and S D fs.1/j ; 1 6 j 6 2ng, see Figure 1. We will precisely
define these generators in Section 3.2.

With the notation above, the group �1.Bi/ is the free group with basis Ti and the
group �1.S/ admits the finitely presentation:

�1.S/D hs1; : : : ; s2n j s1 � � � s2ni;
here siD s

.1/
i . Furthermore, each element of Ti and S is a meridian of K . In particular

all these elements are conjugate in GK . This obvious remark will be crucial in the
sequel.

The inclusions S ,!Bi and Bi ,!MK , iD1; 2, give rise to the following commutative
diagram:

(1) �1.S/

�1
??�����

�2 ��?
??

??

�1.B1/
p1

��?
??

??

�1.B2/
p2

??�����

�1.MK /DGK

Each homomorphism of diagram (1) is onto. The Seifert–Van Kampen Theorem and
diagram (1) combine to yield the following presentation of GK :

(2) GK D
D
t
.1/
i ; t

.2/
i ; 1 6 i 6 n j p1 ı �1.sj /D p2 ı �2.sj /; 1 6 j 6 2n� 1

E
;
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Observe that presentation (2) is a particular Wirtinger presentation for GK .

3.2 Choices of generators

Here we introduce the appropriate orientation conventions and we set up the special
systems of generators corresponding to a plat presentation of the knot K .

Assume that the cube Q is endowed with the induced orientation of the one of R3

and choose x0 D .n;�1; 1/ 2 @Q as base point. We obtain the special systems of
generators for the fundamental groups of B1 , B2 and S as follows.

The generator s
.i/
j of �1..R

2 n N.p// � fig/ is represented by a loop in R2 � fig
consisting of a small circle around pj �fig and the shortest arc in @Q connecting it to
x0 . The circle is oriented according to the rule: `k.s.i/j ;Lj /D 1, where Lj denotes
the oriented line pj �R (the orientation points in negative z–direction), see Figure 1.
With these choices,

�1

�
.R2 nN.p/� fig/[f1g

�
D
D
s
.i/
1
; : : : ; s

.i/
2n
j s.i/

1
� � � s.i/

2n

E
:

In order to define the other generators we choose an orientation for the plat y� . We shall
see later on that the construction does not depend on this choice (see Corollary 3.5 (3)).
The generator t

.i/

k
of �1.Hi nN.Ci// is represented by a loop consisting of a small

circle around c
.i/

k
and the shortest arc in R3 connecting it to x0 . The orientation of

the circle is given by the rule: `k.t .i/
k
; y�/D 1, see Figure 1.

Consider the homomorphism �i W �1..R
2 nN.p//� fig/! �1.Hi nN.Ci// induced

by inclusion. We have

(3) �i.s
.i/

2k�1
/D .t .i/

k
/
"
.i/

k
; �i.s

.i/

2k
/D .t .i/

k
/
�".i/

k
;

where ".i/
k
2 f˙1g depends on the orientation of y� . Observe that the ".i/

k
change sign

simultaneously if the orientation of y� is reversed.

The braid group B2n can be viewed as a subgroup of Aut.F2n/. Here F2n is identified
to the fundamental group �1.Q n N.�//. The braid � induces the automorphism
�� W �1.QnN.�//!�1.QnN.�// defined by s

.2/
j 7! s

.1/
j . Hence, s

.1/
j can be viewed

as a word in the generators s
.2/
1
; : : : ; s

.2/
2n

. One can prove (cf diagram (1)) that

�1W s.1/j 7! �1.s
.1/
j / and �2W s.1/j 7! �2 ı��.s.2/j /:
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3.3 Representation subspaces

Corresponding to a plat presentation of K—which gives rise to the splitting MK D
B1[S B2 and to special systems of generators for �1.Bi/ and �1.S/—we introduce
some special representation subspaces for R.Bi/, i D 1; 2, and R.S/, see [10, Section
3].

Consider a representation �W GK ! SU.2/ and look at its restrictions �i D � ı pi

and �S D � ı pi ı �i . In this way we do not obtain all the representations of the
groups �1.Bi/ or �1.S/ because all the generators of these groups are conjugate
to the meridian of K . For this reason we introduce some appropriate representation
subspaces associated to the marked groups .�1.Bi/; Ti/ and .�1.S/;S/.

Corresponding to the marked group .G;G/ we define the subset RG.G/ of R.G/nC.G/
by setting

(4) RG.G/D f� 2R.G/ nC.G/ j Tr.�.s//D Tr.�.t// 8s; t 2 Gg:

Write eRG
.G/DRG.G/\ eR.G/. The spaces RG.G/ and eRG

.G/ explicitly depend
on the choice of the system of generators G . However the action by conjugation leaves
RG.G/ and eRG

.G/ invariant because the trace-function is invariant by conjugation.

Thus, the quotient bRG
.G/ D eRG

.G/=SO.3/ is well-defined. Observe that eRG
.G/

can be identified with the total space of a principal SO.3/–bundle with bRG
.G/ as base

space.

Here is a concrete example. Assume that G is the group GK of the knot K � S3 .
Assume that G is a finite system of generators of GK such that each element in G is a
meridian of K . Then RG.G/DR.G/ nC.G/.

Let .G;G/ and .G0;G0/ be two marked groups. A homomorphism �W G ! G0 is
called compatible with G and G0 if �.g/ is conjugate to an element of G0[ .G0/�1 for
all g 2 G . If �W G!G0 is compatible with G and G0 , then � induces a transformationb� W bRG

.G/! bRG0
.G0/.

Notation We write bRTi
.Bi/D bRTi

.�1.Bi//, i D 1; 2, bRS
.S/D bRS

.�1.S// etc.

All epimorphisms in diagram (1) are compatible with the special systems of generators
Ti , i D 1; 2, and S described above (because all the elements in Ti , i D 1; 2, and in
S are conjugate to the meridian). Thus corresponding to diagram (1) we obtain the
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commutative diagram:

(5) bRS
.S/

bRT1
.B1/b�1

����
��

�

bRT2
.B2/

b�2

__?????

bR.MK /

bp1
__??????

bp2
����

��
��

All arrows in diagram (5) are inclusions. Therefore, we can see bR.MK / as the

intersection of the images of bRT1
.B1/ and bRT2

.B2/ inside bRS
.S/. The commutative

diagram (5) is the main ingredient to define (generically) the volume form on the SU.2/–
representation space of GK .

