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Isovariant mappings of degree 1 and the Gap Hypothesis

REINHARD SCHULTZ

Unpublished results of S Straus and W Browder state that two notions of homotopy
equivalence for manifolds with smooth group actions—isovariant and equivariant—
often coincide under a condition called the Gap Hypothesis; the proofs use deep
results in geometric topology. This paper analyzes the difference between the two
types of maps from a homotopy theoretic viewpoint more generally for degree one
maps if the manifolds satisfy the Gap Hypothesis, and it gives a more homotopy
theoretic proof of the Straus–Browder result.

55P91, 57S17; 55R91, 55S15, 55S91

In order to motivate and explain our results more thoroughly, we shall begin with
various pieces of background material. Readers who would rather focus on the main
results and their proofs may go directly to Section 2.

1 Background

Ever since the topological classification of surfaces was discovered, one basic theme in
geometric topology has been the reduction of existence and classification questions
for manifolds to problems in algebraic topology. A collection of techniques known as
surgery theory has been particularly effective in this regard (compare Rothenberg [37,
pages 375–378]). For well over four decades topologists have also known that such
techniques also have far reaching implications for manifolds with group actions (cf
Browder [9] and [37, pages 378–379]). Not surprisingly, many of the most striking
applications of surgery theory require some assumption on the manifolds, mappings or
structures under consideration, and for group actions the following restriction has been
employed quite often:

Standard Gap Hypothesis For each pair of isotropy subgroups H ¥ K and each pair
of components B�M H , C �M K such that B ¤ C we have dim BC1� 1

2
.dim C /.

A condition of this sort first appeared explicitly in the unpublished Berkeley doctoral
dissertation of Sandor H Straus [45], and the importance and usefulness of the restric-
tion became apparent in work of T Petrie [33; 34]; see also Dovermann–Petrie [16],
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Dovermann–Rothenberg [17], and Lück–Madsen [28]. The reason for this is that the
Gap Hypothesis automatically implies that certain maps are isovariant (cf Palais [32]):
A mapping of f W X ! Y of spaces with actions of a group G is said to be isovariant if
it is equivariant — so that f .g �x/D g �f .x/ for all g 2G and x 2X — and for each
x the isotropy subgroup Gx of all group elements fixing x is equal to the isotropy
subgroup Gf .x/ of the image point (in general one can only say that the first subgroup
is contained in the second). Specifically, surgery theory yields equivariant mappings of
the form G=K �Sq!G �M K where q � 1

2
dim M K , and at one crucial step in the

process one uses the fact that such maps are equivariantly homotopic to isovariant maps
by general position if the Gap Hypothesis holds. Usually this is expressed in other
terms (eg, the image of fH g�Sq lies in G �M H and is disjoint from G �M L for all
isotropy subgroups properly containing a conjugate of H ), but it is straightforward to
verify that the usual version is equivalent to the one stated here in terms of isovariance.

Applications of surgery to group actions that do not require the Gap Hypothesis
frequently assume that the underlying maps of manifolds are isovariant or almost
isovariant (cf Browder–Quinn [11], the final section of Dula–Schultz [20], the second
part of Schultz [43], and Weinberger’s book [49]). The general notion of almost
isovariance is defined precisely on page 27 of [20], and the most important special case
is reproduced below. For the time being, we merely note that

(1) the sets of nonisovariant points (Gx ¤ Gf .x/ ) for such a map may be pushed
into very small pieces of the domain where they cause no problems,

(2) standard methods of homotopy theory extend directly to a suitably defined
category of almost isovariant mappings (cf [20] and Dror Farjoun [19]),

(3) results of [20] show that almost isovariant homotopy and isovariant homotopy
are equivalent in many important cases (including all smooth actions of finite
cyclic p–groups), and a standard conjecture (believed by most workers in the
area) states that the same is true for arbitrary smooth actions of finite groups.

In fact, isovariant techniques play a central role in classification results for group
actions when the Gap Hypothesis fails; in many cases where such machinery is not
used explicitly, the work can readily be interpreted in these terms. A fundamentally
important breakthrough in this area was due to Browder and Quinn [11] (see also the
commentary on the latter in Hughes–Weinberger [22]), and a more general discussion
of the situation in the smooth category — which also extends earlier work on the
smooth classification of topologically linear actions on spheres — appears in [43,
Section II.1] (see also the final section of [20]). In the piecewise linear and topological
categories, there is a distinct body of results which is largely based on techniques
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from controlled topology (eg Weinberger’s book [49], the survey articles by Hughes–
Weinberger [22] and Cappell–Weinberger [12], and the doctoral dissertation of A
Beshears [8]). A full historical account of the topic is beyond the scope of this paper,
but some additional references include the work of A Assadi with Browder [2] and P
Vogel [3], the monograph by L Jones on symmetries of disks [25], and the material on
symmetries of aspherical manifolds in Weinberger’s paper on higher Atiyah–Singer
invariants [50].

Focus of this paper

In this paper we are particularly interested in the following unpublished result, which
is due to Straus [45] for actions that are semifree (the group acts freely off the fixed
point set) and W Browder [10] more generally. It implies a fairly strong, general and
precise connection between almost isovariance and the Gap Hypothesis.

Theorem 1.1 Let f W M !N be an equivariant homotopy equivalence of connected,
compact, unbounded ( = closed) and oriented smooth G–manifolds that satisfy the
Gap Hypothesis. Then f is equivariantly homotopic to an almost isovariant homotopy
equivalence.

As noted above, in some cases the results of [20] allow one to replace “almost isovariant”
by “isovariant” in the conclusion; in particular, this is true if the isotropy subgroups
are normal and linearly ordered by inclusion.

