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Homology cylinders and the acyclic closure
of a free group

TAKUYA SAKASAI

We give a Dehn–Nielsen type theorem for the homology cobordism group of homol-
ogy cylinders by considering its action on the acyclic closure, which was defined by
Levine in [12] and [13], of a free group. Then we construct an additive invariant of
those homology cylinders which act on the acyclic closure trivially. We also describe
some tools to study the automorphism group of the acyclic closure of a free group
generalizing those for the automorphism group of a free group or the homology
cobordism group of homology cylinders.

20F28; 20F34, 57M05, 57M27

1 Introduction : Dehn–Nielsen’s theorem

Let †g;1 .g�0/ be a compact connected oriented surface of genus g with one boundary
component. The fundamental group �1†g;1 of †g;1 is isomorphic to a free group
F2g of rank 2g . We take a word � 2 F2g which corresponds to the boundary loop of
†g;1 .

Let Mg;1 be the mapping class group of †g;1 relative to the boundary. It is the group
of all isotopy classes of self-diffeomorphisms of †g;1 which fix the boundary pointwise.
Mg;1 acts on �1†g;1 naturally, so that we have a homomorphism � WMg;1!AutF2g .
The following theorem due to Dehn and Nielsen is well known.

Theorem 1.1 (Dehn–Nielsen) The homomorphism � is injective, and its image is

Aut0F2g WD
˚
' 2 AutF2g j '.�/D �

	
:

From this theorem, we see that an element of Mg;1 is completely characterized by its
action on �1†g;1 . The action of Mg;1 on F2g induces that on its nilpotent quotient
Nk WDF2g=.�

kF2g/ for every k � 2, where �kG is the k th term of the lower central
series of a group G defined by �1G D G and � iG D Œ� i�1G;G� for i � 2. This
defines a homomorphism �k WMg;1 ! AutNk . Note that the restriction of �k to
Ker �k�1 , whose target is contained in an abelian subgroup of AutNk , is called the
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.k � 2/nd Johnson homomorphism. It has been an important problem to determine its
image (see [15]).

Now we consider a generalization of the above argument to the homology cobordism
group Hg;1 of homology cylinders. The group Hg;1 has its origin in [5], [3], [14],
and it is regarded as an enlargement of Mg;1 . One of the main results of this paper
is the following Dehn–Nielsen type theorem. Hg;1 has a natural action on the group
F

acy
2g

called the acyclic closure of F2g , which is a completion of F2g in a certain
sense defined by Levine in [12] and [13], and we will determine the image of the
representation � acyW Hg;1! AutF acy

2g
as follows.

Theorem 6.1 The image of � acyW Hg;1! AutF acy
2g

is

Aut0F
acy
2g
WD f' 2 AutF acy

2g
j '.�/D � 2 F

acy
2g
g:

Note that, in this case, the homomorphism � acy is not injective. Our next result is the
construction of a homomorphism

� W Ker � acy �!H3.F
acy
2g
/

which might be able to detect the elements of the kernel of � acy , where the phrase
“might be” means that, although we can show that this homomorphism is surjective, it
is not known, at present, whether its target is trivial or not. This situation is similar to
that of some link concordance invariants defined by Levine [12].

The group AutF acy
n can be regarded as an enlargement of AutFn , similar to the situation

where Hg;1 enlarges Mg;1 , and it embodies a (combinatorial) group-theoretical part
of Hg;1 in the case where n D 2g . From this, we see that AutF acy

n itself is an
interesting object. We will describe some tools to understand this group — the Johnson
homomorphisms with their refinements, and the Magnus representation for AutF acy

n .
They are generalizations of those previously developed by Morita [15] and Kawazumi
[9] for AutFn , by Habiro [5], Garoufalidis–Levine [3] and Levine [14] for Hg;1 , and
by Le Dimet [11] for the Gassner representation of string links.
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2 Definition of homology cylinders

We begin by recalling the definition of homology cylinders due to Habiro [5], Garou-
falidis–Levine [3] and Levine [14].

A homology cylinder (over †g;1 ) is a compact oriented 3–manifold M equipped with
two embeddings iC; i�W .†g;1;p/! .@M;p/ satisfying that

(1) iC is orientation-preserving and i� is orientation-reversing,

(2) @M D iC.†g;1/[ i�.†g;1/, iC.†g;1/\ i�.†g;1/D iC.@†g;1/D i�.@†g;1/,

(3) iC
ˇ̌
@†g;1

D i�
ˇ̌
@†g;1

,

(4) iC; i�W H�.†g;1/!H�.M / are isomorphisms,

where p 2 @†g;1 is the base point of †g;1 and M . We write a homology cylinder by
.M; iC; i�/ or simply by M .

Example 2.1 .M; iC; i�/D .†g;1 � I; id�1; ' � 0/ gives a homology cylinder for
each ' 2Mg;1 , where collars of iC.†g;1/ and i�.†g;1/ are stretched half-way along
@†g;1 � I .

Two homology cylinders are said to be isomorphic if there exists an orientation-
preserving diffeomorphism between the underlying 3–manifolds which is compat-
ible with the embeddings of †g;1 . We denote the set of isomorphism classes of
homology cylinders by Cg;1 . Given two homology cylinders M D .M; iC; i�/ and
N D .N; jC; j�/, we can define a new homology cylinder M �N by

M �N D .M [i�ı.jC/�1 N; iC; j�/:

Then Cg;1 becomes a monoid with the identity element

1Cg;1
WD .†g;1 � I; id�1; id�0/:

This monoid Cg;1 is known as an important object to which the theory of clasper- or
clover-surgeries related to finite type invariants of general 3–manifolds is applied.

Instead of the monoid Cg;1 , however, we now consider the homology cobordism
group Hg;1 of homology cylinders defined as follows. Two homology cylinders M D
.M; iC; i�/ and N D .N; jC; j�/ are homology cobordant if there exists a smooth
compact 4–manifold W such that

(1) @W DM [ .�N /=.iC.x/D jC.x/; i�.x/D j�.x// x 2†g;1 ,

(2) the inclusions M ,!W , N ,!W induce isomorphisms on the homology,
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where �N is N with opposite orientation. Such a manifold W is called a homology
cobordism between M and N . We denote by Hg;1 the quotient set of Cg;1 with
respect to the equivalence relation of homology cobordism. The monoid structure of
Cg;1 induces a group structure of Hg;1 . In the group Hg;1 , the inverse of .M; iC; i�/
is given by .�M; i�; iC/.

The group Hg;1 has the following remarkable properties.

First, Hg;1 contains several groups which relate to the theory of low dimensional
topology. As we see in Example 2.1, we can construct a homology cylinder from each
element of Mg;1 . This correspondence gives an injective monoid homomorphism
Mg;1! Cg;1 , and moreover, the composite of this homomorphism and the natural
projection Cg;1! Hg;1 gives an injective group homomorphism. Therefore Mg;1

is contained in Hg;1 . The g–component string link concordance group Sg is also
contained in Hg;1 [14]. In particular, the (smooth) knot concordance group, which
coincides with S1 , is contained in Hg;1 . Furthermore, we can inject the homology
cobordism group ‚3

Z of homology 3–spheres into Hg;1 by assigning M #1Cg;1
to each

homology 3–sphere M up to homology cobordism.

Secondly, we have, as it were, the Milnor–Johnson correspondence, which indicates a
similarity between the theory of string links and that of homology cylinders. Hence we
can expect that some methods for studying string links (as well as classical knots or
links theory in general) are applicable to homology cylinders.

Lastly, we mention about the fundamental group of each homology cylinder. For a
given homology cylinder .M; iC; i�/, two homomorphisms iC; i� W �1†g;1! �1M

are not generally isomorphisms. However, we have the following.

Theorem 2.2 (Stallings [17]) Let A and B be groups and f W A ! B be a 2–
connected homomorphism. Then the induced map f W A=.�kA/ �! B=.�kB/ is an
isomorphism for each k � 2.

