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A family of pseudo-Anosov braids with small dilatation

ERIKO HIRONAKA

EIKO KIN

This paper describes a family of pseudo-Anosov braids with small dilatation. The
smallest dilatations occurring for braids with 3,4 and 5 strands appear in this family.
A pseudo-Anosov braid with 2gC1 strands determines a hyperelliptic mapping class
with the same dilatation on a genus–g surface. Penner showed that logarithms of least
dilatations of pseudo-Anosov maps on a genus–g surface grow asymptotically with
the genus like 1=g , and gave explicit examples of mapping classes with dilatations
bounded above by log 11=g . Bauer later improved this bound to log 6=g . The
braids in this paper give rise to mapping classes with dilatations bounded above by
log.2C

p
3/=g . They show that least dilatations for hyperelliptic mapping classes

have the same asymptotic behavior as for general mapping classes on genus–g

surfaces.

37E30, 57M50

1 Introduction

In this paper, we study a family of generalizations of these examples to arbitrary
numbers of strands. Let B.D; s/ denote the braid group on D with s strands, where D

denotes a 2–dimensional closed disk. First consider the braids ˇm;n in B.D;mCnC1/

given by
ˇm;n D �1 : : : �m�

�1
mC1 : : : �

�1
mCn:

Matsuoka’s example [22] appears as ˇ1;1 , and Ko, Los and Song’s example [18] as
ˇ2;1 . For any m; n � 1, ˇm;n is pseudo-Anosov (Theorem 3.9). The dilatations of
ˇm;m coincide with those found by Brinkmann [7] (see also Section 4.2), who also
shows that the dilatations arising in this family can be made arbitrarily close to 1.

It turns out that one may find smaller dilatations by passing a strand of ˇm;n once
around the remaining strands. As a particular example, we consider the braids �m;n

defined by taking the rightmost-strand of ˇm;n and passing it counter-clockwise once
around the remaining strands. Figure 1 gives an illustration of ˇm;n and �m;n . The
braid �1;3 is conjugate to Ham and Song’s braid �1�2�3�4�1�2 . For jm� nj � 1,
we show that �m;n is periodic or reducible. Otherwise �m;n is pseudo-Anosov with
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m n m n

(a) (b)

Figure 1: Braids (a) ˇm;n and (b) �m;n

dilatation strictly less than the dilatation of ˇm;n (Theorem 3.11, Corollary 3.32). The
dilatations of �g�1;gC1 .g � 2/ satisfy the inequality

�.�g�1;gC1/
g < 2C

p
3(1)

(Proposition 3.36).

Let Ms
g denote the set of mapping classes (or isotopy classes) of homeomorphisms

on the closed orientable genus–g surface Fg set-wise preserving s points. We denote
M0

g by Mg . For any subset � �Ms
g , define �.�/ to be the least dilatation among

pseudo-Anosov elements of � , and let ı.�/ be the logarithm of �.�/. For the braid
group B.D; s/, and any subset � � B.D; s/, define �.�/ and ı.�/ in a similar way.
By a result of Penner [25] (see also McMullen [23]), ı.Mg/�

1
g

.

An element of Mg is called hyperelliptic if it commutes with an involution � on Fg

such that the quotient of Fg by � is S2 . Let Mg;hyp �Mg denote the subset of
hyperelliptic elements of Mg . Any pseudo-Anosov braid on 2gC1 strands determines
a hyperelliptic element of Mg with the same dilatation (Proposition 2.10). Thus, (1)
implies:

Theorem 1.1 For g � 2,

ı.Mg/� ı.Mg;hyp/� ı.B.D; 2gC 1// <
log.2C

p
3/

g
:

This improves the upper bounds on ı.Mg/ found by Penner
� log 11

g

�
[25] and Bauer� log 6

g

�
[1]. Theorem 1.1 shows the following.

Theorem 1.2 For g � 2,

ı.B.D; 2gC 1//� 1
g

and ı.Mg;hyp/�
1
g
:
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This paper is organized as follows. Section 2 reviews basic terminology and results
on mapping class groups. In Section 3, we determine the Thurston–Nielsen types of
ˇm;n and �m;n by finding efficient graph maps for their monodromy actions following
Bestvina and Handel [2]. We observe that the associated train tracks have “star-like”
components, and their essential forms don’t depend on m and n (Figures 20 and
21). To find bounds and inequalities among the dilatations, we apply the notion of
Salem–Boyd sequences [4; 28], and relate the similar forms of the efficient graph maps
for ˇm;n and �m;n to similar forms for characteristic polynomials of the dilatations.
In particular, we show that the least dilatation that occurs among ˇm;n and �m;n for
mC n D 2g .g � 2/ is realized by �g�1;gC1 , and find bounds for �.�g�1;gC1/

yielding the inequality (1). Section 4 discusses the problem of determining the least
dilatations of special subclasses of pseudo-Anosov maps. In Section 4.1, we briefly
describe the relation between the forcing relation on braid types and dilatations, and
show how �m;n arise as the braid types of periodic orbits of the Smale–horseshoe map.
In Section 4.2, we consider pseudo-Anosov maps arising as the monodromy of fibered
links, and relate our examples to those of Brinkmann.
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J S P S, Osaka University and host Makoto Sakuma for their hospitality and support
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2 Preliminaries

In this section, we review basic definitions and properties of braids (Section 2.1),
mapping class groups (Section 2.2), spectra (Section 2.3), and a criterion of the pseudo-
Anosov property (Section 2.4). Some results are well-known, and more complete
expositions can be found in the articles by Bestvina–Handel [2] and Fathi–Laudenbach–
Poenaru [10], and the books by Birman [3], and Casson–Bleiler [8]. We include them
here for the convenience of the reader.

2.1 Braids

Let F be a compact orientable surface with s marked points SDfp1; : : : ;psg� int.F /,
the interior of F . A braid representative ˇ on F is the images of continuous maps

fp1
; : : : ; fps

W I D Œ0; 1�! F � I;
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satisfying for i D 1; : : : ; s ,

(B1) fpi
.0/D pi � 0,

(B2) fpi
.1/ 2 S � 1,

(B3) fpi
.t/ 2 F � t for t 2 I , and

(B4) fpi
.t/¤ fpj

.t/ for t and i ¤ j .

Define the product of two braid representatives to be their concatenation. Let B.F IS/
be the set of braid representatives up to ambient isotopy fixing the boundary of F

point-wise. The above definition of product determines a well-defined group structure
on B.F IS/, and the group is called the braid group on F .

For any partition S D S1[� � �[Sr , let B.F IS1; : : : ;Sr / be the subgroup of B.F IS/
consisting of braids .fp1

; : : : ; fps
/ satisfying for all p 2 Sj (j 2 f1; : : : ; rg), fp.1/ 2

Sj .

In the rest of this section, we assume that F is either a disk D or a sphere S2 . Then
the braid group B.F IS/ has generators �1; : : : ; �s�1 , where �i is the braid shown
in Figure 2. When F D D , B.DIS/ is called the Artin braid group and has finite
presentation

h�1; : : : ; �s�1 W �i�iC1�i D �iC1�i�iC1; �i�j D �j�i if ji � j j � 2i:

Consider the natural map cW D! S2 given by identifying @D , the boundary of D to

1 i�1 i iC1 iC2 s

Figure 2: Braid generator �i

a point p1 on S2 . By abuse of notation, we will write S for c.S/. Then there is an
induced map:

B.DIS/! B.S2
IS; fp1g/(2)

ˇ 7! y̌:

For example, y̌m;n and y�m;n are shown in Figure 3 with the strand associated to p1

drawn on the right. For ˇ 2 B.DIS/, let Š2 B.S2IS/ be the image of y̌ under the

Algebraic & Geometric Topology, Volume 6 (2006)
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(a) (b)

p1 p1

Figure 3: Images of (a) ˇm;n and (b) �m;n in B.S2IS; fp1g/

forgetful map:

B.S2
IS; fp1g/! B.S2

IS/(3)
y̌ 7! Š

The following lemma can be found in the book by Birman [3].

Lemma 2.1 The map B.DIS/! B.S2IS/ given by composing the maps in (2) and
(3) has kernel normally generated by � D �1�2 : : : �

2
s�1

�s�2 : : : �1 .

For example, ˇm;n and �m;n shown in Figure 1 differ by a conjugate of � , and hence
we have the following.

Proposition 2.2 The braids ˇm;n and �m;n satisfy x̌m;n D x�m;n .

The final lemma of this section deals with notation.

Lemma 2.3 Let S1 and S2 be finite subsets of int.F / with the same cardinality, and
hW F ! F any homeomorphism taking S1 to S2 . Then conjugation by h defines an
isomorphism B.F IS1/! B.F IS2/.

In light of Lemma 2.3 if s is the cardinality of S , we will write B.F; s/ for B.F IS/.

2.2 Mapping class groups

For any closed orientable surface F and a finite subset S � F of marked points, let
M.F IS/ be the group of isotopy classes of orientation preserving homeomorphisms
of F set-wise preserving S . The Thurston–Nielsen classification states that any
homeomorphism of a surface is isotopic to one of three types, which we describe below.

Algebraic & Geometric Topology, Volume 6 (2006)
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A map ˆW F ! F set-wise preserving S is defined to be periodic if some power of ˆ
equals the identity map; and reducible if there is a ˆ–invariant closed 1–submanifold
whose complementary components in F n S have negative Euler characteristic. A
mapping class � 2 M.F IS/ is periodic (respectively, reducible) if it contains a
representative that is periodic (respectively, reducible).