Although Theorem 1.1 is a purely homotopy theoretic statement, the proofs in [45]
and [10] require fairly deep results from Wall’s nonsimply connected surgery theory
[47], which in turn depends upon other deep geometric results such as the classification
theory for immersions (cf Phillips [35]) and the Whitney process for geometrically
eliminating pairs of double points that cancel algebraically (cf Milnor’s monograph on
the h–cobordism theorem [31]). It is natural to ask whether one can prove Theorem
1.1 without relying so extensively on such a large amount of auxiliary material (this is
a special case of the classical scientific maxim called Ockham’s Razor). In particular,
since one can construct a version of obstruction theory for isovariant maps and define
obstructions to finding an isovariant deformation of a given equivariant map [20], it is
natural to search for a proof that is related to this obstruction theory. More generally, one
would also like to understand the obstructions to isovariance for arbitrary equivariant
mappings of degree ˙1 from one smooth manifold to another. Some basic test cases
are examples of equivariant degree one mappings mentioned in [10] which are not
equivariantly homotopic to isovariant maps; results of K H Dovermann on isovariant
normal maps [15] also provide some motivation.
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742 Reinhard Schultz

The main objective of this paper is to analyze the problem of deforming an equivariant
degree one map into an isovariant map when the Gap Hypothesis holds, to use this
criterion to provide an essentially homotopy-theoretic proof of Theorem 1.1, and to
see how the criterion applies to equivariant homotopy equivalences and other basic
examples. In contrast to [45] and [10], our approach requires a minimum of input
from geometric topology; namely, nonequivariant transversality and standard results
on smooth embeddings in the general position range. For the sake of clarity we shall
restrict attention to finite group actions that are semifree in the sense described above;
if G is cyclic of prime order, then all actions are semifree. We shall also discuss some
applications of Theorem 1.1 to cyclic reduced products that were first considered in
[45] and a few positive and negative results just outside the range of the Gap Hypothesis
(further information on the latter will appear in sequels to this paper).

Acknowledgments I am extremely grateful to Bill Browder for helpful conversations
and correspondence regarding his results on the questions treated here, and especially
for providing a detailed account of his counterexamples that appear in Section 4 of this
paper. I would also like to thank Heiner Dovermann for various conversations involving
his work. Comments on the referee for enhancing the exposition of the paper were
also valuable and appreciated. The research in this paper was partially supported by
National Science Foundation Grants DMS 86-02543, 89-02622 and 91-02711, and also
by the Max–Planck–Institut für Mathematik in Bonn, and sources are also gratefully
acknowledged.

2 Statements of main results

Suppose that M and N are closed, oriented, semifree smooth G –manifolds satisfying
the Gap Hypothesis such that all components of the fixed point sets, and suppose
that f W M ! N is a G–equivariant map of degree 1. Let fN˛g denote the set of
components of the fixed point set N G , where we may as well assume that ˛ runs
through the elements of �0.N

G/, and suppose that the associated map f G of fixed
point sets defines a 1–1 correspondence between the components of M G and N G ; for
each ˛ let

M˛ D f �1.N˛/ \ M G

and let f˛W M˛ ! N˛ denote the partial map of fixed point sets determined by f .
Denote the equivariant normal bundles of M˛ and N˛ in M and N by �˛ and !˛
respectively, and let S.�/ generically represent the unit sphere bundle of the vector
bundle � (with the associated group action if � is a G –vector bundle).
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Theorem 2.1 Suppose we are given the setting above such that dim M˛ D dim N˛
for each ˛ .

(i) If f is homotopic to an isovariant map, then for each ˛ the map f˛ has degree
˙1, and S.�˛/ is equivariantly fiber homotopy equivalent to S.f �!˛/.

(ii) If the two conditions in the preceding statement hold, then f is equivariantly
homotopic to a map that is isovariant on a neighborhood of the fixed point set.

(iii) If f is isovariant on a neighborhood of the fixed point set, then f is equivariantly
homotopic to an isovariant map if and only if f is equivariantly homotopic to a map f1

for which the set of nonisovariant points of f1 is contained in a tubular neighborhood
of M G .

Theorem 1.1 will follow immediately from Theorem 2.1 and the specialization of the
the latter to equivariant homotopy equivalences.

Theorem 2.2 In the setting of the previous result, suppose that f is an equivariant
homotopy equivalence. Then f is equivariantly homotopic to an isovariant homotopy
equivalence.

Note If f is an equivariant homotopy equivalence, then some of the assumptions in the
setting and statement of Theorem 2.1 are redundant because an equivariant homotopy
equivalence determines a 1–1 correspondence of fixed point set components and the
dimensions of corresponding components are also equal because the components are
homotopy equivalent.

Application to deleted reduced products

Given a topological space X and an integer n, the n–fold cyclic reduced product is
defined to be the quotient of the product space X n (ie n copies of X ) modulo the
action of Zn on the latter by permuting coordinates, and the deleted cyclic reduced
product is the subset of the latter obtained by removing the image of the diagonal
�.X n/ consisting of those points whose coordinates are all equal. In his thesis [45]
Straus used his version of Theorem 1.1 to obtain the following homotopy invariance
property for such spaces:

Theorem 2.3 Let M and N be closed smooth manifolds of dimension � 2, let p

be an odd prime, and suppose that M and N are homotopy equivalent. Let Zp act
smoothly on the p–fold self products …pM and …pN (where …pX D X � � � � �

X; p factors ) by cyclically permuting the coordinates, and let Dp.M /, Dp.N / be
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the invariant subsets sets given by removing the diagonals from …pM and …pN .
Then the deleted reduced cyclic products Dp.M /=Zp and Dp.N /=Zp are homotopy
equivalent.

As also noted in [45], this result does not extend to compact bounded manifolds, and
in fact closed unit disks of different dimensions generate simple counterexamples. The
results of Schultz [42] imply that Theorem 2.3 extends to simply connected manifolds
if p D 2, but recent results of R Longoni and P Salvatore [27] imply that the result
does not extend to 3–dimensional lens spaces when p D 2. Further results on the
relationship between D2.M /=Z2 and D2.N /=Z2 for homotopy equivalent manifolds
appear in a paper by P Löffler and R J Milgram [30].