M Heusener [10] proved that bRTi
.Bi/ is a .2n�2/–dimensional manifold and bRS

.S/

is a .4n�5/–dimensional manifold. We furthermore prove in the following proposition
that they also carry “natural” volume forms. Here, “natural” means that the volume
forms are deduced from the usual ones on SU.2/ and on .�2; 2/.

Proposition 3.1 The manifold bRTi
.Bi/ (resp. bRS

.S/) carries a “natural" .2n� 2/–

volume form denoted v bRTi
.Bi / (resp. a .4n� 5/–volume form denoted v bRS

.S/ ).

Proof We explicitly describe the volume forms on the manifolds bRTi
.Bi/ and bRS

.S/.
Their constructions are based on Lemma 1.1 and require the following steps.

� The Lie group SU.2/ is endowed with the 3–volume form � induced by the basis
fi; j;kg. Similarly we let � denote the 3–volume form on SO.3/D SU.2/=f˙1g
deduced from the one of SU.2/. Considering the fact that the trace-function
TrW SU.2/ n f˙1g ! .�2; 2/ is a submersion, we define a 2–volume form �

on the 2–sphere S2 D fA 2 SU.2/ j Tr.A/D 0g exploiting the “base ^ fiber”
condition. Explicitly, for each A 2 S2 we have the short exact sequence

0 //TAS2 //TASU.2/ //T0.�2; 2/ //0:

In this sequence, SU.2/ is endowed with the 3–volume form induced by fi; j;kg
and .�2; 2/ is endowed with the usual 1–volume form. The 2–volume form �

on S2 is the unique compatible volume form with the two others.

� We define a natural .2n C 1/–volume form on RTi .Bi/ as follows. Using
the system of generators Ti , the map R.Bi/ ! SU.2/n defined by � 7!
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�
�.t

.i/
1
/; : : : ; �.t

.i/
n /

�
is an isomorphism. This isomorphism allows us to identify

R.Bi/ with SU.2/n . Using the natural inclusion �W .�2; 2/� .S2/n! SU.2/n

given by

�.2 cos.�/;P1; : : : ;Pn/D .cos.�/C sin.�/Pi/16i6n;

we identify RTi .Bi/ with the product .�2; 2/� .S2/n . As a consequence, the
.2nC 1/–dimensional manifold RTi .Bi/ is endowed with a natural .2nC 1/–
volume form vRTi .Bi / , namely the one induced by the product volume form on
.�2; 2/� .S2/n .

� We define a natural .4n�2/–volume form on eRS
.S/ as follows. Let D� be the

2n–punctured disk S n f1g. The fundamental group of D� is the free group of
rank 2n with basis S D fs1; : : : ; s2ng (see Figure 1). Let U be the subgroup
normally generated by the product s1 � � � s2n . We have �1.S/ D �1.D

�/=U .
Consider the map 'W RS.D�/! SU.2/ defined by '.�/ D �.s1 � � � s2n/ and
observe that RS.S/ D '�1.1/. In [10, Lemma 3.1], Heusener proved that '
is surjective and that the set of critical points of ' coincides exactly with the
set of abelian SU.2/–representations of �1.D

�/. Thus, we have the short exact
sequence

0 //T�eRS
.S/ //T�eRS

.D�/ //su.2/ //0:

In this sequence, su.2/ is endowed with the 3–volume form induced by fi; j;kg
and eRS

.D�/ is endowed with a natural .4nC 1/–volume form (observe thateRS
.D�/ is an open subset of RS.D�/Š .�2; 2/� .S2/2n which is endowed

with the product volume form). Then, eRS
.S/ is endowed with the unique

.4n� 2/–volume form v
eRS

.S/ which is compatible with the two others.

� Finally, if .G;G/ is one of the marked groups .�1.B1/; T1/; .�1.B2/; T2/ or

.�1.S/;S/, then the map eRG
.G/! bRG

.G/ is a principal SO.3/–bundle. As a

consequence, we define a volume form on bRG
.G/ exploiting the “base ^ fiber”

condition. To be more precise, we have the short exact sequence

0 //T�.SU.2/.�// //T�eRG
.G/ //TŒ��bRG

.G/ //0;

where SU.2/.�/D fAdA ı � jA 2 SU.2/g. Observe that SU.2/.�/Š SU.2/ is

endowed with the 3–volume form �. So bRG
.G/ is endowed with the unique

volume form which is compatible with � and with the natural volume form we
have just constructed on eRG

.G/.
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3.4 Construction of the volume form

In this subsection, we fix a 2n–plat presentation y� of the oriented knot K . Having in
mind the result obtained in Proposition 3.1, we are ready to complete the construction
of the volume form on Reg.y�/.

3.4.1 Regularity and transversality Let �W GK ! SU.2/ be a non-central repre-
sentation and consider �i D � ıpi (resp. �S D � ıpi ı �i ) its restriction to �1.Bi/

(resp. �1.S/). One can prove that � is regular (ie, dim H 1
� .MK /D 1) if and only if

the images in bRS
.S/ of the manifolds bRT1

.B1/ and bRT2
.B2/ intersect transversally

at Œ��, see [10, Proposition 3.3]. Informally speaking, the proof of this fact is essentially
based on a dimensional argument.

3.4.2 Definition The construction of the “natural” volume form on Reg.y�/ combines
the previous result and Proposition 3.1. It is based on the following fact: if � is a
regular representation, then

(6) 0 //TŒ��bR.MK /
DŒ��bp//TŒ�1�

bRT1
.B1/˚TŒ�2�

bRT2
.B2/

DŒ��b�//TŒ�S �
bRS
.S/ //0

is a short exact sequence (cf diagram (5) and the fact that bRT1
.B1/ and bRT2

.B2/

intersect transversally at Œ��). Using the exactness of sequence (6), we define a 1–

volume form !
y�
Œ��

on TŒ�� bR.MK / by setting (see the notation of Section 1.4.2):

(7) !
y�
Œ��
D .�1/n

�
v
bRT1

.B1/

Œ�1�
^ v bRT2

.B2/

Œ�2�

�
=v
bRS

.S/

Œ�S �
:

In this way we locally construct a 1–volume form !
y� W Œ�� 7!!

y�
Œ��

on the 1–dimensional

manifold Reg.y�/.