Here, a homomorphism f W A! B is said to be 2–connected if f induces an isomor-
phism on the first homology, and a surjective homomorphism on the second homology.
In this paper, the phrase “Stallings’ theorem” always means Theorem 2.2. For each
homology cylinder .M; iC; i�/, two homomorphisms iC; i�W F2g Š �1†g;1! �1M

are both 2–connected by definition. Hence, they induce isomorphisms on the nilpotent
quotients of F2g and �1M by Stallings’ theorem. We write Nk for F2g=.�

kF2g/ as
before. For each k � 2, we define a map �k W Cg;1! AutNk by

�k.M; iC; i�/ WD .iC/�1 ı i�;
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which is seen to be a monoid homomorphism. It can be also checked that �k.M; iC; i�/
depends only on the homology cobordism class of .M; iC; i�/, so that we have a group
homomorphism �k W Hg;1! AutNk . Note that the restriction of �k to the subgroup
Mg;1 � Cg;1 is nothing other than the homomorphism mentioned in Section 1. By
definition, the image of the homomorphism �k is contained in

Aut0Nk WD
�
' 2 AutNk

ˇ̌̌̌
There exists a lift z' 2 EndF2g of '
satisfying z'.�/� � mod �kC1F2g.

�
:

On the other hand, Garoufalidis–Levine and Habegger independently showed the
following.

Theorem 2.3 (Garoufalidis–Levine [3], Habegger [4]) For k � 2, Image �k D
Aut0Nk :

Note that the .k � 2/nd Johnson homomorphism is obtained by restricting �k to
Ker �k�1 . From this theorem, we can determine its image completely (see [3]).

Now we have the following question. Recall that in the case of the mapping class group,
�k WMg;1! AutNk are induced from a single homomorphism � WMg;1! AutF2g .
Then our question is:

Question 2.4 Does there exist a homomorphism Hg;1! Aut G for some group G

which induces �k W Hg;1! AutNk for all k � 2 ?

Some answers to it are given in Remark 2.3 in [3]. Namely, we have a homomorphism
�nilW Hg;1 ! AutF nil

2g
by combining the homomorphisms �k for all k � 2, where

F nil
2g
WD lim �Nk is the nilpotent completion of F2g . However, F nil

2g
is too big to

treat. Then, the usage of the residually nilpotent algebraic closure of F2g , which is
a countable (as a set) subgroup of F nil

2g
, is also suggested. However, as commented

there, we do not know whether its second homology is trivial or not. The vanishing of
it is efficiently used in several situations. In this paper, we suggest the usage of the
acyclic closure .or HE–closure/ F

acy
2g

of F2g to overcome them through the argument
in subsequent sections.

3 Construction of an enlargement of AutFn

Now we fix an integer n � 0. In this section, we define a group, denoted by Bn ,
which can be regarded as an enlargement of AutFn . The construction of this group
is analogous to that of the group Hg;1 of homology cylinders. We consider all the
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arguments in a group level. We first construct a monoid An , which enlarges the group
AutFn , and then we obtain the group Bn by taking the quotient of An by certain
equivalence relation.

Step 1 The construction of the monoid An proceeds as follows. Let An be the set
of all equivalence classes of triplets .G; 'C; '�/ consisting of a finitely presentable
group G and 2–connected homomorphisms 'C; '�W Fn ! G , where two triplets
.G; 'C; '�/, .G0;  C;  �/ are said to be equivalent if there exists an isomorphism

�W G Š�!G0 which makes the following diagram commutative:

G

Fn Fn

G0

Š�

'C '�

 � C

Note that for such a triplet .G; 'C; '�/, homomorphisms 'C and '� are injective,
which follows from Stallings’ theorem and the fact that Fn is residually nilpotent.

We define a multiplication � on An as follows:

An �An ! An

2 2

..G; 'C; '�/; .G0;  C;  �// 7! .G �Fn
G0; 'C;  �/

where G �Fn
G0 is obtained by taking the amalgamated product of G and G0 with

respect to '�W Fn!G and  CW Fn!G0 . Since '� and  C are both injective, we
can use the Mayer–Vietoris exact sequence for the homology of amalgamated products
(see [1]), so that the above map gives a well-defined monoid structure of An with the
identity element .Fn; id; id/.

Example 3.1 AutFn can be seen as a submonoid of An by assigning to each automor-
phism ' of Fn an element .Fn; id; '/ of An . This correspondence gives an injective
monoid homomorphism as shown in Corollary 5.2.

Example 3.2 Consider the monoid of all 2–connected endomorphisms of Fn . To
each 2–connected endomorphism ' of Fn , we can assign .Fn; id; '/ 2 An . This
correspondence is also an injective monoid homomorphism. For example, consider an
endomorphism  W F2 D hx1;x2i ! F2 defined by

 .x1/D x1x2x1x�1
2 x�1

1 ;  .x2/D x2
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where we take nD 2. As we will see in Example 5.15,  is not an automorphism of
F2 but a 2–connected endomorphism. Hence .F2; id;  / gives an example of elements
of A2 which are not contained in AutF2 .

Example 3.3 For each homology cylinder .M; iC; i�/, we can obtain an element
.�1M; iC; i�/ of A2g . This correspondence gives a monoid homomorphism Cg;1!
A2g .

Step 2 We construct the group Bn from the monoid An as follows. Two elements
.G; 'C; '�/, .G0;  C;  �/ of An are said to be homology cobordant if there exist a
finitely presentable group zG and 2–connected homomorphisms

'W G �! zG;  W G0 �! zG
which make the following diagram commutative:

(�)

G

Fn Fn

G0

( )'C '�

 � C

zG
'

 

We define Bn to be the quotient set of An with respect to the equivalence relation
generated by the relation of homology cobordism. Then we can endow with a group
structure on Bn from the monoid structure of An . In Bn , the inverse element of

.G; 'C; '�/ is given by .G; '�; 'C/. Indeed, G �Fn
G

id�Fn id�����! G
'C �� Fn gives a

homology cobordism between .G �Fn
G; 'C; 'C/ D .G; 'C; '�/ � .G; '�; 'C/ and

.Fn; id; id/.

Example 3.4 The monoid homomorphism Cg;1!A2g considered in Example 3.3 in-
duces a group homomorphism Hg;1!B2g . This homomorphism gives an enlargement
of the inclusion � WMg;1! AutF2g .

Fundamental properties of the group Bn will be mentioned in Section 5 after seeing a
relationship with the acyclic closure of a free group.

4 The acyclic closure of a group

The concept of the acyclic closure (or HE–closure in [13]) of a group was defined
as a variation of the algebraic closure of a group by Levine in [12], [13]. We briefly
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summarize the definition and fundamental properties. We also refer to Hillman’s book
[7]. The proofs of the propositions in this section are almost the same as those for the
algebraic closure in [12] (see Remark 4.9).

Definition 4.1 Let G be a group, and let Fn D hx1;x2; : : : ;xni be a free group of
rank n.

(i) We call each element wDw.x1;x2; : : : ;xn/ of G �Fn a monomial. A monomial
w is said to be acyclic if

w 2 Ker
�

G �Fn

proj��! Fn �!H1.Fn/

�
:

(ii) Consider the following “equation” with variables x1;x2; : : : ;xn :8̂̂̂<̂
ˆ̂:

x1 D w1.x1;x2; : : : ;xn/

x2 D w2.x1;x2; : : : ;xn/
:::

xn D wn.x1;x2; : : : ;xn/

:

When all monomials w1; w2; : : : ; wn are acyclic, we call such an equation an acyclic
system over G . (iii) A group G is said to be acyclically closed if every acyclic system
over G with n variables has a unique solution in G for any n� 0.

We denote the phrase “acyclically closed” by AC, for short.

Example 4.2 Let G be an abelian group. For g1;g2;g3 2G , consider the equation�
x1 D g1x1g2x2x�1

1
x�1

2

x2 D x1g3x�1
1

;

which is an acyclic system. Then we have a unique solution x1 D g1g2; x2 D g3 .

As we can expect from this example, all abelian groups are AC. In fact, all nilpotent
groups and the nilpotent completion of a group are AC, which are deduced from the
following fundamental properties of AC–groups and the fact that the trivial group is
AC.

