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Euclidean Mahler measure and twisted links

DANIEL S SILVER

ALEXANDER STOIMENOW

SUSAN G WILLIAMS

If the twist numbers of a collection of oriented alternating link diagrams are bounded,
then the Alexander polynomials of the corresponding links have bounded euclidean
Mahler measure (see Definition 1.2). The converse assertion does not hold. Similarly,
if a collection of oriented link diagrams, not necessarily alternating, have bounded
twist numbers, then both the Jones polynomials and a parametrization of the 2–
variable Homflypt polynomials of the corresponding links have bounded Mahler
measure.

57M25; 37B40

1 Introduction

If f .t/ is a nonzero polynomial with complex coefficients,

f .t/D b �

nY
iD1

.t �˛i/ 2 CŒt �;

then its Mahler measure [18] is

M.f /D jbj �

nY
iD1

maxfj˛i j; 1g:

By convention, the Mahler measure of the zero polynomial is defined to be 0. A
well-known theorem of Kronecker implies that a monic (ie, jbj D 1) integer polynomial
has Mahler measure 1 if and only if it is a product of monomials and cyclotomic
polynomials.

In 1933, D H Lehmer discovered a monic integer polynomial of degree 10,

L.t/D t10
C t9
� t7
� t6
� t5
� t4
� t3
C t C 1;

with a single zero of modulus greater than 1, equal approximately to 1.17628 [16].
He asked whether given any � > 0 there exists an integer polynomial f .t/ such that
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1<M.f / < 1C � . Lehmer’s question remains open. In fact, no integer polynomial
has been found with Mahler measure less than M.L/ but greater than 1.

Jensen’s formula motivates a definition of Mahler measure for polynomials of more than
one variable [18]. For any nonzero polynomial f .t1; : : : ; td / with complex coefficients,
the Mahler measure of f is defined by the following integral, which is possibly singular
but nevertheless convergent:

M.f /D exp
Z 1

0

� � �

Z 1

0

log jf .e2�i�1 ; : : : ; e2� i�d /jd�1 � � � d�d :

Lehmer’s question for polynomials of any higher degree is equivalent to the question
for 1–variable polynomials (Boyd [2]). The reader who is interested in additional
background information on Mahler measure is encouraged to consult Everest and Ward
[9].

Remark 1.1 The Mahler measure of a nonzero Laurent polynomial t�rf .t/, f .t/ 2
CŒt �, is defined to be M.f /. Likewise, we define the Mahler measure of t1=2f .t/ to
be M.f /. Thus the Mahler measure of both the 1–variable Alexander and the Jones
polynomial of any oriented knot or link is well defined. Similarly one deals with several
variable Laurent polynomials.

A topological interpretation of Mahler measures of single- and multivariable-Alexander
polynomials of links in terms of homology growth of branched covers was given by
Silver and Williams [26]. Moreover, the Mahler measure of the Alexander polynomial
of a fibered link is a suitably defined growth rate of Lefschetz numbers of the fiber
monodromy [25]. Slowing down the dynamics of pseudo-Anosov homeomorphisms is
equivalent to Lehmer’s question. In this sense, it is a question about fibered knots and
links and the dynamical properties of their monodromies.

Lehmer’s polynomial L.t/ occurs (up to the interchange t $�t ) as the Alexander
polynomial of a knot. Perhaps the most interesting such knot is the .�2; 3; 7/–pretzel
knot, a fibered hyperbolic knot with noteworthy properties (see for example Gordon [10],
Hironaka [11]). If Lehmer’s question has an affirmative answer, then the polynomial
f .t/ can be chosen to be a (1–variable) Alexander polynomial of a fibered hyperbolic
arborescent (or Conway-algebraic) 2–component link in S3 (Stoimenow [28]) or a
fibered hyperbolic knot in a lens space L.n; 1/ [25]. (For a knot in S3 one needs one
of the conditions f .1/D˙1, whose meaning in Lehmer’s question is unclear so far.)

Callahan, Dean and Weeks argue in [4] that for hyperbolic knots, the adjective “simple”
should reflect geometric properties. Consequently, they propose that a hyperbolic knot or
link should be considered simple if its complement can be constructed with relatively few
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ideal tetrahedra. Examples in [27] suggest that the multivariable Alexander polynomial
of such a knot or link has small Mahler measure. Examples of simple hyperbolic knots
in [6] suggest a similar statement for the Jones polynomial V` . The .�2; 3; 7/–pretzel
knot is one example, with complement composed of only 3 ideal tetrahedra.

Often the logarithm of Mahler measure arises as the topological entropy of algebraic
dynamical systems. In [17] Lind and Ward defined p–adic and euclidean entropy
for automorphisms of generalized solenoids, the type of algebraic dynamical systems
that arise in [26], and they showed that topological entropy is their sum. The two
components correspond to the two contributions in the definition of Mahler measure of
a polynomial f .t/, one from the leading coefficient of f and the other from its zeros.
This motivates the following.