As it stands !y� is defined in terms of the plat decomposition of the knot and apparently
depends on it. In fact, we will prove in Section 4 (see in particular Theorem 4.1) that
it is not the case. Further observe that the normalisation given by the sign .�1/n in
formula (7) is needed to ensure the invariance of !y� (see in particular Lemma 4.3).
We will also prove in Section 5 that !y� does not depend on the orientation of y� (see
Proposition 5.1). Finally remark that the order taken for the handlebodies B1 and B2

in formula (7) has no importance in the definition (because of the parity of the order of

the .2n� 2/–volume form v
bRTi

.Bi / ).
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3.4.3 An important remark We obtain an other splitting of the exterior of the plat y�
by choosing the punctured sphere S 0D .R2 nN.p/�f2g/[f1g and the handlebodies
B0

1
D ..H1[R2�J / nN.C1[ �//[f1g; B0

2
D .H2 nN.C2//[f1g, see Figure 1.

Using the notation of Section 3.2, the epimorphisms corresponding to this splitting are
given by:

�01W s.1/j 7! �1 ı��1
� .s

.1/
j / and �02W s.2/j 7! �2.s

.2/
j /:

Thus �i D �0i ı�� , for i D 1; 2. Set bQ 0i Db� 0i.bRTi
.B0i//, i D 1; 2, see diagram (5).

The volume form !
y� on Reg.y�/ can be defined using arbitrarily one of the two

splittings My� D B1 [S B2 or My� D B0
1
[S 0 B02 , because �� W s.2/j 7! s

.1/
j induces a

volume preserving diffeomorphism from the regular part of bQ1 \ bQ2 to the one ofbQ 01 \ bQ 02 . This result will be proved in the following subsection, see in particular
Corollary 3.5.

3.5 Dependence of the volume forms on the generator systems

In this subsection, we analyse the dependence of the volume forms v bRTi
.Bi / and

v
bRS

.S/ in terms of the generator systems Ti and S respectively.

Let F2n denote the free group of rank 2n with basis S . A braid � 2B2n induces an
automorphism �� W F2n! F2n , given by �� W si 7! gis�.i/g

�1
i , where gi 2 F2n and

� 2S2n is a permutation. Observe that
Q2n

iD1 ��.si/DQ2n
iD1 si . As a consequence,

�� is compatible with the system S and thus induces a diffeomorphism b�� W bRS
.S/!bRS

.S/.

3.5.1 A “transfer lemma" We begin our study by establishing a useful technical
lemma.

Let FmDhS1; : : : ;Sm j� i be a free group. Each endomorphism �W Fm!Fm induces
a transformation �]W R.Fm/! R.Fm/ and a map �abW H 1.FmIZ/! H 1.FmIZ/,
where H 1.FmIZ/Š Zm . In fact, using the identification R.Fm/Š SU.2/m induced
by the presentation hS1; : : : ;Sm j � i of Fm , �] is explicitly given by

.�.S1/; : : : ; �.Sm// 7! .� ı�.S1/; : : : ; � ı�.Sm//:

For each g2Fm consider the evaluation map evgW R.Fm/!SU.2/ given by evg.�/D
�.g/. If �W Fm!Fm is an endomorphism, then evg ı�]D ev�.g/ . With this notation,
we have:
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Lemma 3.2 If �W Fm! Fm is an endomorphism, then

ev��.S1/
.�/^ : : :^ ev��.Sm/

.�/D det.�ab/ ev�S1
.�/^ : : :^ ev�Sm

.�/:

Proof We just explain the main ideas which are similar to [1, Proposition 3.4].

The volume forms ev�
�.S1/

.�/ ^ : : : ^ ev�
�.Sm/

.�/ and ev�
S1
.�/ ^ : : : ^ ev�

Sm
.�/ are

completely determined by their value at the trivial representation � W Fm ! SU.2/
defined by �.g/ D 1, for all g 2 Fm (because they are right-invariant). At the
representation � , we have:

.ev��.S1/
.�/^ : : :^ ev��.Sm/

.�//.�/D det.D��
]/ .ev�S1

.�/^ : : :^ ev�Sm
.�//.�/:

Thus the proof reduces to the evaluation of det.D��
]/.

Let augW ZŒFm�! Z be the augmentation map aug.Si/D 1. Consider the Fox-matrix
AD .aij /i;j where aij D aug

�
@�.Si /
@Sj

�
2 Z. With this notation we have �ab.Si/DPm

jD1 aij Sj . If @W su.2/m ! su.2/m denotes the map given by @.x1; : : : ;xm/ D�Pm
jD1 aij xj

�
16i6m

then the diagram

T�.S1/SU.2/� � � � �T�.Sm/SU.2/
D��

]

//

D
��

T�ı�.S1/SU.2/� � � � �T�ı�.Sm/SU.2/

D
��

su.2/� � � � � su.2/
@ // su.2/� � � � � su.2/

commutes. Hence det.D��
]/D det.@/D det.�ab/ as required.

3.5.2 Dependence of the volume form v
bRTi

.Bi / Let .Fn; T / be the marked group
.�1.Bi/; Ti/, i D 1; 2. Consider an automorphism �W Fn! Fn and assume that there
is a permutation � 2Sn such that

(8) �.tj /D gj t
"j
�.j/

g�1
j where gj 2 Fn and "j 2 f˙1g:

It follows that T and T 0 D �.T / are compatible sets and that RT 0.Fn/DRT .Fn/.

As a consequence, � induces a diffeomorphism b� W bRT
.Fn/! bRT

.Fn/.

Lemma 3.3 Let N D ]f"j ; 1 6 j 6 n j "j D �1g. The induced diffeomorphismb� W bRT
.Fn/! bRT

.Fn/ satisfies

b��.v bRT
.Fn//D .�1/N v

bRT
.Fn/:
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Here v bRT
.Fn/ denotes the natural volume form on bRT

.Fn/ constructed in Proposition
3.1.

Proof Assume that �.tj /D cos.�/C sin.�/P�
j , with 0 < � < � and P

�
j 2 S2 , for

each � 2 eRT
.Fn/. Introduce the following maps:

trW RT .Fn/! .�2; 2/; � 7! 2 cos.�/ and axtj W RT .Fn/! S2; � 7! P
�
j :

Observe that axtj is the composition of evtj with the canonical projection onto S2 .
The automorphism � induces a diffeomorphism �|W RT .Fn/! RT .Fn/ such that
axtj ı�| D ax�.tj / .

Further consider the following claims:

� The map .tr; axt1
; : : : ; axtn

/W RT .Fn/! .�2; 2/� .S2/n is a diffeomorphism.
The volume form vRT .Fn/ on RT .Fn/ is the pull-back of the product volume
form on .�2; 2/� .S2/n by this isomorphism.

