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On realizing diagrams of …–algebras

DAVID BLANC

MARK W JOHNSON

JAMES M TURNER

Given a diagram of …–algebras (graded groups equipped with an action of the primary
homotopy operations), we ask whether it can be realized as the homotopy groups of a
diagram of spaces. The answer given here is in the form of an obstruction theory, of
somewhat wider application, formulated in terms of generalized …–algebras. This
extends a program begun by Dwyer, Kan, Stover, Blanc and Goerss [21; 10] to study
the realization of a single …–algebra. In particular, we explicitly analyze the simple
case of a single map, and provide a detailed example, illustrating the connections to
higher homotopy operations.

18G55; 55Q05, 55P65

1 Introduction

A recurring problem in algebraic topology is the rectification of homotopy-commutative
diagrams: given a diagram F W D! ho T� (that is, a functor from a small category to
the homotopy category of topological spaces), we ask whether F lifts to yF W D! T� ,
and if so, in how many ways.

Such questions arise naturally in determining if a given H –space is a loop space; in
defining Steenrod operations; in analyzing structured ring spectra; and so on. Our
goal here is to present an obstruction-theoretic approach to an algebraic version of this
question.

1.1 Diagrams of …–algebras

Recall that a …–algebra is a graded group equipped with an action of the primary ho-
motopy operations (Whitehead products and compositions), modeled on the homotopy
groups of a space (see Section 2 below). In [21; 22], Dwyer, Kan, and Stover set out
to construct an obstruction theory for realizing a given …–algebra ƒ as ƒŠ ��X ,
for some space X . The program was completed by Blanc, Dwyer and Goerss in [10],
using methods developed by Dwyer and Kan in a series of papers which established
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764 D Blanc, M W Johnson and J M Turner

a general obstruction theory for rectifying homotopy-commutative diagrams (see the
work of Dwyer, Kan and Smith [16; 17; 18; 19; 20]). Our goal here is to extend this
program to address the following:

1.2 Diagram realization question

Can a given diagram of …–algebras ƒW D!…–Alg be realized – that is, lifted to a
diagram of spaces yƒW D! T� with �� ı yƒDƒ?

The answer we provide is in the form an obstruction theory: we inductively define a
sequence of cohomology classes kn 2H nC2.ƒI�nƒ/, and show that ƒ is realizable
precisely when kn D 0 for all n. The case of a single …–algebra was treated in [10],
and the extension to our context is straightforward. However, the description there was
in terms of moduli spaces, and it seems worthwhile making obstruction theory explicit.
A further generalization of this theory appears in [4], but it is not easy to extract from
it the simpler version needed here.

1.3 Generalized …–algebras

In fact, it turns out that this approach may be carried out somewhat more generally, for
any E2 –model category sC (see Section 4), once we have chosen a set A of homotopy
cogroup objects in C to play the role of the spheres fSng1

nD1
in T� .

Note that a …–algebra can be thought of as a product-preserving functor T W …op!

Set� , where … is the subcategory of finite wedges of spheres in ho T� . Similarly
defining …A � ho C for any A as above, we define a …A–algebra to be a product-
preserving functor …op

A ! Set� .

For example, a map �W �!ƒ of ordinary …–algebras corresponds to a diagram in
.…A–Alg/D , where D has two objects and a single non-identity map 0! 1. Setting

A WD fSn Id
! Sn;�! Sn

gn2N;

we can think of � as a generalized …A–algebra. The realization question for diagrams
of …–algebras is thus a special case of the the following:

1.4 General Realization Question

Given a model category C with set of models A, when is a …A–algebra ƒ realizable
in C? That is, is there an X 2 C such that �AX Š ƒ (where �AX is defined by
A 7! ŒA;X �C ?)

Again, this is not meant to be a gratuitous exercise in generalization: it allows us
to answer in a systematic way the same question for (diagrams of) localized or n–
connected spaces, spectra, n–types, and so on.
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1.5 Notation and conventions

T will denote the category of topological spaces, and T� that of pointed connected
topological spaces. By a space we shall always mean an object in T� .

The category of groups is denoted by Gp , and that of pointed sets by Set� . For
any category C , grA C denotes the category of A–graded objects over C (that is, the
category CA of diagrams indexed by the discrete category A), and sC that of simplicial
objects over C . The category of simplical sets will be denoted by S , that of pointed
connected simplicial sets by S� , and that of simplicial groups by G . For any Z 2 C ,
write c.Z/� for the constant simplicial object determined by Z .

The suspension in a model category C will denote the usual pushout of the inclusions
in two cones (that is, factorizations of the final map as a cofibration followed by an
acyclic fibration), following Quillen [35, Section I.2]. This operation will be indicated
by †C henceforth.

1.6 Definition The category of simplicial objects X0; : : : ;Xn truncated at the nth
dimension will be denoted by snC . If C has enough colimits, the obvious truncation
functor trnW sC ! snC has a left adjoint �nW snC ! sC , and the composite skn WD

�n ı trnW sC! sC is called the n–skeleton functor. Thus skn X� is “freely generated”
as a simplicial object by X0; : : : ;Xn .

1.7 Definition Let �Œn� denote the standard n–simplex in S , generated by �n2�Œn�n ,
with boundary @�Œn� (the sub-object generated by di�n for 0 � i � n). Similarly,
the k th-horn ƒk Œn� is the sub-object generated by di�n for i ¤ k . The simplicial
n–sphere is Sn WD�Œn�=@�Œn�.

If C has enough colimits, for M 2 S� and X 2 C , we define X y̋M 2 sC by
.X y̋M /n WD

`
m2Mn

X , with face and degeneracy maps induced from those of
M . For Y 2 sC , define Y ˝M 2 sC by .Y ˝M /n WD

`
m2Mn

Ym . The simplicial
suspension functor �˝Sn (on sC ) is defined by Y ˝Sn WD Y ˝ .�Œn�=@�Œn�/.

The main result of this paper is an obstruction theory for dealing with the general
realization question, expressed in the following:

1.8 Theorem (Theorems 6.3 and 6.4) A …A–algebra ƒ can be realized in C if and
only if an inductively-defined sequence of cohomology classes in H nC3

ƒ
.ƒI �nC1ƒ/

all vanish. The different realizations (if any) are classified (up to homotopy) by elements
of H nC2

ƒ
.ƒI �nC1ƒ/.
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1.9 Higher homotopy operations

Higher order homotopy operations appear as obstructions to rectifying homotopy
commutative diagrams, so, as one might expect, they tie in with our approach (in more
than one way). One of the original motivations for this paper was to try to understand
the intriguing relationship between the diagram realization question, framed in the
algebraic language of …–algebras and cohomology, and the motivating topological
problem of rectifying homotopy commutative diagrams. A general answer is still
beyond us (but see Remark 1.12 below). We shall, however, show how this connection
appears in a specific example, which we will be using as a leitmotif to illustrate various
constructions throughout this paper.

1.10 Definition Given a homotopy commutative diagram

(1–1) W
f //

�

##
X

g //

�

77Y
h // Z

the Toda bracket hf;g; hi � Œ†W;Z� is the set of all homotopy classes which are
pushout maps k in the diagram

(1–2)

W

PO

i1 //

i2

��

C W

�� GıCf

��

C W //

hıF --

†W
k

%%
Z

where GW h ıg � � and F W g ıf � � are any nullhomotopies.

Note that hf;g; hi is the obstruction to rectifying the homotopy commutative diagram
(1–1), in the sense that it vanishes (that is, contains the null class) if and only if (1–1)
can be rectified (that is, realized by a strictly commutative diagram, with the null maps
represented by actual zero maps).
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1.11 Example Recall that in the stable range

(1–3) �iSk
Š

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Zh�i for i D k

.Z=2/h�i for i D kC 1

.Z=4/h�2i for i D kC 2

.Z=24/h�i for i D kC 3

0 for i D kC 4; kC 5

where �3 D 12� (cf Toda [38, 14.1]). Thus, for k � 3, the sequence

SkC2
� // SkC1

2 // SkC1
� // Sk

is an instance of (1–1), with the corresponding Toda bracket

(1–4) h�; 2; �i D f�; �C �3
g D f˙�g � �kC3Sk :

(See Toda [38, (5.4)]).

1.12 Remark Given a homotopy-commutative diagram F W D! ho T� of topological
spaces (for most reasonable indexing diagrams D), a suitable higher homotopy operation
appears as the obstruction to rectifying F (that is, lifting it to T� ). However, in many
applications all spaces in the diagram (except perhaps F.�/, where � is terminal in
D) are (wedges of) spheres – as in Example 1.11.

In this case we can replace F by the corresponding diagram of …–algebras ��ıF W D!

…–Alg with no loss of generality (beyond the choice of realization for ��F.�/), and
any obstruction to realizing �� ıF is in particular an obstruction to rectifying F . Thus
Theorem 1.8 provides a way to describe many higher homotopy operations algebraically,
in terms of suitable cohomology classes. We hope to pursue this point further in a
future paper.

1.13 Organization

In Section 2 we define our objects of study, …A–algebras and some related algebraic
concepts. Section 3 begins a detailed analysis of resolution model category structures
on sC , and their basic properties, giving several important examples. Section 4 defines
E2 –model categories, which are a special kind of resolution model category provided
with additional structures, such as Eilenberg–Mac Lane objects and Postnikov towers.
The motivating examples of diagram categories of spaces, as well as the main algebraic
categories, are all instances of this. In fact, we show that any diagram category on an
E2 –model category is another, which provides a broad class of examples.
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In Section 5, we define the cohomology theory associated to an E2 –model category
structure and describe some of its basic properties. We illustrate this for the simplest ex-
ample of a diagram category, namely an arrow category, and show how the cohomology
of an arrow relates to that of the source and target objects.

The technical heart of the paper is the obstruction theory for dealing with the general
realization question, which appears in Section 6. As expected, we induct up the
construction of the Postnikov tower of our (putative) simplicial object expected to yield
a realization of ƒ. Section 7 provides a more explicit description of the single map
case, illustrating it with a detailed example.

1.14 Acknowledgements We would like to thank the referee for his or her comments.
The third author was supported by NSF grant DMS-0206647 and a Calvin Research
Fellowship (SDG).