Definition 1.2 If f .t/2CŒt � has zeros ˛1; : : : ; ˛n , then its euclidean Mahler measure
is

Me.f /D

nY
iD1

maxfj˛i j; 1g:

Remark 1.3 Euclidean Mahler measure of the Alexander polynomial of a knot k is
a natural quantity. The homology group H1. zX IR/ of the infinite cyclic cover of k

with real coefficients is a finite-dimensional vector space, and a generator of the deck
transformation group of zX induces an automorphism. It is not difficult to see that the
product of moduli of those eigenvalues that are outside the unit circle coincides with
Me.�k/.

Our main result is concerned with sequences of knots or links that have 1–variable
Alexander polynomials with euclidean Mahler measures tending to infinity or Jones
polynomials with Mahler measures tending toward infinity. In such cases we can
conclude that the twist numbers also tend toward infinity. In the case that the knots or
links are alternating and hyperbolic, their volumes increase without bound. (Dasbach
and Lin [8] give an expression of the twist number of alternating diagrams in terms
of the Jones polynomial, which gives a different relation between twist number and
volume.)
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2 Statement of main theorem

By full-twisting an oriented link `, we mean cutting a pair of adjacent arcs of a diagram
D for `, inserting some number q of full twists (right-handed if q is positive and
left-handed otherwise) and then reattaching the arcs. In this way, we obtain a sequence
of links `q . As q goes to infinity, the Mahler measures of the Jones polynomials V`q

converge (Champanerkar and Kofman [5]); the Mahler measures of the Alexander
polynomials �`q

will also converge, provided that the twisted arcs are coherently
oriented [27]. If we insert arbitrary numbers qi of full-twists at several sites, then as
all qi grow without bound, we again we have convergence. However, the set of Mahler
measures produced will generally have infinitely many distinct limit points (cf Example
5.1). Theorem 2.1 implies that the limit points are bounded.

In the case that the arcs being twisted are not coherently oriented, the Mahler measures
of the Alexander polynomials of `q can grow without bound. Twist knots provide
simple examples. However, we will see that if the diagram D is alternating and we
replace Mahler measure by euclidean Mahler measure, then again limits exist and limit
points are bounded.

In order to state the main result, we need the following notions.

Let D be a link diagram. A bigon region is a complementary region with exactly two
crossings in its boundary. A twist is either a connected row of bigon regions, maximal
in the sense that it is not part of a longer row of bigons, or else it is a single crossing
that is adjacent to no bigon region. The number of twists of D is called the twist
number, denoted by t.D/. The twist number of a link ` is the minimal twist number
of all of its diagrams.

A trivial split component of a link diagram is a circle (with no self-crossings) disjoint
from the rest of the diagram. A trivial split component of a link is an unknotted
component separable by a hyperplane from the rest of the link.

We define the length jjpjj of a multivariable polynomial p to be the sum of the absolute
values of its coefficients. It follows from the triangle inequality and monotonicity of
the log function that M.p/ � jjpjj. (The inequality for single-variable polynomials
appears in Everest and Ward [9] as an exercise. For another argument, see [31, Lemma
6.1] for p 2 ZŒx�. The same proof works for p 2 RŒx�, and as remarked there also for
polynomials in several variables.)

Let P`.v; z/ be the Homflypt skein polynomial with the skein relation

v�1P`C.v; z/� vP`�.v; z/D zP`0
.v; z/;
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normalized in the usual way so that the polynomial of the trivial knot is 1. We will
consider a 2–variable parametrization

yP`.v; t/ D P`.v; t
1=2
� t�1=2/

that is related by a variable change preserving Mahler measure and length to the
polynomial X.q; �/ that appears in Jones [12]. The Jones polynomial is obtained by
setting q D �D t , or in other words:

V`.t/ D yP`.t; t/ D P`.t; t
1=2
� t�1=2/ ;

and the Alexander polynomial (with a particular choice of normalization) by

�`.t/ D yP`.1; t/ D P`.1; t
1=2
� t�1=2/ :

Here and below the term “Alexander polynomial” will refer to the one-variable ver-
sion; its several-variable relative will be referred to as the “multi-variable Alexander
polynomial.” In each case, the polynomial is defined up to multiplication by a unit.

Theorem 2.1 (1) If D is a set of oriented link diagrams with twist numbers at most
n, and no trivial split components, then the sets of lengths

fjj.t C 1/nV`.D/.t/jj jD 2Dg

and
f jj.v2

� 1/n.t C 1/n yP`.D/.v; t/jj jD 2Dg
are bounded.

(2) If D is a set of oriented alternating link diagrams with bounded twist numbers,
then the set of euclidean Mahler measures fMe.�`.D// jD 2Dg is bounded.

Corollary 2.2 If D is a set of oriented link diagrams with bounded twist number, the
set of Mahler measures fM.V`.D// jD 2 Dg and fM. yP`.D// jD 2 Dg of the Jones
and parametrized Homflypt polynomials are bounded.

Proof Corollary 2.2 follows from the fact that the Mahler measure of a polynomial is
bounded by its length, while multiplying a polynomial by a cyclotomic polynomial
does not change its Mahler measure.

