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Cobordism of Morse functions on surfaces,
the universal complex of singular fibers

and their application to map germs

OSAMU SAEKI

We give a new and simple proof for the computation of the oriented and the unoriented
fold cobordism groups of Morse functions on surfaces. We also compute similar
cobordism groups of Morse functions based on simple stable maps of 3–manifolds
into the plane. Furthermore, we show that certain cohomology classes associated
with the universal complexes of singular fibers give complete invariants for all these
cobordism groups. We also discuss invariants derived from hypercohomologies of
the universal homology complexes of singular fibers. Finally, as an application of the
theory of universal complexes of singular fibers, we show that for generic smooth
map germs gW .R3; 0/! .R2; 0/ with R2 being oriented, the algebraic number of
cusps appearing in a stable perturbation of g is a local topological invariant of g .

57R45; 57R75, 58K60, 58K65

1 Introduction

In [19], Rimányi and Szűcs introduced the notion of a cobordism for singular maps. In
fact, in the classical work of Thom [27], one can find the notion of a cobordism for
embeddings, and they naturally generalized this concept to differentiable maps with
prescribed local and global singularities. In particular, when the dimension of the target
manifold is greater than or equal to that of the source manifold, they described the
cobordism groups in terms of the homotopy groups of a certain universal space by
means of a Pontrjagin–Thom type construction.

However, when the dimension of the target is strictly smaller than that of the source,
their method cannot be directly applied. In [22], the author defined the cobordism
group for maps with only definite fold singularities, and used a geometric argument
in [24] to show that the cobordism group of such functions is isomorphic to the h–
cobordism group of homotopy spheres (Kervaire–Milnor [11]). Recently this result
was generalized for maps by Sadykov [20] with the aid of a Pontrjagin–Thom type
construction. This was possible, since the class of singularities is quite restricted and
the structure of regular fibers of such maps is well-understood.

Published: 7 April 2006 DOI: 10.2140/agt.2006.6.539



540 Osamu Saeki

On the other hand, Ikegami and the author [8] defined and studied the oriented (fold)
cobordism group of Morse functions on surfaces. Since a (fold) cobordism between
Morse functions on closed surfaces does not allow cusp singularities, this cobordism
group is rather bigger than the usual cobordism group of 2–dimensional manifolds. In
fact, Ikegami and the author employed a geometric argument using functions on finite
graphs to show that the group is in fact an infinite cyclic group. Recently, the structure
of the unoriented cobordism group of Morse functions on surfaces was determined
by Kalmár [9] by using a similar method. In [7] Ikegami determined the structures of
the oriented and the unoriented cobordism groups of Morse functions on manifolds of
arbitrary dimensions by using an argument employing the cusp elimination technique
based on Levine [13].

On the other hand, in an attempt to construct a rich family of cobordism invariants for
maps with prescribed local and global singularities in the case where the dimension of
the target is strictly smaller than that of the source, the author considered singular fibers
of such maps and developed the theory of universal complexes of singular fibers [25].
The terminology “singular fiber” here refers to a certain right-left equivalence class of
a map germ along the inverse image of a point in the target. The equivalence classes of
such singular fibers together with their adjacency relations lead to a cochain complex,
and in [25] it was shown that its cohomology classes give rise to cobordism invariants
for singular maps. In fact, the isomorphism between the oriented cobordism group of
Morse functions on surfaces and the infinite cyclic group was reconstructed by using
an invariant derived from the universal complex of singular fibers [25, Section 14.2].

This paper has three purposes. The first one (see Sections 2 and 3) is to give a new
and simple proof for the calculation of the oriented and the unoriented fold cobordism
groups of Morse functions on surfaces (Theorem 2.4). In Ikegami–Saeki [8] and Kalmár
[9], the calculation was done by simplifying a given function on a graph by employing
certain moves. In this paper, we also use the same moves, but the simplification is
drastically simple.

Furthermore, we will introduce the notion of the oriented and the unoriented simple fold
cobordism groups of Morse functions on surfaces by restricting the fold cobordisms to
simple ones (for simple maps, the reader is referred to [21; 23] or Definition 2.5 of the
present paper). We will show that the simple cobordism groups are in fact isomorphic
to the corresponding cobordism groups (Theorem 2.7).

The second purpose of this paper is to construct cobordism invariants for the four cobor-
dism groups of Morse functions on surfaces considered above by using cohomology
classes of the universal complexes of singular fibers as developed in [25] (see Sections
4 and 5). By combining the universal complex of co-orientable singular fibers (with
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coefficients in Z) and that of usual (not necessarily co-orientable) singular fibers (with
coefficients in Z2 ), we will obtain complete cobordism invariants for all the four cases
above.

In [10], Kazarian constructed the universal homology complex of singularities by
combining the universal complex of co-orientable singularities and that of usual (not
necessarily co-orientable) singularities defined by Vassiliev [28], and studied their hy-
percohomologies. In Section 5, we will consider the analogy of Kazarian’s construction
in our situation of singular fibers. We will see that the hypercohomology classes give
rise to cobordism invariants, but for cobordism groups of Morse functions on surfaces,
we obtain the same invariants as those obtained by using the usual universal complex
of singular fibers. It would be interesting to study the hypercohomologies of higher
dimensional analogues to see if there is a “hidden singular fiber” in a sense similar to
Kazarian’s [10].

The third purpose of this paper is to give an application of the theory of universal
complexes of singular fibers developed in Sections 4 and 5 to the theory of stable
perturbations of map germs. More precisely, we will consider a smooth map germ
gW .R3; 0/! .R2; 0/ which is generic in the sense of Fukuda and Nishimura [3; 15].
Then a stable perturbation zg of a representative of g has isolated cusps, and for each
cusp singular point we can define a sign C1 or �1 by using the indices of the nearby
fold points together with the orientation of the target R2 . Then by using the theory
of singular fibers (of generic maps of 3–dimensional manifolds with boundary into
the 2–dimensional disk), we will show that the algebraic number of cusps of zg is
a local topological invariant of g with R2 being oriented (Theorem 6.3). We also
describe this integer by a certain cobordism invariant of a C1 stable map of a compact
surface with boundary into S1 associated with g . This invariant is strongly related
to the isomorphism between the oriented cobordism group of Morse functions on
surfaces and the infinite cyclic group constructed in Sections 3 and 4. It would be
interesting to compare our result with those obtained by Fukuda and Ishikawa [4],
Fukui, Nuño Ballesteros and Saia [5], Nuño Ballesteros and Saia [16], and Ohsumi
[18], about the number of certain singularities appearing in a stable perturbation (or a
generic deformation) of a given map germ.

Throughout the paper, manifolds and maps are differentiable of class C1 unless
otherwise indicated. For a topological space X , idX denotes the identity map of X .

The author would like to thank Boldizsár Kalmár and Toshizumi Fukui for stimulating
discussions. The author has been supported in part by Grant-in-Aid for Scientific
Research (No. 16340018), Japan Society for the Promotion of Science.
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2 Preliminaries

In this section, we recall some basic notions about smooth functions and maps, and
state two theorems about cobordism groups of Morse functions on surfaces.

A smooth real-valued function on a smooth manifold is called a Morse function if its
critical points are all non-degenerate. We do not assume that the values at the critical
points are all distinct: distinct critical points may have the same value. If the critical
values are all distinct, then such a Morse function is said to be (C1 ) stable. For details,
see Golubitsky and Guillemin [6, Chapter III, Section 2].

For a positive integer n, we denote by M SO.n/ (or M.n/) the set of all Morse
functions on closed oriented (resp. possibly nonorientable) n–dimensional manifolds.
We adopt the convention that the function on the empty set ∅ is an element of M SO.n/

and of M.n/ for all n.

Before defining the cobordism groups of Morse functions, let us recall the notion of
fold singularities. Let f W M !N be a smooth map between smooth manifolds with
n D dim M � dim N D p . A singular point of f is a point q 2M such that the
rank of the differential dfqW TqM ! Tf .q/N is strictly smaller than p . We denote by
S.f / the set of all singular points of f and call it the singular set of f . A singular
point q 2 S.f / is a fold singular point (or a fold point) if there exist local coordinates
.x1;x2; : : : ;xn/ and .y1;y2; : : : ;yp/ around q and f .q/ respectively such that f
has the form

yi ıf D

(
xi ; 1� i � p� 1;

˙x2
p ˙x2

pC1
˙ � � �˙x2

n ; i D p:

If the signs appearing in yp ı f all coincide, then we say that q is a definite fold
singular point (or a definite fold point), otherwise an indefinite fold singular point (or
an indefinite fold point).