� Consider ti W Fn!Fn; given by ti 7! t�1
i ; tj 7! tj , if j ¤ i . This transformation

induces a diffeomorphism ti
|W RT .Fn/!RT .Fn/ such that

.ti
|/
�
.vRT .Fn//D�vRT .Fn/; for all i:

� Consider t� W Fn!Fn; given by tj 7! t�.j/ , where � 2Sn is a transposition. The
transformation t� induces a volume preserving diffeomorphism t�

|W RT .Fn/!
RT .Fn/.

From these observations, we conclude

.�|/
�
.vRT .Fn//D .�1/N vRT .Fn/:

The diffeomorphism �| induces a diffeomorphism e� W eRT
.Fn/! eRT

.Fn/ which
makes the following diagram commutative:

SO.3/ //

D
��

eRT
.Fn/

//

e���
bRT
.Fn/b���

SO.3/ // eRT
.Fn/

// bRT
.Fn/

This completes the proof.
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3.5.3 Dependence of the volume form v
bRS

.S/ Consider the marked group
.F2n;S/ where F2n is the fundamental group of the 2n–punctured disk S n f1g and
S D fs1; : : : ; s2ng. Recall that �1.F /D F2n=U where U is the subgroup normally
generated by the product s1 � � � s2n . We are interested in an automorphism � of F2n

which satisfies:

(1) there is a permutation � 2S2n such that �.sj /D gj s
"j
�.j/

g�1
j , where gj 2F2n

and "j 2 f˙1g.
(2) � preserves the normal closure of s1 � � � s2n 2 F2n , ie,

�.s1 � � � s2n/D g.s1 � � � s2n/
"g�1; where g 2 F2n and " 2 f˙1g:

As before S and S 0 D �.S/ are compatible sets, we have RS0.S/D RS.S/ and �

induces a diffeomorphism b� W bRS
.S/! bRS

.S/.

Lemma 3.4 Let N D ]f"j ; 1 6 j 6 2n j "j D�1g. If N� DN C ."� 1/=2, then the

induced diffeomorphism b� W bRS
.S/! bRS

.S/ satisfies

b��.v bRS
.S//D .�1/N�v

bRS
.S/:

Here v bRS
.S/ denotes the natural volume form on bRS

.S/ constructed in Proposition
3.1.

Proof With the same notation as in the proof of Lemma 3.3, we introduce

trW RS.F2n/! .�2; 2/; � 7! 2 cos.�/ and axsj W RS.F2n/! S2; � 7! P
�
j :

An inner automorphism of F2n induces the identity on bRS
.S/. Therefore we may

assume for simplicity that �.s1 � � � s2n/D .s1 � � � s2n/
" where " 2 f˙1g.

The automorphism � induces two diffeomorphisms �}W eRS
.F2n/! eRS

.F2n/ ande� W eRS
.S/! eRS

.S/. Moreover axsj ı�} D ax�.sj / .

We first analyse the action of �} at the level of volume forms. As before vRS.F2n/ is
the pull-back of the product volume form on .�2; 2/� .S2/2n by the diffeomorphism
.tr; axs1

; : : : ; axs2n
/. Observe that by definition there is no central representation in

RS.F2n/. Let iS W RS.F2n/ ! .SU.2/ n f˙1g/2n be the usual inclusion iS.�/ D
.�.s1/; : : : ; �.s2n// and let T W .SU.2/ n f˙1g/2n! .�2; 2/2n be defined by

T .A1; : : : ;A2n/D .Tr.A1/; : : : ;Tr.A2n// :
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Thus the diagram

RS.F2n/
iS //

�}

��

.SU.2/ n f˙1g/2n T //

�]
��

.�2; 2/2n

�ab
��

RS.F2n/
iS // .SU.2/ n f˙1g/2n T // .�2; 2/2n

commutes. If �D f.x; : : : ;x/ j x 2 .�2; 2/g, then .T ı iS/
�1
.�/DRS.F2n/. Using

Lemma 3.2, we conclude that

.�}/
�
.vRS.F2n//D .�1/N vRS.F2n/:

Next, consider the maps 'W RS.F2n/ ! SU.2/ defined by � 7! �.s1 � � � s2n/ and
ˆW SU.2/! SU.2/ defined by A 7!A" . These maps make the diagram

eRS
.S/ //e���

eRS
.F2n/

' //

�}

��

SU.2/

ˆ
��eRS

.S/ // eRS
.F2n/

' // SU.2/

commutative. From this observation, we deduce

e��.v eRS
.S//D .�1/N�v

eRS
.S/:

We finish the proof in the same way as in the one of Lemma 3.3.

Some consequences of the preceding lemma are summarised in:

Corollary 3.5 Let � 2 B2n be a braid such that y� is a knot.

(1) The diffeomorphism b�� W bRS
.S/ ! bRS

.S/ induced by the 2n–braid � is
volume preserving.

(2) The automorphism �W F2n ! F2n defined by �.sj / D s�1
2n�jC1

(for all j )

induces a diffeomorphism b� W bRS
.S/! bRS

.S/ which satisfies

b��.v bRS
.S//D�v bRS

.S/:

(3) The volume form !
y� does not depend on the orientation of y� .

(4) If one changes the orientation of S3 , then !y� changes into �!y� .
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Proof

(1) The automorphism �� induced by the braid � verifies N�� D 0 and "D 1. Thus,

Lemma 3.4 implies that b�� is volume preserving.

(2) The automorphism � defined by �.sj /D s�1
2n�jC1

verifies N�D2n and "D�1.

Thus, Lemma 3.4 implies that b��.v bRS
.S//D�v bRS

.S/ as required.

(3) If we change the orientation of y� then the ".i/
k
2 f˙1g are changing sign simul-

taneously. Hence the .2n� 2/–volume form v
bRT1

.B1/ (resp. v bRT2
.B2/ ) onbRT1

.B1/ (resp. bRT2
.B2/) is changed into �v bRT1

.B1/ (resp. �v bRT2
.B2/ ) and

the .4n� 5/–volume form v
bRS

.S/ is not affected. As a consequence, !y� does
not change (see equation (7)).

(4) If we change the orientation of S3 , then as in (3) the volume form v
bRT1

.B1/

(resp. v bRT2
.B2/ ) is changed into �v bRT1

.B1/ (resp. �v bRT2
.B2/ ). Moreover the

generator s
.i/
j in �1.S/ is changed into .s.i/

2n�jC1
/�1 , thus the .4n�5/–volume

form v
bRS

.S/ on bRS
.S/ is changed into �v bRS

.S/ . Hence !y� is changed into
�!y� .