Before defining the third type of mapping class, we will make some preliminary
definitions. A singular foliation F on F with respect to S is a partition of F into
a union of real intervals .�1;1/ and Œ0;1/ called leaves such that for each point
x 2F , the foliation F near x has one of the following types in a local chart around x :

(F1) x 2 F is a regular point (we will also say a 2–pronged point) of F (Figure
4(a)).

(F2) x 2F is an n–pronged singularity of F (Figure 4(b),(c)), where n� 1 if x 2 S ,
and n� 3 if x 2 F nS .

Two singular foliations FC and F� with respect to S are transverse if they have the
same set of singularities S 0 and if the leaves of FC and F� intersect transversally on
F nS 0 .

x x x

(a) nD 2 (b) nD 1 (c) nD 3

Figure 4: Local picture of a singular foliation

A path ˛ on F is a transverse arc relative to a singular foliation F with respect to S
if ˛ intersects the leaves of F transversely. Two transverse arcs ˛0 and ˛1 relative
to F are homotopic if there is a homotopy ˛W I � I ! F such that ˛.I � 0/ D ˛0 ,
˛.I � 1/ D ˛1 , and for all t 2 I , ˛.t � I/ is contained in a leaf of F . We say that
� is a transverse measure on a singular foliation F with respect to S if � defines a
non-negative Borel measure �.˛/ on each transverse arc ˛ with the following two
properties:

(M1) If ˛0 is a subarc of ˛ , then �.˛0/D �.˛/j˛0 .

(M2) If transverse arcs ˛0 and ˛1 relative to F are homotopic, then �.˛0/D �.˛1/.
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A pair .F ; �/ satisfying (M1) and (M2) is called a measured foliation. Given a measured
foliation .F ; �/ and a number � > 0, .F ; ��/ denotes the measured foliation whose
leaves are the same as those of F such that the measure of each transverse arc ˛ relative
to F is given by ��.˛/. For a homeomorphism f W F ! F set-wise preserving S ,
.F 0; �0/D f .F ; �/ is the measured foliation whose leaves are the images of leaves of
F under f , and the measure �0 on each arc ˛ transverse to F 0 is given by �.f �1.˛//.

A map ˆW F ! F set-wise preserving S is pseudo-Anosov if there is a number
� > 1 and a pair of transverse measured foliations .F˙; �˙/ such that ˆ.F˙; �˙/D
.F˙; �˙1�˙/. The number �D �.ˆ/ is called the dilatation of ˆ, and F� and FC1

are called the stable and unstable foliations or the invariant foliations associated to
ˆ. A mapping class � 2M.F IS/ is pseudo-Anosov if � is the isotopy class of a
pseudo-Anosov map ˆ. In this case, the dilatation of � is defined to be �.�/D �.ˆ/.

Theorem 2.4 (Thurston–Nielsen Classification Theorem) Any element �2M.F IS/
is either periodic, reducible or pseudo-Anosov. Furthermore, if � is pseudo-Anosov,
then the pseudo-Anosov representative of � is unique up to conjugacy.

As with braids, for any partition S D S1[ � � � [Sr , there is a subgroup

M.F IS1; : : : ;Sr /�M.F IS/

that preserves each Si set-wise. There is a natural map

M.F IS1; : : : ;Sr /!M.F IS1; : : : ;Sr�1/

called the forgetful map. For pseudo-Anosov mapping classes � , log.�.�// can be
interpreted as the minimal topological entropy among all representatives of � (see
Fathi–Laudenbach–Poenaru [10]). We thus have the following inequality on dilatations.

Lemma 2.5 Let � 2M.F IS1; : : : ;Sr /, and  2M.F IS1; : : : ;Sr�1/ the image of
� under the forgetful map. If � and  are both pseudo-Anosov, then �.�/� �. /.

Lemma 2.6 Let � 2M.F IS1; : : : ;Sr / be pseudo-Anosov. Suppose that the pseudo-
Anosov representative ˆ of � does not have a 1–pronged singularity at any point of
Sr . Let  2M.F IS1; : : : ;Sr�1/ be the image of � under the forgetful map. Then  
is pseudo-Anosov and �. /D �.�/D �.ˆ/.

Proof Let F˙ be singular foliations with respect to S1 [ � � � [ Sr , and .F˙; �˙/
a pair of transverse measured foliations associated to ˆ. Since F˙ does not have
1–pronged singularities at points of Sr , F˙ give well-defined singular foliations with
respect to S1 [ � � � [ Sr�1 . Thus, ˆ is a pseudo-Anosov representative of  , and
hence �. /D �.�/D �.ˆ/.
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As in the case of braids, changing the location of the points in S by a homeomorphism
does not change the group M.F IS/.

Lemma 2.7 Let S1 and S2 be two finite subsets of F with the same cardinality, and
hW F ! F any homeomorphism taking S1 to S2 . Then conjugation by h defines an
isomorphism M.F IS1/!M.F IS2/.

If F has genus–g , and S has cardinality s , we will also write Ms
g DM.F IS/.

The theory of mapping class groups on closed surfaces extends to mapping class groups
on surfaces with boundary. Let Fb be a compact orientable surface with b boundary
components, and S � int.Fb/ a finite set. Define M.FbIS/ to be the group of isotopy
classes of orientation preserving homeomorphisms of Fb set-wise preserving S and the
boundary components. A singular foliation F on Fb with respect to the set of marked
points S is a partition of F into a union of leaves such that each point x 2 int.F / has
a local chart satisfying one of the conditions (F1), (F2), and each boundary component
has n–prongs for some n� 1. Figure 5 illustrates representative leaves of a singular
foliation with a 1–pronged (Figure 5(a)) and 3–pronged (Figure 5(b)) singularity.
Periodic, reducible and pseudo-Anosov mapping classes are defined as for the case of
closed surfaces using this definition of singular foliations.

(a) (b)

Figure 5: Leaves of a singular foliation near a boundary component

Let

(4) cW Fb
! Fb

be the continuous map, where Fb is the closed surface obtained from Fb by contracting
b boundary components to points q1; : : : ; qb . As before, we will write S for c.S/.
Let QD fq1; : : : ; qbg. The above definitions imply the following.

Lemma 2.8 The contraction map c in (4) induces an isomorphism

c�WM.F IS/!M.FbIS;Q/;
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which preserves the Thurston–Nielsen types of mapping classes. Furthermore, if F is
a singular foliation defined on F which is n–pronged along a boundary component A

of F , then the image of F under c� has an n–pronged singularity at c�.A/.

The isomorphism c� given in Lemma 2.8 is handy in discussing mapping classes
coming from braids. Let F be either D or S2 . There is a natural homomorphism

B.F IS/!M.F IS/(5)

ˇ 7! �ˇ

defined as follows. Let D1; : : : ;Ds�1 � int.D/ be disks with Di \Dj D∅ for i ¤ j

such that Di contains two points pi and piC1 of S and no other points of S . The
action of a generator �i of B.F IS/ is the mapping class in M.F IS/ that fixes the
exterior of Di and rotates a closed line segment connecting pi and piC1 in Di by
180 degrees in the counter-clockwise direction as in Figure 6.

1 i�1 i iC1 iC2 s

Figure 6: Action of �i as a homeomorphism of F

Given a braid ˇ 2 B.DIS/, let y̌ be its image in B.S2IS; fp1g/ as in (2). Then c�
satisfies c�.�ˇ/D � y̌ .

The following useful lemma can be found in the book by Birman [3].

Lemma 2.9 If S has cardinality s , then the kernel of the map

B.DIS/!M.S2
IS; fp1g/

ˇ 7! � y̌

is the center Z.B.DIS// generated by a full twist braid �D .�1 : : : �s�1/
s .

We say that ˇ 2 B.DIS/ is periodic (respectively, reducible, pseudo-Anosov), if
� y̌ 2M.S2IS; fp1g/ is periodic (respectively, reducible, pseudo-Anosov). In the

pseudo-Anosov case, we set �.ˇ/D �. y̌/D �.� y̌/.

Let x̌ be the image of y̌ in B.S2IS/ under the forgetful map in (3). Then Lemma
2.5 implies that if y̌ and x̌ are pseudo-Anosov, we have �.ˇ/D �. y̌/� �. x̌/, and by
Lemma 2.6, the equality holds if p1 is not a 1–pronged singularity for the invariant
foliations associated to the pseudo-Anosov representative of � y̌ .
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2.3 The braid spectrum

For any subset � �Ms
g , let †.�/ be the set of logarithms of dilatations coming from

pseudo-Anosov elements of � . For any subset � � B.D; s/, define †.�/ in a similar
way. Let �B.D; s/�MsC1

0
be the image of B.D; s/ under the map in Lemma 2.9, and�BpA.D; s/ the set of pseudo-Anosov elements of �B.D; s/.

Proposition 2.10 For g � 1,

†.B.D; 2gC 1//D†.�B.D; 2gC 1//�†.Mg;hyp/�†.Mg/:

Proof By using Lemma 2.9, it is easy to see that †.B.D; 2gC1//D†.�B.D; 2gC1//.