Corollary 2.3 If `q is a sequence of prime alternating hyperbolic links such that either
M.V`q

/ or Me.�`q
/ increases without bound, then Volume.S3 n `q/ also increases

without bound.
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Proof Each link `q admits a connected alternating diagram Dq that is prime in the
sense that any simple closed curve in the plane meeting Dq in exactly two points
disjoint from the crossings bounds a region containing no crossings. Theorem 1 of
Lackenby [15] implies that

v3.t.Dq/� 2/=2� Volume.S3
n `q/ ;

where v3 .� 1:01494/ is the volume of a regular hyperbolic ideal 3–simplex. Since the
twist numbers t.Dq/ increase without bound, by Theorem 2.1, the volumes of S3 n `q

also increase without bound.

3 Twisting

We prepare for the proof of Theorem 2.1 by establishing results about the Alexan-
der, Jones and skein polynomials of an oriented link when twists at several sites are
performed.

By a wiring diagram we mean a planar diagram consisting of n vertices or twist sites
v1; : : : ; vn of the three possible types shown in Figure 1, connected by oriented arcs.
A vertex of the first type is a parallel twist site while a vertex of the second or third
type is anti-parallel. We call the number of twist sites the order of the wiring diagram.

(1) (2) (3)

Figure 1: Vertex types of a wiring diagram

Given a wiring diagram of order n, we consider n–tuples .q1; : : : ; qn/, where qi ¤1

if vi is of the first type; qi is even if vi is of the second type; and qi is odd if vi is
of the third type. We obtain an oriented link `.q1; : : : ; qn/ by replacing the vertex vi

by T�qi
if vi is of the first type, and Tqi

if it is of the second or third type. (This
choice assures that the sign of qi agrees with the sign of the crossings at that site in the
resulting link.) We will use the previous term twist to refer to each embedded tangle
Tqi

. Clearly any oriented link diagram with twist number n can be described by a
wiring diagram of order n. Note that a twist consisting of a single crossing can be
regarded as either parallel or anti-parallel, depending on the choice of wiring diagram.
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. . . 

. . . 

. . . 

. . . 

q < 0 q D 0

q > 0 q D1

Figure 2: Tangles Tq

Lemma 3.1 Let D be an oriented link diagram, and let Dq (for q 2Z) be the diagram
that results from replacing a pair of adjacent parallel arcs of D by the tangle T�q in
such a way that D0 DD . Let `q be the links described by Dq . Then

.t C 1/�`q
.t/D

�
�`0

.t/C t1=2�`1
.t/
�
tq=2
C .�1/q

�
t�`0

.t/� t1=2�`1
.t/
�
t�q=2;

.t C 1/V`q
.t/D

�
V`0

.t/C t�1=2V`1
.t/
�
t3q=2

C .�1/q
�
tV`0

.t/� t�1=2V`1
.t/
�
tq=2;

.t C 1/ yP`q
.v; t/D vq

h�
yP`0
.v; t/C v�1t1=2 yP`1

.v; t/
�
tq=2
C

.�1/q
�
t yP`0

.v; t/� v�1t1=2 yP`1
.v; t/

�
t�q=2

i
:

Proof Let Dq be the diagram with q twists. Set

pq.v; t/D v
�!.Dq/ yPDq

.v; t/;

where !.Dq/ is the writhe. From the skein relation

v�1PC.v; z/� vP�.v; z/D zP0.v; z/;

we have

(3–1) pqC2.v; t/�pq.v; t/D .t
1=2
� t�1=2/pqC1.v; t/:

For the case q � 0 we use the generating function

f .v; t;x/D

1X
qD0

pq.v; t/x
q:

Multiplying equation (3–1) by xq and summing from 0 to 1 gives

f .v; t;x/�p0.v; t/�p1.v; t/x

x2
�f .v; t;x/D .t1=2

� t�1=2/
f .v; t;x/�p0.v; t/

x
;
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which can be written as

f .v; t;x/D
p0.v; t/C

�
p1.v; t/� .t

1=2� t�1=2/p0.v; t/
�
x

1� .t1=2� t�1=2/x�x2
:

A partial fraction decomposition gives

f .v; t;x/D
1

t C 1

hp0.v; t/C t1=2p1.v; t/

1� t1=2x
C

tp0.v; t/� t1=2p1.v; t/

1C t�1=2x

i
:

Taking series expansions in x of these rational functions, and equating coefficients,
shows that

pq.v; t/D
1

tC1

h�
p0.v; t/Ct1=2p1.v; t/

�
tq=2
C.�1/q

�
tp0.v; t/�t1=2p1.v; t/

�
t�q=2

i
:

Since !.Dq/ D q C !.D0/; we see the statement for yP . The remaining results
follow by setting v D 1 for the Alexander polynomial, and setting v D t for the Jones
polynomial. The case q < 0 is handled in the same manner, using the generating
function g.v; t;x/D

P1
rD0 p1�r .v; t/x

r and then setting r D 1� q .

Remark 3.2 (1) Champanerkar and Kofman showed in [5] using Jones-Wenzl idem-
potents that for full twists, V`q

.t/ can be expressed as a rational function of t and tq .
In fact, their result holds more generally for q full twists on any number of strands
(with arbitrary orientation).

(2) A special case of the first formula of Lemma 3.1 appears in Bhatty [1].