4 Invariance of the volume form

The aim of this section is to establish that the volume form !
y� does not depend on the

plat presentation used to define it and is a knot invariant.

Theorem 4.1 Let K � S3 be a knot and let �i 2 B2ni
be given such that the plat

y�i is isotopic to K for i D 1; 2. Consider the identification  i W Reg.K/!Reg.y�i/
associated to the splitting of MK induced by the plat presentation y�i of K for i D 1; 2.
Then

 �1 .!
y�1/D  �2 .!

y�2/:

This result allows us to consider the 1–volume form on Reg.K/ associated to the
knot K . In the sequel, we let !K denote this volume form on Reg.K/. The proof of
Theorem 4.1 is based on a theorem of Birman–Reidemeister. This theorem describes the
relations between different braids which represent the same plat. It can be considered
as an analogue for plats to Markov’s theorem for closed braids.
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4.1 The Birman–Reidemeister Theorem

To state the Birman–Reidemeister theorem we need some more definition and notation.

The subgroup of trivial half braid is the subgroup H2n of B2n generated by the braids
�1; �2�

2
1
�2; �2j�2j�1�2jC1�2j ; 1 � j � n� 1 (see Figure 2). It is clear that two

braids of B2n represent the same plat if they are in the same double coset of B2n

modulo the subgroup H2n . Moreover, if � 2B2n is such that y� is a knot, then b��2n is
a knot too; and it is evident that the plats y� and b��2n are isotopic in S3 (see Figure 3).
The operation � 7! ��2n described in Figure 3 is called an elementary stabilisation.

�1 �2�2
1

�2

: : : : : :

�2j �2j�1�2jC1�2j

Figure 2: The braids �1; �2�
2
1
�2 and �2j�2j�1�2jC1�2j :

Two braids are called stably equivalent if they represent, after a finite number of
elementary stabilisations, the same double coset modulo the subgroup of trivial half
braids. It is clear that two braids which are stably equivalent represent equivalent plats.
The Birman–Reidemeister theorem asserts that the converse is also true:

�

: : :

: : :

˛ �

�2n

: : :

: : :

Figure 3: Elementary stabilisation
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Theorem [2] Let Ki � S3 , i D 1; 2, be knots and let �i 2 B2ni
be given such

that the plat y�i is isotopic to Ki . The knots K1 and K2 are isotopic if and only
if there exists an integer N > max.n1; n2/ such that for each n > N the braids
�0i D �i�2ni

�2niC2 � � � �2n 2 B2nC2 , i D 1; 2, are in the same double coset of B2nC2

modulo the subgroup H2nC2 .

4.2 Proof of Theorem 4.1

Applying the Birman–Reidemeister Theorem, the proof of Theorem 4.1 splits into two
steps: we first prove the invariance of !y� under the change of the double coset repre-
sentative (see Lemma 4.2) and next prove the invariance under elementary stabilisation
(see Lemma 4.3).

4.2.1 Invariance under the change of the double coset representative Write

D�i D .R2 nN.p/� fig/ for i D 1; 2 (see Figure 1).

Keep the notation of Section 3.2. Let F
.i/
2n
D �1.D

�
i /D hs.i/1

; : : : ; s
.i/
2n
j � i be the free

group with basis Si D fs.i/1
; : : : ; s

.i/
2n
g and let F

.i/
n D �1.Bi/D ht .i/1

; : : : ; t
.i/
n j � i be

the one with basis Ti , i D 1; 2, see Figure 1.

In [2], J. Birman proved that � 2 B2n is in the subgroup H2n if and only if � leaves
the normal closure of fs.i/

1
s
.i/
2
; : : : ; s

.i/
2n�1

s
.i/
2n
g invariant in F

.i/
2n

. Therefore we have an

automorphism �
.i/

�
W F .i/n ! F

.i/
n such that the following diagram commutes (cf equa-

tion (3)):

F
.i/
2n

�i //

��
��

F
.i/
n

�
.i/

�

��

F
.i/
2n

�i // F
.i/
n

For the generators of H2n an elementary computation gives:

(9) �.i/�1

�
t
.i/
1

�
D .t .i/

1
/
�1
; �.i/�1

�
t
.i/
j

�
D t

.i/
j for j > 2 I

(10) �
.i/

�2�
2
1
�2

�
t
.i/
1

�
D .t .i/

2
/
"
.i/

2
t
.i/
1
.t
.i/
2
/
�".i/

2
; �

.i/

�2�
2
1
�2

�
t
.i/
j

�
D t

.i/
j for j > 2 I

(11) �.i/�2k�2k�1�2kC1�2k

�
t
.i/
j

�
D t

.i/

�k.j/
for 2 6 j 6 n:
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Here �k 2Sn denotes the transposition which permutes k and kC 1.

Let � be a 2n–braid such that y� is a knot. If �1; �2 2H2n then 1�1��2 is a knot too. Let
�i W �1.S/! �1.Bi/, �i W F .i/2n

!F
.i/
n (i D 1; 2) denote the epimorphisms induced by

y� and let �0i W �1.S/! �1.Bi/, �0i W F .i/2n
! F

.i/
n (i D 1; 2) denote the ones induced

by 1�1��2 .

Lemma 4.2 For all �1; �2 2H2n , the identification �W Reg.y�/!Reg.1�1��2 / associ-
ated to the plat presentation 1�1��2 of the knot y� is a volume preserving diffeomorphism.

Proof It is sufficient to prove the lemma in the case where �i is one of the generators
of H2n , namely: �i D �1; �i D �2�

2
1
�2 or �i D �2k�2k�1�2kC1�2k 1 6 k 6 n� 1.

First observe that �0i differs from �i only if �i D �1 . Next we examine the different
cases.

� If �i D �1 , then �0i.s
.i/
1
/D �i.s

.i/
1
/
�1

and equation (9) implies �0i D �i .

� If �i D �2�
2
1
�2 , then equation (10) implies that �.i/

�i
W F .i/n ! F

.i/
n induces a

volume preserving diffeomorphism b� .i/�i
W bRTi

.F
.i/
n /! bRTi

.F
.i/
n /. Moreover,b� 0i Db� i ı b� .i/�i

(cf diagram (5)).

� If �i D �2k�2k�1�2kC1�2k , then equation (11) implies that the automorphism
�
.i/

�i
W F .i/n ! F

.i/
n induces a volume preserving diffeomorphism

b� .i/�i
W bRTi

.F .i/n /! bRTi
.F .i/n /

(because � is a 2–volume form). We conclude as before.