If a smooth map f has only fold points as its singularities, then we say that f is a
fold map.

Definition 2.1 Two Morse functions f0W M0!R and f1W M1!R in M SO.n/ are
said to be oriented cobordant (or oriented fold cobordant) if there exist a compact
oriented .nC1/–dimensional manifold X and a fold map F W X !R� Œ0; 1� such that

(1) the oriented boundary @X of X is the disjoint union M0q.�M1/, where �M1

denotes the manifold M1 with the orientation reversed, and
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(2) we have

F jM0�Œ0;"/ D f0 � idŒ0;"/W M0 � Œ0; "/! R� Œ0; "/; and

F jM1�.1�";1� D f1 � id.1�";1�W M1 � .1� "; 1�! R� .1� "; 1�

for some sufficiently small " > 0, where we identify the open collar neighbor-
hoods of M0 and M1 in X with M0 � Œ0; "/ and M1 � .1� "; 1� respectively.

In this case, we call F an oriented cobordism between f0 and f1 .

If a Morse function in M SO.n/ is oriented cobordant to the function on the empty set,
then we say that it is oriented null-cobordant.

It is easy to show that the above relation defines an equivalence relation on the set
M SO.n/ for each n. Furthermore, we see easily that the set of all oriented cobordism
classes forms an additive group under disjoint union: the neutral element is the class
corresponding to oriented null-cobordant Morse functions, and the inverse of a class
represented by a Morse function f W M ! R is given by the class of �f W �M ! R.
We denote by MSO.n/ the group of all oriented (fold) cobordism classes of elements
of M SO.n/ and call it the oriented (fold) cobordism group of Morse functions on
manifolds of dimension n, or the n–dimensional oriented cobordism group of Morse
functions.

We can also define the unoriented versions of all the objects defined above by forgetting
the orientations and by using M.n/ instead of M SO.n/. For the terminologies, we
omit the term “oriented” (or use “unoriented” instead) for the corresponding unori-
ented versions. The unoriented cobordism group of Morse functions on manifolds of
dimension n is denoted by M.n/ by omitting the superscript SO .

Remark 2.2 The oriented cobordism group MSO.n/ is denoted by M.n/ in Ikegami–
Saeki [8] and by Mn in Ikegami [7]. Furthermore, the unoriented cobordism group
M.n/ is denoted by Nn in [7] and by Cobf .n; 1� n/ in Kalmár [9].

Remark 2.3 Let M be a closed (oriented) n–dimensional manifold. It is easy to see
that if two Morse functions f and g on M are connected by a one-parameter family
of Morse functions, then they are (oriented) cobordant. In particular, every Morse
function is (oriented) cobordant to a stable Morse function.

The following isomorphisms have been proved in [7; 8; 9].

Theorem 2.4 .1/ The 2–dimensional oriented cobordism group of Morse functions
MSO.2/ is isomorphic to Z, the infinite cyclic group.

Algebraic & Geometric Topology, Volume 6 (2006)



544 Osamu Saeki

.2/ The 2–dimensional unoriented cobordism group of Morse functions M.2/ is
isomorphic to Z˚Z2 .

In Section 3, we will give a new and simple proof for the above isomorphisms. We
will also describe explicit isomorphisms.

In order to define new cobordism groups of Morse functions, we need the following.

Definition 2.5 Let f W M !N be a smooth map between smooth manifolds. We say
that f is simple if for every y 2N , each connected component of f �1.y/ contains
at most one singular point.

Note that a stable Morse function is always simple.

If dim N D 2 and f W M ! N is a fold map which is C1 stable (for details,
see Golubitsky–Guillemin, Levine, Saeki [6; 14; 25]), then S.f / is a regular 1–
dimensional submanifold of M and the map f jS.f / is an immersion with normal
crossings. Therefore, for every y 2N , f �1.y/ contains at most two singular points.
Fold maps of closed 3–manifolds into the plane which are C1 stable and simple have
been studied by the author [21; 23].

Definition 2.6 For a positive integer n, we denote by SM SO.n/ (or SM.n/) the
set of all stable Morse functions on closed oriented (resp. possibly nonorientable)
n–dimensional manifolds.

Two stable Morse functions f0W M0! R and f1W M1! R in SM SO.n/ are said to
be simple oriented (fold) cobordant if there exist an oriented cobordism F between f0

and f1 as in Definition 2.1 such that F is simple and F jS.F / is an immersion with
normal crossings. In this case, we call F a simple oriented cobordism between f0 and
f1 .

It is easy to show that the above relation defines an equivalence relation on the set
SM SO.n/ for each n. Furthermore, we see easily that the set of all simple ori-
ented cobordism classes forms an additive group under disjoint union. We denote by
SMSO.n/ the group of all simple oriented (fold) cobordism classes of elements of
SM SO.n/ and call it the simple oriented (fold) cobordism group of Morse functions
on manifolds of dimension n, or the n–dimensional simple oriented cobordism group
of Morse functions.

We can also define the unoriented versions of all the objects defined above. The simple
unoriented cobordism group of Morse functions on manifolds of dimension n is denoted
by SM.n/.
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We will prove the following in Section 3.

Theorem 2.7 .1/ The 2–dimensional simple oriented cobordism group of Morse
functions SMSO.2/ is isomorphic to Z, the infinite cyclic group.

.2/ The 2–dimensional simple unoriented cobordism group of Morse functions SM.2/

is isomorphic to Z˚Z2 .

In fact, we will see that the natural homomorphisms

SMSO.2/!MSO.2/ and SM.2/!M.2/

are isomorphisms.

3 Proofs of the theorems

In this section, we will prove Theorems 2.4 and 2.7.

Let us first recall the following notion of a Stein factorization (for more details, see
[12; 14; 25], for example).

Definition 3.1 Suppose that a smooth map f W M!N with nDdim M �dim N Dp

is given. Two points in M are equivalent with respect to f if they lie on the same
component of an f –fiber. Let Wf denote the quotient space of M with respect to this
equivalence relation and qf W M !Wf the quotient map. It is easy to see that then
there exists a unique continuous map xf W Wf !N such that f D xf ı qf . The space
Wf or the commutative diagram

M
f

�����!N

qf& % xf

Wf

is called the Stein factorization of f .

If f W M ! R is a Morse function on a closed manifold M , then Wf has the natural
structure of a 1–dimensional CW complex. In this case, we call Wf the Reeb graph
of f (for example, see [2]). Furthermore, we call the continuous map xf W Wf ! R a
Reeb function.

Let f W M !R be a stable Morse function on a closed (possibly nonorientable) surface
M . Then by [8, Lemma 3.2] and [9, Section 3], its Reeb graph Wf is a finite graph
whose vertices are the qf –images of the critical points of f such that
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.1/ the vertices corresponding to critical points of index 0 or 2 have degree 1, and
those of index 1 have degree 2 or 3,

and the Reeb function xf W Wf ! R satisfies the following:

.2/ around each vertex of Wf , xf is equivalent to one of the functions as depicted
in Figure 1, and

.3/ xf is an embedding on each edge.

Furthermore, a degree 2 vertex occurs only if M is nonorientable.

R R

R R R

index 0 index 2

index 1 .C1/ index 1 .�1/ index 1

Figure 1: Behavior of xf around each vertex of the Reeb graph Wf

To each vertex of degree three of a Reeb graph we associate the sign C1 or �1 as in
Figure 1.

For the proof of Theorem 2.4, in [8; 9], certain moves for Reeb functions have been
considered (for details, see [8, Figure 3] and [9, Figure 3]). Recall that these moves
correspond to the Stein factorizations of cobordisms between Morse functions. We will
refer to the types of these moves according to [9, Figure 3] (types (a)–(k)). We call the
following types admissible moves for each of the four situations:

.1/ oriented cobordism: (a)–(g),

.2/ unoriented cobordism: (a)–(k),
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.3/ simple oriented cobordism: (a)–(d),

.4/ simple unoriented cobordism: (a)–(d), (h), (i).

According to [8; 9], we have only to show that the Reeb function xf W Wf !R associated
with an arbitrary stable Morse function f W M ! R on a closed (orientable) surface
can be deformed to a standard form (see [8, Figure 5] and [9, Figures 4 and 5]) by a
finite iteration of admissible moves.

Let us first apply the move (a) to each edge of Wf so that xf decomposes into a disjoint
union of four elementary functions as depicted in Figure 2. Note that if M is orientable,
then the piece as in Figure 2 (4) does not appear.