Let S � int.D/ be a subset of 2gC1 points, and �S D S[fp1g. Let F be the double
cover of S2 branched along �S . Then F has genus–g . We will define a set map�BpA.D; 2gC 1/!Mg

whose image consists of hyperelliptic elements which preserves dilatation. Let � 2�BpA.D; 2g C 1/. Then � has a pseudo-Anosov representative homeomorphism ˆ

that is unique up to conjugacy. Let ˆ0 be its lift to F by the covering F ! S2 with
invariant foliations given by the lifts of the invariant foliations associated to ˆ. Then
ˆ0 is pseudo-Anosov with the same dilatation as ˆ. Let �0 be its isotopy class. Then
�0 defines a hyperelliptic, pseudo-Anosov mapping class in M.F I �S 0/ with the same
dilatation as � , where �S 0 is the preimage of �S in F .

Now consider the forgetful map M.F I �S 0/!M.F I∅/DMg . The invariant foliations
associated to ˆ0 have prong orders at �S 0 that are divisible by the degree of the covering
F ! S2 . Thus, the singularities of ˆ0 at �S 0 are all even–pronged. It follows that by
Lemma 2.6, the image of �0 under the forgetful map is pseudo-Anosov and has the
same dilatations as �0 .

Proposition 2.10 immediately implies the following.

Corollary 2.11 For g � 1, ı.Mg/� ı.Mg;hyp/� ı.B.D; 2gC 1//.

2.4 Criterion for the pseudo-Anosov property

What follows is a criterion for determining when ˇ 2 B.DIS/ is pseudo-Anosov (see
Bestvina–Handel [2]).

Let G be a finite graph embedded on an orientable surface F , possibly with self-loops,
but no vertices of valence 1 or 2. Let Edir.G/ be the set of oriented edges of G , E tot.G/
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the set of unoriented edges, and V.G/ the set of vertices. For e 2 Edir.G/, let i.e/ and
t.e/ be the initial vertex and the terminal vertex respectively, and xe the same edge with
opposite orientation. An edge path � on G is an oriented path � D e1 : : : e` , where
e1; : : : ; e` 2 Edir.G/ satisfies t.ei/D i.eiC1/ for i D 1; : : : ; `� 1. One can associate
a fibered surface F.G/� F with a projection � W F.G/!G (Figure 7). The fibered
surface F.G/ is decomposed into arcs and into polygons modelled on k –junctions for
k � 1. The arcs and the k –junctions are called decomposition elements. Under � , the
preimage of the vertices of valence k of G is the k –junctions, and the preimage of
the edges of G is the strips fibered by arcs, which are complementary components of
the set of all junctions of F.G/.

3–junction

arc

� �

1–junction
strip

Figure 7: Fibered surface

Let G and H be finite graphs embedded on F , and f W F ! F a homeomorphism.
Assume that f maps each decomposition element of F.G/ into a decomposition
element of F.H /, and each junction of F.G/ into a junction of F.H /. Then f
induces a graph map gW G!H which sends vertices of G to vertices of H , and each
edge of G to an edge path of H . Under this assumption with the case G DH , we say
that F.G/ carries f .

Let V tot.G/ be the vector space of formal sums
Pn

iD1 aiei ; where ai 2 R and ei 2

E tot.G/. Any edge path on G determines an element of V tot.G/ by treating each
oriented edge as an unoriented edge with coefficient 1, regardless of orientation. For a
graph map gW G!H , define the transition matrix for g to be the transformation

T tot
g W V

tot.G/! V tot.H /

taking each e 2 E tot.G/ to g.e/ considered as an element of V tot.H /.

We now restrict to the case F DD . Let S D fp1; : : : ;psg � int.D/ be a set of marked
points, and Pi a small circle centered at pi whose interior disk does not contain any
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other points of S . We set P D
Ss

iD1 Pi . Choose a finite graph G embedded on
D that is homotopy equivalent to D n S such that P is a subgraph of G . Given
ˇ 2 B.DIS/, suppose that a fibered surface F.G/ carries some homeomorphim f of
�ˇ 2M.DIS/. Then the graph map gW G ! G , called the induced graph map for
�ˇ , preserves P set-wise. Let preP be the set of edges e 2 E tot.G/ such that gk.e/ is
contained in P for some k � 1. By the definition of preP , the transition matrix T tot

g

has the following form:

T tot
g D

0@ P A B
0 Z C
0 0 T

1A ;
where P and Z are the transition matrices associated to P and preP respectively, and
T is the transition matrix associated to the rest of edges E.G/ called real edges. Let
V .G/ be the subspace of V tot.G/ spanned by E.G/. The matrix T is the restriction
of T tot

g to V .G/ and is called the transition matrix with respect to the real edges. The
spectral radius of T is denoted by �.T /.

Given a graph map gW G!G , define the derivative DgW Edir.G/! Edir.G/ as follows:
For e 2 Edir.G/, write g.e/D e1e2 : : : e` , where ei 2 Edir.G/. The image of e under
Dg is defined by the initial edge e1 .

A graph map gW G ! G is efficient if for any e 2 Edir.G/ and any k � 0, gk.e/ D

e1e2 : : : ej satisfies Dg.xei/¤Dg.eiC1/ for all i D 1; : : : ; j � 1. We also say in this
case that gk has no back track for any k � 0.

A nonnegative square matrix M is irreducible if for every set of indices i; j , there is
an integer ni;j > 0 such that the .i; j /th entry of M ni;j is strictly positive.

Theorem 2.12 (Bestvina–Handel [2]) Let ˇ 2 B.DIS/, and gW G!G the induced
graph map for �ˇ . Suppose that

(BH1) g is efficient, and
(BH2) the transition matrix T with respect to the real edges is irreducible with
�.T / > 1.

Then ˇ is pseudo-Anosov with dilatation equal to �.T /.

It is not hard to check that the criterion of Theorem 2.12 behaves well under conjugation
of maps. For the case of braids, this yields the following.

Lemma 2.13 Let ˛1 2 B.DIS/. Suppose that a fibered surface F.G/ carries a home-
omorphism f 2 �˛1

, and let g1W G!G be the induced graph map for �˛1
. We now

consider a conjugate braid ˛2 with ˛2 D 
˛1

�1 , and we take any homeomorphism
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h 2 �
 . Then a fibered surface F.h.G// carries a homeomorphism hf h�1 2 �˛2
, and

hence hf h�1 induces a graph map g2W h.G/! h.G/, which is the induced graph map
for �˛2

. If g1 satisfies (BH1) and (BH2), then g2 also satisfies (BH1) and (BH2).

Let � 2M.DIS/ be pseudo-Anosov, and gW G ! G the induced graph map for
� satisfying satisfying (BH1) and (BH2). We construct an associated train track
obtained by graph smoothing given as follows: Let Ev � Edir.G/ be the set of oriented
edges of G emanating from a vertex v . For e1; e2 2 Ev , e1 and e2 are equivalent if
Dk

g .e1/D Dk
g .e2/ for some k � 1. A gate is an equivalence class in Ev . The train

track �g associated to g is constructed using the following steps:

Step T1 Deform each pair of equivalent edges ei ; ej 2 Ev in a small neighborhood of
v so that ei and ej are tangent at v .

Step T2 Insert a small disk Nv at each vertex v . For each gate 
 , assign a point
p.
 / on the boundary of Nv .

Step T3 If, for some edge e of G and some k � 1, gk.e/ contains consecutive edges
xej e` .ej ; e` 2 Ev/ such that 
j D Œej � and 
` D Œe`� with 
j ¤ 
` , then join p.
j / and
p.
`/ by a smooth arc in Nv satisfying the following: The arc intersects the boundary
of Nv transversally at p.
j / and p.
`/, and no two such arcs intersect in the interior
of Nv .

For example, let v be the initial vertex of four edges e1; e2; e3; e4 . Assume that there
are three gates 
1 D Œe1� D Œe2�, 
2 D Œe3� and 
3 D Œe4�, and that there are edges
f1 and f2 of G such that gr .f1/D : : : xe2e4 : : : and gs.f2/D : : : xe3e4 : : : for some
r; s � 1. Then Figure 8(a) shows Step T1 applied to e1 and e2 , Figure 8(b) shows
Step T2 applied to 
1; 
2 and 
3 , and Figure 8(c) shows Step T3, which yields arcs
connecting p.
1/ to p.
3/, and p.
2/ to p.
3/.

e1 e2

e3e4

v

N

p.
1/

p.
2/p.
3/

(a) (b) (c)

Figure 8: Example of a graph smoothing

The arcs constructed in Step T3 are called infinitesimal edges, and the points p.
 /

which join two infinitesimal edges are called cusps of the train track.
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If � 2M.DIS/ is pseudo-Anosov, and gW G ! G is the induced graph map for
� satisfying (BH1) and (BH2), then �g constructed above determines the invariant
foliations F˙ associated to the pseudo-Anosov representative ˆ of � . In particular,
the number of prongs at the singularities of F˙ can be found in terms of �g . Each
connected component A of D n �g is either homeomorphic to an open disk, or is a
half-open annulus, one of whose boundaries is the boundary @D of D . In the former
case, the boundary of the closure of the connected component is a finite union of edges
and vertices of �g . If two of these edges meet at a cusp, then that cusp is said to belong
to A. In the latter case, the closure of A has two boundary components. The boundary
component which is not @D is a finite union of edges and vertices of �g , and if two of
these edges meet at a cusp, we call the cusp an exterior cusp of �g .