2 …A–algebras

The functor X 7!��X is corepresented by spheres in the homotopy category of spaces.
If we want to include the group structures, Whitehead products, and �1 –actions as
well, we expand the domain category (choices of the argument ? for Œ?;X �) to finite
wedges of spheres, and require that wedges be sent to products. This definition extends
to other model categories, using the relevant properties of spheres:

2.1 Definition Let C be a cofibrantly generated pointed model category which is
right proper – that is, the pullback of a weak equivalence along a fibration is a weak
equivalence. A collection of models for C is a set A of cofibrant homotopy cogroup
objects in C , closed under suspension in C (denoted by †C ).

2.2 Definition Given a model category C as above and a set A of models for C ,
let …A denote the full subcategory of ho C consisting of fibrant and cofibrant objects
weakly equivalent to finite coproducts of objects from A (which become products
in …op

A ). A …A–algebra is defined to be a product-preserving functor …op
A ! Set� ,

and the category of …A–algebras (and natural transformations) will be denoted by
…A–Alg .

Since the suspension operator in C preserves the class of cofibrant homotopy cogroup
objects, in many of our examples A is generated under †C by a much smaller set. For
example, the set of spheres used to define ordinary …–algebras is generated by the
circle S1 .
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2.3 Example The canonical example of a …A–algebra is a realizable …A–algebra–
that is, one given by Œ?;X �C for some X 2 C . This will be referred to as the homotopy
…A–algebra of X ; it defines a functor �AW ho C!…A–Alg .

2.4 Remark When C D Gp is the category of groups, and AD fZg, the category of
…A–algebras is equivalent to Gp itself. In Example 3.7(f), we allow for a range of
universal algebras as examples for C . As noted by Quillen [35, Section II], there is an
(unique) object D 2 C such that, for AD fDg, the category …A–Alg is equivalent to
C .

On the other hand, in the resulting resolution model category G D sC with A D
fZg, (under the constant embedding of C in sC ), the category …A , consisting of all
suspensions of Z and coproducts thereof, is just the G–version of the collection of
all wedges of spheres (in T� ), so …A–Alg is the original category of …–algebras
(cf Stover [37, Section 2]). See Example 1.11 and Section 2.16 for examples of such
…–algebras.

2.5 The free functor

There is a forgetful functor OW …A–Alg! grA Set� to the category of A–graded
pointed sets, with left adjoint F W grA Set� ! …A–Alg . We call F.W / the free
…A–algebra generated by W 2 grA Set� . Thus …A–Alg is an FP-sketchable variety
of universal algebras as in Example 3.7(f), sketched by the G–theory ‚ WD …A .
In particular, …A–Alg is complete and cocomplete (see Adámek and Rosický [1,
Section 1]).

2.6 Products and coproducts

We now describe a variety of constructions which will be used at various points later.
Given two …A–algebras ƒ and � over a fixed …A–algebra B , we define their fibered
product ƒ�B � in …A–Alg=B by declaring its value on an object U 2…A to be the
set-theoretic pullback

(2–1)

.ƒ�B �/.U /

��

//
Q
ˇ.ƒ.U /�

Q
 B.U / �.Uˇ//

�

��Q
˛.ƒ.U˛/�

Q
 B.U / �.U //

� //
Q
˛

Q
ˇ.ƒ.U˛/�

Q
 B.U / �.Uˇ//

whenever U D
`
˛ U˛ for U˛ 2…A .
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Similarily, the coproduct ƒ0qƒ1 of two …A–algebras ƒ0 and ƒ1 may be char-
acterized explicitly by first setting ƒ0qƒ1 WD F.W0 _W1/, if ƒ0 D F.W0/ and
ƒ1 D F.W1/ are free; and, more generally, as the natural group quotient

.FOƒ0qFOƒ1/=I

where I is the smallest ideal containing the kernels Ki of FOƒi !ƒi for i D 0; 1.
Note there is also a coequalizer in …A–Alg

.FO/2ƒ0q .FO/2ƒ1� .FO/ƒ0q .FO/ƒ1!ƒ0qƒ1

induced by the two adjunction maps FO! Id and Id!OF .

2.7 Definition An ideal in a …A–algebra ƒ is a sub-…A–algebra I �ƒ, such that
for any U 2…A , the top arrow in the commuting diagram

(2–2)

ƒ.U /� I.U / //

��

I.U /

��
ƒ.U /�ƒ.U / // ƒ.U /

exists. (Uniqueness follows from injectivity of I.U /! ƒ.U /). For example, the
kernel Ker.f / WD ��� ƒ of a map of …A–algebras f W ƒ! � is an ideal.

2.8 Definition For a fixed …A–algebra ƒ, a ƒ–…A–algebra is a map of …A–
algebras i W ƒ! � . In particular, given W 2 grA Set� , the free ƒ–…A–algebra on
W is defined by Fƒ.W / WD F.W /qƒ. Similarly, we can define the ƒ–coproduct
�1qƒ �2 of two ƒ–…A–algebras �1 and �2 as a coequalizer in …A–Alg

ƒ� �1q�2! �1qƒ �2

where the left pair of maps is defined using the maps to left/right factors ƒ�ƒqƒ

together with the coproduct of the ƒ–algebra structure maps for �i , i D 1; 2.

Given an ideal I �ƒ, the quotient …A–algebra of ƒ by I is then defined: ƒ=I WD
�qI ƒ.

2.9 Definition If ƒ is a …A–algebra, we define the loop …A–algebra �ƒ by
�ƒ.U / WDƒ.†CU /, where †CU is the suspension of U in C .

Algebraic & Geometric Topology, Volume 6 (2006)



On realizing diagrams of …–algebras 771

2.10 Abelian …A–algebras

An abelian group object M in …A–Alg is called an abelian …A–algebra – that is,
if Hom…A–Alg.B;M / has a natural abelian group structure for any B . Note that the
structure is induced by the underlying A–graded group structure in …A–Alg , so in
particular OM is an A–graded abelian group.

Denote by Ab.…A–Alg/ the subcategory of abelian …A–algebras. The inclusion
functor Ab.…A–Alg/! …A–Alg has a left adjoint Ab, called the abelianization
functor, defined for ƒD F.W / by

.Ab.F.W ///.A/ WD ˚WA
Ab.�A.A//:

For general ƒ, define Ab.ƒ/ to be the coequalizer in …A–Alg

Ab..FO/2ƒ/� Ab..FO/ƒ/! Ab.ƒ/:

Note that the composite Ab ı F W grA Set� ! Ab.…A–Alg/ is left adjoint to the
forgetful functor, so it is the free abelian …A–algebra functor. From the adjointness
we get a natural abelianization map �W ƒ!Ab.ƒ/ and we define the ideal W .ƒ/�ƒ

as Ker.�/.

Then W .ƒ/ may be viewed as the ideal of primary operations acting on elements of
ƒ, and we have ƒ=W .ƒ/Š Ab.ƒ/.

2.11 Modules

For a fixed …A–algebra ƒ, a module over ƒ is an abelian group object pW M !ƒ

in the over-category …A–Alg=ƒ. This means that it is endowed with maps

mW M �ƒM !M and i W M !M

in …A–Alg=ƒ, as well as a section sW ƒ ! M for p (which represents the unit
element in the abelian group Homƒ.ƒ;M /). The category of modules over ƒ is
denoted by ƒ–Mod .

Moreover, given a map of …A–algebras ƒ! � , the associated restriction functor
�–Mod !ƒ–Mod has a left adjoint, which we denote by .�/�ƒ � .

Note that K WD Ker.p/ is itself an abelian …A–algebra, as we can see by mapping
0W X !ƒ to pW M !ƒ in …A–Alg=ƒ for any …A–algebra X , so we have a split
exact sequence of …A–algebras

(2–3) 0 // K // M // ƒ
zz

// 0;
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and in particular OM DOƒËOK is a semi-direct product of groups.

However, K is not just an abelian …A–algebra; it also has an action of ƒ on it,
determined by an action map

�f W ƒ.U /ËK.U /!K.V /

for each f W V ! U in …A ,, subject to the requirements that:

(1) The composite K.U /!ƒ.U /�K.U /
�f
�!K.V / is equal to K.f /;

(2) For gW W ! V in …A , the action map �f ıg equals the composite

ƒ.U /�K.U /
��Id
�! ƒ.U /� .ƒ.U /�K.U //

ƒ.f /��f
�! ƒ.V /�K.V /

�g

�!K.W /

We sometimes say that K itself, endowed with this action of ƒ, is a ƒ–module (which
corresponds to the traditional description of an R–module, for a ring R), and write
M DƒËK .

Note that Ab ıFƒ ŠƒË .Ab ıF /, so Ab ıFƒW grA Set�!ƒ–Mod can be viewed
as the free ƒ–module functor.

2.12 Remark When …A–Alg D …–Alg , a ƒ–module K is simply an abelian
…–algebra, equipped with mappings hh ; iiW ƒp � Kq ! KpCq , commuting with
compositions, such that for each q > 0, ˛ ı x WD hh˛;xii � x defines an action of
ƒ0 on Kq , satisfying hb; ai ı .a ı x/ D �ha; bi ı x � hha;xii, while for p > 0,
hh ; iiW ƒp �Kq!KpCq is bilinear, and satisfies

hh˛; hhˇ;xiiii D hhh˛; ˇi;xiiC .�1/pq
hhˇ; hh˛;xiiii:

2.13 Example For a …A–algebra ƒ, define the …A–algebra �Cƒ by

�Cƒ.A/ WDƒ
�
.†CA/

_
A
�
:

There is then a split exact sequence

(2–4) � // �ƒ // �Cƒ // ƒ
xx

// �;

which gives �Cƒ the structure of a module over ƒ.

2.14 Example The fold map rW ƒqƒ! ƒ possesses two sections. Let K WD

Ker.r/. Define the Kähler differentials of ƒ by �ƒ WD Ab.K/. Then the split exact
sequence

(2–5) � // �ƒ // �ƒqK .ƒqƒ/ // ƒ
uu

// �

gives �ƒ the structure of a ƒ–module.
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We will see in Remark 5.5 that the Kähler differentials are closely related to our
cohomology theories.

Our key examples of modules come in Proposition 3.12, where we will see that for
n> 0, the natural homotopy groups �\nY� (see Example 2.3) and their loop algebras
are modules over �\

0
Y� .

2.15 Remark We have in view two types of categories for C here: one type are
“algebraic” categories, such as Gp and …A–Alg , in which the model category structures
are trivial (in the sense that the only weak equivalences are isomorphisms), so the
associated realization question is also trivial.

The other type is “topological” – for example, G or T� . Here the associated algebraic
invariants, such as homotopy groups, give rise to meaningful realization questions;
and the associated simplicial categories possess nontrivial resolution model category
structures, suited to addressing such questions.