Since the statement and proof of Theorem 2.3 have apparently not appeared previously in
print, we shall outline the (fairly straightforward) argument for the sake of completeness.

Sketch of proof We shall first prove the result when dim M D dim N � 3 and then
dispose of the remaining cases afterwards. If f W M !N is a homotopy equivalence
then …pf W …pM !…pN is an equivariant homotopy equivalence of closed smooth
Zp –manifolds. All actions of Zp are semifree if p is prime, so this condition holds
automatically. Furthermore, the fixed point sets of the action on …pM and …pN are
the respective diagonals �.…pM /ŠM and �.…pN /ŠN , and since

dim�p.…pX / D dim X D
�
dim…pX

�
=p �

1
3

dim…pX < 1
2

dim…pX � 1

if X DM or N is at least 3–dimensional and p is odd, then the Gap Hypothesis
also holds. Therefore Theorem 1.1 implies that …pf is equivariantly homotopic to an
isovariant homotopy equivalence, and the latter in turn yields an equivariant homotopy
equivalence from Dp.M / to Dp.N /. The induced map of orbit spaces is the desired
homotopy equivalence from Dp.M /=Zp to Dp.N /=Zp .

Suppose now that dim M D dim N � 2. In these cases homotopy equivalent manifolds
are homeomorphic, so we can take the homotopy equivalence f W M ! N to be a
homeomorphism. It follows immediately that …pf is a homeomorphism and as such
is automatically isovariant. One can now complete the proof as in the last two sentences
of the preceding paragraph.

Further results

The results of [10] also include a uniqueness statement (up to isovariant homotopy) if
M � Œ0; 1� and N � Œ0; 1� satisfy the Gap Hypothesis. One can also use the methods of
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this paper together with some additional geometric and homotopy theoretic input to
prove such a uniqueness result. The necessary machinery to do so will be developed in
a subsequent paper.

Since the results of [10] also apply to actions that are not necessarily semifree, it is
natural to ask whether the methods of this paper extend. The answer is yes, but a proof
would require the introduction of a considerable amount of extra machinery that would
take time to develop and might obscure the main ideas, and this is a major reason for
sticking with the semifree case. A brief discussion of some tools needed to carry out
such extensions appears at the end of Section 3, and we plan to pursue this further in
another sequel to this article.

Overview of the paper

We shall begin Section 3 by proving that the conditions in Theorem 2.1 are necessary
for a map f as above to be properly homotopic to an isovariant map. The proof of
sufficiency in Theorem 2.1 splits into two steps, which are carried out in Sections 3 and
4. To motivate the first step, observe that an equivariant map of semifree G –manifolds is
automatically isovariant on the fixed point set, so a natural starting point is to determine
whether the given map can be equivariantly deformed to a map that is isovariant on a
neighborhood of the fixed point set. If this is possible and we have a map with this
additional property, the next step is to determine whether such a map can be further
deformed to another one which is isovariant everywhere. Section 5 contains the proofs
of Theorems 1.1 and 2.2. Finally, in Section 6 we shall discuss a variety of questions
related to the main results. Some concern the interaction between equivariance and
isovariance when the Gap Hypothesis holds, while others involve borderline situations
in which the Gap Hypothesis inequalities fail, but only by a small amount. There are
obvious questions about the extent to which Theorem 1.1 extends to such examples, and
answers to such questions turn out to have close connections to issues in equivariant
surgery theory in such borderline cases. Sometimes the latter yields generalizations
of Theorem 1.1 to situations where the conclusion is not particularly obvious from a
homotopy theoretic viewpoint, and in other cases homotopy theory has implications
for equivariant surgery theory.

3 Preliminary adjustments and necessity

It will be convenient to begin with some notational conventions and elementary obser-
vations in order to simplify the main discussion and the proofs.
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Let P be a closed smooth G –manifold, where G is a finite group. By local linearity
of the action we know that the fixed point set PG is a union of connected smooth
submanifolds; as before, denote these connected components by P˛ . For each ˛ let
D.P˛/ denote a closed tubular neighborhood. By construction these sets are total
spaces of closed unit disk bundles over the manifolds P˛ , so let S.P˛/ and denote the
associated unit sphere bundles; it follows that

@ŒD.P˛/� D S.P˛/ :

Suppose now that M and N are smooth semifree G–manifolds and f W M !N is
an equivariant mapping.

The “only if” direction of Theorem 2.1

Assume that we have the setting and notation introduced in order to state Theorem 2.1:

(1) M and N are compact, oriented, semifree smooth G –manifolds satisfying the
Gap Hypothesis.

(2) f W M !N is a G –equivariant map of degree 1.

(3) fN˛g denotes the set of components of N G where we may as well assume that
˛ runs through the elements of �0.N

G/.

(4) The associated map f G of fixed point sets defines a 1–1 correspondence between
the components of M G and N G .

(5) If for each ˛ we let

M˛ D f �1.N˛/\M G

then f˛ is the continuous map from M˛ to N˛ determined by f .

(6) If the equivariant normal bundles of M˛ and N˛ in M and N are �˛ and !˛
respectively, and let S.�/ and D.�/ generically represent the unit sphere and
disk bundle of the vector bundle � (with the associated group action since � is a
G –vector bundle).

Not surprisingly, we shall also use the notational conventions we have previously
developed and mentioned.