Lemma 2.14 Let A be a connected component of D n �g . If A is an open disk, then
there is one k –pronged singularity of F˙ in A, where k is the number of cusps of �g
belonging to A. If A is a half-open annulus, then @D is k –pronged, where k is the
number of exterior cusps of �g .

3 Main examples

This section contains properties of ˇm;n and �m;n . In Section 3.1, we show that the
Thurston–Nielsen types of ˇm;n and �m;n do not depend on the order of m and n.
In Section 3.2, we find the Thurston–Nielsen types of ˇm;n and �m;n , and in Section
3.4, we compute their dilatations in the pseudo-Anosov cases. Section 3.3 gives the
train tracks for �ˇm;n

and ��m;n
In Section 3.5, we apply properties of Salem–Boyd

sequences to find the least dilatation among �.�m;n/ and �.ˇm;n/ for mC n D 2g

fixing g � 2. We also give bounds on these dilatations.

3.1 Symmetries of ˇm;n and �m;n

Consider the braid ˇCm;n 2 B.DIS; fpg; fqg/ drawn in Figure 9(a).

Lemma 3.1 The braid ˇCn;m is conjugate to the inverse of ˇCm;n .

Proof The inverse of ˇCm;n is drawn in Figure 9(b). Assume without loss of generality
that the points of S[fpg[fqg are evenly spaced along a line `. Let �2B.DIS[fp; qg/
be the braid obtained by a half-twist of ` around the barycenter of S[fpg[fqg. Then
conjugating the inverse of ˇCm;n by � in B.DIS[fp; qg/ yields ˇCn;m shown in Figure
9(c).
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p m n q p m n q p n m q

(a) (b) (c)

Figure 9: Symmetry of ˇCm;n

Lemma 3.2 The braid ˇm;n is the image of ˇCm;n under the forgetful map

B.DIS; fpg; fqg/! B.DIS/;

and hence ˇn;m is conjugate to ˇ�1
m;n .

Proof Compare Figure 3(a) with Figure 9(a) to get the first part of the claim. Since
homomorphisms preserve inverses and conjugates, the rest follows from Lemma 3.1.

Lemma 3.2 together with the homomorphism in (5) shows the following.

Lemma 3.3 The mapping class �ˇn;m
is conjugate to ��1

ˇm;n
.

Proposition 3.4 The Thurston–Nielsen type of ˇn;m is the same as that of ˇm;n .

Proof The Thurston–Nielsen type of a mapping class is preserved under inverses and
conjugates. Thus, the claim follows from Lemma 2.8 and Lemma 3.3.

We now turn to �m;n . Let y̌Cm;n and � be the spherical braids drawn in Figures 10(a)
and 11 respectively.

Lemma 3.5 The spherical braid y�m;n is the image of � y̌Cm;n�
�1 under the forgetful

map B.S2IS; fpg; fqg; fp1g/ ! B.S2IS; fp1g/, and hence y�n;m is conjugate to
y��1

m;n .

Proof Compare Figure 10(a) and Figure 10(b) to get the first part of the claim. The
rest follows by using the same argument in the proof of Lemma 3.2.

Remark 3.6 In the statement of Lemma 3.5, � could be replaced by any braid which
is the identity on p and S , and interchanges q and p1 .
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p m n q p1
m n p1

(a) (b)

Figure 10: Spherical braids (a) y̌Cm;n and (b) y�m;n

p 1 s q p1

Figure 11: Spherical braid � : Switching the roles of p1 and q

Lemma 3.7 The mapping class ��n;m
is conjugate to ��1

�m;n
.

Proof By Lemma 3.5, �y�n;m
is conjugate to ��1

y�m;n
. Since the contraction map c in

(4) induces the isomorphism c� on mapping class groups, the claim follows.

Lemma 3.7 immediately shows the following.

Proposition 3.8 The Thurston–Nielsen type of �m;n is the same as that for �n;m .

3.2 Graph maps

Theorem 3.9 The braid ˇm;n is pseudo-Anosov for all m; n � 1, and �.ˇm;n/ D

�.ˇn;m/.

Let Gm;n be the graph with vertices 1; : : : ;mC nC 1;p and q in Figure 12(left).
Consider the graph map gDgm;nW Gm;n!Gm;n given in Figure 12, where the ordering
of the loop edges of Gm;n corresponds to the left-to-right ordering of ˇm;n . We denote
the oriented edge with the initial vertex a and the terminal vertex b by e.a; b/.

Proposition 3.10 The graph map gm;nW Gm;n!Gm;n is the induced graph map for
�ˇm;n

satisfying (BH1) and (BH2).
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1

2

m�1
m

p

mC1 q

mC2
mC3

mCn

mCn�1 2

3

m
mC1

mC2

mC3
mC4

mCnC1

1

Figure 12: Graph map gm;n for �ˇm;n

Proof It is easy to see that the fibered surface F.Gm;n/ carries a homeomorphism of
�ˇm;n

, and hence gm;nW Gm;n!Gm;n is the induced graph map for �ˇm;n
.

As shown in Figure 12, any back track must occur at e.p;m/, that is, if gk has back
tracks, and k is chosen minimally, then there is an edge e 2 Edir.Gm;n/ such that

gk�1.e/D : : : xe1 � e2 : : : with Dg.e1/DDg.e2/D e.m;p/:(6)

This implies that xe1 D e.p;mC 1/ and e2 D e.mC 1; q/ (or xe1 D e.q;mC 1/ and
e2 D e.mC 1;p/). As can be seen by Figure 12, one can verify that there can be no
edge of the form given in (6). This proves (BH1).

To prove (BH2), it suffices to note that gmCn.e.q;mC 1// crosses all non-loop edges
of Gm;n in either direction, and for any non-loop edge e of Gm;n , gk.e/ crosses
e.q;mC 1/ in either direction for some k � 1.

Proof of Theorem 3.9 By Proposition 3.10, ˇm;n is pseudo-Anosov for all m; n� 1.
By Lemma 3.3, we have �.ˇm;n/D �.ˇn;m/.

We now turn to �m;n .

Theorem 3.11 The braid �m;n is pseudo-Anosov for all m; n� 1 satisfying jm�nj �

2. In these cases �.�m;n/D �.�n;m/. For any m � 1, �m;m is periodic, and �m;mC1

and �mC1;m are reducible.

In light of Proposition 3.8, we will consider only �m;n when n � m � 1. To prove
Theorem 3.11, we first redraw �m;n in a conjugate form using induction. Let �a;b be
the spherical braid drawn in Figure 13. Roughly speaking, conjugation by �a;b on
�m;n is the same as passing a strand counterclockwise around the other strands, and
then compensating below after a shift of indices.
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a

b

s�b�1p1

Figure 13: Spherical braid �a;b 2 B.S2IS; fp1g/

m�1 n�1 p1 m�1 n�1 p1

D

Figure 14: Conjugating y�m;n : Initial step

Let y� .0/m;n D y�m;n be the image of �m;n in B.S2IS; fp1g/ as drawn in Figure 10(b).
Let

y� .1/m;n D �1;mC1y�m;n�
�1
1;mC1

shown in Figure 14. The inductive step is illustrated in Figure 15. The k th braid
y�
.k/
m;n is constructed from the .k�1/st braid by conjugating by �2kC1;mCkC1 for

k D 1; : : : ;m� 1. The resulting braid y� .m�1/
m;n takes one of three forms: Figure 16(a)

shows the general case when n�mC2, Figure 16(b) shows the case when nDmC1,
and Figure 16(c) shows the case when nDm.

Proposition 3.12 When nDmC 1, �m;n is a reducible braid.

Proof By applying one more conjugation by �2mC1;2mC1 , we obtain the left-hand
braid in Figure 17(a), which equals the right-hand braid. One sees that there is a
collection of disjoint disks enclosing pairs of marked points in S2 whose boundaries
are invariant by �y�m;n

. The claim now follows from Lemma 2.8.

Proposition 3.13 When nDm, �m;n is a periodic braid.
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2k�1 m�k n�k�1 p1

2k�1 m�k�1 n�k�1
p1

(a) (b)

Figure 15: Induction step

2m�1 n�m�1 p1
2m�1 p1 2m�1 p1

(a) (b) (c)

Figure 16: After .m� 1/ inductive steps: (a) n�mC 2 (b) nDmC 1 (c) nDm

2m p1 p1
2m�1

p1 2m�1
p1

D D

(a) (b)

Figure 17: (a) reducible and (b) periodic cases

Proof Figure 17(b) shows an equivalence of spherical braids. It is not hard to see
that the right-hand braid is periodic in B.S2IS; fp1g/. The rest follows from Lemma
2.8.
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The general case when n�mC2 is shown in Figure 18. The transition from Figure 18(a)
to 18(b) is given by doing successive conjugations by �2mCk;2mCk for kD1; : : : ; n�m.
The braid in 18(b) equals the braid in 18(c).

2m�1 n�m�1 p1
2m�1 n�m�1 p1 2m�1 n�m�1

p1

(a) (b) (c)

Figure 18: General case

Let Hm;n be the graph with vertices 1; : : : ;mC nC 1 and p in Figure 19(left), and
we consider the graph map hm;nW Hm;n ! Hm;n drawn in Figure 19. The unusual
numbering of vertices comes from the left-to-right ordering of the strands (excluding
p1 ) of y�m;n shown in Figure 3(b). This ordering proves useful for comparing the
transition matrices of �ˇm;n

and ��m;n
in Section 3.5.