R R R R

.1/ .2/ .3/ .4/

Figure 2: Four elementary functions

Suppose that M is orientable. If there is a pair of pieces (2) and (3), then by the
moves (a) and (c) (or (a) and (b)) we can replace it by one or two pieces of type (1).
Furthermore, by the move (d), we may assume that a piece as in (1) does not appear.
Therefore, we end up with an empty graph, or a disjoint union of several pieces of type
(2) (or a disjoint union of several pieces of type (3)). Then by the move (a), we get a
standard form.

Suppose now that M is nonorientable. If there is a pair of pieces of type (4), then we
can replace it with a piece (1) by the moves (a) and (i). Then the rest of the argument
is the same.

This completes the proof of Theorem 2.4.

It is easy to observe that in the above proof, we have only used admissible moves
for simple cobordisms, namely (a)–(d) and (i). Therefore, the same argument can be
applied to prove Theorem 2.7 as well.

Remark 3.2 In [8; 9], the moves (e), (f), (g), (j) and (k) were used for the proof, and
the same argument cannot be applied to the situation of simple cobordisms.
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In Theorem 2.4 (1) and Theorem 2.7 (1), an isomorphism is given by the map which
associates to each cobordism class of a Morse function to the sum of the indices
˙1 over all vertices of degree three of the associated Reeb function. This sum is
equal to the difference between the numbers of local maxima and local minima. In the
unoriented cases (Theorem 2.4 (2) and Theorem 2.7 (2)), an isomorphism is constructed
by combining a similar map into Z and the map which associates to each cobordism
class of a Morse function to the parity of the number of degree two vertices of the
associated Reeb graph. Note that this parity coincides with the parity of the Euler
characteristic of the source surface [25, Corollary 2.4].

4 Universal complex of singular fibers

In [25], a theory of singular fibers of differentiable maps has been developed. The
author has introduced the notion of a universal complex of singular fibers and has shown
that certain cohomology classes of a universal complex give rise to cobordism invariants
of singular maps. In this section, we show that the isomorphisms in Theorems 2.4 and
2.7 can be given by certain cohomology classes of universal complexes of singular
fibers. This will give explicit examples showing the effectiveness of the theory of
singular fibers developed in [25].

For the terminologies used in this and the following sections, we refer the reader to
[25] and also to [10; 17; 28].

Let us consider proper C1 stable maps of 3–manifolds into surfaces. (Recall that for
nice dimensions, a proper smooth map is C1 stable if and only if it is C 0 stable. See
[1].) Then we have the list of C1 (or C 0 ) equivalence classes of singular fibers of
such maps as in Figure 3. (For the definition of the C1 or C 0 equivalence relation for
singular fibers, see [25, Chapter 1]. This can be regarded as the C1 or C 0 right-left
equivalence for map germs along the inverse image of a point.) In fact, every singular
fiber of such a map is C1 (or C 0 ) equivalent to the disjoint union of one of the fibers
as in Figure 3 and a finite number of copies of a fiber of the trivial circle bundle. For
details, see [25].

Note that in Figure 3, � denotes the codimension of the set of points in the target whose
corresponding fibers are equivalent to the relevant one. Furthermore, zI� and zII

�
mean

the name of the corresponding singular fiber, and “=” is used only for separating the
figures. The equivalence class of fibers of codimension zero corresponds to the class of
regular fibers and is unique. We denote this codimension zero equivalence class by z0.

We note that the fiber zII
a

corresponds to a cusp singular point defined as follows. Let
M be a manifold of dimension n� 2 and f W M !N a smooth map into a surface
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� D 1

� D 2

zI0 zI1 zI2

zII
00

zII
01

zII
02

zII
11

zII
12

zII
22

zII
3

zII
4

zII
5

zII
6

zII
7 zII

a

Figure 3: List of singular fibers of proper C1 stable maps of 3–manifolds
into surfaces

N . A singular point x 2 S.f / of f is called a cusp singular point (or a cusp point)
if there exist local coordinates .x1;x2; : : : ;xn/ around x and .y1;y2/ around f .x/
such that f has the form

yi ıf D

(
x1; i D 1;

x1x2Cx3
2
˙x2

3
˙ � � �˙x2

n ; i D 2:

If the source 3–manifold is orientable, then the singular fibers of types zI2 , zII
02

, zII
12

,
zII

22
, zII

5
, zII

6
and zII

7
do not appear.

Note also that the list of C1 (or C 0 ) equivalence classes of singular fibers of proper
stable Morse functions on surfaces is nothing but those appearing in Figure 3 with
� D 1.

Let %0
n;n�1

.2/ be the C 0 equivalence relation modulo two circle components for fibers
of proper C 0 stable maps of n–dimensional manifolds into .n � 1/–dimensional
manifolds which are Thom maps. (For details, see [25, p. 84]. Roughly speaking, two
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fibers are equivalent with respect to %0
n;n�1

.2/ if one is C 0 equivalent to the other one
after adding an even number of regular circle components.) For a C 0 equivalence class
zF of singular fibers, we denote by zFo (or zFe ) the equivalence class with respect to
%0

n;n�1
.2/ containing a singular fiber of type zF whose total number of components is

odd (resp. even).

Let us consider those equivalence classes which are (strongly) co-orientable in the
sense of [25, Definition 10.5]. (Roughly speaking, an equivalence class zF� is strongly
co-orientable if for a given stable map and a point q in the target whose fiber belongs
to zF� , any local homeomorphism around q preserving the adjacent equivalence classes
preserves the orientation of the normal direction to the submanifold corresponding to
zF� .) Then we easily get the following for nD 3.

Lemma 4.1 Those equivalence classes with respect to %0
3;2
.2/ which are strongly

co-orientable are z0� , zI0
� , zI1
� , zII

01

� and zII
a

� , where � D o and e. The other equivalence
classes are not strongly co-orientable.

The above lemma can be proved by observing the degenerations of fibers like those
depicted in [25, Figs. 3.5–3.8].

Remark 4.2 If we consider %0
3;2
.1/ (C 0 equivalence modulo regular components)

instead of %0
3;2
.2/, then no strongly co-orientable equivalence class appears. For this

reason, we have chosen the C 0 equivalence modulo two circle components.

Let � be the set of singularity types corresponding to a regular point or a fold point.
A smooth map between manifolds is called a � –map if all of its singularities lie
in � . In other words, a smooth map is a � –map if and only if it is a fold map
in the sense of Section 2. Let us denote by �0.n;p/ (or �0.n;p/ori ) the set of all
C 0 –equivalence classes of fibers for proper C 0 stable � –maps of (orientable) n–
dimensional manifolds into p–dimensional manifolds which are Thom maps (for
details, see [25]). Furthermore, let us denote by �0.n;p/ (or �0.n;p/ori ) the set of all
C 0 –equivalence classes of fibers for proper C 0 stable simple � –maps of (orientable)
n–dimensional manifolds into p–dimensional manifolds which are Thom maps. Let

CO�.�0.n; n� 1/; %0
n;n�1.2//; CO�.�0.n; n� 1/ori; %0

n;n�1.2//;

CO�.�0.n; n� 1/; %0
n;n�1.2// and CO�.�0.n; n� 1/ori; %0

n;n�1.2//
(4–1)

Algebraic & Geometric Topology, Volume 6 (2006)



Cobordism of Morse functions on surfaces and applications 551

be the universal complexes of co-orientable singular fibers for the respective classes of
maps with respect to the C 0 equivalence modulo two circle components1. Note that
these complexes are defined over the integers Z.

Then by Lemma 4.1, we see that the following equivalence classes constitute a basis
of the �–dimensional cochain group for all the four cochain complexes in (4–1) with
nD 3, where � D o and e:

z0� .� D 0/; zI0
�;
zI1
� .� D 1/; zII

01

� .� D 2/:

Note that zII
a

� do not appear, since � –maps have no cusps. Note also that for nD 2,
we have the same bases for � � 1.

Let us fix a co-orientation for each of the above equivalence classes. We choose the
co-orientation for each of the equivalence classes of codimension one such that the
co-orientation points from z0e to z0o . Then we see that the coboundary homomorphism is
given by the following formulae (for the definition of the coboundary homomorphisms,
see [25, Chapters 7 and 8]):

ı0.z0o/DzI0
o C
zI0

e C
zI1

o C
zI1

e ;

ı0.z0e/D�zI0
o �
zI0

e �
zI1

o �
zI1

e ;

ı1.zI0
o/D

zII
01

o �
zII

01

e ;

ı1.zI0
e /D

zII
01

o �
zII

01

e ;

ı1.zI1
o/D�

zII
01

o C
zII

01

e ;

ı1.zI1
e /D�

zII
01

o C
zII

01

e :

(4–2)

In the following, we denote by Œ�� the (co)homology class represented by the (co)cycle
�. Then, by a straightforward calculation, we get the following.