Necessity proof for Theorem 2.1 Each of the first two basic conditions in Theorem
2.1 depends only on the equivariant homotopy class of a mapping of manifolds, so
without loss of generality we may replace f by any map in the same proper equivariant
homotopy class. In particular, since we are assuming that f is properly equivariantly
homotopy to an isovariant map, we might as well assume that f itself is isovariant.
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By the results of [20] (in particular, see Proposition 4.1 on page 27), the map f is
isovariantly homotopic to a map f0 such that for each ˛ we have f .D.M˛/ /�D.N˛/,
f .S.M˛ //� S.N˛/, and

f .M �[˛ Int D.M˛// � N �[˛ Int D.N˛/ :

For each choice of ˛ let

h˛ W
�

D.M˛/;S.M˛/
�
�!

�
D.M˛/;S.M˛/

�
be the associated map of pairs defined by f0 . Since the latter has degree 1, the same is
true for each of the maps h˛ . We have already noted that D.�/ and S.�/ are disk
and sphere bundles over the appropriate components of fixed point sets, and therefore
a simple spectral sequence argument implies that .a/ the degrees of the maps f˛ are
all equal to ˙1, up to an equivariant homotopy of pairs the map h˛ sends a spherical
fiber in S.M˛/ to a spherical fiber in S.N˛/ by a map of degree ˙1. Therefore
an equivariant analog of a classical result due to A Dold [13] (cf Waner [48]) shows
that there is a g–equivariant fiber homotopy equivalence from S.�˛/ to S.f �˛ !˛/,
where as before �˛ and !˛ denoted the corresponding equivariant normal bundles
for M˛ and N˛ . This completes the proof that Condition (i) holds. Since the set of
nonisovariant points for an isovariant map is empty by definition, Condition (iii) is
automatically true, so the proof is complete.

Some examples

It is not difficult to construct equivariant maps of degree 1 which satisfy the Gap
Hypothesis but do not satisfy the statements in Condition (i) of Theorem 2.1 on degrees
and equivariant normal bundles.

Example 3.1 Let V be a nontrivial semifree real representation of G such that
dim V G > 0 and the Gap Hypothesis holds, and let SV be the one point compactifica-
tion, which is equivariantly homeomorphic to the unit sphere in V ˚R . It is well known
that for each positive integer k there is a G –equivariant map hk W S

V ! SV such that
deg hkD1 and deg hG

k
DkjGjC1 (eg, this is a very special case of the equivariant Hopf

Theorem stated in tom Dieck’s book on the Burnside ring and equivariant homotopy
theory [46, Theorem 8.4.1, pages 213–214]). Since the fixed point set is connected and
the degree of the map on the fixed point set is not ˙1 if jGj> 2 or k ¤ 0, it follows
that hk cannot be homotopic to an isovariant map. However, the map hk does satisfy
the second part of Condition (i) involving pullbacks of equivariant normal bundles
because the equivariant normal bundle of .SV /G in SV is a product bundle.
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Example 3.2 Let G be a cyclic group, assume that k , m and r satisfy k � 0.4/,
k;m>0 and 2r >mCk , and let 
 be a complex r –dimensional vector bundle over Sk

which represents a generator of �k.BUr /ŠZ. Take M to be the associated .2rCm/–
sphere bundle over Sk . Then G acts smoothly and fiber preservingly on M with fixed
point set Sk �Sm , and each point has an invariant open neighborhood on which the
action of G is smoothly equivalent to the linear representation V DRkCm˚Cr . If we
collapse everything outside such a neighborhood to a point, we obtain an equivariant
map of degree 1 from M to SV . This map also has degree 1 on the fixed point sets,
but we claim it does not satisfy the pullback condition for equivariant normal bundles.
Since the equivariant normal bundle in M is the pullback of 
 under the coordinate
projection map from Sk�Sm!Sm , it will suffice to check that 
 is not equivariantly
fiber homotopically trivial. In fact, the underlying nonequivariant vector bundle is well
known to be stably fiber homotopically nontrivial (see, for example, Adams [1]).

4 Normal straightening and relative isovariance obstructions

In this section we shall prove the implication of Theorem 2.1 in the other direction;
namely, if Conditions (ii) is satisfied then one can make f isovariant near the fixed
point set, and if (iii) is satisfied then the map f is equivariantly homotopic to an
isovariant mapping. The first step is to examine the consequences of Condition (ii).

Proposition 4.1 In the setting of Section 2, suppose that f W M !N is a continuous
equivariant degree 1 map. Assume that each of the associated maps of fixed point
components f˛W M˛ ! N˛ has degree ˙1 and that S.�˛/ is equivariantly fiber
homotopy equivalent to S.f � !˛/ for each ˛ . Then there are closed, pairwise disjoint,
equivariant tubular neighborhoods D.M˛/ of the fixed point set components M˛ and
an equivariant mapping f0 such that f0 is equivariantly homotopic to f and for each
˛ the restriction f jD.M˛/ is isovariant.

Proof For each ˛ choose an equivariant fiber homotopy equivalence h˛W S.�˛/!

S.f �˛ !˛/, and let k˛ be the composite of h˛ with the canonical induced bundle
mapping S.f �˛ !˛/! S.!˛/. Define a map H˛W D.M˛/! D.N˛/ using k˛ and
fiberwise radial extension. It follows that H˛ is equivariantly homotopic to f jD.M˛/

for each ˛ , and hence by the equivariant Homotopy Extension Property we may deform
f equivariantly to a map f0 such that f0jD.M˛/DH˛ for each ˛ . Since each H˛

is isovariant, it follows that the restriction of f0 to a neighborhood of the fixed point
set is isovariant as required.

Algebraic & Geometric Topology, Volume 6 (2006)



Isovariant mappings of degree 1 and the Gap Hypothesis 749

We shall conclude this section by proving the sufficiency of the condition in (iii). A
key step in the proof of Theorem 1.1 will be to prove that an equivariant homotopy
equivalence has this property.

Proposition 4.2 Let M and N be as before, and suppose that f W M ! N is a
continuous equivariant map that is isovariant on a neighborhood of the fixed point
set. If there is a system of closed tubular neighborhoods W˛ of M G such that the
set of nonisovariant points lies in the interiors of the sets W˛ , then f is equivariantly
homotopic to an isovariant map.