Let � 0m;n 2 B.DIS/ be the braid given by the preimage of the braid in Figure 18(c)
under the contraction map of Lemma 2.8. (Hence �m;n is obtained from the braid in
Figure 18(c) by removing the strand p1 .)

1

2

mC2

mC3 m�1

2m
m

2mC1

mC1

2mC2 mCn

mCnC1

p

2

3

mC3

mC4 m

2mC1 mC1

2mC2

2mC3

p

mC2

mCnC1

1

Figure 19: Graph map hm;n for ��m;n

Proposition 3.14 For n�mC 2, the graph map hm;nW Hm;n!Hm;n is the induced
graph map for �� 0m;n

satisfying (BH1) and (BH2).
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Proof One can see that the fibered surface F.Hm;n/ carries a homeomorphism of
�� 0m;n

, and hence hm;nW Hm;n!Hm;n is the induced graph map for �� 0m;n
. The proof

that hm;n satisfies (BH1) and (BH2) is similar to that of Proposition 3.10.

Proof of Theorem 3.11 By Proposition 3.8, it suffices to classify the braids �m;n

with n � m � 1. By Proposition 3.12, �m;n is reducible if n D m C 1, and by
Proposition 3.13 �m;n is periodic if nDm. In all other cases, Proposition 3.14 shows
that �m;n is pseudo-Anosov since �m;n is conjugate to � 0m;n , and Lemma 3.7 implies
that �.�m;n/D �.�n;m/.

3.3 Train tracks

By using the graph smoothing in Section 2.4, the train track �gm;n
for �ˇm;n

and the
train track �hm;n

for �� 0m;n
are given in Figures 20 and 21. Applying Lemma 2.14 to

�gm;n
and �hm;n

, we immediately see the following.

.mC1/–gon

.nC1/–gon

Figure 20: Train track �gm;n

.mC1/–gon .n�m�2/

Figure 21: Train track �hm;n
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Lemma 3.15 The invariant foliations associated to the pseudo-Anosov representative
ˆ y̌

m;n
of � y̌

m;n
2M.S2IS; fp1g/ have a 1–pronged singularity at each point of

S [ fp1g, an .mC 1/–pronged singularity at a point p 2 S2 n .S [ fp1g/, and an
.nC 1/–pronged singularly at a point q 2 S2 n .S [fp1g/.

Lemma 3.16 For n�mC2, the invariant foliations associated to the pseudo-Anosov
representative ˆy�m;n

of �y�m;n
2M.S2IS; fp1g/ have a 1–pronged singularity at

each point of S , an n–pronged singularity at p1 , and an .mC 1/–pronged singularity
at a point p 2 S2 n .S [fp1g/.

By Lemmas 2.6 and 3.16, we have the following.

Corollary 3.17 For n�mC 2, x�m;n is pseudo-Anosov, and �.�m;n/D �.x�m;n/.

A pseudo-Anosov map ˆ is said to be orientable if the stable and unstable foliations
associated to ˆ are orientable.

Proposition 3.18 Let mC n D 2g . If both m and n are odd, there is a pseudo-
Anosov element of Mg whose pseudo-Anosov representative is orientable with the
same dilatation as ˇm;n .

Proof Let ˆ0y̌
m;n

be the lift of ˆ y̌
m;n

to the double branched covering Fg of S2

branched along S [fp1g, and denote by �S 0 the preimage of �S D S [fp1g in Fg .
By the proof of Proposition 2.10, ˆ0y̌

m;n
is a pseudo-Anosov map with �

�
ˆ0y̌

m;n

�
D

�
�
ˆ y̌

m;n

�
D �

�
ˇm;n

�
. By Lemma 3.15, ˆ0y̌

m;n
has an invariant foliation F˙ with

two .mC 1/–pronged singularities and two .nC 1/–pronged singularities at points of
Fg n

�S 0 , and regular points of �S 0 . Hence all singularities of F˙ are even–pronged.

To show that F˙ is orientable, it suffices to note that the natural map from the
fundamental group of Fg to Z=2Z induced by F˙ is trivial. Consider the invariant
foliation on S2 associated to ˆ y̌

m;n
with 1–pronged singularity at each point of �S and

even–pronged singularity elsewhere. The punctured sphere S2 n �S has fundamental
group generated by loops emanating from a basepoint, following a path 
p to a point
near a marked point p 2 �S , going around a small circle centered at p , then returning in
the reverse direction along 
p back to the basepoint. Consider the double unbranched
covering of S2 n �S . Then by construction, the natural map from the fundamental group
of the covering surface to Z=2Z defined by the lifted foliation is trivial. The same is
true for the fundamental group of the branched covering surface Fg , and hence the
natural map from the fundamental group of Fg to Z=2Z defined by the lifted foliation
F˙ is trivial.
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Proposition 3.19 Let mC n D 2g . For each m; n � 1 with jm� nj � 2, there is
a pseudo-Anosov element of Mg whose pseudo-Anosov representative is orientable
with the same dilatation as �m;n .

Proof By Lemma 3.7, we can assume n�mC2. Lemma 3.16 says that the invariant
foliations associated to ˆy�m;n

have an n–pronged singularity and an .mC1/–pronged
singularity. Since mC nD 2g , .mC 1/ and n have the opposite parity.

Let Fg be the branched covering of S2 branched along S and either an .mC1/–
pronged singularity if .mC1/ is odd, or p1 if n is odd. Let ˆ0

y�m;n
be the lift of

ˆy�m;n
to Fg . Then ˆ0

y�m;n
is pseudo-Anosov with dilatation equal that of ˆy�m;n

.
Furthermore, by our choice of branch points, the invariant foliations have only even
order prongs. One shows that they are orientable by using the same arguments as in
the proof of Proposition 3.18.

We conclude this section by relating gm;n and hm;n in a way that is compatible with
the conjugations used in Section 3.1.

1

2

m�1
m

p

mC1

mC2 mC3

mCn

mCnC1

q

1

2

3

m
mC1

mC2

mC3

mCnC1q

Figure 22: Graph map g0m;n for �m;n

Since q is a fixed point for gm;n (see Figure 12), ˆ y̌
m;n

determines a mapping class
�m;nD

�
ˆ y̌

m;n

�
in M.S2IS; fqg; fp1g/. Let g0m;nW G

0
m;n!G0m;n be the graph map

obtained from gm;n after puncturing D at q as in Figure 22. Then g0m;nW G
0
m;n!G0m;n

is the induced graph (satisfying (BH1) and (BH2)) for the mapping class which is
the preimage of �m;n under the map from M.DIS; fqg/ to M.S2IS; fqg; fp1g/.
Identify g0m;n with the graph map on S2 obtained by pushed forward by the contraction
map in Lemma 2.8.

Exchanging the roles of q and p1 (i.e., bringing p1 into the visual plane) yields the
graph map shown in Figure 23, which is equivalent to g0m;n . Now remove p1 , and
consider the graph map

fm;nW G
0
m;n!Hm;n(7)
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1

mC2

2

mC3
m�1

2m
m

p

mC1

2mC1

2mC2 mCn

mCnC1

1

1

2

3

mC3

mC4
m

2mC1 mC1

p

2mC2

2mC3

mCn

mCnC1

1

Figure 23: Exchanging the roles of q and p1 for g0m;n : 1 in the figure
indicates p1

obtained by a natural identification of edges of G0m;n to edges of the graph in Figure
22(left) removing p1 . Figure 24 shows the natural projection map applied to the
image of the edges of G0m;n under fm;n . The map hm;nW Hm;n!Hm;n in Figure 19
is the one induced by pushing forward g0m;n by the map fm;n .

1

2

mC2

mC3
m�1

2m
m

2mC1

2mC2 mCn

mC1

mCnC1
p

1

1

2

mC2

mC3 m�1

2m
m

2mC1

2mC2 mCn

mC1 mCnC1

p

Figure 24: Identifying edges of G0m;n with edges of Hm;n

3.4 Characteristic equations for dilatation

Consider the graph map rmW �m! �m , shown in Figure 25. As seen in Figures 12
and 19, the graph maps for �ˇm;n

and ��m;n
“contain” rm as the action on a subgraph.
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1

m�1
m

p mC1 2

m

p

mC1

1

Figure 25: Graph map rmW �m! �m

The transition matrix for rm has the following form with respect to the basis of edges
e.p; 1/; : : : ; e.p;mC 1/:

Rm D

266666664

0 1 0 : : : 0 0

0 0 1 : : : 0 0
:::

0 0 0 : : : 1 0

0 0 0 : : : 0 2

1 0 0 : : : 0 1

377777775
:

The characteristic polynomial for Rm is Rm.t/D tm.t �1/�2. As we will see in the
proof of Theorem 3.20, the appearance of Rm within the transition matrices of �ˇm;n

and ��m;n
gives rise to a similar form for their characteristic equations.

Given a polynomial f .t/ of degree d , the reciprocal of f .t/ is f�.t/D tdf .1=t/.

Theorem 3.20 (1) For m; n� 1, �.ˇm;n/ is the largest root of

Tm;n.t/D tnC1Rm.t/C .Rm/�.t/:

(2) For m; n� 1 with jm� nj � 2, �.�m;n/ is the largest root of

Sm;n.t/D tnC1Rm.t/� .Rm/�.t/:

Proof We note that the spectral radius of the transition matrix for gm;n is equal to
that for g0m;n by the construction of g0m;n (Section 3.3). Thus, to find characteristic
polynomials for �.ˇm;n/ and �.�m;n/, it is enough to compute the transition matrices
for g0m;n and hm;n respectively.