However, as we shall see, in trying to construct a “topological” object realizing a given
“algebraic” invariant, we will need to apply the constructions provided in this paper
to objects in both types of category, which is why we set up our machinery in a form
suitable for both contexts.

2.16 A space and its …–algebra

We now give an example of a …–algebra which will be used later to illustrate the
general theory.

For k � n, let …–Algk
n denote the category of k –truncated and .n�1/–connected

…–algebras ƒ, with ƒiD 0 for i <n or i >k . Note that in the stable range – that is, if
k<2n – this is an abelian category. By restricting attention to .n�1/–connected spaces,
and truncating higher homotopy groups, we may (and shall) assume that trk ��X takes
values in …–Algk

n . More formally, we may work in the context of Section 3.16(c)–(d)
below.

From now on, we take n� 4 with k WD nC2, and let Sr WD ��Sr and Sr
x WD trnC2 Sr

denote the free monogenic algebra (in …–Alg or …–AlgnC2
n ) on a generator x in

degree r .

For n� 4, let X WD Sn[2 enC1 D†n�1RP2 . Then

�iXŠ

8̂̂̂̂
<̂
ˆ̂̂:
.Z=2/h˛i for i D n

.Z=2/h˛ ı �i for i D nC 1

.Z=4/hˇi for i D nC 2

.Z=2/h˛ ı �i˚ .Z=2/hˇ ı �i for i D nC 3
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with 2ˇD ˛ ı�2 . Note that the inclusion 'W trnC2 ��X! Sn�1 , defined by '.˛/D �
(and '.ˇ/D 6� , necessarily), is a morphism of .nC2/–truncated …–algebras (in fact,
even of .nC3/–truncated …–algebras, if n� 5).

2.17 Remark There is another non-trivial map of (truncated) …–algebras  W ��X!
Sn�1 , defined by '.˛/ D 0 and '.ˇ/ D �3 D 12� . This is induced by a map of
spaces – namely, the composite of the pinch map pW XD Sn [2 enC1! SnC1 with
�2W SnC1! Sn�1 .

3 Resolution model categories

In order to study the realization questions mentioned in the Introduction, we need a
suitable resolution model category structure on the associated simplicial model category
sC , originally defined by Dwyer, Kan and Stover in [21], and later extended by Bousfield
in [12]. A variant, called a spiral model category, is defined by Baues in [2, Section D.2].
We begin with some definitions:

3.1 Definition Let .�/˝ .�/W sC � sSet�! sC be the action of simplicial sets on
the simplicial category sC (see Definition 1.7 or Quillen [35, Section II.1]).

For any finite simplicial set K , the matching functor MK W sC! C is characterized as
a right adjoint by the relation

HomsC.c.Z/�˝K;X�/Š HomC.Z;MK X�/:

In particular, MnX� WD M@�Œn�X� WD limŒn�!Œk�Xk . Dually, the latching functor
LnW sC! C is defined by

LnX� WD colimŒk�!Œn�Xk :

Similarly, we may characterize CK W sC! C by means of a right adjunction

HomsC.c.Z/� ^K;X�/Š HomC.Z;CK X�/;

where Y� ^K is the pushout in sC

(3–1)

Y�˝� //

��

�

��
.Y�˝�/˝K // Y� ^K:

In particular, CnX� WD CM X� for M WD �Œn�=ƒ0Œn� and ZnX� WD CSnX� (see
Definition 1.7).
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3.2 Remark There is a natural sequence

ZnC1X�
inC1

! CnC1X�
d0
!ZnX�

in
! CnX�;

where the composite ind0 is induced by the map

ı0W �Œn�=ƒ
0Œn�!�ŒnC 1�=ƒ0ŒnC 1�:

Recall that we assume C to be a right proper cofibrantly generated pointed model
category, and A a set of models (that is, cofibrant homotopy cogroup objects) in C .

3.3 Definition A map pW X ! Y in ho C is called A–epic if p�W ŒA;X �C !

ŒA;Y �C is surjective for each A 2A. An object W 2 ho C is called A–projective if
p�W ŒW;X �C! ŒW;Y �C is surjective for each A–epic map pW X!Y in ho C . Finally,
an object (respectively, map) of C is called A–projective (respectively, A–epic) if it is
so in ho C .

3.4 Definition (a) a map f W X�! Y� in sC is a Reedy fibration if the induced
map Xn! Yn �MnY� MnX� is a fibration in C for all n� 0;

(b) a map g in C is an A–projective cofibration if g is a cofibration in C , and has
the left lifting property with respect to the class of fibrations in C which are, in
addition, A–epic.

3.5 The resolution model category

Given C and A as above, a map f W X�! Y� in sC is

(a) an A–weak equivalence if f�W ŒA;X��C ! ŒA;Y��C is a weak equivalence of
simplicial groups for all A 2A;

(b) an A–fibration if f is a Reedy fibration and f�W ŒA;X��C ! ŒA;Y��C is a
fibration of simplicial groups for all A 2A;

(c) an A–cofibration if the induced map XnqLnX� LnY�! Yn (Definition 3.1) is
an A–projective cofibration in C for all n� 0.

3.6 Theorem If C is a pointed right proper simplicial model category with a set of
models A, then sC , with the A–weak equivalences, A–fibrations, and A–cofibrations,
and the external simplicial category structure (Definition 1.7 and Quillen [35, Sec-
tion II.1]), is a right proper simplicial model category, called the A–resolution model
category, and denoted by sCA .

Proof See Jardine [30, Theorem 2.2].
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3.7 Example If C D T� and A WD fSng1
nD1

, (generated by S1 ), the resulting A–
resolution model category structure on the category sT� of pointed simplicial spaces is
the original “E2 –model category” of Dwyer, Kan and Stover [21].

In constructing cofibrant replacements for objects in an A–resolution model category,
we shall have occasion to use the following:

3.8 Definition A CW complex is an object X� 2 sCA such that
� For each n� 0, Xn Š

xXnqLnX� for some xXn 2 Obj…A ;
� di j xXn

D � for all i � 1.

The attaching map d0jSXn
W SXn!Ln�1X� is denoted by xd0 . The collection f SXng

1
nD0

is called a CW basis for X� . It is straightforward to check that a CW complex in sCA
is A–cofibrant.

3.9 Definition The nth natural homotopy group of X� 2 sC with coefficients in
A 2A is defined to be �\n.X�;A/ WD �0 mapsC.A y̋Sn;Y�/ (cf Definition 1.7), where
X�! Y� is a Reedy fibrant replacement of X� . It can be equivalently defined by the
exact sequence

ŒA;CnC1Y��C
.d0/�
! ŒA;ZnY��C! �\n.X�;A/! 0:

(see May [33, 17.3]). Denote the A–graded group .�\n.X�;A//A2A by

�\n.X�;A/D �\nX� :

3.10 Remark Since A2C is a homotopy cogroup object, whenever X� 2 sC is Reedy
fibrant we may identify ŒA;CnX��C with CnŒA;X��C (the n–chains group (Definition
3.1) for the simplicial group ŒA;X��C ).

3.11 Definition By applying the functors ŒA;��C for A 2 A to a simplicial object
X�2 sC , we obtain a simplicial group ŒA;X��C , since our models are homotopy cogroup
objects by assumption. This leads to another kind of homotopy group for X� , namely
�n.X�;A/ WD �nŒA;X��C . Write �n�AX� for the A–graded group .�n.X�;A//A2A .

As shown by Dwyer, Kan and Stover [22, 8.1] and, more generally, by Goerss and
Hopkins [24, 3.4], the two types of A–graded homotopy groups are related by a spiral
exact sequence

(3–2) � � � !��
\
n�1

.X�;A/
sn
�! �\n.X�;A/

hn
�! �n�AX�

@n
�!

��
\
n�2

.X�;A/! � � � ! �
\
1
.X�;A/! �1�AX�
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where ��\n.X�;A/ WD �
\
n.X�; †CA/, for †CA the suspension of A in C .

3.12 Proposition (cf Blanc, Dwyer and Goerss [10, Proposition 7.13]) For any
simplicial object X� 2 sCA , there are natural actions of �\

0
.X�;A/ Š �0�AX� on

�
\
n.X�;A/ and ��\n.X�;A/, making the spiral exact sequence (3–2) a long exact

sequence of modules over �\
0
.X�;A/.

Proof Because Sn D�Œn�=@�Œn� has two non-degenerate simplices, if we set

2A˝Sn WD .A y̋ �Œn�/=.A y̋ @�Œn�/;

the map of simplicial sets Sn!�Œ0� has a section, which induces

2A˝Sn
i // A y̋Sn

p
// A y̋�Œ0�;

s
uu

and thus a natural splitting

�
\
n.X�;A/ p#

// �
\
0
.X�;A/

s#ss

for each X� 2 sC and A 2 A. Using the usual homotopy cogroup structure on Sn

(over �Œ0�), we see that �\nX� is actually a group object over �\
0
X� . Furthermore, it is

abelian because of the underlying group structure coming from the fact that each A2A
is a homotopy cogroup object itself (compare Whitehead [39, III, Theorem 5.21]).

3.13 Remark Ker.p#/Š Œ2A˝Sn ;X�� is actually the more traditional nth homotopy
group of X� (over the base-point component).

3.14 Algebraic categories

It will be helpful to include the following “algebraic” examples (cf Remark 2.15) among
our candidates for C :

(a) Let CD…A–Alg and BDf�A.A/gA2A . Then C has the trivial model category
structure, where only isomorphisms are weak equivalences and all maps are both
cofibrations and fibrations (notice this implies the suspension functor †C is the
constant functor on �). Recall that the objects of the form A.A; ?/ constitute a
strong generating set for grA Set� by the Yoneda lemma, and FA.A; ?/D�A.A/
for the free functor F defined in Section 2.5. Hence, the resolution model
category structure on s…A–Alg with this B is identical to the usual model
category structure on sC inherited from the category of simplicial (A–graded)
groups.
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(b) More generally, let C D‚–Alg be any FP-sketchable variety of (graded) uni-
versal algebras, corepresented by an FP-theory ‚ (cf Adámek and Rosický [1,
Section 1] or Blanc and Peschke [11, Section 1]): for example, the categories of
…A–algebras (corepresented by ‚D…op

A ), Lie algebras, graded commutative
algebras, and so on. We assume that ‚ is a G–theory as in [11, Section 2], so
that each ‚–algebra has an underlying (graded) group structure. In this case we
can endow C with the trivial model category structure, take A to be the set of
all monogenic free ‚–algebras, and obtain the usual model category structure
on sC (cf Quillen [35, Section II.4]).