Note that we make no assumption about the images of the sets W˛ , and in particular
we do not assume that they lie in the tubular neighborhoods of the components of the
fixed point set of N .

Proof By assumption f is already isovariant on the closed complement of a subman-
ifold T of the form [˛ S.M˛/� Œ

1
2
; 1� where as usual S.M˛/ denotes the boundary

of a tubular neighborhood. Let T˛ be the portion lying over M˛ and denote the
boundary components corresponding to S.M˛/� f

1
2
g and S.M˛ � f1g by @0T˛ and

@1T˛ respectively. Let

B˛ D M � [ˇ¤˛ Mˇ C˛ D N � [ˇ¤˛ Nˇ

let S˛ be the spherical fiber of S.M˛/, and let A˛ correspond to the annulus S˛�Œ
1
2
; 1�.

For each value of j the map f determines a map of triads

f˛W .T˛I @0T˛; @1T˛/ �! .C˛ID.N˛/;N �N G/

and by the results of Dula–Schultz [20, Section 4] it suffices to show that each
such map of triads can be compressed equivariantly rel @1T˛ [ A˛ into the triad
.N �N G IS.N˛/;N �N G/. The methods of [20, Sections 1 and 5] imply that the
obstructions to compression lie in diagram-theoretic Bredon equivariant cohomology
groups of the form BRH i.TI˘i/, where T is the diagram associated to the triad
.T˛I @0T˛; @1T˛ [A˛/ and ˘i is the following diagram of abelian groups:

�i.D.N˛/;S.N˛//
@#

0
����! �i.C˛;N �N G/

@#
1

 ���� f0g

If q˛ D dim M �dim F˛ then .D.N˛/;S.N˛// is .q˛�1/–connected by the identity
�s.D.N˛/;S.N˛//Š �s�1.S˛/, and a standard general position argument shows that
.C˛;N �N G/D .C˛;C˛ �N˛/ is also .q˛ � 1/–connected. Therefore the Blakers–
Massey Theorem (see Gray [21, page 143]) implies that the map @#

0
is bijective if

i � 2q˛ �3 and surjective if i D 2q˛ �2. In particular, this means that the equivariant
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diagram cohomology groups BRH i.TI˘i/ reduce to ordinary Bredon cohomology
groups BRH i.T˛; @1T˛I�i.C˛;N�N G// if i �n�1 or if iDn and dim F˛C3�q˛ .
Since T˛ Š @1T˛ � Œ0; 1� it follows immediately that the relative cohomology groups
vanish in all such cases. Since dim T˛ D dim M D dim N , this implies that the
isovariance obstructions vanish in all cases except perhaps when i D n D 2q˛ � 2.
In such cases the value group fits into the following exact sequence, which arises by
restricting diagram-theoretic cochains in C.X 0!X I� 0! �/ to ordinary cochains in
C.X 0I� 0/:

.?/ H n�1
�
@0T˛I�n.D.˛

0
˛/;S.˛

0
˛//

� �
����! H n.T˛; @T˛I�n.N˛;N �N G//??y

BRH n.TI˘n/??y
H n

�
@0T˛I�n.D.˛

0
˛/;S.˛

0
˛//

�
The map � in this sequence is given by combining the coefficient homomorphism for
the map ı#

0
in dimension n with the suspension isomorphism

H n�1.@0T˛I�/ �! H n.T˛; @T˛I�/ :

Therefore the Blakers–Massey Theorem, the .n� 1/–dimensionality of @0T˛ , and the
Bockstein exact sequence for the short exact sequence

0 ����! Kernel ����! �n.D.˛
0
˛/;S.˛

0
˛//

@#
0

����! �n.C˛;N �N G/ ����! 0

imply that � is onto. But the last object in .?/ is zero because dim @0T˛ D n�1, and
it follows by exactness that BRH n.TI˘n/ is also trivial. Therefore the isovariance
obstructions always vanish.

The following examples due to Browder [10] show that it is not always possible to
deform an equivariant degree 1 map so that it is isovariant near the fixed point set and
the set of nonisovariant points lies in a tubular neighborhood of the fixed point set.

Examples 4.3 Let k and q be distinct positive integers such that q is even and G

has a free q–dimensional linear representation (that is, the group acts freely except at
the zero vector). Let N D Sk �Sq with trivial action on the first coordinate and the
one point compactification of the free linear representation on the second, let M0 be
the disjoint union of N and two copies of the space G �Sk �Sq (where G acts by
translation on itself and trivially on the other two coordinates), and define an equivariant

Algebraic & Geometric Topology, Volume 6 (2006)



Isovariant mappings of degree 1 and the Gap Hypothesis 751

map f0W M0!N by taking the identity on M , the unique equivariant extension of
the identity map on Sk�Sq over one copy of G�Sk�Sq , and the unique equivariant
extension of an orientation reversing self diffeomorphism of Sk�Sq over the other copy.
By construction this map has degree one, and one can attach 1–handles equivariantly
to M0 away from the fixed point set to obtain an equivariant cobordism of maps from
f0 to a map f on a connected 1–manifold M that is nonequivariantly diffeomorphic
to a connected sum of 2 � jGjC 1 copies of Sk �Sq . Since the fixed point sets of M

and N are k –dimensional and the manifolds themselves are .kC q/–dimensional, it
follows that the Gap Hypothesis holds if we impose the stronger restriction q � kC 2.
By construction the map f determines a homotopy equivalence of fixed point sets and
is isovariant on a neighborhood of the fixed point set.

Assertion It is not possible to deform f equivariantly so that the set of nonisovariant
points lies in a tubular neighborhood of the fixed point set. In particular, it is also not
possible to deform f equivariantly to an isovariant map.