Consider the basis for V tot.G0m;n/:

vk D e.p; k/; k D 1; : : : ;m;

vmC1 D e.p;mC 1/C e.mC 1;mC nC 1/;

vmC1Ck D e.mC k;mC kC 1/; k D 1; : : : ; n; and

vmCnC2 D e.p;mC 1/:
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The corresponding transition matrix T 0m;n for g0m;n is given by:

T 0m;n D

266666666666666666664

0 1 0 : : : 0 0 0 0 : : : 0

0 0 1 : : : 0 0 0 0 : : : 0

: : : : : :

0 0 0 : : : 1 0 0 0 : : : 0

0 0 0 : : : 0 2 1 0 : : : .1/b
1 0 0 : : : 0 1 2 0 : : : 0

0 0 : : : 0 0 0 1 0 : : : 0

0 0 : : : 0 0 0 0 1 : : : 0

: : : : : :

0 0 : : : 0 0 0 0 : : : 1 0

0 0 : : : 0 .1/ab 0 0 : : : 0 0

0 0 : : : 0 0 .�1/b 0 : : : 0 .0/a

377777777777777777775
We will show that the characteristic polynomial for T 0m;n is given by

Tm;n.t/D tnC1Rm.t/C .Rm/�.t/:

The upper left block matrix of T 0m;n corresponding to the vectors v1; : : : ; vmC1 is
identical to Rm . Multiplying the characteristic polynomials of the upper left and lower
right diagonal blocks gives tnC1Rm . The rest of the characteristic polynomial has two
nonzero summands. One corresponds to the matrix entries marked a, and is given by

t.�1/
nC1

ˇ̌̌̌
ˇ̌̌̌ �1 0 � � � 0 0

t �1 � � � 0 0

� � �

0 0 � � � t �1

ˇ̌̌̌
ˇ̌̌̌

.n�1/�.n�1/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

t �1 � � � 0 0

0 t � � � 0 0

� � �

0 0 � � � t �1

�1 0 � � � 0 �2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

.mC1/�.mC1/

which yields �t.2tm C 1/. The other summand corresponds to the matrix entries
marked b and is given by

.�1/
nC1

ˇ̌̌̌
ˇ̌̌̌ �1 0 � � � 0 0

t �1 � � � 0 0

� � �

0 0 � � � t �1

ˇ̌̌̌
ˇ̌̌̌

.n�2/�.n�2/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

t �1 0 � � � 0 0

0 t �1 � � � 0 0

� � �

0 0 0 � � � t �1

�1 0 0 � � � 0 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

m�m

which yields 1. This completes the proof of (1).

Let Sm;n be the transition matrix for hm;nW Hm;n!Hm;n . We will pull back Sm;n

to an invertible linear transformation on V tot.G0m;n/ using fm;n given in (7). Let
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h0m;n.vi/ be the image of g0m;n.vi/ under fm;n . Then the transition matrix S 0m;n for
h0m;nW G

0
m;n!Hm;n is the same as T 0m;n except at the vector vmCnC1 . As can be seen

in Figure 23, we have

S 0m;n.vmC1/D T 0m;n.vmC1/� 2vmCnC1

Thus, S 0m;n differs from T 0m;n only by changing the entry labeled by both a and b

from 1 to �1.

Recall that the sign of the entry marked both a and b in T 0m;n determines the sign of
in front of .Rm/� . Since this sign is the only difference between S 0m;n and T 0m;n , the
characteristic polynomial for S 0m;n is given by

Sm;n.t/D tnC1Rm.t/� .Rm/�.t/:

To finish the proof of (2), we have left to check that �.�m;n/ is the largest root of Sm;n .
Thus (2) follows if we can show that the extra eigenvalue of S 0m;n has absolute value 1.
From Figure 24, we see that the kernel of the linear map induced by fm;n is spanned by

w D 2.v1C � � �C vm/C vmC1� .vmC2C � � �C vmCnC1/C vmCnC2:

Under h0m;n , we have

2.v1C � � � vm/ 7! 2.vmC1C v1C � � �C vm�1/;

vmC1 7! 2vmC vmC1� vmCnC1;

vmC2C � � �C vmCnC1 7! vmC 2vmC1C vmC2C � � �C vmCn� vmCnC2;

vmCnC2 7! vm;

and hence, h0m;n.w/D w . Thus, the characteristic polynomial for S 0m;n differs from
that for Sm;n by a factor of .t � 1/.

Remark 3.21 Minakawa independently discovered the pseudo-Anosov maps on Fg

constructed in the proof of Proposition 3.19 for the case when .m; n/D .g� 1;gC 1/

using a beautiful new method for constructing orientable pseudo-Anosov maps on
Fg (see Minakawa [24]). He also directly computes their dilatation using different
techniques from ours.

3.5 Dilatations and Salem–Boyd sequences

Recall that given a polynomial f .t/ of degree d , the reciprocal of f .t/ is f�.t/D
tdf .1=t/. The polynomial f satisfying f Df� (respectively, f D�f� ) is a reciprocal
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polynomial (respectively, anti-reciprocal polynomial). For a monic integer polynomial
P .t/ of degree d , the sequence

Q˙n .t/D tnP .t/˙P�.t/

is called the Salem–Boyd sequence associated to P .

Theorem 3.22 Let Qn be a Salem–Boyd sequence associated to P . Then Qn is a
reciprocal or an anti-reciprocal polynomial, and the set of roots of Qn outside the unit
circle converge to those of P as n goes to infinity.

Theorem 3.22 is a consequence of Rouché’s Theorem applied to the sum P.t/

td ˙
P�.t/

tnCd

considered as a holomorphic function on the Riemann sphere minus the unit disk.

For a monic integer polynomial f .t/, let N.f / be the number of roots of f outside
the unit circle, �.f / the maximum norm of roots of f , and M.f / the product of the
norms of roots outside the unit circle, which is called the Mahler measure of f . By
Theorem 3.22, we have the following.

Corollary 3.23 Let Qn be a Salem–Boyd sequence associated to P . Then

lim
n!1

M.Qn/DM.P / and lim
n!1

�.Qn/D �.P /:

Any algebraic integer on the unit circle has a (anti-)reciprocal minimal polynomial.
Suppose that P .t/D P0.t/R.t/, where R is a (anti-)reciprocal and P0 has no roots
on the unit circle. Then the Salem–Boyd sequence associated to P satisfies

Qn.t/DR.t/.tnP0.t/˙ .P0/�.t//:

We have thus shown the following.

Lemma 3.24 All roots of P on the unit circle are also roots of Qn for all n.

The following theorem can be proved by first restricting to the case when P has no
roots on the unit circle, and then by defining a natural deformation of the roots of P .t/

to those of Qn.t/, which don’t cross the unit circle (see Boyd [4]).

Theorem 3.25 Let Qn be a Salem–Boyd sequence associated to P . Then N.Qn/�

N.P / for all n.

We now apply the above results to the Salem–Boyd sequences Sm;n and Tm;n associated
to Rm of Theorem 3.20. To do this, we first study Rm .
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Lemma 3.26 For all m� 1, M.Rm/D 2.

Proof For jt j< 1, we have jtm.t�1/j< 2, and hence Rm has no roots strictly within
the unit circle. Therefore, the Mahler measure of Rm must equal the absolute value of
the constant coefficient, namely 2.

Applying Corollary 3.23, we have the following.

Corollary 3.27 Fixing m � 1 and letting n increase, the Mahler measures of Tm;n

and Sm;n converge to 2.

Lemma 3.28 The polynomial Rm has one real root outside the unit circle. This root
is simple and greater than 1.

Proof Taking the derivative R0m.t/ D .m C 1/tm � mtm�1 , we see that Rm is
increasing for t > m

mC1
, and hence also for t � 1. Since Rm.1/ D �2 < 0 and

Rm.2/ > 0, it follows that Rm has a simple root �m with 1< �m < 2. Similarly, we
can show that for t < 0, Rm has no roots for m even, and one root if m is odd. In the
odd case, Rm.�1/D 0, so Rm has no real roots strictly less than �1.

Lemma 3.29 The sequence �.Rm/ converges monotonically to 1 from above.

Proof Since M.Rm/D 2, we know that �m D �.Rm/ > 1. Take any � > 0. Let D�

be the disk of radius 1C � around the origin in the complex plane. Let g.t/D t�1
t

and hm.t/D
�2

tmC1 . Then for large enough m, we have

jg.t/j D

ˇ̌̌̌
t � 1

t

ˇ̌̌̌
>

ˇ̌̌̌
2

tmC1

ˇ̌̌̌
D jhm.t/j

for all t on the boundary of D� , and g.t/ and hm.t/ are holomorphic on the comple-
ment of D� in the Riemann sphere. By Rouché’s theorem, g.t/, g.t/C hm.t/, and
hence Rm.t/ have the same number of roots outside D� , which is zero.

To show the monotonicity consider Rm.�mC1/. Note that .�mC1/
mC1.t �1/�2D 0.

Hence we have

Rm.�mC1/D .�mC1/
m.t � 1/� 2

D ..�mC1/
m
� .�mC1/

mC1/.t � 1/

< 0:

Since Rm.t/ is an increasing function for t > 1, we conclude that �mC1 < �m .
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Corollary 3.23 and Lemma 3.29 imply the following.