Lemma 3.3 Let D be an oriented link diagram, and let Dq (for q 2 2Z[ f1g) be
the diagram that results from replacing a pair of adjacent anti-parallel arcs of D by the
tangle Tq in such a way that D0 DD . Let `q be the link described by Dq . Then for
q 2 2Z,

�`q
.t/D�`0

.t/C
q

2
.t1=2

� t�1=2/�`1.t/;

.t C 1/V`q
.t/D

�
.t C 1/V`0

.t/C t1=2V`1.t/

�
tq
� t1=2V`1.t/;

P`q
.v; z/ D

vq � 1

v� v�1
z P`1.v; z/C v

qP`0
.v; z/ :

Lemma 3.3 is a straightforward consequence of the Homflypt skein relation. (See
formula (8) in [30], or formula (4) in [29], including a correction of the misprint in
the first reference.) Note that the case of an odd number of anti-parallel twists can be
handled by letting D DD0 have a single crossing at the twist site in question.
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Theorem 3.4 Consider a wiring diagram of order n, and let `.q1; : : : ; qn/ be the
oriented link defined at the beginning of the section. Assume that sites 1; : : : ;m are
anti-parallel, and the remaining sites are parallel.

(1) The Jones polynomial of `.q1; : : : ; qn/ satisfies:

.t C 1/nV`.q1;:::;qn/.t/DW .t1=2; tq1=2; : : : ; tqn=2/;

where W .u; w1; : : : ; wn/ 2 ZŒu˙1; w˙1
1
; : : : ; w˙1

n � depends only on the wiring dia-
gram describing `.q1; : : : ; qn/ and the parities of q1; : : : ; qn .

(2) The Alexander polynomial of `.q1; : : : ; qn/ satisfies:

.t C 1/n�m�`.q1;:::;qn/.t/D
X q

ı1

1
� � � q

ım
m

2m
Xı1;:::;ın

.t1=2; tqmC1=2; : : : ; tqn=2/;

where the sum ranges over all choices of ıi 2 f0; 1g, i D 1; : : : ; n, and each Xı1;:::;ın
2

ZŒu˙1; w˙1
1
; : : : ; w˙1

n�m� depends only on the wiring diagram describing `.q1; : : : ; qn/

and the parities of the q1; : : : qn .

(3) The Homflypt polynomial of `.q1; : : : ; qn/ satisfies:

.t C 1/n�m.v2
� 1/m yP`.q1;:::;qn/.v; t/

D Y .v1=2; t1=2; vq1=2; : : : ; vqm=2; tqmC1=2; : : : ; tqn=2/;

where Y .u; w;u1; : : : ;um; wmC1; : : : ; wn/2ZŒu˙1; w˙1; : : : ; w˙1
n � depends only on

the wiring diagram describing `.q1; : : : ; qn/ and the parities of q1; : : : ; qn .

Proof Using either Lemma 3.1 (if vn is parallel) or Lemma 3.3 (if vn is anti-
parallel), we can write V`.q1;:::;qn/ as a polynomial in t1=2; tqn=2 and the expres-
sions V`.q1;:::;qn�1;0/.t/;V`.q1;:::;qn�1;1/.t/ and V`.q1;:::;qn�1;1/.t/ (only two of the
expressions will appear). The polynomial depends only on the parity of qn . Con-
tinuing in this fashion with each twist site in turn, we write V`.q1;:::;qn/ as a polyno-
mial in t1=2; tq1=2; : : : ; tqn=2 and the polynomials V`.�1;:::;�n/.t/ 2 ZŒt˙1=2�, where
�i 2 f0; 1;1g: This polynomial has the desired form, and depends only on the wiring
diagram and the parities of q1; : : : ; qn . The argument for the Homflypt polynomial is
similar.

We prove the second assertion of Theorem 3.4. For i D 1; : : : ;m, we set ıi D 1 if
�i D1 and ıi D 0 if �i D 0 (qi even) or �i D 1 (qi odd). Using Lemma 3.3 we can
write

�`.q1;:::;qn/.t/D
X�

q1

2

�ı1

� � �

�
qm

2

�ım

�`.�1;:::;�m;qmC1;:::;qn/.t/:
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Now we use Lemma 3.1 as before to write �`.�1;:::;�m;qmC1;:::;qn/.t/ as a linear
combination of polynomials in t1=2; tqmC1=2; : : : ; tqn=2 , that depend on the parity
of qmC1; : : : ; qn .

Theorem 3.4 has independent interest. It says that if a collection of links has bounded
twist number (and no trivial split components), then the result of multiplying either the
Jones or Alexander polynomials by a fixed polynomial (a power of tC1) is a collection
of polynomials with a bounded number of nonzero coefficients. Lemma 3.5 shows that
a collection of polynomials fgN will have such a form only in trivial cases.

Lemma 3.5 If f .t/;g.t/ 2 ZŒt˙1�, f .t/ ¤ 0, g.t/ not a unit, then the number of
nonzero coefficients of fgN tends to infinity as N increases without bound.