(c) As an application of example (b) above, if C D Gp and A D fZg, then sCA
(where sC D G ) also provides a resolution model category for the homotopy
theory of pointed connected topological spaces (cf [35, Section II.3]).

3.15 Remark For many purposes it is more convenient to work with G than with T� .
When we do so, we use the simplicial group spheres Sn D FSn�1 2 G for n� 1 (and
S0DGS0 ) as our models A. (For definitions of the various loop group constructions on
simplicial sets see, for example, Goerss and Jardine [27, V.6].) Note that D–diagrams
of simplicial spaces are then replaced by D–diagrams of bisimplicial groups, which
are just (more complicated) diagrams of groups, so that many constructions may be
performed entrywise in Gp .

3.16 Topological categories

It is also useful to include a number of variants of the usual category of pointed
topological spaces:

(a) If C D T� in the rational model structure and A WD fSn
Q
g1
nD2

(generated by
S2

Q
) or C D T� in the p–local model structure and fSn

.p/
g1
nD2

, then we have
resolution model structures on sT� for rational or p–local simply-connected
homotopy theory.

(b) If C D Spec is an appropriate category of spectra (cf Mandell, May, Schwede
and Shipley [32]), and A WD fSng1nD�1 are all sphere spectra, we have a
resolution model category structure on sSpec for simplicial spectra (see Goerss
and Hopkins [24; 25; 26] for the details on this and other categories of structured
ring spectra).

(c) Take C to be one of the model categories for n–types, such as the n–cat groups of
Loday [31] or the crossed n–cubes of Ellis and Steiner [23] and A WD fSkgn

kD1
,

which gives a resolution model category structure on sC for n–types of spaces.
An alternative is to use the (left) Bousfield localization model category structure
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on pointed spaces (see Hirschhorn [28, Sections 2.1 and 3.3]) for the map
�! SnC1 (see Dror Farjoun [15, Section 1.E.1]).

(d) Take C D T� and AD fSng1
nDk

(generated by Sk ); then we have the resolution
model structure on sT� for the homotopy theory of “.k�1/–connected types”
for spaces – that is, the right Bousfield localization model of [28, Section 3.3]
(see [15, Section 2.D.2.6]).

3.17 Diagram categories

The motivating type of example for this paper was the category T D
� of D–diagrams of

spaces, where D is a small category.

Recall that for any object X 2 C and d 2 Obj D, the free D–diagram F.X; d/ is
defined by setting the e–entry equal to F.X; d/e WD

`
HomD.d;e/

X , with maps induced
by the identity on each factor. Then for any collection of models A for C , the induced
collection of models B for CD consists of all free D–diagrams F.A; d/ for d 2Obj D

and A 2A.

Note that the model category structure on sT D
� given by Theorem 3.6 using B is

identical to the structure induced from that on sT� associated to A (and Theorem
3.6) as in [28, Section 11.6]. Furthermore, the category …A–Alg is equivalent to the
category of D–diagrams of (ordinary) …–algebras in these cases.

3.18 Notation For any n2N, let Œn� denote the category with nC1 objects 0; 1; : : : ; n

and n composable maps between them. For example, DD Œ1� has two objects and a
single non-identity morphism 0! 1.

3.19 Examples (a) If C D T� and D D Œ1�, then T D
� is the category of maps

of spaces, and for any space X , the free object F.X; 0/ D X
Id
!X , while

F.X; 1/D�!X . Hence in this case A WD
˚
�! Sn;Sn Id

!Sn
	1

nD1
– that is, A

is generated by the pair consisting of �! S1 and S1 Id
!S1 – and …A–Alg is

the category of morphisms between …–algebras.

(b) Suppose C D T� and D D Œ2� (with a single composable pair of nonidentity
maps, denoted 0! 1! 2). Then for any space X , F.X; 0/ D X

Id
!X

Id
!X ,

F.X; 1/D �!X
Id
!X , and F.X; 2/D �! �!X . Thus A is generated by:

�! �! S1;�! S1 Id
! S1; and S1 Id

! S1 Id
! S1:

while …A–Alg is the category of composable pairs of maps between …–
algebras.
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4 E2–model categories

There are a number of familiar constructions for topological spaces which relate to
Postnikov towers and are useful to have in a resolution model category sCA , although
they need not exist in general. We shall show, however, that these constructions are
available in all of the examples we wish to consider.

4.1 Definition A Postnikov tower functor applied to an object X� in a resolution
model category sCA is a functorial commuting diagram

(4–1)

X�

r .nC1/

""FFFFFFFF
r .n/

""

r .n�1/

""
� � � // PnC1X�

p.nC1/

// PnX�
p.n/// Pn�1X�

p.n�1/

// � � �P0X�

of A–fibrations p.n/ and maps r .n/ which induce isomorphisms

�
\

k
.PnX�IA/Š

(
�
\

k
.X�IA/ 0� k � nI

0 otherwise:

4.2 Definition If sCA is a resolution model category, a classifying object BƒDBsCƒ

for a …A–algebra ƒ is any fibrant B� 2 sC such that B� ' P0B� and �\
0
B� Šƒ.

4.3 Definition Given an abelian …A–algebra M and an integer n � 1, an n–
dimensional M –Eilenberg–Mac Lane object E.M; n/ D EsC.M; n/ is any fibrant
E� 2 sC such that �\nE� ŠM and �\

k
E� D 0 for k ¤ n.

4.4 Definition Given a …A–algebra ƒ, a module M over ƒ, and an integer n� 1,
an n–dimensional extended M –Eilenberg–Mac Lane object Eƒ.M; n/DEƒ

sC.M; n/

is any fibrant homotopy abelian group object E� 2 sC=Bƒ satisfying

(4–2) �
\

k
E� Š

8̂<̂
:
ƒ for k D 0;

M (as a module over ƒ) for k D n;

0 otherwise:

4.5 Remark The fact that E� D Eƒ.M; n/ is a homotopy abelian group object
in sC=Bƒ implies that ŒBƒ;E��sC=Bƒ has a natural abelian group structure, so in
particular a unit element. Thus E� comes equipped with a designated homotopy section
s for r .0/W E�! P0E� ' Bƒ.
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From the spiral exact sequence (3–2) we readily calculate

(4–3) �k�AEƒ.M; n/Š

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

ƒ for k D 0;

�ƒ for k D 2;

M for k D n;

�M for k D nC 2;

0 otherwise;

with the obvious variant when nD 2 (that is, �2�AEƒ.M; 2/Š�ƒ�M ).

4.6 Remark Note that if we apply the loop functor in the category sC=Bƒ to
Eƒ.M; n/ – that is, take the pullback of Bƒ Eƒ.M; n/! Bƒ (cf Quillen [35,
Section I.2]) – we obtain Eƒ.M; n� 1/.

4.7 Definition Given a Postnikov tower functor as in Definition 4.1, an nth k –
invariant square (with respect to A) is a functor that assigns to each X� 2 sC a
homotopy pull-back square

(4–4)

PnC1X�

hPB

p.nC1/

//

��

PnX�

kn

��
Bƒ s

// Eƒ.M; nC 2/

for ƒ WD �\
0
X� and M WD �

\
nC1

X� . The map knW PnX�!Eƒ.M; nC 2/ is called
the nth k –invariant for X� .

4.8 Definition A resolution model category sCA as in Section 3.5 is called an E2 –
model category if:

Ax 1 sC has functorial Postnikov towers.

Ax 2 For every …A–algebra ƒ and ƒ–module M the classifying object Bƒ and
the n–dimensional extended Eilenberg–Mac Lane object Eƒ.M; n/ exist, for
each n� 1. In addition we assume the latter determines a functor

Eƒ.�; n/W ƒ–Mod ! Ab.ho.sC//;

both constructions are functorial in ƒ, and are unique up to homotopy.

Ax 3 sC has k –invariant squares (with respect to A) for each n� 0.
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Ax 4 There is a functor J W sC ! C such that, for ƒ 2 …A–Alg and X� 2 sC ,
if �AX�

�
!Bs…A–Algƒ is a weak equivalence in s…A–Alg , then there is an

isomorphism

(4–5) ŒA;JX��C
Š
! Hom…A–Alg.�AA; ƒ/;

natural in ƒ and A 2A.

4.9 Remarks

� Ax 1–Ax 3 imply that sCA is a spherical model category in the sense of Blanc
[4, Section 2], and so in particular is stratified in the sense of Spaliński [36].
These axioms are also satisfied, for example, by the category T� , which is not
itself a resolution model category (but see Remark 3.15).

� We may assume that our extended Eilenberg–Mac Lane objects are strict abelian
group objects in sC=Bƒ, by functoriality, since the group structure morphisms
for a ƒ–module M are maps of modules.

� Not all resolution model categories have the additional structure of a spherical
model category (see Remark 4.13).

� The point of Ax 4 is that any X� 2 sC=Bƒ with �AX� ' Bs…A–Algƒ in
s…A–Alg yields a realization JX� for ƒ (see Theorem 6.3). See Chachólski,
Dwyer and Intermont [14] for a way to geometrically handle cases where Ax 4
does not hold.

� The statement of Ax 4 may appear somewhat convoluted, because it is intended
to apply to two rather different contexts: see Theorems 4.10 and 4.12 below.
Theorem 4.10 deals with the case of universal algebras (hence the special case
of …A–algebras), while Theorem 4.11 treats the general extension to diagram
categories, thereby reducing our motivating example of diagrams of spaces to
a consequence of Theorem 4.12, which deals with sT� with several standard
model structures on T� .

4.10 Theorem Let C D ‚–Alg be an FP-sketchable variety of (graded) universal
algebras, corepresented by a G–theory ‚, with trivial model category structure, and
let A consist of monogenic free ‚–algebras, as in Example 3.7(f). Then sCA is an
E2 –model category.

Proof We use the constructions described by Blanc, Dwyer and Goerss [10] for the
case C D…–Alg :

For Ax 1 Follow Dwyer and Kan [17, Section 1.2]:
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Given Y� 2 sC and n� 0, first define Y
.n/
� 2 sC by

Y
.n/

k
D

(
Yk 0� k � nC 1I

Mk.Y
.n/
� / nC 2� k;

with simplicial maps determined from trnC1 Y� and ık W Mk.Y
.n/
� /! Y

.n/

k
, along with

the obvious maps p.n/W Y
.n/
� ! Y

.n�1/
� and r .n/W Y�! Y

.n/
� .