Proposition 4.3 (Proposition 1 in [12]) .a/ Let fG˛g be a family of AC–subgroups
of an AC–group G . Then

T
˛ G˛ is also an AC–subgroup of G .

.b/ Let fG˛g be a family of AC–groups. Then
Q
˛ G˛ is also an AC–group.

.c/ When G is a central extension of H , then G is an AC–group if and only if H is
an AC–group.
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.d/ For each direct system .resp. inverse system/ of AC–groups, the direct limit .resp.
inverse limit/ is also an AC–group.

Next we define the acyclic closure of a group.

Proposition 4.4 (Proposition 3 in [12]) For any group G , there exists a pair of a
group Gacy and a homomorphism �G W G!Gacy satisfying the following properties:

(1) Gacy is an AC–group.

(2) Let f W G ! A be a homomorphism and suppose that A is an AC–group.
Then there exists a unique homomorphism f acyW Gacy ! A which satisfies
f acy ı �G D f .

Moreover such a pair is unique up to isomorphisms.

Definition 4.5 We call �G (or Gacy ) obtained above the acyclic closure of G .

Taking the acyclic closure of a group is functorial, namely, for each group homomor-
phism f W G1 ! G2 , we obtain a homomorphism f acyW Gacy

1
! G

acy
2

by applying
the universal property of G

acy
1

to the homomorphism �G2
ı f , and the composition

of homomorphisms induces that of the corresponding homomorphisms on acyclic
closures.

The most important properties of the acyclic closure are the following.

Proposition 4.6 (Proposition 4 in [12]) For every group G , the acyclic closure
�G W G!Gacy is 2–connected.

Proposition 4.7 (Proposition 5 in [12]) Let G be a finitely generated group and H

be a finitely presentable group. For each 2–connected homomorphism f W G!H , the
induced homomorphism f acyW Gacy!H acy on acyclic closures is an isomorphism.

From Proposition 4.6 and Stallings’ theorem, the nilpotent quotients of a group and
those of its acyclic closure are isomorphic. Note that the homomorphism �G is not
necessarily injective.

Proposition 4.8 (Proposition 6 in [12]) For any finitely presentable group G , there
exists a sequence of finitely presentable groups and homomorphisms

G D P0! P1! P2! � � � ! Pk ! PkC1! � � �
satisfying the following properties:
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(1) Gacy D lim�!Pk , and �G W G ! Gacy coincides with the limit map of the above
sequence.

(2) G! Pk is a 2–connected homomorphism.

From this proposition, we see, in particular, that the acyclic closure of a finitely
presentable group is a countable set.

Remark 4.9 Here, we comment on the proofs of the above propositions. In the
argument of the algebraic closure in [12], Levine used the condition that a group H is
finitely normally generated by a subgroup G . In the case of the acyclic closure, we need
the following alternative condition: the group H is said to be finitely homologically
generated by a subgroup G if

(1) The inclusion G!H induces a surjective homomorphism H1.G/!H1.H /.

(2) H is generated by G together with finite elements of H .

As for the invisible subgroup, we need not change its definition.

5 Structures of the groups Bn and AutF acy
n

Using the results in the last section, we consider the acyclic closure �Fn
W Fn!F

acy
n of

Fn . Since the nilpotent completion F nil
n of Fn is AC, there exists a unique homomor-

phism pW F acy
n ! F nil

n such that p ı �Fn
coincides with the natural map Fn! F nil

n ,
which is known to be injective. Hence �Fn

is also injective.

For each element .G; 'C; '�/ of An , we have a commutative diagram

Fn

'�����! G
'C ���� Fn

�Fn

??y �G

??y ??y�Fn

F
acy
n

Š����!
'

acy�
Gacy Š ����

'
acy
C

F
acy
n

by Proposition 4.7. From this, we obtain a monoid homomorphism defined by

ˆW An �! AutF acy
n

�
.G; 'C; '�/ 7! .'

acy
C /�1 ı'acy�

�
and it induces a group homomorphism ˆW Bn! AutF acy

n by the commutativity of the
diagram (�) in Section 3 whose homomorphisms are all 2–connected.
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Theorem 5.1 For each n � 0, the homomorphism ˆW Bn! AutF acy
n is an isomor-

phism.

Proof Assume that .G; 'C; '�/2Kerˆ. Then 'acy
C D 'acy� WF acy

n !Gacy , so that we
have �G ı'C D 'acy

C ı �Fn
D 'acy� ı �Fn

D �G ı'� . By Proposition 4.8, for large k � 0,
we have ik ı'C D ik ı'�W Fn! Pk where Pk is the k th group of a sequence whose
direct limit gives Gacy , and ik W G! Pk is the composite of homomorphisms of the
sequence from G D P0 up to Pk . When we write ' WD ik ı'C D ik ı'�W Fn! Pk ,
then .G; 'C; '�/ 2An is homology cobordant to the identity element .Fn; id; id/ by

a homology cobordism G
ik�! Pk

' � Fn . This shows that ˆ is injective.

On the other hand, given ' 2AutF acy
n , we set f WD'ı�Fn

W Fn!F
acy
n . By Proposition

4.8, we have a sequence fPkg of finitely presentable groups whose direct limit is F
acy
n .

For large k � 0, we can take a lift zf W Fn! Pk of f with respect to the limit map
�W Pk ! F

acy
n , that is, we have � ı zf D f . By definition, we have � ı ik D �Fn

where
ik W Fn! Pk is the composite of homomorphisms in the sequence. We can see that
ik and zf are 2–connected homomorphisms, so that .Pk ; ik ; zf / defines an element of
An . Taking their acyclic closures, we obtain ˆ.Pk ; ik ; zf /D ' . This completes the
proof.

Corollary 5.2 The monoid homomorphism AutFn! An and the group homomor-
phism AutFn! Bn Š AutF acy

n described in Section 3 are both injective.

Proof By the universal property of F
acy
n , two automorphisms of F

acy
n are the same if

and only if they coincide on the subgroup Fn � F
acy
n . The claim follows from this.

Hereafter we identify Bn with AutF acy
n , and use only the latter. In the rest of this

section, we describe some fundamental tools for understanding the structure of the
group AutF acy

n .

The Johnson homomorphisms By Stallings’ theorem, the inclusion Fn ,! F
acy
n

induces isomorphisms on their nilpotent quotients. Therefore we have a natural homo-
morphism ˆk W AutF acy

n �! AutNk for each k � 2.

Proposition 5.3 For all k � 2, the homomorphisms ˆk W AutF acy
n ! AutNk are

surjective.

Proof Given an element f 2 AutNk , we denote by zf 2 EndFn a lift of f . Since zf
induces an automorphism on N2 , zf is a 2–connected endomorphism. Then zf acy 2
AutF acy

n is induced and it satisfies ˆk. zf acy/D f .
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By using ˆk , the Johnson homomorphism is defined as follows (see also [15] and [9]).
We define a filtration of AutF acy

n by

AutF acy
n Œ1� WD AutF acy

n ; AutF acy
n Œk� WD Kerˆk .k � 2/:

On the other hand, we have an exact sequence

0 �! Hom.H1.Fn/; .�
kFn/=.�

kC1Fn// �! AutNkC1 �! AutNk �! 1;

where .�kFn/=.�
kC1Fn/ is known to be isomorphic to the degree k part of the graded

Lie algebra (over Z) freely generated by the elements of H1.Fn/, so that AutN2 acts
on it. Explicitly, the isomorphism

Ker.AutNkC1! AutNk/
��!Hom.H1.Fn/; .�

kFn/=.�
kC1Fn//

D Hom.Fn; .�
kFn/=.�

kC1Fn//

is given by assigning to f 2 Ker.AutNkC1! AutNk/ the homomorphism

Fn 3 xi 7! zf .xi/x
�1
i 2 .�kFn/=.�

kC1Fn/

where zf 2 EndFn is a lift of f and hx1; : : : ;xni is a generating system of Fn .
Note that this expression does not depend on the choices involved. If we define
Jk WDˆkC1jAutF acy

n Œk� , we obtain an exact sequence

1! AutF acy
n ŒkC 1� �! AutF acy

n Œk�
Jk�! Hom.H1.Fn/; .�

kFn/=.�
kC1Fn//! 1:

We call the homomorphism Jk the .k � 1/st Johnson homomorphism. Note that Jk is
AutF acy

n –equivariant, where AutF acy
n acts on AutF acy

n Œk� by conjugation and acts on
the target through ˆ2 .