Proof To prove the assertion, assume that one has a map h equivariantly homotopic to
f with the stated property, and let U be a tubular neighborhood of M G that contains
the set of nonisovariant points. Let X be a submanifold of the form fgg� fvg�Sq in
M that arises from one of the copies of G�Sk �Sq in M0 . Although X and U may
have points in common, by the uniqueness of tubular neighborhoods we can always
isotope X into a submanifold X 0 that is disjoint from U . By the hypotheses on h we
know that h.X 0/ is disjoint from N G D Sk �S0 , and therefore h.X 0/ is contained in

N �N G
Š Sk

�Sq�1
�R

so that the image of the generator of Hq.X
0/DZ maps trivially into Hq.N /. However,

h is supposed to be homotopic to a map which is nontrivial on the latter by construction,
so we have a contradiction, and therefore it is not possible to find an isovariant map h

that is equivariantly homotopic to f .

A refinement of the preceding argument shows that if Y is a subset of M such that
the image of Hq.Y / in Hq.M / is equal to the image of Hq.X /, then Y must contain
some nonisovariant points of any equivariant map that is equivariantly homotopic to f .

Remark By construction, Browder’s examples are normally cobordant to the identity;
an explicit normal cobordism from the identity to f0 is given by

W D N � Œ0; 1� q G �Sk
�Sq

� Œ0; 1�

where @�W DN�f0g and @CW is the remaining 2jGjC1 components of the boundary,
and one can obtain a normal cobordism to f by adding 1–handles equivariantly along
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the top part of the boundary. More generally, results of K H Dovermann [15] imply
that one can always construct equivariant normal cobordisms to equivariant normal
maps if the Gap Hypothesis holds and the map is already an equivariant homotopy
equivalence on the singular set as in Browder’s examples.

However, it is also possible to construct examples like Browder’s that are not cobordant
to highly connected maps. It suffices to let k � 0.4/ and replace G � Sk � Sq by
G �S.
 /, where the latter is the sphere bundle of a fiber homotopically trivial vector
bundle 
 over Sk with nontrivial rational Pontryagin classes; one must also replace the
equivariant folding map from G�Sk �Sq to N by its composite with the identity on
G times a fiber homotopy equivalence from S.
 / to Sk �Sq . Characteristic number
arguments imply the map obtained in this fashion is not cobordant to a k –connected
map. Of course, a degree 1 map of this type does not have the bundle data required for
a normal map in the sense of equivariant surgery theory.

Generalizations to nonsemifree actions

We have assumed our actions are semifree in order to keep the discussion of normal
straightening as simple as possible. In fact, the main obstruction to proving analogs of
Theorems 1.1, 2.1, and 2.2 for arbitrary actions is to prove a suitable generalization of
the result on normal straightening. One step in carrying this out is to develop some
methods for analyzing the equivariant fiber homotopy type of certain equivariant vector
bundles. In the semifree case the base spaces for these bundles all have trivial G–
actions, and we were able to study the bundles directly with a minimum of equivariant
homotopy theoretic machinery. However, if the action on the ambient manifold is not
semifree, then we must also consider equivariant vector bundles over the various fixed
point sets of proper subgroups of G , and these bases will usually have nontrivial group
actions. Working with such objects requires the sorts of constructions developed by
Schultz [39; 40] as well as the full force of S Waner’s work on the equivariant fiber
homotopy types of equivariant fiber bundles [48]. If G D Zpr where p is prime, then
the generalization is particularly direct, and with such results one can prove complete
generalizations of Theorems 1.1, 2.1, and 2.2 for actions of such groups (assuming the
Gap Hypothesis as usual).

5 Equivariant homotopy equivalences

In this section we shall show that an equivariant homotopy equivalence can be de-
formed to satisfy the conditions in parts (ii) and (iii) of Theorem 2.1 and thus must

Algebraic & Geometric Topology, Volume 6 (2006)



Isovariant mappings of degree 1 and the Gap Hypothesis 753

be equivariantly homotopic to an isovariant map, which we shall prove must be an
isovariant homotopy equivalence.

Proposition 5.1 Let f W M ! N be a homotopy equivalence of closed, oriented,
semifree G –manifolds which satisfy the Gap Hypothesis such that all components of
all fixed point sets are also orientable. Then f is equivariantly homotopic to a map that
is isovariant on a neighborhood of the fixed point set.

Proof We shall prove that f satisfies the conditions in part (ii) of Theorem 2.1. Since
f defines a homotopy equivalence of fixed point sets, it follows immediately that for
each component M˛ of MG the restriction f˛ of f defines a homotopy equivalence
from M˛ to N˛ and hence has degree ˙1. In order to apply part (ii) of Theorem
2.1, we also need to verify the homotopy pullback condition on the equivariant normal
bundles of the fixed point set components.

Let �M and �N be the equivariant tangent bundles of M and N . We claim that
the sphere bundles of �M and f ��N are stably equivariantly fiber homotopically
equivalent. The nonequivariant version of this statement is well known (cf Atiyah [4])
and the equivariant case is due to K Kawakubo [26].

Consider next the restriction of the stable equivariant fiber homotopy equivalence
S.�M /� S.f ��N / to M G . The classifying maps for the two equivariant fibrations
go from M G to a space B such that ��.B/ � �G

��1
, where the latter denotes an

equivariant stable homotopy group as in Segal [44]. On the other hand, by [44] we also
know that B is homotopy equivalent to the product BF �BFG where BF classifies
nonequivariant stable spherical fibrations and BFG is defined as in Becker–Schultz
[7]. In terms of fibrations the projections of the classifying maps M ! B onto BF

and BFG correspond to taking the classifying maps of the fixed point subbundles and
the orthogonal complements of the fixed point subbundles respectively. Therefore it
follows that the corresponding subbundles for �M and f ��N are stably equivariantly
fiber homotopy equivalent. In particular, this means that S.˛M / and S.Œf G ��˛N / are
stably equivariantly fiber homotopy equivalent because they induce homotopic maps
from M G into BFG .