We deduce from these facts that there is a volume preserving diffeomorphism

 �i
W bRTi

.Bi/! bRTi
.Bi/ such that b� 0i Db� i ı �i

, for i D 1; 2. These observations

complete the proof because the volume form on bRS
.S/ is not affected.

4.2.2 Invariance under stabilisation Let � be a 2n–braid such that y� is a knot. We
are interested in the new braid �0 D ��2n 2 B2nC2 . The plat y�0 is a knot too, and
this knot is isotopic to y� (see Figure 3). The aim of this subsection is to establish the
following lemma.

Lemma 4.3 The identification ‰W Reg.y�/!Reg. b��2n / associated to the plat pre-
sentation b��2n of the knot y� is a volume preserving diffeomorphism.
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Proof One needs some more notation. Set S 0 D S [ fs2nC1; s2nC2g. Consider
the epimorphism �0i W �1.S

0/! �1.B
0
i/ induced by y�0 for i D 1; 2 and write Qi D

�i.R
Ti .Bi//, bQi Db� i.bRTi

.Bi// and Q0i D �0i.RT 0
i .B0i//, bQ 0i Db� 0i.bRT 0

i .B0i//, see
Figure 3.

We have �1 D �1 , �2 D �2 ı � and �0
1
D �0

1
ı ��1

2n
, �0

2
D �0

2
ı � , where �0i W �1.S

0/!
�1.Bi/ is given by:

�01.s
.1/
j /D �1.s

.1/
j / if 1 6 j 6 2n; �02.s

.2/
j /D �2.s

.2/
j / if 1 6 j 6 2n;

�01.s
.1/
2nC1

/D .t .1/
nC1

/
�".1/n

; �02.s
.2/
2nC1

/D .t .2/
nC1

/
�".2/n

;

�01.s
.1/
2nC2

/D .t .1/
nC1

/
"
.1/
n

; �02.s
.2/
2nC2

/D .t .2/
nC1

/
"
.2/
n

:

The map �i induces �i W .�2; 2/� .S2/n!RS.S/ given by

�i.2 cos.�/;P1; : : : ;Pn/D
�
2 cos.�/; ".i/

1
P1;�".i/1

P1; : : : ; "
.i/
n Pn;�".i/n Pn

�
:

Moreover �1 D �1 , �2 D �� ı�2 .

We use the following notation

.t;P
�
1
; : : : ;P

�
2n
/ WD �2.t;P1; : : : ;Pn/

D ��.t; ".2/1
P1;�".2/1

P1; : : : ; "
.2/
n Pn;�".2/n Pn/:

We have

�0
1
.2 cos.�/;P1; : : : ;PnC1/D

�
2 cos.�/; ".1/

1
P1;�".1/1

P1; : : : ; "
.1/
n Pn;�".1/n PnC1;

Adcos.�/C".1/n sin.�/PnC1
.�".1/n Pn/; "

.1/
n PnC1

�
and

�0
2
.2 cos.�/;P1; : : : ;PnC1/D

�
2 cos.�/;P �

1
; : : : ;P

�
2n
;�".1/n PnC1; "

.1/
n PnC1

�
:

Consider the map f W .�2; 2/� .S2/2n! .�2; 2/� .S2/2nC2 given by

(12) f ..2 cos.�/;P1; : : : ;P2n//D .2 cos.�/;P1; : : : ;P2n;P2n;�P2n/:

We have f .Q1\Q2/DQ0
1
\Q0

2
and f induces an immersion ef W eRS

.S/! eRS0
.S 0/,

which itself induces an immersion bf W bRS
.S/! bRS0

.S 0/.
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Let �mW .�2; 2/� .S2/m! SU.2/ be the map given by

�m.2 cos.�/;P1; : : : ;Pm/D
mY

jD1

.cos.�/C sin.�/Pj /:

Observe that �2nC2 ıf D �2n . As a consequence

D.t;P/fj��
2n
.su.2//W ��2n.su.2//! ��2nC2.su.2//

is a volume preserving isomorphism. Here ��m.su.2// denotes the pull-back.

If .t;P/D .2 cos.�/;P1; : : : ;P2n/ corresponds to a representation in eRS
.S/, then

0 //T.t;P/eRS
.S/

D.t;P/
ef
//T ef .t;P/eRS0

.S 0// pr //TP2n
S2˚T�P2n

S2 //0

is a short exact sequence. Here prD .pr2nC1; pr2nC2/. Hence

(13) T ef .t;P/ eRS0
.S 0//ŠD.t;P/ ef .T.t;P/ eRS

.S//˚TP2n
S2˚T�P2n

S2;

and if s denotes a section of pr we have, at the level of volume forms,

v
eRS

.S/

.t;P/ ^ �2nC1 ^ �2nC2 D .D.t;P/ ef ˚ s/�.v
eRS0

.S 0/ef .t;P/ /:
If .t;P/ 2Q1\Q2 then there exist .t;P.i//D .2 cos.�/;P .i/

1
; : : : ;P

.i/
n / 2 .�2; 2/�

.S2/n such that �i.t;P.i//D .t;P/, for i D 1; 2. With these preliminaries in mind, we
turn to the main ingredient of the proof of Lemma 4.3.

Claim 4.4 Let � be a 2n–braid such that y� is a knot. If �0 D ��2n 2 B2nC2 , thenbf W bRS
.S/! bRS0

.S 0/ restricts to a volume preserving diffeomorphismbf W .�1/n bQ1\ bQ2! .�1/nC1 bQ 01\ bQ 02
in a neighbourhood of each regular point.

Proof Assume that .t;P/ 2 Q1 \Q2 is regular. Then f ..t;P// is also regular in
Q0

1
\Q0

2
(see Section 3.4). For i D 1; 2,

0 //T.t;P/Qi

D.t;P/
ef
//T ef .t;P/Q0i pri //Vi

//0

is a short exact sequence where Vi Š T
P
.1/
n

S2 . Thus, we have

T ef .t;P/Q0i ŠD.t;P/ ef .T.t;P/Qi/˚Vi :
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Moreover, if si denotes a section of pri , then at the level of volume forms we have

v
Qi

.t;P/ ^ �i D .D.t;P/ ef ˚ si/
�.vQ0

ief .t;P//;
where �i denotes the natural 2–volume form on Vi . Equation (13) implies

T ef .t;P/ eRS0
.S 0/ŠD.t;P/ ef .T.t;P/ eRS

.S//˚W

where WŠT�"P .1/n
S2˚T

"P
.1/
n

S2 . As oriented vector spaces we have �WŠV1˚V2

and W is endowed with the 4–form induced by ��1^ �2 . Thus, the transformationef W eRS
.S/! eRS0

.S 0/ induces a volume preserving diffeomorphismbf W .�1/n bQ1\ bQ2! .�1/nC1 bQ 01\ bQ 02
in a neighbourhood of each regular point.