Example 5.4 Consider the 2–connected endomorphism  in Example 3.2. As an
element of AutF acy

2
,  belongs to AutF acy

2
Œ2�. We calculate the image by the first

Johnson homomorphism J2 . We write H WDH1.F2/ and consider isomorphisms

Hom.H1.F2/; .�
2F2/=.�

3F2//ŠH�˝ .�2F2/=.�
3F2/ŠH�˝ .^2H /:

Then we have J2. /D x�
1
˝ .x2 ^x1/.

A refinement of the Johnson homomorphisms For each k � 2, we now give a
refinement of the Johnson homomorphism whose target is abelian and bigger than
that of the original. To construct the refinement, we need to fix a generating system
hx1; : : : ;xni of Fn . We show the following.
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Theorem 5.5 For each k � 2, the Johnson homomorphism Jk has a refinement

zJk W AutF acy
n Œk� �! Hom.H1.Fn/; .�

kFn/=.�
2k�1Fn//

whose target is also a finitely generated free abelian group. In fact, the composite with
the natural projection p1W .�kFn/=.�

2k�1Fn/! .�kFn/=.�
kC1Fn/ is the original

Johnson homomorphism Jk . Moreover zJk is surjective, and the kernel of zJk coincides
with AutF acy

n Œ2k � 1�, so that we have an exact sequence

1! AutF acy
n Œ2k � 1�! AutF acy

n Œk�
zJk�! Hom.H1.Fn/; .�

kFn/=.�
2k�1Fn//! 1:

Note that for each k � 2, we have a direct sum decomposition

.�kFn/=.�
2k�1Fn/Š

2k�2M
jDk

�
.�j Fn/=.�

jC1Fn/
�

(��)

which is given by iterated extensions of .�kFn/=.�
kC1Fn/ by finitely generated

free abelian groups .� iFn/=.�
iC1Fn/ for k C 1 � i � 2k � 2. Therefore

.�kFn/=.�
2k�1Fn/ is also a finitely generated free abelian group. We also note

that this direct sum decomposition is not canonical, except for the first projection
p1W .�kFn/=.�

2k�1Fn/! .�kFn/=.�
kC1Fn/.

The proof of Theorem 5.5 essentially uses the following.

Lemma 5.6 If we set AutFnŒk� WD Ker.AutFn! AutNk/, then

zJk W AutFnŒk� ! Hom.Fn; .�
kFn/=.�

2k�1Fn//

2 2

' 7! �
xi 7! '.xi/x

�1
i

�
is a well-defined homomorphism.

Proof Given ' ,  2 AutFnŒk�, we have

zJk.' /.xi/D '. .xi//x
�1
i D '. .xi/x

�1
i / �'.xi/x

�1
i :

Since '.xi/x
�1
i ,  .xi/x

�1
i 2 �kFn , and .�kFn/=.�

2k�1Fn/ is abelian, it suffices
to show that AutFnŒk� acts on .�kFn/=.�

2k�1Fn/ trivially. Every element g 2
.�kFn/=.�

2k�1Fn/ can be written in a form g DQl
iD1Œ� � � Œgi1;gi2�;gi3�; � � � �;gik �

where gij 2 Fn , so that it suffices to show our claim in the case of
g D Œ� � � Œg1;g2�;g3�; � � � �;gk � where gi 2 Fn .

Since ' 2 AutFnŒk�, we see '.g/D Œ� � � Œg1r1;g2r2�;g3r3�; � � � �;gkrk � for some ri 2
�kFn . We write g.l/ WD Œ� � � Œg1;g2�;g3�; � � � �;gl � 2 � lFn for 2 � l � k . Now we
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show that g.l/ � '.g.l// .mod �kCl�1Fn/ by the induction on l . Our claim follows
from it. For l D 2,

'.g.2//D Œg1r1;g2r2�

D Œg1r1;g2� � g2 Œg1r1; r2�

D g1 Œr1;g2� � Œg1;g2� � g2 Œg1r1; r2�

� g.2/ .mod �kC1Fn/

where we write aŒb; c� for aŒb; c�a�1 . When g.i/ � '.g.i// .mod �kCi�1Fn/ fol-
lows for 2� i � l , we see

'.g.lC1//D Œ'.g.l//;glC1rlC1�

D Œ'.g.l//;glC1� � glC1 Œ'.g.l//; rlC1�

D Œg.l/r;glC1� � glC1 Œ'.g.l//; rlC1� for some r 2 �kCl�1

D g.l/ Œr;glC1� � Œg.l/;glC1� � glC1 Œ'.g.l//; rlC1�

� g.lC1/ .mod �kClFn/

and this completes the proof.

By Lemma 5.6, we see that zJk gives a refinement of the Johnson homomorphism for
AutFn .

Proof of Theorem 5.5 If we restrict ˆ2k�1W AutF acy
n ! AutN2k�1 to the subgroup

AutF acy
n Œk�, its image is contained in Ker.AutN2k�1! AutNk/. On the other hand,

the map

xJk W Ker.AutN2k�1! AutNk/ ! Hom.Fn; .�
kFn/=.�

2k�1Fn//

2 2

f 7!
�

xi 7! zf .xi/x
�1
i

�
where zf 2 EndFn is a lift of f , defines a well-defined injective homomorphism by an
argument similar to that in the proof of Lemma 5.6. Then we define a homomorphism
zJk W AutF acy

n Œk�! Hom.Fn; .�
kFn/=.�

2k�1Fn// by the composite

AutF acy
n Œk�

ˆ2k�1����! Ker.AutN2k�1! AutNk/
xJk�! Hom.Fn; .�

kFn/=.�
2k�1Fn//:

It is easily checked that zJk gives a refinement of the Johnson homomorphism and that
the kernel of zJk coincides with AutF acy

n Œ2k � 1�.
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To show that zJk is surjective, we recall the direct sum decomposition (��). We write

pl W .�kFn/=.�
2k�1Fn/! .�kCl�1Fn/=.�

kClFn/; .1� l � k � 1/

for the l th projection. While each projection pl .2 � l � k � 1/ except p1 is not
given canonically, its restriction to .�kCl�1Fn/=.�

2k�1Fn/ coincides with the natural
projection .�kCl�1Fn/=.�

2k�1Fn/ ! .�kCl�1Fn/=.�
kClFn/. Therefore, if we

consider the isomorphism given by

Hom.Fn; .�
kFn/=.�

2k�1Fn//
Š���������!

p1˚���˚pk�1

2k�2M
jDk

Hom
�
Fn; .�

j Fn/=.�
jC1Fn/

�
;

the composite

pl ı zJk jAutF acy
n ŒkCl�1�W AutF acy

n ŒkC l � 1�! Hom.Fn; .�
kCl�1Fn/=.�

kClFn//

is nothing other than the original Johnson homomorphism JkCl�1 for each l D
1; 2; : : : ; k � 1. Since Jk ; : : : ;J2k�2 are all surjective, our claim follows.

Remark 5.7 The homomorphism zJk highly depends on the choice of a generating
system of Fn , and zJk is not AutF acy

n –equivariant for k � 3. This phenomenon is
explained by using the Magnus expansion as follows. It is well known that the expansion
of an element of �kFn has a form of 1C .degree � k –part/. In terms of the Magnus
expansion, our refinement zJk captures an information of the part from degree k up to
.2k � 2/ of the expansion of zf .xi/x

�1
i under a fixed generating system of Fn . For a

changing of a generating system, the Magnus expansion for each element intensively
varies except that the first non-trivial homogeneous component in the positive degree
part changes AutF acy

n –equivariantly (see [15], [9]).