As usual, write M G as a disjoint union of components M˛ , and for each ˛ let q˛
be the codimension of M˛ . Furthermore, denote the fiber representation at a point
of M˛ by V˛ . The stabilization map FG.V˛/ ! FG is .q˛ � 2/–connected by
the considerations of [Sc1], and the Gap Hypothesis implies that dim M˛ � q˛ � 2.
Therefore we can destabilize the stable fiber homotopy equivalence from S.�˛/ to
S.Œf G ��!˛/ and obtain a genuine equivariant fiber homotopy equivalence. Choose
such an equivariant fiber homotopy equivalence, say ˆ. It is then an elementary
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exercise to deform f j [˛ D.M˛/ equivariantly relative the zero section so that one
obtains the radial extension of ˆ at the other end of the deformation. By the equivariant
homotopy extension property one can extend this homotopy to all of M .

Our choice of fiber homotopy equivalences was arbitrary, but it is possible to find a
canonical choice up to homotopy using equivariant S –duality (see Wirthmüller [51])
and Kawakubo’s result; in fact, one must work with the latter to prove a uniqueness
result for isovariant deformations as in [10], and we shall explain this in a subsequent
article.

The preceding result and part (iii) of Theorem 2.1 reduce the proof of Theorems 1.1
and 2.2 to the following two results:

Proposition 5.2 Suppose that f satisfies the conditions of the previous result, includ-
ing the condition that f is isovariant on a neighborhood of the fixed point set. Then f
is homotopic to an almost isovariant map.

Proposition 5.3 If f as above is isovariant, then f is an isovariant homotopy equiva-
lence.

We shall prove these results in order.

Proof of Proposition 5.2 The first step is to construct an equivariant homotopy from
f to a mapping f1 such that the homotopy is fixed on a neighborhood of the fixed
point set and f1 is smoothly equivariantly transverse to the fixed point set; there are
no problems with equivariant transversality obstructions because the relevant part of
the domain has a free G–action. By construction the transverse inverse image of the
fixed point set is the set of nonisovariant points, and it splits into a union of smooth
submanifolds V˛ D f

�1
1
.N˛/. Note that dim V˛ D dim N˛ D dim M˛ which is less

than half the dimensions of M and N .

By construction the image of f1jV˛ is contained in N˛ , so let k˛ be the associated
map from V˛ to N˛ ; if h˛W N˛ !M˛ is determined by a homotopy inverse to f1 ,
then the map h˛ ok˛ is equivariantly homotopic to the inclusion of V˛ in M . By
general position it follows that the latter is also equivariantly homotopic to a map into
D.M˛/�M˛ and in fact can be approximated by a smooth equivariant embedding e˛ ;
in fact, the numerical condition in the Gap Hypothesis is strong enough to guarantee
that e˛ is equivariantly isotopic to the inclusion. Since the image of e˛ is contained in
a tubular neighborhood of M˛ , the Equivariant Isotopy Extension Theorem implies the
inclusion is isotopic to a smooth equivariant embedding of V˛ in a tubular neighborhood
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and hence the image of the inclusion itself must also be contained in some tubular
neighborhood. Since this is true for every ˛ , it is also true for the entire set of
nonisovariant points.

By Theorem 2.1 and the preceding propositions we know that f is equivariantly homo-
topic to an almost isovariant mapping, and by [20] it is also equivariantly homotopic to
an isovariant mapping.

Proof of Proposition 5.3 By [20, Proposition 4.1, page 27], the map f is isovari-
antly homotopic to a map f0 such that for each ˛ we have f .D.M˛/ / � D.N˛/,
f .S.M˛ //� S.N˛/, and

f .M �[˛ Int D.M˛// � N �[˛ Int D.N˛/ :

Furthermore, using [20, Theorem 4.4, pages 29–31] one can further deform this map
to some f1 that is fiber preserving on the tubular neighborhoods and maps disk fibers
to disk fibers by cones of maps over the boundary spheres (that is, the map is normally
straightened in the sense of [20, page 31]). It will suffice to prove that f1 is an isovariant
homotopy equivalence, so without loss of generality we might as well assume that f
itself is normally straightened.

By the isovariant Whitehead Theorem established in Section 4 of [20], the map f is an
isovariant homotopy equivalence if f defines a homotopy equivalence from M �M G

to N �N G . General position considerations imply that f induces an isomorphism of
fundamental groups, and therefore it suffices to check that f defines an isomorphism in
homology with twisted coefficients in the group ring of the fundamental group. Exact
sequence and excision arguments show that the latter holds if f induces homotopy
equivalences from M to N , from M G to N G , and from

`
S.�˛/ to

`
S.!˛/. The

first two of these follow because f is an equivariant homotopy equivalence. To prove
the third property first note that for each ˛ the homotopy fibers of S.�˛/�D.�˛/ and
S.!˛/�D.!˛/ are simply the fibers of the sphere bundles; since each D.�˛/ maps
to D.!˛/ by a homotopy equivalence, it suffices to know that a fiber of S.�˛/ maps
to a fiber of S.!˛/ with degree ˙1. This follows directly from the construction of
the isovariant map; the first step was to make an equivariant homotopy equivalence
normally straightened near the fixed point set, and the equivariant deformation in part
(iii) of Theorem 2.1 is constant near some fiber of S.�˛/.

Recognizing isovariant homotopy equivalences

One can combine Proposition 5.3 with Theorem 1.1 to obtain the following specializa-
tion of the Isovariant Whitehead Theorem:
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Theorem 5.4 Let f W M !N be a continuous isovariant mapping of oriented closed
semifree smooth G –manifolds that satisfy the Gap Hypothesis. Then f is an isovariant
homotopy equivalence if and only if f is an ordinary homotopy equivalence (forgetting
the group action), and the associated map of fixed point sets f G W M G!N G is also a
homotopy equivalence.