Lemma 4.3 For the cohomology groups of all the four cochain complexes in (4–1)
with nD 3, we have

H 0
Š Z (generated by Œz0oCz0e�), and

H 1
Š Z˚Z (generated by ˛1 D�ŒzI0

o C
zI1

e �D Œ
zI0

e C
zI1

o �, ˛2 D Œ�zI0
o C
zI0

e �;

and ˛3 D ŒzI1
o �
zI1

e � with 2˛1 D ˛2C˛3):

1In [25], these cochain complexes are denoted by using the symbol “CO” without “�” as superscripts.
However, in this paper, we intentionally put the superscripts in order to distinguish them from the
corresponding chain complexes introduced in Section 5.
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Furthermore, for nD 2, the same isomorphism holds for H 0 , and for H 1 , we have

H 1
Š Z˚Z˚Z (generated by ˇ1 D�ŒzI0

o C
zI1

e �D Œ
zI0

e C
zI1

o �, ˇ2 D ŒzI0
o �;

and ˇ3 D ŒzI1
o �):

Remark 4.4 The above result for n D 3 appears to be different from [25, Proposi-
tion 14.3]. In fact, in [25], opposite co-orientations are used for ŒzI0

o � and ŒzI1
e �.

Let
s0�
� W H

�.CO�.�0.3; 2/; %0
3;2.2///!H �.CO�.�0.2; 1/; %0

2;1.2///

etc. be the homomorphism induced by suspension2. Then for � D 1, we have

s0�
1 ˛1 D ˇ1; s0�

1 ˛2 D ˇ1�ˇ2�ˇ3 and s0�
1 ˛3 D ˇ1Cˇ2Cˇ3:

In particular, we see that s0�
1

is injective and its image is isomorphic to Z˚Z.

Let f W M !R be an arbitrary stable Morse function on a closed surface M . We give
the orientation to R which points to the increasing direction. For a �–dimensional co-
homology class ˛ of the universal complex of co-orientable singular fibers represented
by a cocycle c , we denote by ˛.f / 2H1��.RIZ/ the homology class3 represented by
the cycle corresponding to the closure of the set of points in R whose associated fiber
belongs to an equivalence class appearing in c (for details, see [25, Chapter 11])4.

Then by the same argument as in the proof of [25, Lemma 14.1], we see that

s0�
1 ˛1.f /D ˇ1.f / 2H0.RIZ/Š Z

always vanishes (see also Remark 6.5 of the present paper). Furthermore, we have the
following.

Lemma 4.5 For a Morse function f as above, we have

s0�
1 ˛2.f /D�s0�

1 ˛3.f /Dmax .f /�min .f /

under the natural identification H0.RIZ/ D Z, where max .f / (or min .f /) is the
number of local maxima (resp. minima) of the Morse function f .

2In [25], the notation s0
�� is used instead of s0�

� . However, the latter should have been used, since it
corresponds to a pull-back. More details will be explained in Section 5.

3For � D 0 we consider the homology group with closed support.
4More precisely, we consider the chain with multiplicity given by the corresponding coefficient in c .
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Proof Let c 2 R be a value corresponding to a local minimum of f . If f �1.c/ has
an odd (or even) number of components, then it contributes C1 (resp. �1) to jjzI0

o.f /jj

(resp. jjzI0
e .f /jj), where jj � jj refers to the algebraic number of elements, and for an

equivalence class zF, zF.f / denotes the set of points in R over which lies a singular
fiber of type zF. If c corresponds to a local maximum, then the signs of contribution
change in both cases. Therefore, we have the desired conclusion.

Note that by [25], for any 1–dimensional cohomology class ˛ of the universal complex
as in (4–1) with nD 3, s0�

1
˛.f / 2H0.RIZ/Š Z gives a fold cobordism invariant for

stable Morse functions f on closed surfaces. By the proofs of Theorem 2.4 (1) and
Theorem 2.7 (1), we see that the maps

ˆSO
WMSO.2/! Z and SˆSO

W SMSO.2/! Z

which send the cobordism class of a stable Morse function f to s0�
1
˛2.f /Dmax .f /�

min .f / 2 Z are isomorphisms.

In the unoriented case, the corresponding maps do not give isomorphisms according to
Theorem 2.4 (2) and Theorem 2.7 (2). In order to get isomorphisms, let us consider
the universal complexes of singular fibers

(4–3) C�.�0.n; n� 1/; %0
n;n�1.2// and C�.�0.n; n� 1/; %0

n;n�1.2//

with coefficients in Z2 . (Here again, we put “�” as superscripts.)

The coboundary homomorphisms for the case of �0.3; 2/ satisfy the following:

ı0.z0o/DzI0
o C
zI0

e C
zI1

o C
zI1

e ;

ı0.z0e/DzI0
o C
zI0

e C
zI1

o C
zI1

e ;

ı1.zI0
o/D

zII
01

o C
zII

01

e ;

ı1.zI0
e /D

zII
01

o C
zII

01

e ;

ı1.zI1
o/D

zII
01

o C
zII

01

e ;

ı1.zI1
e /D

zII
01

o C
zII

01

e ;

ı1.zI2
o/D

zII
02

o C
zII

02

e C
zII

12

o C
zII

12

e C
zII

6

o C
zII

6

e ;

ı1.zI2
e /D

zII
02

o C
zII

02

e C
zII

12

o C
zII

12

e C
zII

6

o C
zII

6

e :

For the case of �0.3; 2/, we obtain the formulae for the coboundary homomorphisms
by ignoring zII

6

� above. For the cases of �0.2; 1/ and �0.2; 1/, the same formulae hold
for ı0 .
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By a straightforward calculation, we get the following.

Lemma 4.6 For the cohomology groups of the cochain complexes in (4–3) with nD 3,
we have

H 0
Š Z2 (generated by Œz0oCz0e�), and

H 1
Š Z2˚Z2˚Z2 (generated by y̨1 D ŒzI0

o C
zI1

e �D Œ
zI0

e C
zI1

o �,

y̨2 D ŒzI0
o C
zI0

e �D Œ
zI1

o C
zI1

e � and y̨3 D ŒzI2
o C
zI2

e �):

Furthermore, for nD 2, the same isomorphism holds for H 0 , and for H 1 , we have

H 1
Š Z2˚Z2˚Z2˚Z2˚Z2 (generated by y̌1 D ŒzI0

o C
zI1

e �D Œ
zI0

e C
zI1

o �,

y̌
2 D ŒzI0

o �, y̌3 D ŒzI
1
o �, y̌4 D ŒzI

2
o � and y̌5 D ŒzI2

e �):

We can also describe the homomorphisms induced by suspension with respect to the
above generators.

Let f W M ! R be a stable Morse function on a closed surface M . Then we see
that s0�

1
y̨1.f / 2H0.RIZ2/Š Z2 always vanishes as before. Furthermore, s0�

1
y̨2.f /

coincides with min .f /Cmax .f / modulo two. Finally, s0�
1
y̨3.f / gives the number

of singular fibers of type zI2 of f . Therefore, according to the proofs of Theorem 2.4
(2) and Theorem 2.7 (2), we see that the homomorphisms

ˆWM.2/! Z˚Z2 and SˆW SM.2/! Z˚Z2

which send the cobordism class of a stable Morse function f to

.s0�
1 ˛2.f /; s

0�
1 y̨3.f //D .max .f /�min .f /; jzI2.f /j/ 2 Z˚Z2

are isomorphisms, where j � j denotes the number of elements modulo two.

Note that by [25, Corollary 2.4], jzI2.f /j 2 Z2 coincides with the parity of the Euler
characteristic �.M / of the surface M .

As the above observations show, the cohomology classes of universal complexes of
singular fibers can give complete cobordism invariants for singular maps.

5 Universal homology complex of singular fibers

In the previous section, we have seen that cohomology classes of the universal complexes
of singular fibers give rise to complete cobordism invariants in our situations. In order
to construct such invariants in the unoriented case, we had to combine the universal
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complex of co-orientable singular fibers and that of usual singular fibers which are not
necessarily co-orientable.