The Postnikov tower for X� 2 sC is then defined by setting PnX� WD Y
.n/
� , where

X�! Y� is a (functorial) A–fibrant replacement in sCA .

For Ax 2 Follow [10, Proposition 2.2], taking Bƒ to be the constant simplicial object
on ƒ, E.M; n/ to be the iterated Eilenberg–Mac Lane construction SW on BM (cf
May [33, Section 20]), and Eƒ.M; n/ to be the semi-direct product BƒËE.M; n/

(Section 2.11).

More explicitly, let W be a free ‚–algebra equipped with a surjection �W W !M .
Define a simplicial ‚–algebra B� by setting skn�1 B� WD skn�1 Bƒ and En 'W q

Bƒn , with W �ZnB� . A straightforward calculation shows CnBƒDZn�1BƒD 0,
so ZnB� D CnB� is the cokernel Bƒn ËW of Bƒn!En DW qBƒn . Note that
Bƒ0 embeds in Bƒn as a free retract by sn�1 � � � s0 , so Bƒn Š Bƒ0qL0 for some
‚–algebra L0 , where L0ËW is a ‚–algebra ideal in ZnB� , with quotient ‚–algebra
ZnB�=.L

0 ËW /ŠK0 ËW . This is by definition the free Bƒ0 –algebra generated
by W , and thus �W W !M extends to a map of Bƒ0 –algebras y�W Bƒ0ËW !M ;
precomposing with the projection ZnB�! Bƒ0 ËW defines z�W ZnB�!M .

Let xd0W
SBnC1!BnB� WDKer z� be a surjection from a free ‚–algebra, let BƒnC1 WD

SBnC1qLnC1B� , and let B� WDPn sknC1 B� . Then �nB�ŠM (as a ƒ–module), and
�iB�D 0 for i ¤ 0; n. The section is induced by the inclusion sknC1 Bƒ,! sknC1 B� .

For Ax 3 Follow [10, Sections 5–6].

Given X� 2 sC=Bƒ and n� 0, take the pushout

PnC1X�
p.nC1/

//

�� PO

PnX�

f

��
Bƒ g

// Y�;

and apply the functor PnC2 to the resulting diagram. The connectivity argument of
[10, Lemma 5.11] applies here, too, so the result is actually a homotopy pull-back
square, PnC2Y� is an extended Eilenberg–Mac Lane object (with section PnC2g ), and
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PnC2f is the k –invariant. The construction is evidently natural, since we have natural
Postnikov systems.

For Ax 4 Use �0W sC! C as the functor J . Then the trivial model category structure
on C gives the first identity

ŒA;JBƒ�C D HomC.A; �0Bƒ/Š �0Bƒ.A/

and the second isomorphism comes from the fact that A is monogenic free, while
�0BƒŠ �

\
0
.Bƒ/Šƒ completes the claim.

4.11 Theorem Let sCA be an E2 –model category, D a small category, and B the
induced collection of models in CD (see Section 3.17); then .sCD/B is an E2 –model
category.

Proof We use the induced collection of models B (Section 3.17) to extend the E2 –
model structure to sCD . The underlying simplicial model category structure on CD is
that of Hirschhorn [28, Section 11.6], with weak equivalences and fibrations defined
objectwise; thus evaluation at d 2 Obj D preserves fibrations and weak equivalences
and forms part of a strong Quillen pair, with left adjoint F.�; d/ (the free diagram
functor at d ). See [28, 11.5.26].

Hence, for A 2A, d 2 D, and X 2 sCD , we have a natural isomorphism

(4–6) ŒF.A; d/;X �sCD Š ŒA;X.d/�sC :

In particular, �B.�;F.A; d// is the same as �A.�;A/ after pre-composition with
evaluation at d . By the spiral exact sequence (3–2), the same holds for �\�.�;B/.

The axioms of Definition 4.8 can therefore be verified by applying the various con-
structions of sC at each d in D, and checking that the requisite properties are satisfied
in sCD , once they hold objectwise:

For Ax 1 Since sC has functorial Postnikov towers, sCD possesses such towers, with
.PnX�/.d/D Pn.X�.d//.

For Ax 2 Given a …B–algebra ƒ (that is, a functor ƒW D!…A–Alg ) and a module
M over ƒ, for each n � 1 we define the classifying object Bƒ and extended M –
Eilenberg–Mac Lane object Eƒ.M; n/ objectwise, by applying the appropriate functors
in sC to the diagrams ƒ and M . This is evidently functorial, unique up to homotopy,
and satisfies (4–2). Note that in order for Eƒ.M; n/ to be a homotopy abelian group
object in sCD=Bƒ, we must produce structure maps

(4–7) �W Eƒ.M; n/�BƒEƒ.M; n/!Eƒ.M; n/; �W Eƒ.M; n/!Eƒ.M; n/
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(over Bƒ), satisfying the appropriate identities. (The unit element is represented by
the section sW Bƒ!Eƒ.M; n/.) However, since M is itself an abelian group object
in …A–Alg=ƒ, it is equipped in turn with maps

mW M �ƒM !M and i W M !M

in …A–Alg=ƒ, which are themselves maps of ƒ–modules, and these induce the maps
of (4–7) by functoriality. Note that the functors Eƒ.�; n/ in sC preserve products of
modules (over ƒ) because of the homotopy uniqueness and functoriality.

For Ax 3 Since Postnikov towers and extended Eilenberg–Mac Lane objects, as well
as fibrations and weak equivalences are defined object-wise for d 2 Obj D, defining
k –invariants in sCD=Bƒ objectwise will give homotopy pullback squares that are
k –invariant squares.

For Ax 4 Suppose we are given a functor J W sC! C with the requisite properties.
Define J DW sCD! CD by .J DX�/.d/D J.X�.d//. Let �AX�

�
!Bs.…A–Alg/Dƒ be

a weak equivalence. Now we have two natural isomorphisms

ŒF.A; d/;J D.X�/�CD Š ŒA;J.X�.d//�C

and
Œ�BF.A; d/;ƒ�.…A–Alg/D Š Œ�AA; ƒ.d/�…A–Alg:

From Ax 4, applied to �AX�.d/
�
!Bs…A–Algƒ.d/ in s…A–Alg , we have the natural

isomorphism

ŒA;J.X�.d//�C
Š
! Œ�AA; ƒ.d/�…A–Alg:

Combining all three isomorphisms gives the required natural isomorphism

ŒF.A; d/;J D.X�/�CD

Š
! Œ�BF.A; d/;ƒ�.…A–Alg/D :

4.12 Theorem The category sT� of simplicial pointed connected topological spaces
(with the spheres .Sn/1

nD1
as models), and the four examples of Section 3.16, are all

E2 –model categories.

Proof The case CD T� was treated in [10], and all five cases may be treated similarly:

For Ax 1 As in the proof of Theorem 4.10.

For Ax 2 Follow [10, 7.7].

More explicitly, given A2A, for each n� 1 recall �\n.X�;A/Š ŒA y̋Sn;X��sC , where
A y̋Sn denotes c.A/�˝Sn 2 sC (see also Definition 1.7).
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For the existence of Bƒ, let U;V 2…A be such that �AU !ƒ is a free cover of ƒ,
and �AV ! �AU covers minimally the corresponding relations. For each summand
A in V , attach a copy of A y̋Sn to U . Applying P0 to the resulting object of sC
yields a classifying object Bƒ as required.

For the Eilenberg–Mac Lane objects, again we follow [10, 7.7]:

Let W be the model for Bƒ constructed as above. Let U;V 2 …A be such that
�AV ! �AU ! M is a presentation for M . Attach a copy of A y̋Sn for each
summand A of U to form an object Z 2 sC , then attach a copy of A y̋SnC1 to Z

for each A–coproduct summand of V to form Z0 . Applying Pn to Z0 yields the
desired Eƒ.M; n/. The existence of the section � W Bƒ!Eƒ.M; n/ follows from
[10, Proposition 4.9].

For Ax 3 Again follow [10, Sections 5–7], with the same construction as in the proof
of Ax 3 for Theorem 4.10.

For Ax 4 For the standard model of C D T� , J will be the realization or diagonal
functor k�kW sC!C (left adjoint to the constant functor c.�/�W C! sC ). This extends
entrywise to diagrams of simplicial spaces, as does the natural spectral sequence of
Quillen [34] (see also Bousfield and Friedlander [13, Theorem B.5]), yielding an
.N�A/–graded spectral sequence with

(4–8) E2
s;A D �s.X�;A/) �AkX�k:

Then (4–5) will be the edge homomorphism of this spectral sequence, which collapses
at the E2 –term if �AX� ' �ABƒ.

We can extend this spectral sequence argument to the other examples of Section 3.16
as follows:

(i) For Section 3.16 (a): the exactness of �˝R for R�Q allows us to obtain a
localized Quillen spectral sequence to verify Ax 4 for either rational or p–local
spaces.

(ii) For Section 3.16 (b): the spectral sequence for the realization of a simplicial
spectrum is analyzed by Goerss and Hopkins in [24, Section 6], showing that
Ax 4 is satisfied for sSpec (as well as for some structured versions of spectra).
For the remaining axioms see [25; 26].

(iii) For Section 3.16 (c): to verify Ax 4, apply the Quillen spectral sequence to PnX� ,
where X� is the usual resolution in sT� . Note that PnkX�k is n–equivalent to
kPnX�k (as we can see from the differentials in the spectral sequence itself).
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(iv) For Section 3.16 (d): if A WD fSng1
nDk

, we can use the usual Eilenberg–Mac Lane
objects (noting that the connectivity assumptions are not in the simplicial direc-
tion), and again apply the Quillen spectral sequence to resolutions in which all
spaces happen to be .k�1/–connected.

4.13 Remark Note that not all resolution model categories are E2 –model cate-
gories. In particular, if we replace the spheres by Moore spaces as our models (in
T� ), then we have neither Eilenberg–Mac Lane objects nor Postnikov systems for the
mod p homotopy groups (see Blanc [4, Section 3.10]). In addition, the realization of
simplicial spaces does not provide the expected functor J for Ax 4, since the Bousfield–
Friedlander spectral sequence for a mod p resolution does not collapse (see Blanc [7,
Section 4.6]).