Corollary 3.30 Fixing m � 1, the sequences �.ˇm;n/ and �.�m;n/ converge to
�.Rm/ as sequences in n. Furthermore, we can make �.ˇm;n/ and �.�m;n/ arbitrarily
close to 1 by taking m and n large enough.

We now determine the monotonicity of �.ˇm;n/ and �.�m;n/ for fixed m� 1.

Proposition 3.31 Fixing m � 1, the dilatations �.ˇm;n/ are strictly monotone de-
creasing, and the dilatations �.�m;n/ are strictly monotone increasing for n�mC 2.

Proof Consider f .t/D .Rm/�.t/D�2tmC1� t C 1. Then, for t > 0,

f 0.t/D�2.mC 1/tm
� 1< 0:

Also f .1/D�2<0. Since bm;nD�.ˇm;n/>1, and for n�mC2, sm;nD�.�m;n/>1,
it follows that .Rm/�.bm;n/ and .Rm/�.sm;n/ are both negative. We have

0D Tm;n.bm;n/D .bm;n/
nC1Rm.bm;n/C .Rm/�.bm;n/; and

0D Sm;n.sm;n/D .sm;n/
nC1Rm.sm;n/� .Rm/�.sm;n/;

which imply that Rm.bm;n/ > 0 and Rm.sm;n/ < 0. Since Rm is increasing for t > 1,
we have

(8) sm;n < �m < bm;n:

Plug bm;n into Tm;n�1 , and subtract Tm;n.bm;n/D 0:

Tm;n�1.bm;n/D .bm;n/
n�1Rm.bm;n/C .Rm/�.bm;n/

D ..bm;n/
n�1
� .bm;n/

n/Rm.bm;n/

< 0

Since bm;n�1 is the largest real root of Tm;n�1 , we have bm;n < bm;n�1 .

We can show that sm;n< sm;nC1 for n�mC2 in a similar way, by adding the formula
for Sm;n.sm;n/ to Sm;nC1.sm;n/.

The inequalities (8) give the following.

Corollary 3.32 For all m; n� 1 with jm� nj � 2, �.ˇm;n/ > �.�m;n/.

We now fix 2g D mC n (g � 2), and show that among the braids ˇm;n and �m;n ,
�g�1;gC1 has the least dilatation.
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Proposition 3.33 (1) For k D 1; : : : ;m� 1,

�.ˇm;m/ < �.ˇm�k;mCk/; and

�.ˇm;mC1/ < �.ˇm�k;mCkC1/:

(2) For k D 2; : : : ;m� 1,

�.�m�1;mC1/ < �.�m�k;mCk/; and

�.�m�1;mC2/ < �.�m�k;mCkC1/:

Proof Let �D �.ˇm;m/. Then plugging � into Tm�k;mCk gives

Tm�k;mCk.�/D �
mCkC1.�m�k.�� 1/� 2/� 2�m�kC1

��C 1

D �2mC2
��2mC1

� 2�mCkC1
� 2�m�kC1

��C 1:

Subtracting
0D Tm;m.�/D �

2mC2
��2mC1

� 4�mC1
��C 1;

we obtain

Tm�k;mCk.�/D 4�mC1
� 2�mCkC1

� 2�m�kC1
D�2�m�kC1.�k

� 1/2 < 0:

Since �.ˇm�k;mCk/ is the largest real root of Tm�k;mCk , we have �.ˇm;m/ <

�.ˇm�k;mCk/.

The other inequalities are proved similarly.

Proposition 3.34 For m� 2,

�.ˇm;m/ > �.�m�1;mC1/; and

�.ˇm;mC1/� �.�m�1;mC2/

with equality if and only if mD 2.

Proof Let �D �.�m�1;mC1/. Then Tm;m.�/D �
2mC2 � �2mC1 � 4�mC1 � �C 1.

Plugging in the identity

0D Sm�1;mC1.�/D �
2mC2

��2mC1
� 2�mC2

C 2�m
C�� 1;

and subtracting this from Tm;m.�/, we have

Tm;m.�/D 2�mC2
� 4�mC1

� 2�m
� 2�C 2D 2�m.�2

� 2�C 1/C 2.1��/:

The roots of t2�2tC1 are 1˙
p

2. Since 1�
p

2< 1<�< 2< 1C
p

2, �2�2�C1

and 1� � are both negative, and hence Tm;m.�/ < 0. Since �.ˇm;m/ is the largest
real root of Tm;m.t/, it follows that �.�m�1;mC1/D � < �.ˇm;m/.

Algebraic & Geometric Topology, Volume 6 (2006)



730 Eriko Hironaka and Eiko Kin

For the second inequality, we plug in �D �.�m�1;mC2/ into Tm;mC1 . This gives

Tm;mC1.�/D 2�m.�3
��2

��� 1/��� 1:

Thus, �3 � �2 � �� 1 < 0 would imply Tm;mC1.�/ < 0. The polynomial g.t/ D

t3 � t2 � t � 1 has one real root (� 1:83929) and is increasing for t > 1. Since
�.Rm/ is decreasing with m, and � < �.R2/ � 1:69562 < 1:8 by (8), we see that
Tm;mC1.�/ < 0 for m� 3. For the remaining case, we check that T2;3 D S1;4 .

Propositions 3.33 and 3.34 show the following.

Corollary 3.35 The least dilatation among �m;n and ˇm;n for mC nD 2g .g � 2/

is given by �.�g�1;gC1/.

By Corollary 3.23, Lemma 3.29 and Proposition 3.31, the dilatations �.�m;n/ for
n�mC 2 converge to 1 as m; n approach infinity. We prove the following stronger
statement, which implies Theorems 1.1 and 1.2.

Proposition 3.36 For g � 2,

log.2C
p

3/

gC 1
< log.�.�g�1;gC1// <

log.2C
p

3/

g
:

Proof Using Theorem 3.20, we see that �D �.�g�1;gC1/ satisfies

0D �2gC1
� 2�gC1

� 2�g
C 1D �.�g/2� 2.�C 1/�g

C 1:(9)

Since � is the largest real solution, the quadratic formula gives

�g
D

2.�C 1/C
p

4.�C 1/2� 4�

2�
D
�C 1C

p
�2C�C 1

�
:

It follows that

�gC1
D �C 1C

p
�2C�C 1:(10)

Since 1< � < 2 for all g � 2, (10) implies 2C
p

3< �gC1 < 3C
p

7.

We improve the upper bound using an argument conveyed to us by Minakawa. Rewrite
(9) as follows

0D �2gC1
C�2g

��2g
� 2.�C 1/�g

C 1D �2g.�C 1/� .�2g
� 1/� 2.�C 1/�g:

Factoring out .�C 1/ gives

0D �2g
�
�2g � 1

�C 1
� 2�g:
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On the other hand, since � > 1, we have

�2g � 1

�C 1
<

1

2
.�2g
� 1/:

This implies the inequality

x2g
�

x2g � 1

xC 1
� 2xg > x2g

�
1

2
.x2g

� 1/� 2xg
D

1

2
.x2g

� 4xg
C 1/DW p.x/

for x near �. Thus, p.x/ has a real root � larger than �. Using the quadratic formula
again, we see that �g D 2C

p
3, and hence �g < �g D 2C

p
3.

4 Further discussion and questions

By Propositions 3.33 and 3.34, for s � 5 strands, the minimal dilatations by our
construction come from �g�1;gC1 when sD 2gC1; and �g�1;gC2 when sD 2gC2.
For s even, there is an example of a braid with smaller dilatation than that of �g�1;gC2

(see the end of Section 4.1), but for s odd, we know of no such examples.

Since †.B.D; 2gC 1//�†.Mg/ (Proposition 2.10), Penner’s lower bound [25] for
elements of †.Mg/ extend to †.B.D; 2gC 1//. Hence we have

ı.B.D; 2gC 1//� ı.Mg/�
log 2

12g� 12
:

For gD2, Zhirov shows [30] that if � 2M2 is pseudo-Anosov with orientable invariant
foliations, then �.�/ is bounded below by the largest root of x4�x3�x2�xC1. For
s D 5, �1;3 is pseudo-Anosov, and its lift to F2 is orientable. Our formula shows that
the dilatation of �1;3 is the largest root of Zhirov’s equation, and hence �1;3 achieves
the least dilatation among orientable pseudo-Anosov maps on F2 . This yields the
following weaker version of Ham and Song’s result [12], which doesn’t assume any
conditions on the combinatorics of train tracks.

Corollary 4.1 The braid �1;3 is pseudo-Anosov with the least dilatation among braids
ˇ 2B.DIS/ on 5 strands such that all singularities of S2n.S[fp1g/ for the invariant
foliations associated to the pseudo-Anosov map ˆ y̌ are even–pronged.

We discuss the following general question and related work on the forcing relation in
Section 4.1.

Question 4.2 Is there a braid ˇ 2 B.D; 2gC 1/ such that �.ˇ/ < �.�g�1;gC1/?

Algebraic & Geometric Topology, Volume 6 (2006)



732 Eriko Hironaka and Eiko Kin

Let Ks
g �Ms

g be the subset of mapping classes that arise as the monodromy of a
fibered link .K;F / in S3 , where the fiber F has genus–g and the link K has s

components.

Question 4.3 Is there a strict inequality ı.Ms
g/ < ı.Ks

g/?