In [10], Kazarian introduced the notion of a universal homology complex of singularities,
which combines the universal cohomology complex of co-orientable singularities and
that of usual (not necessarily co-orientable) singularities, and which is constructed by
reversing the arrows. In this section, we will pursue the same procedure in our situation
of singular fibers.

Let us consider the case of proper C 0 stable fold maps of (possibly nonorientable)
n–dimensional manifolds into .n� 1/–dimensional manifolds. (The case of simple
maps or that of maps of oriented manifolds can be treated similarly.) Let

C�.�0.n; n� 1/; %0
n;n�1.2//

be the chain complex defined as follows. For each � , the �–dimensional chain group,
denoted by C�.�

0.n; n� 1/; %0
n;n�1

.2//, is the direct sum, over all equivalence classes
of singular fibers of codimension � with respect to %0

n;n�1
.2/, of the groups Z for

co-orientable classes and the groups Z2 for non co-orientable classes, and we denote
the generators by using the same symbols for the corresponding equivalence classes of
singular fibers.

Let F and G be two equivalence classes of singular fibers such that �.F/D �.G/C 1,
where � denotes the codimension. Let f W M !N be a proper C 0 stable fold map of
an n–dimensional manifold into an .n� 1/–dimensional manifold which is a Thom
map. Let us denote by F.f / (or G.f /) the set of points in N over which lies a
singular fiber of type F (resp. G). Note that F.f / and G.f / are submanifolds of N

of codimensions �.F/ and �.G/ respectively. Let us consider a point q 2 F.f / and a
small disk Dq of dimension �.F/ centered at q which intersects F.f / transversely
exactly at q . Then G.f / cuts Dq in a finite set of curves. If G is not co-orientable,
then we define ŒG W F� 2 Z2 as the parity of the number of these curves. If G is
co-orientable, then the chosen co-orientation of G together with the chosen orientation
of Dq allows us to define a sign for each curve. We define ŒG W F� 2 Z as the algebraic
number of these curves, counted with signs. Note that if G is co-orientable and F is not
co-orientable, then we always have ŒG W F�D 0. Note also that the incidence coefficient
ŒG W F� thus defined does not depend on the choice of q etc. and is well-defined for all
the above cases.

Now the boundary homomorphism

@� W C�.�
0.n; n� 1/; %0

n;n�1.2//! C��1.�
0.n; n� 1/; %0

n;n�1.2//
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is defined by the formula

@�.F/D
X

�.G/D�.F/�1

ŒG W F�G

for the generators F of C�.�
0.n; n� 1/; %0

n;n�1
.2//. Note that this is a well-defined

homomorphism.

It is easy to check that @��1 ı @� D 0 as in [25; 28]. The chain complex

(5–1) C�.�0.n; n� 1/; %0
n;n�1.2//D .C�.�

0.n; n� 1/; %0
n;n�1.2//; @�/�

thus constructed is called the universal homology complex of singular fibers for C 0

stable fold maps of n–dimensional manifolds into .n� 1/–dimensional manifolds.

Remark 5.1 In the definition of the universal complex given in [25], we have formally
allowed infinite sums as elements of the cochain groups. However, for the universal
homology complex that we have defined here, we consider the direct sum of some
copies of Z and Z2 , and we do not allow infinite sums. Therefore, the boundary
homomorphism is well-defined.

As in [10], we can check that the universal cochain complex of singular fibers

C�.�0.n; n� 1/; %0
n;n�1.2//

and the universal cochain complex of co-orientable singular fibers

CO�.�0.n; n� 1/; %0
n;n�1.2//

as defined in [25] are isomorphic to

Hom.C�.�0.n; n� 1/; %0
n;n�1.2//;Z2/

and

Hom.C�.�0.n; n� 1/; %0
n;n�1.2//;Z/

respectively. In this sense, the universal homology complex (5–1) unifies the universal
complex of usual singular fibers with coefficients in Z2 and that of co-orientable ones
with coefficients in Z.

Let us proceed to the explicit calculation in the case of n D 3. The generators of
C�.�

0.3; 2/; %0
3;2
.2// are as given in Table 1 (see also Figure 3).
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The boundary homomorphisms are given as follows.

zII
01

o 7!
zI0

o C
zI0

e �
zI1

o �
zI1

e ;

zII
01

e 7! �
zI0

o �
zI0

e C
zI1

o C
zI1

e ;

zII
00

o ;
zII

00

e ;
zII

11

o ;
zII

11

e ;
zII

22

o ;
zII

22

e ;
zII

3

o ;
zII

3

e ;
zII

4

o ;
zII

4

e ;
zII

5

o ;
zII

5

e ;
zII

7

o ;
zII

7

e 7! 0;

zII
02

o ;
zII

02

e ;
zII

12

o ;
zII

12

e ;
zII

6

o ;
zII

6

e 7!
zI2

o C
zI2

e ;

zI0
o ;
zI0

e ;
zI1

o ;
zI1

e 7!
z0o�z0e;

zI2
o ;
zI2

e 7! 0:

(5–2)

Then a straightforward calculation shows the following.

Lemma 5.2 For the homology groups of the chain complex

C�.�0.3; 2/; %0
3;2.2//;

we have

H0 Š Z (generated by Œz0o�D Œz0e�), and

H1 Š Z˚Z˚Z2 (generated by z̨1 D ŒzI0
o �
zI1

e �D Œ
zI1

o �
zI0

e �,

z̨2 D Œ�zI0
o C
zI0

e � and z̨3 D ŒzI2
o �D Œ

zI2
e �):

Note that for H1 , we can replace z̨2 by

z̨
0
2 D Œ�

zI1
o C
zI1

e �;

since we have the relation �2z̨1 D z̨2C z̨
0
2

.

In order to consider the hypercohomologies, in the sense of [10], of the universal
homology complex constructed above, let us consider a free approximation F of

V D C�.�0.3; 2/; %0
3;2.2//

Table 1: Generators of C�.�
0.3; 2/; %0

3;2.2//

� Z Z2

0 z0o; z0e

1 zI0
o ;
zI0

e ;
zI1

o ;
zI1

e
zI2

o ;
zI2

e

2 zII
01

o ;
zII

01

e
zII

00

o ;
zII

00

e ;
zII

11

o ;
zII

11

e ;
zII

02

o ;
zII

02

e ;
zII

12

o ;
zII

12

e ;
zII

22

o ;
zII

22

e ,
zII

3

o ;
zII

3

e ;
zII

4

o ;
zII

4

e ;
zII

5

o ;
zII

5

e ;
zII

6

o ;
zII

6

e ;
zII

7

o ;
zII

7

e
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(for the definition of a free approximation, see [26, Chapter 5, Section 2] or [10]).
For each � , let us denote the �–dimensional cochain group of F by F� . Then
the generators of the free abelian group F� , � D 0; 1; 2, are given by the elements
corresponding to those of V , except that we need to add one generator A to F2 . We
denote the corresponding generators by the same symbols as in Table 1. The boundary
homomorphism @� W F�! F��1 is given by the same formulae as in (5–2) and by

@2.A/D 2zI2
o :

Furthermore, the epimorphism �W F ! V is naturally defined by the obvious corre-
spondence together with �.A/D 0. It is straightforward to check that � is a chain map
and the induced homomorphism ��W H�.F IZ/!H�.VIZ/ is an isomorphism.

For an abelian group G , the hypercohomology H�.VIG/ of V with coefficients in G

is, by definition, H�.F IG/. This is well-defined and depends only on V and G (for
details, see [26]).

Recall the canonical isomorphisms:

C�.�0.3; 2/; %0
3;2.2//Š Hom.V;Z2/ and

CO�.�0.3; 2/; %0
3;2.2//Š Hom.V;Z/:

Then a straightforward calculation shows the following.

Lemma 5.3 The following homomorphisms induced by � are both isomorphisms for
� D 0; 1:

H �.C�.�0.3; 2/; %0
3;2.2//DH �.VIZ2/

!H �.F IZ2/D H�.C�.�0.3; 2/; %0
3;2.2//IZ2/;

H �.CO�.�0.3; 2/; %0
3;2.2//DH �.VIZ/

!H �.F IZ/D H�.C�.�0.3; 2/; %0
3;2.2//IZ/:

Remark 5.4 As the above lemma shows, for n D 3 the homomorphisms �� are
isomorphisms. However, for n> 3, we do not know if this is true or not.