4.14 Notation In what follows we will often have to deal with parallel constructions
of the E2 –model category structure in sCA , as well as in the associated algebraic
category s…A–Alg . In order to distinguish between them, we shall use boldface –
PnX� , Bƒ WDBsCƒ, E.M; n/ WDEsC.M; n/, and so on – for the constructions in sC ,
and tildes – zPnG� , zBƒ WDBs…A–Algƒ, zE.M; n/ WDEs…A–Alg.M; n/, etc. – for the
analogous constructions in s…A–Alg .

We may still use the unadorned symbols PnX� , Bƒ, and Eƒ.M; n/, etc., when we
do not need to make this distinction.

5 Cohomology theories

As one might expect, the Eilenberg–Mac Lane objects in an E2 –model category can
be used to define suitable cohomology theories:

5.1 Definition Let sCA be any resolution model category. A sequence of pointed
contravariant functors .DnW ho sCA!Z–Mod/1

nD0
is called a sequence of cohomology

functors if they satisfy the analogues of the usual Eilenberg–Steenrod axioms:

I Dn.
`
˛ X˛/Š

Q
˛ DnX˛ for any coproduct of cofibrant objects in sCA .

II Di.A y̋Sn/D 0 for i ¤ n and any A 2A;

III Given N� M�
i
�! P� in sC , with all objects cofibrant and i a cofibration, let

X� WDN�qM� P� be the pushout. Then there is a natural Mayer–Vietoris long
exact sequence

(5–1) 0!D0X�!D0N�˚D0P�!D0M�!D1X�

� � � !DnX�!DnN�˚DnP�!DnM�! � � �

Algebraic & Geometric Topology, Volume 6 (2006)



788 D Blanc, M W Johnson and J M Turner

5.2 Definition Fix a …A–algebra ƒ and a ƒ–module M . For X� 2 sCA=Bƒ and
n� 1, define the nth (andré-Quillen) cohomology group of X� over ƒ with coefficients
in M , denoted by H n

ƒ
.X�IM /, to be

H n
ƒ.X�IM / WD ŒX�;Eƒ.M; n/�sCA=Bƒ:

We would like to know that extending �AW sCA=Bƒ! s…A–Alg=�ABƒ to a functor
sCA=Bƒ! s…A–Alg= zBƒ (via �ABƒ! zP0�ABƒ' zBƒ) induces an isomorphism
of cohomology theories over ƒ. This holds for n� 2 by the following generalization
of Blanc, Dwyer and Goerss [10, Proposition 8.7]:

5.3 Proposition There is a natural map �W �AEƒ.M; n/! zEƒ.M; n/ such that

�n.X�/W ŒX�;Eƒ.M; n/�sCA=Bƒ! Œ�AX�; zE
ƒ.M; n/�

s…A–Alg= zBƒ
;

defined as the composite of the maps induced by � and �AW sC ! s…A–Alg , is an
isomorphism for n� 2.

Proof The section � W Bƒ! Eƒ.M; n/ (Remark 4.5) induces a section sW �ABƒ!
zPn�AEƒ.M; n/ for the map zp.n/W zPn�AEƒ.M; n/! zPn�1�AEƒ.M; n/D �ABƒ

(cf Definition 4.1) over zBƒ. Moreover, �AEƒ.M; n/ is known from (4–3). Therefore,
the .n�1/st k –invariant for �AEƒ.M; n/ fits into a homotopy-commutative diagram

�ABƒ

D

%%

s

((QQQQQQQQQQQQQ r

**
zPn�AEƒ.M; n/

hPB
zp.n/

��

// zBƒ

�

��
�ABƒ

zkn�1 // zEƒ.M; nC 1/

where zp.n/ is induced by �A.p.n//W �AEƒ.M; n/!�ABƒ, and r and the unlabelled
arrow is the unique terminal map in s…A–Alg= zBƒ. Thus zkn�1 D � ı r , yielding two
consecutive homotopy pullback squares

zPn�AEƒ.M; n/

hPB
zp.n/

��

� // zEƒ.M; n/

hPB

��

// zBƒ

��
�ABƒ r //

zkn�1

11zBƒ
� // zEƒ.M; nC 1/
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in which the required � is a structure map for the left square.

Now let

ˆn.X�/W mapsCA=Bƒ.X�;E
ƒ.M; n//!map

s…A–Alg= zBƒ
.�AX�; zE

ƒ.M; n//

be the analogously defined map, with �n.X /D �0ˆn.X�/.

Because �A takes homotopy pushouts in sCA to homotopy pushouts of simplicial
…A–algebras, it follows that the source and target of ˆn.�/ take homotopy pushouts to
homotopy pullbacks. Now every object of sCA is, up to homotopy, a filtered colimit of
objects constructed from copies of A y̋Sm by finitely many homotopy pushouts. Thus,
since source and target of ˆn take filtered colimits to homotopy limits of simplicial
sets, it suffices to show that ˆn.A y̋Sm/ is a �0 –equivalence for all m� 2 and A 2A.
As A y̋Sm corepresents �\n.?/ in ho sCA=Bƒ and �A.A y̋Sm/ corepresents �n�A.?/

in ho s…A–Alg for n� 2, the result follows from the naturality of � and Definition
4.4.

The restriction n� 2 is needed because �1�A.?/ is not known to be corepresentable
(see Dwyer, Kan and Stover [22, Section 7(ii)]).

5.4 Corollary The functors H�
ƒ
.�IM / on sCA=Bƒ and s…A–Alg= zBƒ are coho-

mology functors.

Proof This follows from Quillen [35, Section II.5].

5.5 Remark If C is the category …A–Alg , or more generally any category of
‚–algebras as in Theorem 4.10, we have an equivalence

H n
ƒ.G�IM /Š �0 mapsG�–Mod=Bƒ.L�G� ;E

ƒ.M; n//:

Here L�G� denotes the cotangent complex associated to G� , defined by

L�G� WD�G0�
�G0�

G�

where G0� is a cofibrant replacement of G� in sCA and the group of Kähler differentials
�G0�

is defined in (2–5).

5.6 Remark In fact, this previous observation can be carried a little further. Given
a (simplicial) …A–algebra G� and a G� -module M , define the group of algebraic
extensions exalƒ.G�I M / to be the set of equivalence classes of the form (2–3) with
K D M . This set is a functor in both variables (via pullbacks and pushouts) and
forms an abelian group with unit M Ë G� and addition induced by the diagonal
G�!G� �ƒG� and the group addition M �ƒM !M .
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Assume now that G� is cofibrant. Following Illusie [29, III.1.2.3], there is a natural
isomorphism

(5–2) exalƒ.G�I Eƒ.M; n//
Š
�!H nC1

ƒ
.G�IM /

sending an algebraic extension .Eƒ.M; n/!X !G�/ of simplicial …A–algebras
to the induced homotopy coboundary .G�!Eƒ.M; nC 1//. For general G� , there
is an isomorphism

(5–3) H nC1
ƒ

.G�IM /Š colimWk.G�/ exalƒ.G0�I Eƒ.M; nC 1//

where Wk.G�/ is the category of cofibrant replacements G0� ! G� in simplicial
…A–algebras

5.7 The cohomology of a diagram

Let D be a small category. Observe that a map of D–diagrams is just a natural
transformation: a collection of maps on objects which commute with the maps in each
diagram.

5.8 Fact Given two functors X;Y W D! C , the set HomCD.X;Y / of diagram maps
between them fits into the equalizer diagram

(5–4) HomCD.X;Y / ,!
Y
d2D

HomC.Xd ;Yd /�
Y

d;e2D

Y
�2HomD.d;e/

HomC.Xd ;Ye/;

where the two parallel arrows map to each factor indexed by �W d ! e in D by
the appropriate projection, followed by Y .�/�W HomC.Xd ;Yd /! HomC.Xd ;Ye/, or
X.�/�W HomC.Xe;Ye/! HomC.Xd ;Ye/, respectively.

5.9 Remark If C is a simplicial model category, and Yd is an abelian group object
for each d 2 Obj D, we can replace the equalizer diagram (5–4) by an exact sequence
of simplicial abelian mapping spaces (using the mapping space construction of Quillen
[35, II.3.1])

(5–5) 0!mapCD.X;Y /!
Y
d2D

mapC.Xd ;Yd /
�
�!

Y
d;e2D

Y
�Wd!e

mapC.Xd ;Ye/;

where � is the difference of the two parallel arrows of (5–4).

If this were a fibration sequence after the mapping spaces are restricted to appropriate
over-categories, we could apply �0 and compute cohomology in the diagram category
directly from the exact sequence. However, it is not a fibration sequence in general, so
we concentrate for now on the special case of DD Œ1�.
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5.10 The cohomology of a map

For the arrow category C.!/, the exact sequence of (5–5), suitably modified, is in fact
a fibration sequence. To show this, we need some technical results on model categories:

5.11 Lemma Suppose

(5–6)
X

g

  BBBBBBBB
f // W

 

��
Z

is a diagram in a model category C which commutes up to homotopy, with X cofibrant
and  a fibration. There there is a homotopic map f ' f 0W X ! W such that
 ıf 0 D g . Dually, if

(5–7)

X

�
��

f

  @@@@@@@@

Yg
// Z

commutes up to homotopy, with Z fibrant and � a cofibration, then there is a homotopic
map g ' g0W Y !Z such that f D g0 ı� .

Proof Assume  is a fibration. Cofibrancy of X implies i0W X ! cyl.X / is an
acyclic cofibration by Hirschhorn [28, 7.3.7]. Given a homotopy H W cyl.X /! Z

with H ı i0 D  ıf and H ı i1 D g , we may use the left lifting property in

(5–8)
X

acyc. cof i0

��

f // W

fib 

��
cyl.X /

yH
;;

H // Z

to factor H as  ı yH , and set f 0 WD yH ı i1 . If instead � is a cofibration and Z is
fibrant, use the dual argument.

5.12 Corollary Suppose

(5–9)
X

�

��

f // W

 

��
Y

g // Z
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is a commutative diagram in a model category C . If  is a fibration and X is cofibrant,
then to any homotopic map g0 ' g there corresponds a homotopic map f 0 ' f such
that  ıf 0Dg0ı� . Dually, if � is a cofibration and Z is fibrant, then to any homotopic
map f 0 ' f there corresponds a homotopic map g0 ' g such that  ıf 0 D g0 ı� .