This last claim achieves the proof of the invariance of !y� under elementary stabilisation.

5 Some properties and applications

5.1 Basic properties

The next proposition collects some basic properties of the volume form !K .

Proposition 5.1 Let K be an knot in S3 . The volume form !K satisfies the following
assertions:

(1) the orientation on Reg.K/ induced by the 1–volume form !K is the orientation
defined in [10],

(2) the volume form !K does not depend on the orientation of K .

(3) if K� denotes the mirror image of K , then the canonical isomorphism
ƒW Reg.K/!Reg.K�/ satisfies ƒ�.!K�/D�!K .

Proof Items (2) and (3) are immediate consequence of Corollary 3.5 (3) and (4)
respectively.

Let us prove the first one. Take a 2n–plat presentation y� of the knot K and let O
y�

denote the orientation on Reg.y�/ defined in [10]. Precisely the orientation O
y� is

defined [10, Definition 3.5] by the rule Reg.y�/ D .�1/n
� bQ1\ bQ2

�
. We easily
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observe that the orientation induced by v bRTi
.Bi / (resp. v bRS

.S/ ) on bRTi
.Bi/ (resp.bRS

.S/) corresponds to the one defined in [10, Sections 3 & 4.1] (resp. in [10, Section
4.1]). Formula (7) implies that O

y� is precisely the orientation induced by !y� .

5.2 A connected sum formula

The aim of this subsection is to prove a connected sum formula to compute the volume
form !K1]K2 associated to a composite knot K1]K2 in terms of the volume forms
!K1 and !K2 . The beginning of our study consists in a technical lemma in which we
describe the regular part of the representation space of the group of K1]K2 in terms
of the regular parts of the groups of K1 and K2 .

Recall that an abelian representation of GK is conjugate to one and only one of
the '� W GK ! SU.2/ given by '� .m/ D cos.�/C sin.�/i with 0 6 � 6 � . The
abelian representation '� is called regular if e2� i is not a zero of the Alexander
polynomial of K . For such representation, E. Klassen proved in [12, Theorem 19] that
H 0
'�
.MK /ŠH 0.MK IR/Š R and H 1

'�
.MK /ŠH 1.MK IR/Š R.

Let K DK1]K2 be a composite knot. Let mi (resp. Gi ) denote the meridian (resp.
the group) of Ki , for i D 1; 2. Let m denote the meridian of K . The group GK of
K is the amalgamated product G1 �U G2 . Here the subgroup U of amalgamation is
the normal closure of m1m�1

2
in the free product G1 �G2 (see [4, Proposition 7.10]).

Observe that in GK we have mDm1 Dm2 .

To each representation � 2 R.GK / corresponds the restrictions �i D �jGi
2 R.Gi/

for i D 1; 2. We write �D �1 � �2 . If �i 2R.Gi/ then we can form the “composite”
representation �D �1 � �2 of GK if and only if �1.m1/D �2.m2/. In particular, to
each representation �1 2R.G1/ (resp. �2 2R.G2/) corresponds, up to conjugation,
a unique abelian representation ˛2W G2! SU.2/ (resp. ˛1W G1! SU.2/) such that
�1.m1/D ˛2.m2/ (resp. ˛1.m1/D �2.m2/). Hence, we can consider the following
two maps:

�1W bR.MK1
/! bR.MK /; Œ�1� 7! Œ�1 �˛2�;

�2W bR.MK2
/! bR.MK /; Œ�2� 7! Œ˛1 � �2�:

Using this notation, we prove:

Lemma 5.2 Let K D K1]K2 be the connected sum of the knots K1 and K2 . If
R1 (resp. R2 ) denotes the space of conjugacy classes of regular representations
�1W G1 ! SU.2/ (resp. �2W G2 ! SU.2/) such that the associated abelian repre-
sentation ˛2W G2! SU.2/ (resp. ˛1W G1! SU.2/) is also regular, then:
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(1) R1 (resp. R2 ) is an open submanifold of Reg.K1/ (resp. Reg.K2/),

(2) Reg.K/D �1.R1/[ �2.R2/,

(3) �1W R1!Reg.K/ (resp. �2W R2!Reg.K/) is an immersion.

Proof First observe that Ri is obtained form Reg.Ki/ by removing a finite number
of points. Precisely the removed points coincide with the regular representations whose
associated abelian representation corresponds to a zero of the Alexander polynomial of
K3�i for i D 1; 2. This is sufficient to prove the first assertion.

We next prove the second item. In [12, Proposition 12], E. Klassen gives the structure of
the irreducible representation space of GK . Any irreducible representation � 2 eR.GK /

is conjugate to one of the following “composite” representations: �1 � ˛2 , ˛1 � �2

or �1 � �2 , where �i 2 eR.Gi/ and ˛i 2 A.Gi/, i D 1; 2. In Figure 4 we illustrate
our observations and we give a picture of the representation space of the group of
K D K1]K2 , where K1 is the torus knot of type .2; 5/ and K2 is the trefoil knot
(ie, the torus knot of type .2; 3/). The proof of the second assertion is based on the
following two claims.

Claim 5.3 If �i 2 eR.Gi/, then �D �1 � �2 is not regular.

Proof of the claim Corresponding to the representation � D �1 � �2 and to the
amalgamated group GK DG1 �U G2 is the Mayer–Vietoris sequence

0 //R
ı //H 1

� .GK /
�� //H 1

�1
.G1/˚H 1

�2
.G2/

i� //R //

H 2
� .GK / //H 2

�1
.G1/˚H 2

�2
.G2/ //0:

For iD1; 2, we have dim H 1
�i
.Gi/> 1 (see Section 2.1). Hence rk ��Ddim ker i�> 1.

As a consequence, 2 6 1C rk �� D dim H 1
� .GK /. Thus � is not regular.

Claim 5.4 The representation �1 �˛2 (resp. ˛1 � �2 ) is regular if and only if �1 and
˛2 (resp. ˛1 and �2 ) are regular.