The Magnus representation Here we define the Magnus representation for AutF acy
n .

While we call it the Magnus “representation”, it is actually a crossed homomorphism.
The construction of the representation is based on Le Dimet’s work [11], where the
Gassner representation for the pure braid group is extended to that for the string link
concordance group.

Before starting our discussion, we summarize our notation and rules. For a matrix A

with coefficients in a ring R, and a homomorphism 'W R!R0 , we denote by 'A the
matrix obtained from A by applying ' to each entry. When RD ZG for a group G

(or its Cohn localization mentioned below), we denote by xA the matrix obtained from
A by applying the involution induced from .x 7! x�1; x 2G/ to each entry.

For a (finite) CW–complex X and its regular covering X� with respect to a homomor-
phism �1X ! � , � acts on X� from the right through its deck transformation group.
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Therefore we regard the Z� –cellular chain complex C�.X�/ of X� as a collection
of free right Z� –modules consisting of column vectors together with differentials
given by left multiplications of matrices. For each Z� –bimodule A, the twisted chain
complex C�.X IA/ is given by the tensor product of the right Z�–module C�.X�/
and the left Z� –module A, so that C�.X IA/ and H�.X IA/ are right Z� –modules.

To construct the Magnus representation for AutF acy
n , we use the following special case

of the Cohn localization (or the universal localization). We refer to Section 7 in [2] for
details.

Proposition 5.8 (Cohn [2]) Let G be a group and let "W ZG!Z be the augmentation
map. Then there exists a pair of a ring ƒG and a ring homomorphism lG W ZG!ƒG

satisfying the following properties:

(1) For every matrix m with coefficients in ZG , if ".m/ is invertible then lG.m/ is
also invertible.

(2) The pair .ƒG ; lG/ is universal among all pairs having the property 1.

Furthermore it is unique up to isomorphism.

Example 5.9 When G DH1.Fn/, we have

ƒG Š
�
f

g

ˇ̌̌̌
f;g 2 ZG; ".g/D˙1

�
:

We write xi again for the image of xi by �Fn
W Fn D hx1;x2; : : : ;xni ,! F

acy
n .

Proposition 5.10 (Proposition 1.1 in [11]) The homomorphism

vW ƒn
F

acy
n

! I.F
acy
n /˝F

acy
n
ƒF

acy
n

2 2

.a1; : : : ; an/ 7!
nX

iD1

.x�1
i � 1/˝ ai

is an isomorphism of right ƒF
acy
n

–modules, where I.F
acy
n / WD Ker."W ZF

acy
n ! Z/.

Note that each automorphism of F
acy
n induces one of ZF

acy
n . Moreover, by the universal

property of ƒF
acy
n

, an automorphism of ƒF
acy
n

is also induced.

The proof of Proposition 5.10 is almost the same as that of Proposition 1.1 in [11],
once we show the following.
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Lemma 5.11 Let G be a finitely presentable group, and let f W Fn ! G be a 2–
connected homomorphism. Then f�W Hi.FnIƒG/!Hi.GIƒG/ is an isomorphism
for i D 0; 1; 2.

Proof We prove this lemma by using the idea of the proof of Proposition 2.1 in [10].
Let X D K.Fn; 1/ be a bouquet of n circles and Y D K.G; 1/ be a CW–complex
constructed from a finite presentation of G . The number of cells of Y up to degree
2 is finite. We denote by f again for the continuous map from X to Y induced by
the homomorphism f W Fn! G . Taking a mapping cylinder with respect to f , we
obtain a CW–complex M D K.G; 1/ where X is contained as a subcomplex. The
number of cells of M up to degree 2 is also finite. Since Hi.M;X /D 0 for i D 0; 1; 2,
we can take a partial chain homotopy DiC1W Ci.M;X /! CiC1.M;X / of the partial
chain complex C3.M;X /! � � � ! C0.M;X /! 0 freely generated by relative cells
of .M;X /. Namely, we have

1D @1 ıD1;

1D @2 ıD2CD1 ı @1;

1D @3 ıD3CD2 ı @2:

Let zM be the universal covering of M and zX be the inverse image of X on zM . We
choose a lift of each cell of M on zM . Using the lifts of cells, we can define lifts
zDiC1W Ci. zM ; zX /!CiC1. zM ; zX / of the chain homotopy DiC1 for i D 0; 1; 2, which

are ZG –equivariant. Then we define

ˆ0 WD z@1 ı zD1;

ˆ1 WD z@2 ı zD2C zD1 ı z@1;

ˆ2 WD z@3 ı zD3C zD2 ı z@2;

where @i are differentials of the chain complex Ci. zM ; zX /. It is easily checked that
ˆi W Ci. zM ; zX /! Ci. zM ; zX / .i D 0; 1; 2/ gives a partial chain map, so that it induces
a homomorphism .ˆi/�W Hi. zM ; zX /! Hi. zM ; zX / for each i D 0; 1; 2. Note that
each ˆi is a homomorphism between finitely generated free ZG–modules which is
the identity map on the base space. Then by the definition of the Cohn localization,

ˆi ˝G 1W Ci. zM ; zX /˝G ƒG �! Ci. zM ; zX /˝G ƒG

becomes an isomorphism for each i D 0; 1; 2. Moreover ˆi˝G 1 maps Ker. z@i˝G 1/

onto itself, so that .ˆi ˝G 1/ induces an epimorphism on Hi .
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On the other hand, since

ˆ0˝G 1D z@1 ı zD1˝G 1;

ˆ1˝G 1D . z@2 ı zD2C zD1 ı z@1/˝G 1;

ˆ2˝G 1D .z@3 ı zD3C zD2 ı z@2/˝G 1;

we see that .ˆi˝G 1/� WHi.M;X IƒG/!Hi.M;X IƒG/ are 0–maps, and therefore
Hi.M;X IƒG/D 0 for i D 0; 1; 2. Then 0DH2.M IƒG/DH2.GIƒG/. From this,
we see that f�W Hi.FnIƒG/!Hi.G; ƒG/ is an isomorphism for each i D 0; 1; 2.

Definition 5.12 For 1� i � n, we define a map @=@xi W F acy
n !ƒF

acy
n

by�
@

@x1

;
@

@x2

; : : : ;
@

@xn

�
W F

acy
n ! ƒn

F
acy
n

2 2

g 7! v�1..g�1� 1/˝ 1/:

The above maps @=@xi coincide with the ordinary free differentials if we restrict them
to Fn , and have similar properties. We refer to Proposition 1.3 in [11]. In particular,
we have

.g�1� 1/˝ 1D
nX

iD1

.x�1
i � 1/˝

�
@g

@xi

�
for any g 2 F

acy
n under our notation.

Definition 5.13 We define the Magnus representation

r W AutF acy
n !M.n; ƒF

acy
n
/

by setting r.'/ WD
 �

@'.xj /

@xi

�!
i;j

for ' 2 AutF acy
n

Proposition 5.14 The Magnus representation r is a crossed homomorphism. In
particular, the image of r is contained in the set of invertible matrices.

Proof For ' ,  2 AutF acy
n , we have

.' .x�1
j /� 1/˝ 1D

nX
iD1

.x�1
i � 1/˝

�
@' .xj /

@xi

�
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by definition. On the other hand,

.' .x�1
j /� 1/˝ 1D '.. .x�1

j /� 1/˝ 1/

D
' nX

kD1

.x�1
k � 1/˝

�
@ .xj /

@xk

�!

D
nX

kD1

.'.x�1
k /� 1/˝

'�
@ .xj /

@xk

�

D
nX

kD1

n
.'.x�1

k /� 1/˝ 1
o
�
'�
@ .xj /

@xk

�

D
nX

kD1

(
nX

iD1

.x�1
i � 1/˝

�
@'.xk/

@xi

�)
�
'�
@ .xj /

@xk

�

D
nX

iD1

.x�1
i � 1/˝

(
nX

kD1

�
@'.xk/

@xi

�
�
'�
@ .xj /

@xk

�)
:

Hence we obtain

@' .xj /

@xi
D

nX
kD1

�
@'.xk/

@xi

�
�
'�
@ .xj /

@xk

�
which shows that r.' /D r.'/ � 'r. /.