Proof We may assume without loss of generality that f .t/ D 1C a1t C � � � and
g.t/D 1C bmtmC � � � ; where ai ; bi 2 Z and bm ¤ 0. We show that for each k ¤ 0,
the coefficient c

.N /

km
of tkm in fgN is nonzero for all sufficiently large N . This

coefficient is given by the sum

c
.N /

km
D

X
nCn1C���CnNDkm

anbn1
� � � bnN

;

with n; ni � 0. Splitting the sum over the number p of nonzero ni , we can write it as

c
.N /

km
D

kX
pD1

�
N

p

�X
anbn1

� � � bnp
;

where the second summation is taken over all n; n1; : : : ; np with m� ni ; i D 1; : : : ;p ,
and nC n1C � � � C np D km. The second summation is independent of N for each
p , so for N � k we may regard c

.N /

km
as a polynomial in N . The leading term of

the polynomial comes from the summand corresponding to p D k , and it is given by
1
k!

bk
mN k . Hence c

.N /

km
is nonzero for N sufficiently large.

Corollary 3.6 If ` is a link with non-trivial Jones or Alexander polynomial (ie, not
equal to 1) and no trivial split components, then the twist number of the connected sum
` ] ` ] � � � ] ` tends to infinity as the number of summands increases without bound.

Proof Let g denote either the Jones or Alexander polynomial of `. Since g is
non-trivial, it is not a unit. For the Alexander polynomial, this is a consequence of
normalization, as a specialization of P (see paragraph preceding Theorem 2.1). In the
case of the Jones polynomial, it follows from the properties given in section 12 of [12].

Algebraic & Geometric Topology, Volume 6 (2006)



Euclidean Mahler measure and twisted links 591

The Jones and Alexander polynomials of ]N
iD1

` have the form gN . If the connected
sums have bounded twist numbers, then after multiplying by a suitable power f .t/
of t C 1, the polynomials fgN have a bounded number of nonzero coefficients,
contradicting Lemma 3.5.

The following proposition will be needed for the proof of Theorem 2.1.

Proposition 3.7 Let f .x;y1; : : : ;yn/ 2 ZŒx˙1;y˙1
1
; : : : ;y˙1

n �. There is a constant
C with

jjf .x;xq1 ; : : : ;xqn/jj � C;

for all .q1; : : : ; qn/ 2 Zn:

Proof Write f .x;y1; : : : ;yn/ as the sum of terms fj .x/gj .y1; : : : ;yn/, 1� j �m,
where gj is a product of powers of the yi . Then

jjfj .x/gj .x
q1 ; : : : ;xqn/jj D jjfj .x/jj:

Hence we have

jjf .x;xq1 ; : : : ;xqn/jj �

mX
jD1

jjfj .x/jj;

from the triangle inequality.

The proof of Theorem 2.1 also requires some facts about Murasugi products. Consider
an oriented diagram D for a link `. By smoothing crossings according to the well-
known algorithm of Seifert [23], we obtain a number of (possibly nested) Seifert disks
in the plane. An orientable spanning surface for the link, called a canonical Seifert
surface, is then seen by connecting the disks with half-twisted bands corresponding to
the crossings of the diagram.

The boundary of a Seifert disk is called a Seifert circle. If C is a Seifert circle, then it
decomposes the plane into two closed regions U;V meeting along C . We say that C

is separating if both .U nC /\D and .V nC /\D are non-empty, otherwise C is
non-separating. If C is separating, then let D1 and D2 be the diagrams constructed
from D\U and D\V , filling gaps with arcs from C where they are needed. We say
that D is a *-product (or Murasugi product) of D1 and D2 , and write D DD1 �D2 .

A diagram D is special if it does not decompose as a Murasugi product, in other words,
if and only if it has no separating Seifert circle. A general oriented diagram D can be
decomposed along its separating Seifert circles into a product D1 � � � � �Dr of special
diagrams. We call Di the special (Murasugi) factors of D . If D is alternating, so are
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the Di ; they are special alternating diagrams. Notice that each twist of D is contained
in some factor. The diagram D is connected if and only if each Di is connected. For
additional background, the reader is advised to consult Murasugi [19; 20] or Cromwell
[7].

We shall assume in the following that D is a connected oriented alternating diagram, and
D1�� � ��Dr its decomposition into special alternating diagrams Di . Let `; `1; : : : ; `r

be the links represented by D;D1; : : : ;Dr , respectively. We will make use of the fact,
noted in [19], that the leading coefficient of �`.t/, up to sign, is the product of the
leading coefficients of �`1

.t/; : : : ; �`r
.t/. The fact holds more generally when D is

a homogeneous diagram (Murasugi and Przytycki [21]).

Associated to an oriented alternating diagram D for a link ` there is a graph � obtained
in the following manner. Checker-board color the regions of the diagram with black
and white, and let the vertices of � correspond to the black regions. Two vertices are
connected by an edge for each crossing shared by the corresponding regions. Note that
� is planar, (generally) with multiple edges, and interchanging colors transforms �
into the dual graph.

When D is a connected special alternating diagram, it is possible to checker-board
color so that each white region has a Seifert circle as its boundary. Then the degree
of each vertex of � is even, and we can orient the edges in such a way that they
alternate in and out as we travel around each vertex. Such an orientation is unique up
to global orientation reversal. (Note that the graph is connected since by assumption D

is connected.) Fix a vertex v , called the root. The edges of any spanning tree T � �

can be uniquely oriented “toward the root” so that each vertex other than v has exactly
one outgoing edge.