Let f W M !N be a proper C 0 stable � –map of an n–dimensional manifold into an
.n� 1/–dimensional manifold which is a Thom map. Then by the same argument as
in [10, Section 5], we can define a natural homomorphism

z'�f W H�.V.n; n� 1/IG/!H�.N IG/
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in such a way that for G D Z and Z2 , we have

'�f D z'
�
f ı�

�
W H�.V.n; n� 1/IG/!H�.N IG/;

where '�
f

refers to the homomorphism induced by f in the sense of [25, Chapter 11]
and

V.n; n� 1/D C�.�0.n; n� 1/; %0
n;n�1.2//:

(We have added “�” as superscript for '�
f

, which will be necessary in the following
argument.) Note also that we can define the natural homomorphism

'f � D z'f �W H�.N IG/! H�.V.n; n� 1/IG/DH�.V.n; n� 1/IG/

for any abelian group G . (In fact, 'f and z'f are defined on the chain level.)

Let us show that the homomorphism z'�
f

induced by f defines a � –cobordism invariant
of f .

By virtue of the uniqueness of the lift (up to chain homotopy) for free approximations
in the sense of [26, Chapter 2, Section 2, Lemma 13] and [10, Proposition 2.2], we
can define the suspension homomorphism for free approximations of the universal
homology complexes of singular fibers. More precisely, we have a natural chain map

sW C�.�0.n; n� 1/; %0
n;n�1.2//! C�.�0.nC 1; n/; %0

nC1;n.2//

induced by suspension. (Recall that the suspension of a map f W M !N refers to the
map f � idRW M �R!N �R and this naturally induces the notion of a suspension
for singular fibers. For details, see [25, Definition 8.4].) Then we have a chain map
zsW F.n; n�1/!F.nC1; n/, unique up to chain homotopy, which makes the following
diagram commutative:

F.n; n� 1/
zs

����! F.nC 1; n/

�n

??y ??y�nC1

C�.�0.n; n� 1/; %0
n;n�1

.2//
s

����! C�.�0.nC 1; n/; %0
nC1;n

.2//;

where F.m;m� 1/ denotes a free approximation of C�.�0.m;m� 1/; %0
m;m�1

.2//

and �m is the corresponding epimorphism for m D n; nC 1. Then zs induces the
homomorphism

zs�� W H�.V.nC 1; n/IG/! H�.V.n; n� 1/IG/

for any coefficient abelian group G .

Then we have the following.
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Proposition 5.5 Let fi W Mi!N , i D 0; 1, be C 0 stable � –maps of n–dimensional
manifolds into an .n� 1/–dimensional manifold N which is a Thom map, where we
assume that Mi are closed. If they are � –cobordant, then for every � , we have

z'�f0
ı zs�� D z'

�
f1
ı zs�� W H�.V.nC 1; n/IG/!H �.N IG/

for any coefficient abelian group G . In other words, we have

z'�f0
jImzs�� D z'

�
f1
jImzs�� W Im zs�� !H �.N IG/:

Proof Let F W W !N � Œ0; 1� be a � –cobordism between f0 and f1 . Let us fix cell
complex structures on N and N � Œ0; 1� which are compatible with each other. We
denote by C.N / and C.N � Œ0; 1�/ the chain complexes (over the integers) of N and
N � Œ0; 1� respectively associated with their cell complex structures. Then as in [10]
we can construct chain maps

'fj W C.N /! V.n; n� 1/; j D 0; 1; and

'F W C.N � Œ0; 1�/! V.nC 1; n/:

(For this, we do not need any free approximation.) Note that then there exist chain
maps

z'fj W C.N /! F.n; n� 1/; j D 0; 1; and

z'F W C.N � Œ0; 1�/! F.nC 1; n/;

unique up to chain homotopy, such that 'fj D �n ı z'fj , j D 0; 1, and 'F D �nC1 ı z'F .

Now, let us consider the diagram of chain complexes as in Figure 4, where ij] is the
chain map induced by ij W N !N � Œ0; 1� defined by ij .x/D .x; j /, j D 0; 1.

F.n; n� 1/ F.nC 1; n/

V.n; n� 1/ V.nC 1; n/

-zs

?

�n

?

�nC1

-s

C.N / -ij]
C.N � Œ0; 1�/

@
@@I z'fj

�
���z'F

�
��	

'fj @
@@R

'F

Figure 4: Diagram of chain complexes
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Note that we have
s ı�n D �nC1 ı zs and

s ı'fj D 'F ı ij]; j D 0; 1;

where the latter equality follows from the constructions of 'fj , 'F and s . Therefore,
we see that

�nC1 ı .zs ı z'fj /D �nC1 ı z'F ı ij]

holds for j D 0; 1. Then by the uniqueness of lifts up to chain homotopy (see [26,
Chapter 2, Section 2, Lemma 13] and [10, Proposition 2.2]), we see that the chain
maps zs ı z'fj and z'F ı ij] are chain homotopic.

Hence, they induce the identical homomorphisms in homology and cohomology. In
particular, we have the commutative diagram

H�.F.n; n� 1/IG/
zs�

 ���� H�.F.nC 1; n/IG/

z'�
fj

??y ??yz'�F
H�.N IG/

ij�
 ���� H�.N � Œ0; 1�IG/

for any abelian group G . Since i0 and i1 are homotopic, we have i�
0
D i�

1
, and the

result follows immediately.

Thus, it is expected that the hypercohomology of the universal homology complex
of singular fibers gives more cobordism invariants than the usual cohomology of the
universal cochain complex. However, in our situation, by virtue of Lemma 5.3, we get
the same cobordism invariants.

It would be interesting to study the hypercohomologies of the higher dimensional
analogues to see if there is an essential difference between the hypercohomologies and
the usual cohomologies. If there is, then the corresponding cobordism invariant would
lead to a “hidden singular fiber” in a sense similar to [10].

Remark 5.6 In this section, we have considered only � –maps (i.e. fold maps). How-
ever, this is not essential, and the same theory as in this section holds in the general
framework as in [25].

6 A topological invariant for map germs

In this section, as an application of the theory of universal complexes of singular fibers
as described in Sections 4 and 5, we give a new topological invariant for generic smooth
map germs .R3; 0/! .R2; 0/.
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In what follows, we will not distinguish a map germ from its representative when there
is no confusion.

Definition 6.1 We say that a smooth map germ gW .R3; 0/! .R2; 0/ is generic if for
any sufficiently small positive real numbers " and ı , the upper bound of ı depending
on g and the upper bound of " depending on ı and g , we have

(G1) D3
ı
\g�1.S1

" / is a smooth manifold possibly with boundary,

(G2) g@ D gjD3
ı
\g�1.S1

" /
W D3

ı
\g�1.S1

" /! S1
" is C1 stable,

(G3) gj@D3
ı
\g�1.D2

" /
W @D3

ı
\g�1.D2

" /!D2
" is a submersion, and

(G4) the restriction

gjD3
ı
\g�1.D2

"Xf0g/
W D3

ı \g�1.D2
" X f0g/!D2

" X f0g

is proper, C1 stable and C1 equivalent to the product map

g@ � id.0;"/W .D
3
ı \g�1.S1

" //� .0; "/! S1
" � .0; "/

defined by .x; t/ 7! .g.x/; t/,

where D3
ı

(or D2
" ) denotes the 3–dimensional ball in R3 (resp. 2–dimensional disk

in R2 ) with radius ı (resp. ") centered at the origin.

Note that the set of non-generic map germs has infinite codimension in an appropriate
sense. For details, see the results of Fukuda [3] or Nishimura [15].

For a generic smooth map germ gW .R3; 0/! .R2; 0/, set U D D3
ı
\ g�1.Int D2

" /

for ı and " as above. Note that gjU W U ! Int D2 is a proper smooth map. Let
zgW U ! Int D2 � R2 be a proper C1 stable perturbation of gjU in a sense similar to
that in [4; 5; 16; 18].

For a cusp point x 2 U of zg , we define its sign sign.x/ 2 fC1;�1g as follows. Let
J0.x/ (resp. J1.x/) be a short arc consisting of the definite fold points (resp. indefinite
fold points) of zg near x . Then the arcs zg.J0.x// and zg.J1.x// are situated in R2

near zg.x/ as depicted in Figure 5, and we define the sign as in the figure.

Note that by virtue of condition (G4) above, zg has finitely many cusp points. The
total number of cusp points of zg , counted with signs, is called the algebraic number of
cusps of zg .
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zg.x/ zg.x/

zg.J0.x// zg.J0.x//zg.J1.x// zg.J1.x//

sign.x/DC1 sign.x/D�1

Figure 5: Sign for a cusp point x

Definition 6.2 Let g and g0W .R3; 0/! .R2; 0/ be smooth map germs. We say that
they are topologically A–equivalent if there exist homeomorphism germs ˆW .R3; 0/!