5.13 Remark Since we assume that fibrations and weak equivalences in our diagram
categories are defined objectwise, then if � is a cofibrant object in C.!/ it follows
that � is a cofibration in C with cofibrant source. Thus if  is a fibration with
fibrant target in C , it makes sense to consider homotopy classes of maps Œ�;  � in
(5–6) – in fact, the mapping space mapC.!/.�;  / has homotopical meaning, and
Œ�;  �Š �0 mapC.!/.�;  /.

5.14 Proposition Let # W U ! V be a fixed map in a simplicial model category C
and let �W X ! Y and  W W ! Z be maps in C.!/=# . If � is a cofibration with
cofibrant source and Z! V is a fibration in C , with W and Z abelian group objects,
then the restriction of the exact sequence of simplicial abelian mapping spaces from
Remark 5.9

(5–10) mapC.!/=#.�;  /!mapC=U .X;W /�mapC=V .Y;Z/
�
�!mapC=V .X;Z/

is a fibration sequence (in S ).

Proof First, by Quillen [35, Proposition II.3.1], we know that � of (5–10) is a fibration
in G (and so in S ) if and only if it surjects onto the basepoint component of the target
space mapC=V .X;Z/ 2 S – or equivalently, onto any component of mapC=V .X;Z/

which it hits.

Now, if kW X ��Œn�!Z is any map in the image of � , then there are maps f W X �
�Œn�!W in C=U and gW Y ��Œn�!Z in C=V such that in the (not commutative)
diagram

(5–11)

X ˝�Œn��˝Id

��

f //

k

((QQQQQQQQQQQQQQQQ
W

 

��
Y ˝�Œn�g // Z

we have  ıf �g ı .�˝ Id/D k in C=V .

Finally, if k 0 is in the same component as k in mapC=V .X;Z/, we can write  ıf �
gı.�˝Id/�V k 0 (since X is cofibrant and Z is fibrant in C=V ) or equivalently, since
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˙ preserves homotopies,  ı f � k 0 �V g ı .�˝ Id/, where �V indicates homotopy
in C=V . By Lemma 5.11 applied to the diagram

(5–12)

X ˝�Œn�

�˝Id
��

 ıf�k0

((PPPPPPPPPPPPPPP

Y ˝�Œn�g // Z

viewed in C=V , we can replace g by a homotopic map g0 over V such that  ıf �k 0D

g0ı.�˝ Id/. But then �.f;g0/D k 0 , so � indeed surjects onto the component of k .

5.15 Corollary For �W X�! Y� , a morphism in sC over a map B�W Bƒ0! Bƒ1 ,
suppose  W Eƒ0.M0; n/ ! Eƒ1.M1; n/ is the morphism of extended Eilenberg–
Mac Lane objects induced by a module � W M0!M1 over �W ƒ0!ƒ1 . Then there is
a long exact sequence

(5–13) 0!H 0
� .�; �/!H 0

ƒ0
.X�IM0/˚H 0

ƒ1
.Y�IM1/

 ���
�

�����!

H 0
ƒ1
.X�IM1/!H 1.�; �/! � � � !H n�1

ƒ1
.X�IM1/!

H n
� .�I �/

�
�!H n

ƒ0
.X�IM0/˚H n

ƒ1
.Y�IM1/

 ���
�

�����!H n
ƒ1
.X�IM1/

where � is induced by the obvious forgetful functors.

Proof Recall from Remarks 4.9 that we may assume that our extended Eilenberg–
Mac Lane objects are strict abelian group objects, so that the previous discussion
applies. Note also that H n�r

�
.W�;N /Š �r mapsC.W�;E

�.N; n// for W� 2 sC=B� ,
N a � –module, and 0� r � n. Similarly H n�r

�
.�; �/Š �r mapsC.!/.�;E

�.�; n//.
Thus the fibration sequence (5–10) yields the desired long exact sequence in homotopy
(though the last map in �0 need not be surjective).

We can identify the image of  ���� in cohomological terms as

Ker.q�W H n.X�IM1/!H n.X�IC //\ Im.��W H n.Y�IM1/!H n.X�IM1//;

where qW M1� C WD Coker.�/.

5.16 An example of the cohomology of a map

Note that in the stable range any ƒ–module is trivial – that is, hh�;�ii � 0 (in the
notation of Remark 2.12) (although of course it need not be trivial as an abelian
…–algebra– that is, compositions may be non-zero).
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In our example, for ƒ WD trnC2 ��X (Section 2.16), and M WD�ƒ, we have

Mi D

8̂̂̂̂
<̂
ˆ̂̂:
.Z=2/h˛i for i D n� 1

.Z=2/h˛ ı �i for i D n

.Z=4/hˇi for i D nC 1

0 for i D nC 2;

with 2ˇ D ˛ ı �2 .

Since …–AlgnC2
n is an abelian category, by the Dold–Kan correspondence we can use

chain-complex notation to describe a free simplicial resolution V� of ƒ as follows:

(5–14)

SnC2
s

2 // SnC2
t

�

""DDDDDDDD
SnC2
w

2 //

��2

��3
333333333333333
SnC2

y
� // ˇ

SnC1
v

2 // SnC1
u

�

""EEEEEEEEE
q q

Sn
z

2 // Sn
x

� // ˛

V5

@5 // V4

@4 // V3

@3 // V2

@2 // V1

@1 // V0

@0 // ƒ;

(where @1.w/D 2y �x ı �2 2 V0 ) – so we can calculate

C � WD Homƒ–Mod .V�; �ƒ/

as follows
C 5  C 4  C 3  C 2  C 1  C 0

k k k k k k

0
0
 � 0

0
 � Z=4

2
 � Z=4

2
 � Z=2

0
 � Z=2

which implies that

H i.ƒI�ƒ/D

(
Z=2 for i D 0; 3

0 otherwise:

Similarly, Hom.V�; �Sn�1/ is 0 0
0
 � Z=24

2
 � Z=24

12
 � Z=2

0
 � Z=2, so that

H i.ƒI�Sn�1/D

(
Z=2 for i D 0; 3

0 otherwise
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with '�W H 0.ƒI�Sn�1/!H 0.ƒI�ƒ/ the identity, while

'�W H
3.ƒI�Sn�1/!H 3.ƒI�ƒ/

is trivial (and similarly for  of Remark 2.17).

On the other hand, since Sn�1 is a free …–algebra, for any module M we have

H i.Sn�1
IM /D

(
M for i D 0

0 otherwise.

From the long exact sequence (5–13) we conclude that:

(5–15) H i
'.'I�'/DH i

 . I� /D

(
Z=2 for i D 3; 4

0 for 0< i < 3 or 4< i:

6 Realizations of a …A–algebra

Our aim now is to address the general realization question described in the introduction –
namely, given an E2 –model category sCA and a …A–algebra ƒ, is there a realization
of ƒ in C - that is, is there a Y 2 C such that �AY Šƒ as …–algebras?

Before we state our main result, we need the following variation on the Postnikov
system:

6.1 Definition A quasi-Postnikov tower for an …A–algebra ƒ is a tower of fibrations

(6–1) � � �
p.nC1/

�����!X hnC 1i�
p.n/

���!X hni�
p.n�1/

����! � � �
p.0/

���!X h0i� ' Bƒ

in sC such that �AX hni� ' zE
ƒ.�nC1ƒ; nC 2/ for every n > 0, with the sections

sW zBƒ! �AX hni� (Remark 4.5) induced by the maps p.n/ . The object X hni� 2 sC
will be called an nth quasi-Postnikov section for ƒ.

6.2 Remark Thus a tower (6–1) is a quasi-Postnikov tower for ƒ if

(6–2) �k�AX hni� Š

8̂<̂
:
ƒ for k D 0;

�nC1ƒ for k D nC 2;

0 otherwise;

and it is equipped with maps �.n/W zBƒ ! �AX hni� over zBƒ, for each n � 0,
commuting with the maps p

.n/
# .
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We then deduce from the exact sequence (3–2) that

(6–3) �
\

k
X hni� Š

(
�kƒ for 0� k � n;

0 otherwise:

Note that (6–3) implies in turn that the (ordinary) Postnikov sections PkX hni� of
X hni� constitute quasi-Postnikov sections for ƒ, for k � n (see also Blanc, Dwyer
and Goerss [10, Proposition 9.11]).

We are now in a position to state the two key results addressing our realization question
(the proofs are deferred to Sections 6.10–6.11):

6.3 Theorem If sCA is an E2 –model category and ƒ 2…A–Alg , the following are
equivalent:

(1) ƒ is realizable – that is, there is a Y 2 C with �AY Šƒ;

(2) There is an X� 2 sC with �AX� ' zBƒ.

(3) There is a quasi-Postnikov tower for ƒ.

6.4 Theorem Let X hn� 1i� 2 sC be an .n�1/st quasi-Postnikov section for a
…A–algebra ƒ. Then:

(a) Up to homotopy, there is a unique X hni� 2 sC satisfying (6–2) and (6–3), with
Pn�1X hni� DX hn� 1i� .

(b) This X hni� is an nth quasi-Postnikov section for ƒ if and only if the .nC2/nd
zk–invariant for �AX hni� vanishes in H nC3

ƒ
. zBƒI �nC1ƒ/.

(c) In that case, X hnC 1i� exists, by (a); furthermore, the different choices for
the map p.n/W X hnC 1i� ! X hni� – or equivalently, choices of the section
zsnW
zBƒ! zEƒ.�nC1ƒ; nC 2/D �AX hni� of Remark 4.5 – are in one-to-one

correspondence with elements of H nC2
ƒ

. zBƒI �nC1ƒ/.

Compare Baues [2, Chapter D, (7.9)].

Our approach to constructing an X� in Theorem 6.3 (2) will be inductive, using its
Postnikov system, which serves as a quasi-Postnikov tower for ƒ. Thus at each stage
we will have the obstruction of Theorem 6.4 (b) to moving up one more level. To
explain why this works (and prove the two Theorems), we shall need some facts about:
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6.5 Connections between the Postnikov systems

Given any simplicial object X� 2 sC , consider its nth Postnikov section PnX� , for
some n> 0, and let ƒ WD �\

0
X� D �0�AX� . We want to describe the simplicial …A–

algebra �APnX� (up to homotopy) in terms of �AX� , and whatever other information
is necessary.