Define �.T / to be the number of edges of T that disagree with the orientation of � .
We call such edges incoherent, and the others coherent. We call T incoherent (resp.
coherent) if all its edges are incoherent (resp. coherent). In Murasugi and Stoimenow
[22] it is shown that, up to units in ZŒt˙1=2�,

(3–2) �`.�t/D
X
T��

t �.T /;

where the summation is taken over all spanning trees of � . A particular consequence
is that the computation is independent of the choice of root v . Note also that, since
the degree of �`.t/ coincides with the Euler characteristic of the canonical Seifert
surface, the leading (resp. trailing) coefficient of �`.t/ is (up to sign) the number
of incoherent (resp. coherent) spanning trees in � , and in particular this number is
non-zero. Since �`.t/ is reciprocal, both quantities coincide. We will for convenience
work with coherent spanning trees.
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4 Proof of Theorem 2.1

It suffices to consider the collection D of all oriented link diagrams D with twist
number t.D/ no greater than an arbitrary integer n. Since any D 2D can be obtained
from a wiring diagram X of order n, Theorem 3.4(1) and (3) imply that the lengths of
.t C 1/nV`.t/ and .v2� 1/m.t C 1/n�m yP`.v; t/ are bounded, where m is the number
of anti-parallel twist sites in X , and ` ranges over the links with diagrams associated
to X . In the latter case, the set of lengths remains bounded when we multiply by
.v2 � 1/m�n.t C 1/m . There are finitely many wiring diagrams of order n with no
trivial split components, and the first part of Theorem 2.1 is proved.

If we perform repeated parallel twisting at one or more sites of an oriented link diagram,
then the Alexander polynomials of the resulting links have bounded Mahler measures
by Lemma 3.1 together with the previously mentioned fact that M.p/� jjpjj, for any
nonzero polynomial.

However, if we perform repeated anti-parallel twisting at one or more sites, then, as we
will see later in Example 5.2, the euclidean Mahler measures (and hence the Mahler
measures) of the Alexander polynomials can grow without bound. Alternating links
have better behavior under such twisting, which we will explain next.

Consider a wiring diagram of order n. Let D be the diagram for the link `.q1; : : : ; qn/,
the sites 1; : : : ;m being anti-parallel, the remaining sites parallel.

The form of .t C 1/n�m�`.q1;:::;qn/.t/ is given by Theorem 3.4(2). As in the case of
the Jones polynomial, we can see that the polynomials

Xı1;:::;ın
.t1=2; tqmC1=2; : : : ; tqn=2/

have bounded lengths. To show that the family of polynomials �`.q1;:::;qn/.t/ has
bounded euclidean Mahler measure, it suffices to show that no coefficient can grow
more rapidly as a function of q1; : : : ; qm than the leading coefficient.

Fix .qmC1; : : : ; qn/ 2 Zn�m and .ımC1; : : : ; ın/ 2 f0; 1g
n�m , and let S be the set of

m–tuples ı D .ı1; : : : ; ım/ 2 f0; 1gm for which

Xı.t/DXı1;:::;ın
.t1=2; tqmC1=2; : : : ; tqn=2/

is non-zero. We will show that if ı is maximal in S (in the sense that ı0i � ıi , for all
i �m, implies that ı0 D ı ), then Xı.t/ and �`.q1;:::;qn/.t/ have the same degree.

First consider the case that D is a special alternating diagram. We make use of the
notation established above. Since we are concerned with the growth of coefficients as
functions of q1; : : : ; qm , we may assume that each qi is at least 2. One easily checks
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that any anti-parallel twist in D corresponds to a multiple edge in � , while a parallel
twist corresponds to a chain (that is, an edge subdivided by any number of vertices).

It is convenient to form a quotient graph x� by identifying each multiple edge to a
single bi-oriented edge, called an anti-parallel edge. Edges that are not anti-parallel are
said to be ordinary. We say a tree xT in x� to be coherent if it has a coherent lift in � .

Regard q1; : : : ; qm as variables, and consider a monomial q
ı1

1
� � � q

ım
m for which ı D

.ı1; : : : ; ım/ is maximal. The variables qi that appear (that is, those with exponent
ıi D 1) correspond to a subgraph x† of anti-parallel edges in x� that contains no cycle,
and hence is a forest. For otherwise, the graph � would have a cycle of multiple edges,
as in Figure 3, and the link `.ı1;:::;ım/ , which is obtained by smoothing crossings,
would be split. In that event, �`.�1;:::;�m;qmC1;:::;qn/ and hence Xı1;:::;ım

would vanish,

contradicting the assumption that the monomial q
ı1

1
� � � q

ım
m appears.

By equation (3–2) contributions to the leading coefficients of �`.q1;:::;qn/ from coher-
ent spanning trees do not cancel. To ensure that q

ı1

1
� � � q

ım
m appears in this leading

coefficient, we need to show that x† has a lift † in � that is contained in a coherent
spanning tree.

.

.

.

.