Proof of the claim Corresponding to the irreducible representation �D �1 �˛2 and
to the amalgamated group GK DG1 �U G2 , the Mayer–Vietoris sequence in twisted
cohomology reduces to

0 //R
Š //R

0 //H 1
� .GK /

��
.1/ //H 1

�1
.G1/˚H 1

˛2
.G2/

i� //R //

H 2
� .GK /

��
.2/ //H 2

�1
.G1/˚H 2

˛2
.G2/ //0:
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Here ��
.2/

in onto. Hence dim H 2
� .GK /> dim H 2

�1
.G1/C dim H 2

˛2
.G2/:

Assume that �1 is not regular or that ˛2 is not abelian regular. Thus we have
dim H 2

�1
.G1/ > 2 or dim H 2

˛2
.G2/ > 1. Hence, in each case, dim H 2

� .GK / > 2,
which proves that �1 �˛2 is not regular.

Now, if �1 is assumed to be regular and if ˛2 is assumed to be abelian regular,
then dim H 1

�1
.G1/ D dim H 2

�1
.G1/ D dim H 1

˛2
.G2/ D 1 and H 2

˛2
.G2/ D 0. Thus,

1 D rk i� D 2� rk ��
.1/

. Hence dim H 1
� .GK / D rk ��

.1/
D 1. As a result, �1 � ˛2 is

regular.

The same arguments prove that ˛1 ��2 is regular if and only if �2 is regular and ˛1 is
abelian regular.

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

cos.�=10/

�cos.�=10/

�cos.3�=10/

cos.3�=10/

cos.�=6/

�cos.�=6/

bR.MK1
/ bR.MK2

/

bR.MK /

Figure 4: Irreducible representations of the group of K DK1]K2 .

Let us establish the last point. The epimorphism G1 �U G2
// //G1 �U U ŠG1 induces

the injection H 1
�1
.G1/ ,!H 1

� .GK /. Hence, �1W R1!Reg.K/ is an immersion. The
same argument proves that �2W R2!Reg.K/ is also an immersion.

Proposition 5.5 Let K DK1]K2 be a composite knot. With the same notation as in
Lemma 5.2, we have

��1.!K /D !K1 and ��2.!K /D !K2 :
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Proof Assume that K1 D y�1 is presented as a 2n–plat and K2 D y�2 as a 2m–plat.
If ın�1 denotes the .n � 1/–shift operator, then 3�1ın�1�2 is a 2.nCm � 1/–plat
presentation of the connected sum K1]K2 (see Figure 5). Lemma 5.2 gives the form of
the regular representations of GK in terms of the regular ones of G1 and G2 . To prove
��
1
.!K /D !K1 , we use the same method as in Lemma 4.3. Consider the punctured

2–sphere S 0 D S [fs2nC1; : : : ; s2nC2.m�1/g as in Figure 5. This sphere allows us to
split the exterior of the knot K . Use Section 3.4.3 and let

f W .�2; 2/� .S2/2n! .�2; 2/� .S2/2nC2.m�1/

be the map defined by

f ..2 cos.�/;P1; : : : ;P2n//D .2 cos.�/;P1; : : : ;P2n;

"1P2n;�"1P2n; : : : ; "m�1P2n;�"m�1P2n/:

Here "i 2 f˙1g depends on the braid �2 . As in the proof of Lemma 4.3, f induces a
transformation ef W eRS

.S/! eRS0
.S 0/.

The same ideas as in the proof of Lemma 4.3 imply that ef induces a volume preserving
diffeomorphism .�1/n bQ1\ bQ2! .�1/nCm�1 bQ 01\ bQ 02 in a neighbourhood of each
regular representation of G1 . We prove equality ��

2
.!K /D!K2 by the same arguments.

�1

�2

� D �1ı
n�1�2

S 0

� � �

� � �

Figure 5: Connected sum of plats.
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5.3 An explicit computation

In this subsection, we give without a proof an explicit formula for the volume form
!K2;q associated to the torus knot K2;q of type .2; q/. Here q > 3 denotes an odd
integer. Other explicit computations of the volume form !K are given in [5] for fibered
knots—and in particular for all torus knots—using the non abelian Reidemeister torsion.
Recall that the group of the torus knot K2;q admits the well-known presentation
GK2;q

D hx;y j x2 D yqi.
Proposition 5.6 Let K2;q be the (left-handed) torus knot of type .2; q/. Each irre-
ducible representation of GK2;q

into SU.2/ is conjugate to one and only one of the
�`;t W GK2;q

! SU.2/, where

�`;t .x/D i
�`;t .y/D cos ..2`� 1/�=q/C sin ..2`� 1/�=q/ .cos.� t/iC sin.� t/j/;

for ` 2 f1; : : : ; .q� 1/=2g and 0< t < 1.

One has

(14) Reg.K2;q/D
.q�1/=2[
`D1

˚
Œ�`;t �I 0< t < 1

	
and

(15) !
K2;q

Œ�`;t �

�
d�`;s

ds

ˇ̌̌̌
sDt

�
D 8

q
sin2

�
.2`� 1/�

q

�
d�
�`;s
m

ds

ˇ̌̌̌
ˇ
sDt

where ��`;tm D arccos
�
.�1/`�1 cos ..2`� 1/�=2q/ cos.� t/

�
:

Equation (14) is due to E Klassen [12]. One can find a proof of Proposition 5.6 in [8].

5.4 Remarks on the volume of the manifold Reg.K /

In the introduction, we mentioned a result of Witten about the symplectic volume of
the moduli space of a Riemannian surface. To close this paper we collect some remarks
about the volume of Reg.K/ (with respect to the canonical volume form !K ).

Because of the non-compactness of Reg.K/, it is unclear if
R
Reg.K / !

K always exists
in general. In the case of the torus knot of type .2; q/, the integral exists and we have,
using Proposition 5.6,

Z
Reg.K2;q/

!K2;q D
q�1

2X
`D1

.�1/`�1 8�.q� 2`C 1/

q2
sin2

�
.2`� 1/�

q

�
:
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This formula is obtained by an elementary computation based on the knowledge of
explicit descriptions of the representation space of the group of the torus knot K2;q

and of the volume form !K2;q .

Suppose that
R
Reg.K / !

K exists, then
R
Reg.K�/ !

K� also exists and using Proposition

5.1 (3), we have
R
Reg.K / !

K D RReg.K�/ !
K� .

Suppose that
R
Reg.Ki /

!Ki exists for i D 1; 2. Proposition 5.5 implies thatZ
Reg.K1]K2/

!K1]K2

also exists and thatZ
Reg.K1]K2/

!K1]K2 D
Z
Reg.K1/

!K1 C
Z
Reg.K2/

!K2 :
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