Note that the composite ZFn

�Fn��! ZF
acy
n

l
F

acy
n���!ƒF

acy
n

is injective, for the composite of
the ring homomorphism ZF

acy
n ! ZF nil

n with the Magnus expansion, which can be
extended to ZF nil

n and is injective on ZFn , satisfies the property 1 of Proposition 5.8,
so that the Magnus expansion is extended for ƒF

acy
n

. Hence the Magnus representation
defined here certainly gives a generalization of the original r W AutFn!GL.n;ZFn/.

Example 5.15 Consider the 2–connected endomorphism  in Example 3.2. Then

r. /D
�

1Cx�1
2

x�1
1
�x1x2x�1

1
x�1

2
x�1

1
0

x�1
1
�x2x�1

1
x�1

2
x�1

1
1

�
:

Reducing the coefficients to ƒH1.F
acy
2
/ DƒH1.F2/ , we obtain the matrix�

1Cx�1
1

x�1
2
�x�1

1
0

x�1
1
�x�2

1
1

�
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whose determinant is 1Cx�1
1

x�1
2
�x�1

1
. Since this value is not invertible in ZH1.F2/,

we see that  62 AutF2 .

6 Main results

In this section, we return to our discussion on homology cylinders, and consider some
relationships between homology cylinders and the acyclic closure of a free group.

For each homology cylinder .M; iC; i�/ 2 Cg;1 , we obtain a commutative diagram

F2g
i�����! �1M

iC ���� F2g

�F2g

??y ��1M

??y ??y�F2g

F
acy
2g

Š����!
i

acy�
.�1M /acy Š ����

i
acy
C

F
acy
2g

by Proposition 4.7. From this, we obtain a monoid homomorphism defined by

� acyW Cg;1 �! AutF acy
2g

�
.M; iC; i�/ 7! .i

acy
C /�1 ı i acy�

�
and it induces a group homomorphism � acyW Hg;1! AutF acy

2g
.

Our first result is a generalization of Dehn–Nielsen’s theorem. Recall that � 2 F2g �
F

acy
2g

is a word corresponding to the boundary loop of †g;1 .

Theorem 6.1 The image of � acyW Hg;1! AutF acy
2g

is

Aut0F
acy
2g
WD f' 2 AutF acy

2g
j '.�/D � 2 F

acy
2g
g:

Proof By the definition of homology cylinders, we have iC.�/D i�.�/ 2 �1M for
every homology cylinder .M; iC; i�/. Hence we see that the image of � acy is contained
in Aut0F

acy
2g

.

Conversely, given an element ' 2 Aut0F
acy
2g

, we construct a homology cylinder M D
.M; iC; i�/ satisfying � acy.M /D ' . The construction is based on that of Theorem 2.3
(which is Theorem 3 in [3]). In our context, however, we must pay an extra attention
because we do not have a result which directly corresponds to Lemma 4.6 in [3].
This occurs from the fact that �F2g

W F2g! F
acy
2g

is injective although the composite

F2g! F
acy
2g
! F

acy
2g
=.�kF

acy
2g
/ŠNk is surjective.

We begin by taking two continuous maps fC; f�W †g;1!K.F
acy
2g
; 1/ corresponding to

homomorphisms �F2g
; ' ı �F2g

W F2g!F
acy
2g

, respectively. Since �F2g
.�/D ' ı �F2g

.�/,
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we can combine the two maps and obtain a map f WD fC [ f�W †2g D †g;1 [
.�†g;1/!K.F

acy
2g
; 1/. The pair .†2g; f / defines an element of the second bordism

group �2.F
acy
2g
/ of K.F

acy
2g
; 1/, which is naturally isomorphic to H2.F

acy
2g
/. Since

H2.F
acy
2g
/ D 0 as mentioned in Proposition 4.6, there exist a compact oriented 3–

manifold M whose boundary is †2g , and a map ˆW M ! K.F
acy
2g
; 1/ extending

the map f . We write iC; i�W †g;1! @M for embeddings onto domains of fC; f� ,
respectively.

Since �F2g
is 2–connected, we have H1.M /Š iC.H1.†g;1//˚Kerˆ� . If Kerˆ�D0,

then iC; i�W H1.†g;1/!H1.M / are both isomorphisms. In particular, H1.M; @M /D
0 and therefore H 1.M; @M / Š H2.M / D 0, so that the triplet .M; iC; i�/ gives a
homology cylinder satisfying � acy.M /D ' . If not, we perform surgery on the map ˆ
to kill Kerˆ� .

Now we take a non-trivial element ˛2Kerˆ� . If there exists a representative C 2�1M

by a simple closed curve such that ˆ.C /D 1 2 F
acy
2g

, then we can do surgery on C

and extend ˆ over the trace of the surgery. However, we cannot necessarily take
such a simple closed curve. Then we replace .M; iC; i�/ by a manifold which is
homology bordant to M over K.F

acy
2g
; 1/ and for which we can take a simple closed

curve which represents ˛ and whose image by ˆ is trivial in F
acy
2g

. A construction of
such a homology bordant manifold is given as follows.

For the induced homomorphism iCW F2g! �1M , by the universal property of acyclic
closures, we have a homomorphism i

acy
C W F acy

2g
! .�1M /acy satisfying i

acy
C ı �F2g

D
��1M ı iC . Similarly we have ˆacyW .�1M /acy! F

acy
2g

satisfying ˆD ˆacy ı ��1M .
Then ˆacy ı i

acy
C ı �F2g

D ˆacy ı ��1M ı iC D �F2g
, so that ˆacy ı i

acy
C D idF

acy
2g

. In
particular, ˆacy is onto.

Take a simple closed curve C representing ˛ 2Kerˆ� . Since ˆ�.˛/D 0 2H1.F
acy
2g
/,

we can write ˆ.C /DQl
iD1Œhi1; hi2� with hij 2 F

acy
2g

. We take an acyclic system

S W xi D wi.x1;x2; : : : ;xm/ .i D 1; 2; : : : ;m/

over �1M whose solution in .�1M /acy contains

fi acy
C .h11/; i

acy
C .h12/; : : : ; i

acy
C .hl1/; i

acy
C .hl2/g:

We attach a 1–handle to M � f1g �M � I for each variable xi and write xi again
for the added generator on the fundamental group of the resulting cobordism. We also
attach a 2–handle along the loop xiw

�1
i for each i D 1; 2; : : : ;m with any framing.

We denote the resulting cobordism by XS . Then

�1XS D .�1M � hx1; : : : ;xmi/
ı
.x1w

�1
1 ; : : : ;xmw

�1
m /:
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Let MS be another part of the boundary of XS , namely M [MS D @XS and
M \MS D @M D @MS . We define a homomorphism ˆS W �1XS! .�1M /acy which
lifts ��1M by sending xi to the corresponding solution of S . Then the composite
ˆacy ı ˆS W �1XS ! F

acy
2g

gives a continuous map ˆS W XS ! K.F
acy
2g
; 1/ which

extends ˆW M !K.F
acy
2g
; 1/.

Since ��1M is 2–connected and has a lift ˆS , the homomorphism H1.M /!H1.XS /

induced from the inclusion M ,!XS is injective. On the other hand, by the definition
of XS , this homomorphism is onto, hence an isomorphism. We can also see that
H2.M /!H2.XG/ is onto, for, in terms of chain complexes consisting of handles,
the boundary of each newly added 2–handle corresponding to the relation xiw

�1
i ,

has a form of Œxi �C .1–handles in M � I / which shows that we have a surjective
homomorphism from the module of 2–cycles on M � I to that on XS .