Figure 3: A cycle of anti-parallel twists

Lemma 4.1 Any forest x†� x� of anti-parallel edges extends to a coherent spanning
tree xT .

Algebraic & Geometric Topology, Volume 6 (2006)



Euclidean Mahler measure and twisted links 595

Proof Let x† be a forest consisting of anti-parallel edges. Let xT be a coherent
spanning tree (which exists by our preliminary remarks). By the height of a vertex v
in xT we will mean the distance of that vertex to the root of xT . The root has height 0.

If some edge e of x† is not in xT , then we add it to xT , thereby creating a unique cycle
xC . We choose an orientation of e toward the vertex of lower height, if the heights
of the two vertices connecting e differ; otherwise, either orientation for e will do.
Consequently, xC consists of two oriented paths. In other words, there is a unique
vertex v0 in xC with two outgoing and another vertex v1 with two incoming edges.
(v0 is actually the vertex e points away from.) Let x be the path in xC from v0 to v1

that contains e , and let y be the complementary path.

Case 1 The path y consists of edges in x†. Following the path x from v0 , let e0 be
the first edge in x contained in xC n x†: Such an edge must exist since x† is a forest.
Delete e0 and change the orientation of all edges in x that precede e0 , including e .

Case 2 The path y has an edge in xC n x†: Let e0 be the first such edge in y . Delete
e0 and change the orientation of all edges in y that precede e0 . See Figure 4.

In this way we obtain a new coherent spanning tree, called xT by abuse of notation,
containing one more edge of x† than before.

Repeat the procedure until x† is contained in xT .

General alternating diagrams D can be expressed as a product D1 � � � � �Dr of special
alternating (Murasugi) factors. As before, we assume that each of q1; : : : ; qm is greater
than 1.

Recall that each anti-parallel twist appears in some factor. Again consider any monomial
q
ı1

1
� � � q

ım
m that appears in the leading coefficient of the right-hand side of the equation

in Theorem 3.4(2). Its variables can be partitioned so that those in the i th subset arise
from an anti-parallel twists in the diagram Di ; 1 � i � r . Consider such a subset,
say q1; : : : ; qm1

after renumbering. The m1 twists correspond to anti-parallel edges
e1; : : : ; em1

in the graph x� corresponding to the special factor D1 of D . As before, the
edges do not form any cycles, and so from them we can form a coherent spanning tree

for � . Consequently, q
ı1

1
� � � q

ım1
m appears in the leading coefficient of the Alexander

polynomial of the Murasugi factor D1 , and hence it appears in the leading coefficient
of �`.q1;:::;qn/ . To finish the proof we remark again that there are finitely many wiring
diagrams of order n with no trivial split components, and trivial split components do
not alter Me.�/. This completes the proof of Theorem 2.1.
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v0

v1

e

e0

old tree new tree

ordinary edge

anti-parallel edge

Figure 4: Exchanging edges e and e0 in xT

Remark 4.2 Theorem 2.1(2) is true by the same argument for the more general class
of homogeneous diagrams defined in [7].

Remark 4.3 One easily observes that the various bounds on polynomial lengths,
magnitude and number of non-zero coefficients, and Mahler measure obtained above
are (and must be) exponential in the twist number. We have not elaborated on this
theme here, but with the inequalities in [31] and a bit extra work, it is possible to give
explicit (though likely still not optimal) bounds on the bases of the exponentials.

5 Examples

The set of Mahler measures of Alexander polynomials corresponding to knots obtained
from a given knot by twisting repeatedly at several sites may have infinitely many limit
points. We illustrate this in Example 5.1.

Example 5.1 Consider the family of alternating pretzel knots `.2; 2k C 1; 2l C 1/

with 2; 2k C 1 and 2l C 1 half-twists in first, second and third bands, respectively,
k; l � 0. If we fix k and let l tend toward infinity, then by Theorem 2.2 of [27] the
Alexander polynomials of the resulting knots have Mahler measures that approach the
limit M.�`.2;2kC1;1/.x; z//, where `.2; 2kC1;1/ is the 2–component link shown
in Figure 5 for the case k D 1.

Algebraic & Geometric Topology, Volume 6 (2006)



Euclidean Mahler measure and twisted links 597

Figure 5: Pretzel link `.2; 3;1/

Using Remark 3.3 of [27], we can compute �`.2;2kC1;1/.x; z/ from the 3–variable
Alexander polynomial �`.2;1;1/.x;y; z/, where `.2;1;1/ is obtained from
`.2; 2k C 1;1/ by leaving a single half-twist in the second band and encircling
it, just as we have done with the third band. We have

.x2
� 1/�`.2;2kC1;1/.x; z/ D �`.2;1;1/.x;x

�2k ; z/ :

Since the two polynomials differ only by a cyclotomic factor,

M.�`.2;2kC1;1/.x; z//DM.�`.2;1;1/.x;x
�2k ; z//:

The polynomial �`.2;1;1/.x;x�2k ; z/ can be expressed, up to multiplication by a
unit, as

.x� 1/
h
.1�x�x2

�x2kC2/Cx2kC4z.1�x�1
�x�2

�x�2k�2/
i
:

A technique of D Boyd [2] (see [27, Lemma 4.1]) enables us to compute the Mahler
measure of this polynomial as the Mahler measure of the single-variable polynomial
fk.x/D 1�x�x2�x2kC2 . An argument based on Rouché’s theorem (Brown and
Churchill [3]) shows that fk.x/ has exactly one zero �k inside the unit circle, a zero
that is real. The product of all the moduli of zeros of fk is equal to the modulus of the
absolute term 1, so M.fk/D 1=j�k j. Since for k ¤ k 0 the difference fk.x/�fk0.x/

is a unit times a cyclotomic polynomial, fk and fk0 have no common zeros off the
unit circle. In particular, �k ¤ �k0 whenever k ¤ k 0 . Now at most two real numbers
have the same modulus, thus the Mahler measures of the polynomials fk are triplewise
distinct, and so the set of values M.�`.2;2kC1;2lC1/.x// has infinitely many distinct
limit points.

Theorem 2.1 implies that the limit points are bounded.
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Example 5.2 shows that the conclusion of Theorem 2.1(2) does not hold if the hypothesis
that the diagrams be alternating is dropped.

...

...

n

Figure 6: Non-alternating knot diagram Dn

Example 5.2 Consider the family of non-alternating diagrams Dn in Figure 6, each
member containing n D 1; 3; 5; : : : half-twists in its upper portion. The Alexander
polynomials of the corresponding knots kn are easily seen to be

�kn
.t/D t4

�
nC 5

2
t3
C .nC 4/t2

�
nC 5

2
t C 1:

The twist numbers of the diagrams Dn are all equal. However, the euclidean Mahler
measures of the polynomials must tend to infinity, since the sum of the four roots is
.nC 5/=2 (and so one root has modulus at least .nC 5/=8). Since the volumes of
kn are also bounded (by Thurston’s hyperbolic surgery theorem; see Lackenby [15]),
similarly Corollary 2.3 also fails without the alternation assumption.

We conclude by showing that the converse of Theorem 2.1(2) does not hold.

Example 5.3 Consider the tangle T in Figure 7. By replacing a single crossing by
T in the diagram of a trefoil, as in the figure, we obtain the knot 810 . Iterating the
procedure, always replacing (for the sake of definiteness) the top crossing, we obtain a
sequence of diagrams Dn for alternating knots k1 D 31; k2 D 810 , et cetera.

We claim that �kn
.t/D .t � 1C t�1/2n�1 , for each n. Consider the Conway skein

module over the field of fractions of ZŒt1=2; t�1=2� generated by oriented tangles
modulo the relations `C � `� � .t1=2 � t�1=2/`0 , where .`C; `�; `0/ is any skein
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T

T

T

D1 D2

810 D3

Figure 7: Tangle T and alternating knot diagrams

T

S

S
F.S/

D.T �S/

Figure 8: Linear functional F

triple. The tangle T induces a mapping F WS 7!F.S/D�D.T �S/.t/, where D.T �S/

denotes the denominator closure of the tangle product of T and S (see Figure 8).

The tangles S1;S2 in Figure 9 form a basis for the skein module. We can write
T D f .t/S1Cg.t/S2; for some scalars f .t/;g.t/ 2 ZŒt1=2; t�1=2�. Then

(5–1) F.S/D f .t/ ��D.S1�S/.t/Cg.t/ ��D.S2�S/.t/;

for any tangle S .

We can find f .t/ and g.t/ easily by substituting proper values for S in (5–1). If
S D S1 , then D.T �S/ is the square knot, D.S1 �S/ is a trivial 2–component link,
and D.S2 � S/ is an unknot. Hence .t � 1 C t�1/2 D f .t/ � 0 C g.t/ � 1, and so
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S1 S2

Figure 9: Basis S1;S2

g.t/ D .t � 1C t�1/2 . Similarly, if S D S2 � S2 , then D.T � S/ is the knot 810 ,
D.S1 �S/ is a Hopf link, and D.S2 �S/ is a trefoil. So

�810
D .t � 1C t�1/3 D .t1=2

� t�1=2/ �f .t/ C .t � 1C t�1/ �g.t/

D .t1=2
� t�1=2/ �f .t/ C .t � 1C t�1/3 :

Thus f .t/ D 0, and in the skein module T D .t � 1C t�1/2S2 , and then �kn
D

.t�1Ct�1/2�kn�1
. Since �k1

.t/D t�1Ct�1 , we have �kn
.t/D .t�1Ct�1/2n�1 .

Observe that the diagrams in Figure 7 have unbounded twist number (and hence, by [15]
also volume), while the Alexander polynomials �kn

.t/ are all products of cyclotomic
polynomials and hence have trivial Mahler measure.

Remark 5.4 If one drops the alternation assumption, then for any knot k there exists
a hyperbolic knot zk with arbitrarily large volume (and twist number) and the same
Alexander polynomial as k . For trivial polynomial knots this result was proved in [13].
Another method that constructs for any (admissible) Alexander knot polynomial (in
fact, Alexander invariant) an arborescent knot zk is given by the Stoimenow in [28].
Silver and Whitten [24] have used a yet different construction to choose zk so that the
group of zk can be mapped onto the group of k sending meridian to meridian and
longitude to longitude.
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