.R3; 0/ and 'W .R2; 0/! .R2; 0/ such that g0 D '�1 ı g ıˆ. Furthermore, if the
homeomorphism germ ' can be chosen so that it preserves the orientation of R2 , then
we say that g and g0 are topologically AC–equivalent.

The main result of this section is the following.

Theorem 6.3 Let gW .R3; 0/! .R2; 0/ be a generic smooth map germ. Then the
algebraic number of cusps of a C1 stable perturbation zg of a representative of g is an
invariant of the topological AC–equivalence class of g . In particular, the absolute value
of the algebraic number of cusps of zg is an invariant of the topological A–equivalence
class of g .

In order to prove the above theorem, let us first consider the following situation. Let
F W W !D2 be a smooth map of a compact 3–dimensional manifold W with nonempty
boundary @W DM with the following properties:

(1) F�1.@D2/DM ,

(2) f D F jM W M ! @D2 D S1 is C1 stable,

(3) F jM�Œ0;1/ D f � idŒ0;1/ , where we identify the small open collar neighborhood
of M (or @D2 ) in W (resp. in D2 ) with M � Œ0; 1/ (resp. @D2 � Œ0; 1/), and

(4) F jInt W W Int W ! Int D2 is a proper C1 stable map.

Note that F may have cusp singular points. Thus, in general, F has singular fibers as
depicted in Figure 3.
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zII

a

e

zI0
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zI1
o

zI0
e

zI1
e

Figure 6: Co-orientations for zII
a

o and zII
a

e

In Section 4, we have seen that the fibers z0� , zI0
� , zI1
� and zII

01

� are co-orientable. If cusp
singular points are allowed, then we see easily that zII

a

� is also co-orientable. We give
co-orientations to zII

a

� as depicted in Figure 6.

In the following, we orient D2 and S1 D @D2 consistently so that S1 gets the
counterclockwise orientation. Then we have the following.

Lemma 6.4 For the algebraic numbers of singular fibers of F and f , we have the
following:

jjzI0
o.f /jj D �jj

zII
01

o .F /jjC jj
zII

01

e .F /jj � jj
zII

a

e .F /jj;

jjzI0
e .f /jj D �jj

zII
01

o .F /jjC jj
zII

01

e .F /jjC jj
zII

a

o .F /jj;

jjzI1
o.f /jj D jj

zII
01

o .F /jj � jj
zII

01

e .F /jj � jj
zII

a

o .F /jj;

jjzI1
e .f /jj D jj

zII
01

o .F /jj � jj
zII

01

e .F /jjC jj
zII

a

e .F /jj:

Proof Let us consider the closures of zI0
o.F /, zI

0
e .F /, zI

1
o.F / and zI1

e .F / as 1–dimen-
sional chains in D2 with coefficients in Z. Then by observing the adjacencies for the
singular fibers as we did to obtain the formulae for the coboundary homomorphism in
(4–2), we get the following equalities as 0–dimensional chains:

@zI0
o.F /D

zII
01

o .F /�
zII

01

e .F /C
zII

a

e .F /C
zI0

o.f /;

@zI0
e .F /D

zII
01

o .F /�
zII

01

e .F /�
zII

a

o .F /C
zI0

e .f /;

@zI1
o.F /D�

zII
01

o .F /C
zII

01

e .F /C
zII

a

o .F /C
zI1

o.f /;

@zI1
e .F /D�

zII
01

o .F /C
zII

01

e .F /�
zII

a

e .F /C
zI1

e .f /:

Since the algebraic number of points in the boundary of a 1–dimensional chain is
always equal to zero, we get the desired equalities.
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Remark 6.5 By the above lemma, we see easily that

jjzI0
o.f /jjC jj

zI1
e .f /jj D 0 and jjzI0

e .f /jjC jj
zI1

o.f /jj D 0:

This gives an alternative proof of the fact that ˇ1.f /D 0 for a C1 stable map f of a
closed surface into S1 or into R .� S1/, where ˇ1 is the cohomology class described
in Lemma 4.3 (see also [25, Lemma 14.1]).

For zII
a

, we consider the co-orientation as depicted in Figure 7. Since we have

jjzII
a
.F /jj D jjzII

a

o .F /jjC jj
zII

a

e .F /jj;

we immediately get the following.

zII
a

zI0 zI1

Figure 7: Co-orientation for zII
a

Proposition 6.6 The algebraic number of singular fibers of F containing cusps is
equal to

(6–1) �jjzI0
o.f /jjC jj

zI0
e .f /jj D �jj

zI1
o.f /jjC jj

zI1
e .f /jj:

Note that the integer given by (6–1) is a fold cobordism invariant as shown in Section
4.

Now, let gW .R3; 0/ ! .R2; 0/ be a generic smooth map germ. Suppose that the
origin is isolated in g�1.0/, i.e. 0 62 g�1.0/X f0g. Then for " > 0 sufficiently small,
zS2
" D g�1.S1

" / is diffeomorphic to S2 , and gjg�1.D2
"Xf0g/

is C1 equivalent to
g@ � id.0;"/ , where

g@ D gjg�1.S1
" /
W zS2

" ! S1
"

is a C1 stable map.

Then, we have the following.
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Proposition 6.7 Let gW .R3; 0/! .R2; 0/ be a generic smooth map germ such that 0

is isolated in g�1.0/. Then the algebraic number of cusps of a C1 stable perturbation
zg of a representative of g is an invariant of the topological AC–equivalence class of g ,
and is equal to

(6–2) �jjzI0
o.g@/jjC jj

zI0
e .g@/jj D �jj

zI1
o.g@/jjC jj

zI1
e .g@/jj;

where
g@ D gjg�1.S1

" /
W zS2

" ! S1
"

and " > 0 is sufficiently small. In particular, the absolute value of the algebraic number
of cusps of zg is an invariant of the topological A–equivalence class of g .

For the proof, we need the following observation.

Remark 6.8 The notion of a singular fiber and the corresponding C 0 equivalence
relation can be generalized to continuous maps between topological spaces. In particular,
the theory as developed in [25] can be generalized to proper continuous maps between
topological manifolds which are topologically equivalent to smooth Thom maps between
smooth manifolds, and their topological cobordisms. This is because the classification
of singular fibers is based on the “C 0 equivalence” and not on the “C1 equivalence”
in the theory developed in [25].

Proof of Proposition 6.7 Let g0W .R3; 0/! .R2; 0/ be a smooth map germ which is
generic and is topologically AC–equivalent to g . Thus there exist homeomorphism
germs ˆW .R3; 0/! .R3; 0/ and 'W .R2; 0/! .R2; 0/ such that g0D '�1 ıg ıˆ and
' is orientation preserving.

Let " (resp. "0 ) be a small positive real number as above for g (resp. for g0 ). We can
take "0 sufficiently small so that '.D2

"0/� Int D2
" . Set

Y DD2
" X'.Int D2

"0/ and W D g�1.Y /:

We can show that Y is homeomorphic to S1 � Œ0; 1� and W is homeomorphic to
S2 � Œ0; 1�. Note that g�1.'.S1

"0//Dˆ.g
0�1.S1

"0//.

Then the map gjW W W ! Y gives a (fold) cobordism between

g@ D gjg�1.S1
" /
W g�1.S1

" /! S1
"

and

(6–3) ' ıg0@ ıˆ
�1
W ˆ.g0�1.S1

"0//! '.S1
"0/:
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(Precisely speaking, W and Y are only topological manifolds with boundary and gjW
is merely a continuous map. Nevertheless, we can regard gjW as a topological fold
cobordism in an appropriate sense. See Remark 6.8.)

Then by the results obtained in Section 4, we have5

�jjzI0
o.g@/jjC jj

zI0
e .g@/jj D �jj

zI0
o.g
0
@/jjC jj

zI0
e .g
0
@/jj:

This is because ' preserves the orientation of R2 and hence the algebraic number of
singular fibers of a given type for the map (6–3) is equal to that for g0

@
. Therefore, the

integer (6–2) is an invariant of the topological AC–equivalence class. (Note that the
equality in (6–2) follows from Proposition 6.6.)