We also show that H1.MS /!H1.XS / is an isomorphism. The surjectivity follows
by considering the dual handle decomposition of XS , namely XS is constructed
from MS � I by attaching 3– and 2–handles. To show the injectivity, we see that
H2.XS ;MS /D 0. By the Poincaré–Lefschetz duality, H2.XS ;MS /ŠH 2.XS ;M /.
On the other hand, we have an exact sequence

H 1.XS / ����! H 1.M / ����! H 2.XS ;M / ����! H 2.XS / ����! H 2.M /:

Since H�.M /!H�.XS / is an isomorphism for � D 1 and onto for � D 2, the first
map is an isomorphism, and the last one is injective. Hence H 2.XS ;M /D 0.

From the above argument, we see that M and MS are homology bordant over
K.F

acy
2g
; 1/ by the bordism XS and ˆS . Note that this bordism preserves the di-

rect sum decomposition H1.M / Š iC.H1.†g;1//˚ Kerˆ� , namely we also have
H1.MS /Š iC.H1.†g;1//˚KerˆG� and we can take x̨ 2KerˆG� which corresponds
to ˛ . Consider the simple closed curve C taken at the beginning of this argument. Since
�1MS!�1XS is onto, there exists a simple closed curve xC which attains C in �1XS .
Now hij 2 F

acy
2g

are contained in the image of ˆS W �1MS ! F
acy
2g

, so that we can

take Shij 2 �1MS attaining hij . Then the simple closed curve xC
�Ql

iD1Œ
Shi1; Shi2�

��1

represents x̨ and is mapped by ˆS to the trivial element of F
acy
2g

.

The rest of the proof is almost the same as Theorem 3 in [3]. The difference is that
our killing Kerˆ� goes, if necessary, with changing the manifold to some homology
bordant one at each step.

Next, we consider Hg;1ŒŒ1�� WDKer
�
� acyW Hg;1! Aut0F

acy
2g

�
. In contrast to the case

of the mapping class group, Hg;1ŒŒ1�� is non-trivial. Indeed the homology cobordism
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group ‚3
Z of homology 3–spheres is contained in it. Our second result gives an additive

invariant for Hg;1ŒŒ1��.
For any element Œ.M; iC; i�/� 2 Hg;1ŒŒ1��, we have i

acy
C D i acy� W F acy

2g
! .�1M /acy .

Consider the composite f W M !K.F
acy
2g
; 1/ of continuous maps

M ����! K.�1M; 1/ ����! K..�1M /acy; 1/ ����! K.F
acy
2g
; 1/

where the last map is induced by the homomorphism .i
acy
C /�1 D .i acy� /�1 . After

adjusting by some homotopy, if necessary, we have f ıiCDf ıi�W †g;1!K.F
acy
2g
; 1/.

Then we can consider a closed 3–manifold

CM DM=.iC.x/D i�.x// x 2†g;1

and a continuous map bf W CM !K.F
acy
2g
; 1/ induced from f . Note that CM is also

obtained by gluing 1Cg;1
D †g;1 � I along their boundaries. We call this operation

closing.

Theorem 6.2 The map � W Hg;1ŒŒ1��!H3.F
acy
2g
/ given by

�.ŒM; iC; i��/ WD bf .ŒCM �/ 2H3.F
acy
2g
/

is a well-defined homomorphism. Moreover it is surjective.

Proof The proof is divided into three steps:

� bf .ŒCM �/ depends only on the homology cobordism class of .M; iC; i�/,
� � is actually a homomorphism,

� � is onto.

Step 1 Let .M; iC; i�/ and .N; jC; j�/ be homology cylinders contained in the
same homology cobordism class in Hg;1ŒŒ1��. We write fM W M !K.F

acy
2g
; 1/ and

fN W N !K.F
acy
2g
; 1/ for maps constructed as above, respectively. We take a homology

cobordism W satisfying

@W DM [ .�N /=.iC.x/D jC.x/; i�.x/D j�.x// x 2†g;1;

so that we have iC D jC; i� D j�W †g;1!W and

i
acy
C D j

acy
C D i acy� D j acy� W F acy

2g
! .�1W /acy:

Note that, by Stallings’ theorem,

F
acy
2g
Š .�1M /acy Š .�1W /acy Š .�1N /acy:
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Then the homomorphism .i
acy
C /�1ı��1W .D .j acy

C /�1ı��1W / induces a map fW W W !
K.F

acy
2g
; 1/ extending fM and fN .

We take a closed tubular neighborhood V of @M D @N in @W . V is diffeomorphic to
†2g � I . We glue 1Cg;1

� I D .†g;1 � I/� I to W by identifying .@1Cg;1
/� I with

V . The resulting 4–manifold cW gives a homology cobordism between CM and CN .
Moreover, for fM ı iC D fN ı jC and fM ı i� D fN ı j� are homotopic, the map
fW is extended to a map bf W W cW !K.F

acy
2g
; 1/ whose restriction to CM (resp. CN /

coincides with bf M (resp. bf N ). Therefore we see bf M .ŒCM �/D bf N .ŒCN �/.

Step 2 For Œ.M; iC; i�/�, Œ.N; jC; j�/� 2Hg;1ŒŒ1��, we construct a 4–manifold

W D .M � I/[ .N � I/[ .1Cg;1
� Œ0; 3�/

by the following gluing rule. We decompose @.1Cg;1
� Œ0; 3�/ into

..@1Cg;1
/� Œ0; 1�/[ ..@1Cg;1

/� Œ1; 2�/[ ..@1Cg;1
/� Œ2; 3�/[ .1Cg;1

� f0; 3g/:
We glue .@1Cg;1

/� Œ0; 1� to .@M /� I . We also glue .@1Cg;1
/� Œ2; 3� to @N � I with

opposite direction of unit intervals and opposite markings of homology cylinders N and
1Cg;1

. Namely, for example, we identify .†g;1�f1g/�f0g with iC.†g;1/�f0g�M�I ,
and .†g;1�f0g/�f3g with jC.†g;1/�f0g �N �I . Then @W consists of CM , CN ,
and

.�M � f1g/[ .�N � f1g/[ ..@1Cg;1
/� Œ1; 2�/:

The last component is nothing other than �CM �N . Hence W is a cobordism between
CM tCN and �CM �N .

Since fM ı iC , fM ı i� , fN ı jC and fN ı j� are all homotopic, .fM � I/[ .fN �
I/W .M � I/[ .N � I/! K.F

acy
2g
; 1/ is extended to a map fW W W ! K.F

acy
2g
; 1/

whose restriction to CM , CN and �CM �N coincide with bf M , bf N and bf M �N ,
respectively. Hence we see that �.M /C �.N /D �.M �N /.

Step 3 We construct a homology cylinder which attains a given element ˛ 2H3.F
acy
2g
/

by � . First, we use a construction used in [16], [12].

Take a bouquet of 2g circles tied at the base point � as a model of K.F2g; 1/, and take a
CW–complex realizing K.F

acy
2g
; 1/. The homomorphism �F2g

W F2gDh
1; : : : ; 
2gi!
F

acy
2g

induces a continuous map IF2g
W K.F2g; 1/! K.F

acy
2g
; 1/. As usual, we can

assume that K.F2g; 1/ is a subcomplex of K.F
acy
2g
; 1/ having only one 0–cell �,

namely IF2g
is an inclusion. Let bK be the mapping cone of IF2g

, which is obtained
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from the CW–complex K.F
acy
2g
; 1/ by attaching a 2–cell ei along each loop representing


i 2 F2g � F
acy
2g

for i D 1; : : : ; 2g . We take an interior point pi in each 2–cell ei .

Since H3.F
acy
2g
/DH3.K.F

acy
2g
; 1//ŠH3. bK /Š�3. bK /, we can take a pair of a closed

oriented 3–manifold M and a continuous map f W M ! bK corresponding to ˛ by
this isomorphism. By applying a method used in the proof of Theorem 4 in [16] or
Theorem 2 in [12], we can construct a pair of a closed oriented 3–manifold M 0 and a
continuous map f 0W M 0! bK satisfying the following.

� .M 0; f 0/ is bordant to .M; f / over bK , that is, f 0.ŒM 0�/D f .ŒM �/ 2H3. bK /.

� pi is a regular value of f 0 for each i D 1; : : : ; 2g .