Proof of Theorem 5.4 The necessity of the conditions is immediate, so we only
need to check that the latter are also sufficient. Since smooth G–manifolds have the
equivariant homotopy types of G–CW complexes (cf Illman [24]), the Equivariant
Whitehead Theorem of Illman [23] and T Matumoto [29] and the hypotheses imply
that f must be an equivariant homotopy equivalence. Since f is an isovariant map, it
follows from Proposition 5.3 that f is an isovariant homotopy equivalence.

Remark (Extension to nonsemifree actions) We have mentioned that Theorem 1.1
extends to at least some smooth actions that are not semifree, and in fact the same is true
for Proposition 5.3. Given these, one can also extend Theorem 5.4 provided the final
clause about f G is replaced with the following: . . . and for each subgroup H �G the
associated map of H –fixed point sets f H W M H !N H is also an ordinary homotopy
equivalence. (Note: since the group G acts trivially on its fixed point set, there is no
difference between equivariant and ordinary homotopy equivalences of the singular
sets — that is, the points where the action is not free — in the semifree case.)

6 Final remarks

Questions about the role of the Gap Hypothesis in transformation groups have been
around for some time (cf Schultz [41]). Such questions rarely have clear cut answers,
but the main results of this paper strongly suggest that the usefulness of the Gap
Hypothesis is closely related to

(1) the strong implications of isovariance for analyzing existence and classifications
questions for group actions,

(2) some very close relationships between isovariant homotopy and equivariant
homotopy when the Gap Hypothesis holds.

We shall discuss a few aspects of these points in this section.
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Extending Theorem 1.1 to other cases

Since the Gap Hypothesis was used at several crucial points in the proof of our main
theorems, one might reasonably expect that these results do not necessarily hold if
the Gap Hypothesis fails. Despite this, there are some situations in which one can
prove analogs of Theorem 1.1, particularly when G is cyclic of prime order and the
difference dim M � 2 dim M G is equal to 1 or 0. In particular, if we also assume that
G is cyclic of prime order and there is only one component with maximal dimension,
then one can use surgery theory to prove generalizations of Theorem 1.1. If G has
order 2 and the dimension difference is zero, then this is established in [42], and the
other cases will be shown in a forthcoming paper by K H Dovermann and the author.
On the other hand, the previously quoted results of results of Longoni and Salvatore
[27] imply that the analog of Theorem 1.1 does not necessarily hold if G has order 2
and M is not simply connected.

In a subsequent paper we shall use equivariant function spaces as in [38] and [7]
to construct systematic families of equivariant homotopy equivalences that are not
homotopic to isovariant maps in situations where the Gap Hypothesis fails. In particular,
we shall construct connected examples where G is cyclic of prime order, dim M D

2 dim M G , and there are two components with the maximal dimension.

Implications for equivariant surgery

The methods and results of [20] provide a means for analyzing isovariant homotopy
theory — and its relation to equivariant homotopy theory — within the standard
framework of algebraic topology. Therefore Theorem 1.1 and the conclusions of
[20] suggest a two step approach to analyzing smooth G–manifolds within a given
equivariant homotopy type if the Gap Hypothesis does not necessarily hold; namely,
the first step is to study the obstructions to isovariance for an equivariant homotopy
equivalence and the second step is to study one of the versions of the isovariant surgery
theories in [43] or [49]. This approach seems especially promising for analyzing
classification questions by means of surgery theory and homotopy theory.

There are also other indications of very close ties between the validity of Theorem 1.1
and potential extensions of equivariant surgery to cases outside the Gap Hypothesis
range. The extensions of Theorem 1.1 mentioned in the preceding paragraphs use
results on equivariant surgery just outside the Gap Hypothesis range, and in particular
they depend heavily on some corresponding extensions of results from equivariant
surgery. Of course, one would also like to have more homotopy theoretic proofs for
such results. On the other hand, the counterexamples to Theorem 1.1 in certain cases
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also imply that one cannot expect to have purely algebraic obstructions to equivariant
surgery (based upon data like the equivariant fundamental group) in some situations that
are very close to those considered by Dovermann [14] or by A Bak and M Morimoto
[5; 6]. This seems to reflect the failure of the equivariant � � � theorem (compare
Dovermann–Rothenberg [17]) in certain cases where the Gap Hypothesis is not valid
(see the last section of Chapter I in Dovermann–Schultz [18] for quite different examples
along these lines).

A dual approach

The results of this paper also raise questions about a priori descriptions for isovariant
homotopy types of semifree action in equivariant terms when the gap hypothesis holds.
Theorem 5.4 is a simple observation in this direction. Another way of looking at the
question is to consider the implications of the main theorem for a dual approach to the
problem in which one begins by trying to work with the free parts of the group actions on
the manifolds; suh an approach might be particularly useful if one wishes to generalize
the main result to nonsmoothable actions using tools from controlled topology. If we
are given two finite equivariant CW complexes M and N with semifree actions of the
group G that are equivariantly homotopy equivalent and their orbit spaces are given by
M � and N � respectively, then purely formal considerations imply that the one point
compactifications of M ��M G and N ��N G are homotopy equivalent because these
spaces are homeomorphic to the quotient spaces M �=M G and N �=N G respectively.
If M and N are smooth manifolds and the Gap Hypothesis holds, then Theorem 1.1
implies that this canonical homotopy equivalence of one point compactifications comes
from a proper homotopy equivalence between M � �M G and N � �N G and this
mapping can be compactified in the sense of Quinn’s work on ends of maps [36]. A
good understanding of this from the viewpoint of controlled topology as in [36] would
be extremely useful for studying possible extensions of Theorem 1.1 to group actions
that are not necessarily smooth but are still somehow well behaved topologically.
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