On the other hand, let zgW U ! Int D2
" be a proper C1 stable perturbation of gjU ,

where U D g�1.Int D2
" /. Set

U 0 D g�1.Int D2
" XD2

"=2/ and U 00 D zg�1.Int D2
" XD2

"=2/:

Then, by virtue of conditions (G2) and (G4) of Definition 6.1, we see that gjU 0 and
zgjU 00 are topologically AC–equivalent in a sense similar to Definition 6.2. Then we
see that the integer (6–2) is equal to the algebraic number of cusps of zg by Proposition
6.6.

It is easy to observe that if we reverse the orientation of R2 , then the algebraic number of
cusps changes the sign. Thus the last assertion of Proposition 6.7 follows immediately.
This completes the proof.

In order to generalize the above result to the case where the origin may not necessarily
be isolated in g�1.0/, let us consider the following situation. Let F W W !D2 be a
smooth map of a compact 3–dimensional manifold W with nonempty boundary @W
with the following properties:

(1) @W DM [P , where M is a compact surface with boundary, P is a finite
disjoint union of 2–dimensional disks, and M \P D @M D @P ,

(2) F�1.@D2/DM ,

(3) F jP W P !D2 is a submersion so that, in particular, it is a diffeomorphism on
each component of P ,

(4) f D F jM W M ! @D2 D S1 is C1 stable,

(5) F jM�Œ0;1/Df �idŒ0;1/ , where we identify the small open “collar neighborhood”
of M (or @D2 ) in W (resp. in D2 ) with M � Œ0; 1/ (resp. @D2 � Œ0; 1/), and

5In Section 4 we have considered Morse functions on surfaces: however, almost all the arguments
work also for C1 stable maps into S1 .
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(6) F jW XM W W XM ! Int D2 is a proper C1 stable map.

In what follows, for simplicity we assume that W and M are orientable, which is
enough for our purpose.

Then we can get a list of the C 0 equivalence classes of singular fibers that appear for
F as above, which is similar to Figure 3. For these fibers, let us consider the following
equivalence relation: two fibers are equivalent if one is C 0 equivalent to the other
one after adding even numbers of regular components to both of the fibers. Note that
in contrast to the case where @M D∅, regular fibers consist of circles and intervals.
However, when we count the number of regular components, we do not distinguish
them.

Then we easily get the following.

Lemma 6.9 Those equivalence classes of singular fibers which are co-orientable are
zF� , where � D o or e, and zF are as depicted in Figure 8.

� D 1

� D 2

zI0 zI1 zI˛

zII
01

zII
0˛

zII
1˛

zII
ˇ zII



zII

a

Figure 8: List of co-orientable singular fibers for F

We denote by z0� the equivalence classes corresponding to regular fibers. Note that
they are also co-orientable. We fix a co-orientation for each co-orientable equivalence
class of singular fibers as above. Then for the coboundary homomorphism, we get the
following:

ı1.zI0
o/D

zII
01

o �
zII

01

e �
zII

a

e �
zII

0˛

o C
zII

0˛

e �
zII



e ;

ı1.zI0
e /D

zII
01

o �
zII

01

e C
zII

a

o �
zII

0˛

o C
zII

0˛

e C
zII



o ;

ı1.zI1
o/D�

zII
01

o C
zII

01

e �
zII

a

o �
zII

1˛

o C
zII

1˛

e �
zII
ˇ

e ;
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ı1.zI1
e /D�

zII
01

o C
zII

01

e C
zII

a

e �
zII

1˛

o C
zII

1˛

e C
zII
ˇ

o ;

ı1.zI˛o /D zII
0˛

o �
zII

0˛

e C
zII

1˛

o �
zII

1˛

e C
zII
ˇ

e �
zII



o ;

ı1.zI˛e /D zII
0˛

o �
zII

0˛

e C
zII

1˛

o �
zII

1˛

e �
zII
ˇ

o C
zII



e :

Then by the same argument as before, we see that

(6–4) jjzI˛o .f /jj � jjzI
˛
e .f /jjC jj

zI1
o.f /jj � jj

zI1
e .f /jj and � jjzI0

o.f /jjC jj
zI0

e .f /jj

are fold cobordism invariants of f in the following sense.

Definition 6.10 Let fi W Mi! S1 , i D 0; 1, be proper C1 stable maps of compact
surfaces with boundary such that fi j@Mi

are submersions. We say that f0 and f1 are
(fold) cobordant if there exist a compact 3–dimensional manifold X with corners and
a fold map F W X ! S1 � Œ0; 1� with the following properties:

(1) @X DM0[Q[M1 , where M0\M1 D∅ and Q is a compact surface with
boundary @QD .Q\M0/[ .Q\M1/,

(2) X has corners along @Q,

(3) F jQW Q! S1 � Œ0; 1� is a submersion, and

(4) we have

F jM0�Œ0;"/ D f0 � idŒ0;"/W M0 � Œ0; "/! S1
� Œ0; "/; and

F jM1�.1�";1� D f1 � id.1�";1�W M1 � .1� "; 1�! S1
� .1� "; 1�

for some sufficiently small " > 0, where we identify the open “collar neighbor-
hoods” of M0 and M1 in X with M0 � Œ0; "/ and M1 � .1� "; 1� respectively.

Furthermore, we see that the algebraic number of cusps of F given by

jjzII
a

o .F /jjC jj
zII

a

e .F /jjC jj
zII



o .F /jjC jj
zII



e .F /jj

is equal to both of the integers (6–4).

Now, let gW .R3; 0/! .R2; 0/ be a generic smooth map germ. Then by applying the
above observations to the stable perturbation of the map

gjD3
ı
\g�1.Int D2

" /
W D3

ı \g�1.Int D2
" /! Int D2

" ;

we get the following, where ı and " are as in Definition 6.1.
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Proposition 6.11 Let gW .R3; 0/! .R2; 0/ be a generic smooth map germ. Then the
algebraic number of cusps of a C1 stable perturbation zg of a representative of g is an
invariant of the topological AC–equivalence class of g , and is equal to

�jjzI0
o.g@/jjC jj

zI0
e .g@/jj D jj

zI˛o .g@/jj � jjzI
˛
e .g@/jjC jj

zI1
o.g@/jj � jj

zI1
e .g@/jj;

where
g@ D gjD3

ı
\g�1.S1

" /
W D3

ı \g�1.S1
" /! S1

"

and 0< " << ı are sufficiently small. In particular, the absolute value of the algebraic
number of cusps of zg is an invariant of the topological A–equivalence class of g .

Proof Let g0W .R3; 0/! .R2; 0/ be a smooth map germ which is generic and is topo-
logically AC–equivalent to g . Thus there exist homeomorphism germs ˆW .R3; 0/!

.R3; 0/ and 'W .R2; 0/! .R2; 0/ such that g0 D '�1 ı g ıˆ and ' is orientation
preserving.

Let ı and " (resp. ı0 and "0 ) be small positive real numbers as in Definition 6.1 for g

(resp. for g0 ). We can take ı0 and "0 sufficiently small so that '.D2
"0/ � Int D2

" and
ˆ.g0�1.D2

"0/\D3
ı0
/� g�1.Int D2

" /\ Int D3
ı

.

Set
xg@ D gjg�1.'.S1

"0
//\D3

ı
W g�1.'.S1

"0//\D3
ı ! '.S1

"0/:

It is easy to observe that for each y 2 '.S1
"0/, the fiber of xg@ over y and that of

' ıg0@ ıˆ
�1
W ˆ.g0�1.S1

"0/\D3
ı0/! '.S1

"0/

over y is C 0 equivalent.

Set Y DD2
" X'.Int D2

"0/ and W D g�1.Y /\D3
ı

. We see that Y is homeomorphic
to S1 � Œ0; 1� and gjW W W ! Y gives a (fold) cobordism between g@ and xg@ in the
sense of Definition 6.10 (see also Remark 6.8). (Note that the boundary causes no
problem by virtue of condition (G3) of Definition 6.1.)

Then by the same argument as in the proof of Proposition 6.7 together with the above
results, we get the desired result.

Now Theorem 6.3 follows from Propositions 6.7 and 6.11.

Compare Theorem 6.3 with the results obtained in [4; 5; 16; 18], etc. It would be an
interesting problem to find a formula expressing the algebraic number of cusps of a
C1 stable perturbation in algebraic terms: e.g. as the signature of a certain quadratic
form associated with a generic map germ.
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It would also be interesting to find topological invariants of generic smooth map germs
.Rn; 0/! .Rp; 0/ with n> p arising from the number of certain singular fibers of a
stable (or Thom–Boardman generic) perturbation.
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