� Li WD .f 0/�1.pi/ is not empty and is a knot in M 0 for each i D 1; : : : ; 2g .

� There exists a closed tubular neighborhood Ti of Li such that the diagram

Ti

f 0����! bK
hi

??yŠ x??gi

S1 �D2
proj����! D2

commutes where hi is a homeomorphism sending Li � Ti onto S1 � f0g, and
gi is a homeomorphism onto the 2–cell ei sending 1 2D2 to the base point �
of bK .

For simplicity, we write .M; f / again for .M 0; f 0/. We take a meridian loop mi WD
h�1

i .f1g� @D2/ and a point qi WD h�1
i .1; 1/ on mi for each i . Note that f .qi/D �.

We orient mi by using the orientation of the loop representing 
i .

We take a base point q 2M n .S2g
iD1

Ti/ �M . By using some homotopy, we can
assume f .q/D�. We connect the points qi and qgCi by a path l1

i in M n .S2g
iD1

Ti/

such that f is the constant map to � on a neighborhood of l1
i . We also connect a point

of l1
i and q by a path l2

i satisfying the same condition for f as l1
i . The condition for

f on the neighborhood of l1
i , l2

i will be satisfied by surgeries using 1–handles. The
meridian loops mi and the paths l1

i , l2
i form a graph with trivalent vertices except one

g–valent vertex q as depicted below.
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qi qgCi

l1
i

l2
i

q

mi mgCi

Li LgCi

l2
i�1

l2
iC1

In a tubular neighborhood of this graph, we take an embedded ribbon whose boundary
is connected and is sent by f to the loop � DQg

iD1
Œ
i ; 
gCi � in bK as follows.

We fatten the ribbon to construct an embedding of 1Cg;1
D †g;1 � I , in which the

boundary of the ribbon divides @1Cg;1
Š†g;1[ .�†g;1/ into two embeddings iC , i�

of †g;1 .

We perform surgery at L1;L2; : : : ;L2g with framings given by .hi/
�1.S1�f1g/, on

which f is the constant map to �, and denote the resulting manifold by ML . By the
choice of framings, there exists a map fLW ML!K.F

acy
2g
; 1/� bK which is bordant

to .M; f / over bK . Note that fL.ŒML�/D ˛ 2H3.K.F
acy
2g
; 1//.

We remove the embedded 1Cg;1
from ML to construct a 3–manifold N with boundary.

@N is diffeomorphic to †g;1[ .�†g;1/, and has an orientation preserving embedding
iC and a reversing one i� . Now fL ı iC D fL ı i� D �F2g

W �1†g;1 Š F2g ! F
acy
2g

,
so that fL ı iC and fL ı i� are 2–connected homomorphisms preserving � . Only we
have to do is to construct a homology cylinder from the data N , iC; i�W †g;1! @N

and fLW N !K.F
acy
2g
; 1/ with keeping its bordism class over K.F

acy
2g
; 1/, which is

the same situation of the proof of Theorem 6.1. Using the same argument, we obtain a
desired homology cylinder.

Remark 6.3 As seen in Step 1 of the above proof, two homology cylinders belonging
to the same class in Hg;1 give homology cobordant closed 3–manifolds by closing.

Algebraic & Geometric Topology, Volume 6 (2006)



Homology cylinders and the acyclic closure of a free group 629

Remark 6.4 We do not know, at present, whether H3.F
acy
2g
/ is trivial or not. This

situation is similar to that of some (string) link concordance invariant using the algebraic
closure of a free group in [12] and [13]. It is easily checked that the homomorphism �

is trivial if we restrict it to ‚3
Z �Hg;1ŒŒ1��.

We also have the following important problem. It is not known that Hg;1ŒŒ1�� coincides
with the group

Hg;1Œ1� WD
\
k

Ker
�
�k W Hg;1! AutNk

�
DKer

�
�nilW Hg;1! AutF nil

2g

�
;

in which Hg;1ŒŒ1�� is contained. This problem highly relates to the question whether
pW F acy

2g
! F nil

2g
is injective or not.

7 Refinements of the Johnson homomorphisms

Finally, we summarize invariants of homology cylinders which extend the Johnson
homomorphisms. For each k � 2, The .k�1/st Johnson homomorphism for homology
cylinders is nothing other than the composite Jk ı � acyjHg;1Œk� , where Hg;1Œk� WD
Ker

�
�k W Hg;1! Aut0Nk

�
, and we now denote it by Jk , for short. We can determine

the image of Jk by using Theorem 2.3 due to Garoufalidis–Levine and Habegger. See
[3] for details.

As seen in Section 5, we have a refinement

zJk W AutF acy
2g
Œk�! Hom.F2g; .�

kF2g/=.�
2k�1F2g//

of the Johnson homomorphism Jk , so that we obtain an exact sequence

1 �!Hg;1Œ2k � 1� �!Hg;1Œk�
zJkı� acy

�����! Hom.F2g; .�
kF2g/=.�

2k�1F2g//:

On the other hand, we can construct maps which are essentially the same as zJk ı � acy

by the following geometric method or group-homological one. This argument is based
on Heap’s idea in [6] for the case of the mapping class group.

The first one is obtained by applying the construction of the invariant � in the pre-
vious section to the case of Hg;1Œk�. The same argument gives a homomorphism
�k W Hg;1Œk�!H3.Nk/ defined by

�k.ŒM; iC; i��/ WD bf .ŒCM �/ 2H3.Nk/;

and we can show that it is onto. Note that such a construction already appeared in [3].
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Theorem 7.1 The kernel of �k is Hg;1Œ2k � 1�, namely we have an exact sequence

1 ����! Hg;1Œ2k � 1� ����! Hg;1Œk�
�k����! H3.Nk/ ����! 1:

Proof In [8], Igusa–Orr showed that the homomorphism H3.N2k�1/!H3.Nk/ in-
duced by the natural projection N2k�1!Nk is trivial. From this, we see that Hg;1Œ2k�
1�� Ker �k . On the other hand, the induced homomorphism x�k W Hg;1Œk�=Hg;1Œ2k �
1� ! H3.Nk/ turns out to be a surjective one between free abelian groups of the
same rank (see [3] and [8]), which shows that x�k is an isomorphism. In particular,
Hg;1Œ2k � 1�D Ker �k follows.

The second one is obtained by generalizing Morita’s refinement of the Johnson ho-
momorphism for the mapping class group in [15] under the following modification.
For M 2 Hg;1Œk�, we write 'M WD � acy.M / 2 Aut0F

acy
2g

. Let C�.F acy
2g
/ be the

chain complex of F
acy
2g

called the normalized standard resolution in [1]. We take
a 2–chain c0 2 C2.F

acy
2g
/ satisfying @c0 D �.�/ and whose image in C2.�1†g/

acy

by the map from †g;1 to the closed surface †g coincides with the natural image of
the fundamental cycle of C2.�1†g/. For each 'M , c0 � 'M .c0/ gives a 2–cycle
of F

acy
2g

. Since H2.F
acy
2g
/ D 0, there exists a 3–chain cM 2 C3.F

acy
2g
/ satisfying

@cM D c0 � 'M .c0/. Now M 2Hg;1Œk�, so that 'M acts on Nk trivially. Hence if
we write xcM for the image of cM in C3.Nk/, we obtain a 3–cycle xcM in C3.Nk/.
We define z�k.M / WD ŒxcM � 2H3.Nk/. A similar argument to one in [15] shows that z�k

is well-defined and gives a refinement of Jk , where we need to use Igusa–Orr’s result
mentioned above instead of H3.F2g/D 0.

The same statement as Theorem 7.1 holds for z�k . To show that Ker z�k DHg;1Œ2k�1�,
we can apply Yokomizo’s argument [18], where the exact sequence

H3.NkC1/!H3.Nk/!H1.F2g/˝ .�kF2g/=.�
kC1F2g/!

.�kC1F2g/=.�
kC2F2g/

and Igusa–Orr’s result are effectively used. The surjectivity of z�k follows from Theorem
2.3 and a direct sum decomposition of H3.Nk/ due to Igusa–Orr.
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