In Section 4.2, we briefly discuss what is known about bounds on dilatations of pseudo-
Anosov monodromies of fibered links, and show how the braids ˇm;n arise in this
class.

4.1 The forcing relation on the braid types

The existence of periodic orbits of dynamical systems can imply the existence of
other periodic orbits. Continuous maps of the interval give typical examples for such
phenomena. Boyland introduced the notion of braid types, and defined a relation on
the set of braid types to study an analogous phenomena in the 2–dimensional case.
Recall that there is an isomorphism

B.DIS/=Z.B.DIS//!M.DIS/:

Let f W D!D be an orientation preserving homeomorphism with a single periodic
orbit S . The isotopy class of f relative to S is represented by ˇZ.B.DIS// for some
braid ˇ2B.DIS/ by using the isomorphism above. The braid type of S for f , denoted
by bt.S; f /, is the conjugacy class ŒˇZ.B.DIS//� in the group B.DIS/=Z.B.DIS//.
To simplify the notation, we will write Œˇ� for ŒˇZ.B.DIS//�. Let

bt.f /D fbt.P; f / j P is a single periodic orbit for f g;

and BT the set of all braid types for all homeomorphisms of D . A relation � on BT

is defined as follows: For bi 2 BT (i D 1; 2),

b2 � b1” (For any f W D!D , if b2 2 bt.f /, then b1 2 bt.f //.

We say that b2 forces b1 if b2 � b1 . It is known that � gives a partial order on BT

(see Boyland [6] and Los [21]), and we call the relation the forcing relation.

The topological entropy gives a measure of orbits complexity for a continuous map of
the compact space (see Walters [29]). Let h.f /� 0 be the topological entropy of f .
For a pseudo-Anosov braid ˇ 2 B.DIS/, log.�.ˇ// is equal to h.ˇ/, which in turn
is the least h.f / among all f with an invariant set S such that bt.S; f /D Œˇ� (see
Fathi–Laudenbach–Poenaru [10, Exposé 10]). One of the relations between the forcing
relation and the dilatations is as follows.
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Theorem 4.4 (Los [21]) Let ˇ1 and ˇ2 be pseudo-Anosov braids. If Œˇ2�� Œˇ1� and
Œˇ2�¤ Œˇ1�, then �.ˇ2/ > �.ˇ1/.

The forcing relation on braids ˇm;n and �m;n was studied by Kin [17].

Theorem 4.5 For any m; n� 1,

(1) Œˇm;n�� Œˇm;nC1�,

(2) Œˇm;n�� ŒˇmC1;n�,

(3) Œˇm;n�� Œ�m;`� if `�mC 2, and

(4) Œ�m;n�� Œ�m;`� if n� `�mC 2.

S1 R1 R R0 S0

H.R0/

H.R1/

H.S0/

H.S1/

Figure 26: Smale–horseshoe map

The Smale–horseshoe map HW D!D is a diffeomorphism such that the action of H on
three rectangles R0;R1 , and R and two half disks S0;S1 is given in Figure 26. The
restriction of H to Ri (i D 0; 1) is an affine map such that H contracts Ri vertically and
stretches horizontally. The restriction of H to Si (i D 0; 1) is a contraction map. Katok
showed [15] that any C 1C� surface diffeomorphism (� > 0) with positive topological
entropy has a horseshoe in some iterate. This suggests that the Smale–horseshoe map
is a fundamental model for chaotic dynamics.

The set
�D

\
n2Z

Hn.R0[R1/

is invariant under H . Let †2 D f0; 1g
Z , and

� W †2!†2

.: : : w�1 �w0w1 : : :/ 7! .: : : w�1w0 �w1 : : :/; wi 2 f0; 1g

the shift map. There is a conjugacy KW �!†2 between the two maps Hj�W �!�

and � W †2!†2 as follows:

KW �!†2

x 7! .: : :K�1.x/K0.x/K1.x/ : : :/;
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where

Ki.x/D

�
0 if Hi.x/ 2R0;

1 if Hi.x/ 2R1:

If x is a period k periodic point, then the finite word .K0.x/K1.x/ : : :Kk�1.x// is
called the code for x . We say that a braid ˇ is a horseshoe braid if there is a periodic
orbit for the Smale–horseshoe map whose braid type is Œˇ�. We define a horseshoe
braid type in a similar manner. For the study of the restricted forcing relation on the
set of horseshoe braid types, see the papers [9; 11] by de Carvalho and Hall.

R1 R0

a
b

c

d

e

a b c d e

1 0

Figure 27: Periodic orbit with the code 10010 and its braid representative

The result by Katok together with Theorem 4.4 implies that horseshoe braids are
relevant candidates realizing the least dilatation. It is not hard to see that the braid type
of the periodic orbit with the code

1 0 : : : 0„ƒ‚…
n�1

1 0 : : : 0„ƒ‚…
m

or 1 0 : : : 0„ƒ‚…
n�1

1 0 : : : 0„ƒ‚…
m�1

1 .n�mC 2/

is represented by Œ� 0m;n�.D Œ�m;n�/ (For the definition of � 0m;n , see the end of Section
3.2). Hence, �m;n .n�mC 2/ is a horseshoe braid. Figure 27 illustrates the periodic
orbit with the code 10010 and its braid representative.

For the case of even strands, there is a horseshoe braid having dilatation less than our
examples. In fact, the braid type of period 8 periodic orbit with the code 10010110 is
given by Œˇ D .�1�2�3�4�5�6/

3�7�, which satisfies �.ˇ/D 1:4134 : : : < �.�2;5/D

1:5823 : : :.

4.2 Fibered links

For a fibered link .K;F / with fibering surface F , the monodromy ˆ.K ;F /W F ! F

is the homeomorphism defined up to isotopy such that the complement of a regular
neighborhood of K in S3 is a mapping torus for ˆ.K ;F / . Define �.K ;F / to be the
characteristic polynomial for the monodromy ˆ.K ;F / restricted to first homology
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H1.F;R/. If K is a fibered knot, then �.K ;F / is the Alexander polynomial of K (see
Kawauchi [16] and Rolfsen [26]).

The homological dilatation of a pseudo-Anosov map ˆW F ! F is defined to be
�.f /, where f is the characteristic polynomial for the restriction of ˆ to H1.F IR/.
Thus, if .K;F / is a fibered link and ˆ.K ;F / is the monodromy, then �.�.K ;F // is
the homological dilatation of ˆ.K ;F / . In the case where ˆ.K ;F / is a pseudo-Anosov
map, �.�.K ;F // and �.ˆ.K ;F // are equal if ˆ.K ;F / is orientable (see Rykken [27]).

Any monic reciprocal integer polynomial is equal to �.K ;F / for some fibered link
.K;F / up to multiples of .t � 1/ and ˙t (see Kanenobu [14]). In particular, any
reciprocal Perron polynomial1 can be realized. On the other hand, if ˆ.K ;F / is
orientable, then �.ˆ.K ;F // is in general strictly greater than �.�.K ;F //.

Leininger [20] exhibited a pseudo-Anosov map ˆLW F5 ! F5 with dilatation �L ,
where

log.�L/D 0:162358:

A comparison shows that this number is strictly less than our candidate for the least
element of †.B.D; 2gC 1/ for g D 5:

log.�.�4;6//D 0:240965:

The pseudo-Anosov map ˆL is realized as the monodromy of the fibered .�2; 3; 7/–
pretzel knot. Its dilatation �L is the smallest known Mahler measure greater than 1

among monic integer polynomials (see Boyd [5] and Lehmer [19]).

In the rest of this section, we will construct fibered links whose monodromies are
obtained by lifting the spherical mapping classes associated to ˇm;n . We set gDbmCn

2
c.

Let S be the set of marked points on int.D/ corresponding to the strands of ˇm;n , and
F the double covering of D , branched over S . Then F has one boundary component
if mC n is even and two boundary components if mC n is odd. Let ˆ0m;n be the
lift of the pseudo-Anosov representative ˆˇm;n

of �ˇm;n
2M.DIS/ to F . Using an

argument similar to that in the proof of Proposition 2.10, we have

�.ˆ0m;n/D �.ˆˇm;n
/D �.ˇm;n/:

Note that ˆ0m;n is 1–pronged near each of the boundary of F if mC n is odd.

Let Km;n be the two–bridge link given in Figure 28. By viewing .S3;Km;n/ as the
result of a sequence of Hopf plumbings see Hironaka [13, Section 5], one has the
following.

1A monic integer polynomial f is Perron if f has a root �.f / > 1 such that �.f / > j˛j for all roots
˛ ¤ �.f / .
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N

(N positive half twists)

(N negative half twists)

�N

�n

mC1

D

D

Figure 28: Two–bridge link associated to ˇm;n

Proposition 4.6 The complement of a regular neighborhood of Km;n in S3 is a
mapping torus for ˆ0m;n .

The fibered links Km;n and the dilatations of ˆ0m;n were also studied by Brinkmann
[7].

Let �m;n be the Alexander polynomial for Km;n . Salem–Boyd sequences for �m;n

were computed by Hironaka [13]. Proposition 3.18 implies the following.

Lemma 4.7 If m and n are both odd, then �.ˇm;n/D �.ˆ
0
m;n/D �.�Km;n

/.

Question 4.8 Let ˆ�m;n
be the pseudo-Anosov representative of ��m;n

. Is there a
fibered link K in S3 such that the complement of a regular neighborhood of K in S3

is a mapping torus for a lift of ˆ�m;n
?
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