First, observe that (3–2) also implies

(6–4) �k�APnX� Š

8̂̂̂̂
<̂
ˆ̂̂:
�k�AX� for k � n;

Coker.hX
nC1
W �

\
nC1

X�! �nC1�AX�/ for k D nC 1;

��
\
nX� for k D nC 2:

0 otherwise:

In particular, when �AX� ' zBƒ, (6–4) simplifies to

(6–5) �k�APnX� Š

8̂<̂
:
ƒ for k D 0;

�nC1ƒ for k D nC 2;

0 otherwise;

6.6 Lemma For any X� 2 sC , we have a homotopy fibration sequence

�APnC1X�
p
.n/
#
���! �APnX�

.kn/#
���! �AEƒ.�\

nC1
X�; nC 2/

in s…A–Alg= zBƒ (that is, a homotopy pullback square over zBƒ).

Proof Section 3.5(b) implies that

.kn/#W �APnX�! �AEƒ.�\
nC1

X�; nC 2/

is an A–fibration over �ABƒ. Denote its fiber by F� , with a natural map of simplicial
…A–algebras 'W �APnC1X�! F� .

Because the functors �k�AW sC!…A–Alg are corepresentable for k > 1 (cf Dwyer,
Kan and Stover [22, Section 7.4]), applying �A to the homotopy pull-back (4–4)
yields a “quasi-fibration” of simplicial …A–algebras, and so a long exact sequence in
homotopy (in dimensions � 2), which implies that '# is an isomorphism in dimensions
� 2; since this is trivially true in dimensions 0 and 1, ' is a weak equivalence.

6.7 Lemma If we write E� WD Eƒ.�\
nC1

X�; nC 2/, then applying �nC2�A to the

k –invariant knW PnX�!E� yields the homomorphism snC1W ��
\
nX�! �

\
nC1

X� of
(3–2).
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Proof First, note that, in the commutative diagram

0 //

��

�
\
nC1

�E�

Š

��

Š // �nC1�A�E�

��
�nC2�APnC1X�

��

@nC2 // ��\nPnC1X�

Š

��

snC1 // �\
nC1

PnC1X�

��

hnC1 // �nC1�APnC1X�

�nC2�APnX�

.kn/#

��

Š // ��\nPnX�
// �\nC1

PnX� D 0

�nC2�AE�

the isomorphisms of �nC2�APnX� with ��\nPnC1X� , and of �\
nC1

PnC1X� with
�nC1�A�E� , are natural. Also, the columns here are exact either by the long exact
sequence in �\� for a fibration in sC , or by Lemma 6.6.

The result now follows from the naturality of the exact sequence (3–2), applied to the
fibration sequence

�E� ' Eƒ.�\
nC1

X�; nC 1/! PnC1X�! PnX�
kn
�!E�:

6.8 Lemma If �AX� ' zBƒ, then the spiral exact sequence (3–2) for X� from
�nC3�AX� down is determined by the homomorphism

@?nC3W �nC3�AX�!��
\
nC1

X�:

Proof First, observe that given PnX� , we know the exact sequence (3–2) for X� only
from ��

\
n�1

X� down. However, when r
.n/
# W ���AX�! ���APnX� is also known,

and �AX�' zBƒ, then all we need in order to determine (3–2) for X� from �nC3�AX�

down is the homomorphism .r
.nC1/
# /nC3W �nC3�AX�! �nC3�APnC1X� – which is

just @?
nC3
W �nC3�AX�!��

\
nC1

X� .

6.9 Lemma If zknC1.�AX�/W zPnC1�AX�! zE
ƒ.�nC2�AX�; nC 3/ is the .nC1/st

zk–invariant for �AX� , then the .nC1/st zk–invariant

zknC1.�APnX�/W zPnC1�APnX�! zE
ƒ.��\nX�; nC 3/

satisfies .@?
nC2

/� ı zknC1.�AX�/D zknC1.�APnX�/ ı zPnC1.r
.n/
# /.

Proof This follows from the naturality of the zk–invariants (Ax 3 of Definition 4.8)
and Lemma 6.8.
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6.10 Proof of Theorem 6.3

(1) ” (2) Given Y , let X� WD c.Y /� . Conversely, if X� 2 sC=Bƒ satisfies
�AX� ' zBƒ, then by Ax 4 of Definition 4.8, there is a functor J W sCA! C equipped
with an isomorphism

ŒA;JX��C Š Hom…A–Alg.�AA; ƒ/;

natural in A 2 A. Thus �AJX� Š ƒ as …A–algebras, by Yoneda’s Lemma, so we
can take Y WD JX� .

(2) ” (3) By Blanc, Dwyer and Goerss [10, Proposition 9.11] we know that
�AX� ' zBƒ if and only if �APnX� ' zE

ƒ.�nC1ƒ; nC 2/.

Thus given X� with �AX� ' zBƒ, the ordinary Postnikov tower PkX� of X hni�
constitutes a quasi-Postnikov tower for ƒ, by (6–5).

Conversely, given a quasi-Postnikov tower (6–1) for ƒ, let X� WD holimn X hni� . Since
zPnC1�

.n/W zBƒ! zPnC1�AX hni� is a weak equivalence for each n, the maps �.n/

induce a weak equivalence r W zBƒ
'
�! �AX� . �

6.11 Proof of Theorem 6.4

Let X hn� 1i� be an .n�1/st quasi-Postnikov section for ƒ. By assumption

�AX hn� 1i� ' zE
ƒ.�nƒ; nC 1/;

and the map �.n�1/W zBƒ! �AX hn� 1i� is the required section.

(a) In order to construct X hni� , we must choose a suitable .n�1/st k–invariant
kn�1 2 ŒX hn� 1i�;Eƒ.�nƒ; nC 1/�Bƒ . Note that using the long exact se-
quence in �\ for a fibration over Bƒ, combined with (3–2), automatically
ensures that any such choice yields X hni� satisfying (6–2) and (6–3).
We can use the map �W �AEƒ.�nƒ; nC 1/! zEƒ.�nƒ; nC 1/ of Proposition
5.3 to define kn�1W X hn� 1i�! Eƒ.�nƒ; nC 1/ (uniquely up to homotopy)
by specifying

� ı .kn�1/#W �AX hn� 1i�! zE
ƒ.�nƒ; nC 1/:

Since �AX hn� 1i�' zE
ƒ.�nƒ; nC 1/, the functoriality of Ax 2 of Definition

4.8 implies that such a map is uniquely determined up to homotopy by a map
of ƒ–modules 'W �nƒ!�nƒ, and by Lemma 6.7 this ' must be the given
isomorphism .snC1/W ��

\
n�1

X hn� 1i�!�nƒ, if the quasi-Postnikov tower
we are constructing for ƒ is to be a Postnikov tower in sC . (Note that by
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Lemma 6.8, we already know the long exact sequence (3–2) for X hni� from
snC1 down.) Thus the candidate for X hni� over X hn� 1i� , satisfying (6–2)
and (6–3), is determined uniquely up to homotopy by X hn� 1i� .

(b) There is only one possible obstruction to X hni� (the homotopy fiber of kn�1 in
sC=Bƒ) being an nth quasi-Postnikov section for ƒ: the non-existence of the
lift �.n/W zBƒ! �AX hni� . However, since zPnC1�AX hni� ' zBƒ, by (6–3),
we may use the long exact sequence in �A for the fibration sequence

(6–6) �AX hni� D zPnC2�AX hni�
zp.nC2/

�����! zPnC1�AX hni�
zknC1

���! zEƒ.�nC1ƒ; nC3/

over zBƒ to deduce that �.n�1/ lifts to �.n/ if and only if zknC1 is null in
s…A–Alg= zBƒ.
More precisely, we want �.n/ to map to the homotopy pullback (Ax 3 of Defini-
tion 4.8) in

(6–7) zPnC1
zBƒ '

''

'

%%

�.n/

&&
�APnX� //

��

zBƒ

zknC1

��
zBƒ

zs // zEƒ.�nC1ƒ; nC 3/;

which is possible if and only if zknC1 is homotopic to the given homotopy section
zsW zBƒ! zEƒ.�nC1ƒ; nC 3/.

(c) Since the fiber (over zBƒ) of zp.nC2/ in (6–6) is zEƒ.�nC1ƒ; nC 2/, the possi-
ble choices for such lifts are distinguished by elements of

Œ zBƒ; zEƒ.�nC1ƒ; nC 2/� zBƒ DH nC2. zBƒ=ƒ;�nC1ƒ/;

which are just choices for @?
nC3
W �nC3

zBƒ! ��
\
nC1

X hnC1i� (see Lemma
6.8). These determine the identification of �AX hni� with zEƒ.�nC1ƒ; nC2/,
which is the only freedom in the inductive procedure we have described.

6.12 Remark To appreciate the explicit inductive construction of these obstructions
provided in the above proof, let us examine more carefully the first step in realizing a
…A–algebra ƒ:

Note first that, from the spiral exact sequence and Postnikov sections, the homotopy
groups of Bƒ fit into the algebraic extension

zEƒ.�ƒ; 2/! ��Bƒ! zBƒ;
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and so yields an element of exalƒ. zBƒI zEƒ.�ƒ; 2// (see Remark 5.6). Using (5–2),
we may view this extension as an element of H 3. zBƒ=ƒ;�ƒ/, which is precisely the
first obstruction to realizing ƒ. Note that by Ax 4 of Definition 4.8, this obstruction is
natural in ƒ. See Benson, Krause and Schwede [3] for a similar perspective on the
obstructions to realizing modules over the Tate cohomology of a group G as the group
cohomology of a G –module.

6.13 Remark The realization problem, as formulated in this section, and its solution
in Theorem 6.3 applies to …–algebras associated to any of the categories listed in
Section 3.16 - n–connected spaces, p–local or rational spaces, n–types (and so on)
- as well as any diagrams of such …–algebras. Note, however, that realization is a
tautology when C itself had a trivial model category structure – e.g., if C D‚–Alg is
a variety of universal algebras.

7 Realizing maps of …–algebras

We now examine the diagram realization question in more detail for the simplest
non-trivial case: a single map of (ordinary) …–algebras 'W ƒ! � .

7.1 Maps of realizable …–algebras

Assume for simplicity that the …–algebras ƒ and � are realizable, and replace them
by cofibrant simplicial models  W K�!L� in s…–Alg .

Note that if we are given realizations V� , W� for K� and L� , respectively (equivalently:
for ƒ and � ), we have the usual obstruction theory for lifting f 0 WD B� ıp.0/W V�!
B� D P0W� through the successive Postnikov stages for W� , with the existence and
difference obstructions all lying in the Quillen cohomology groups H�.V�=B�I�n�/.
However, in our approach we want to choose the realizations for the …–algebras ƒ
and � , and for the map ' , simultaneously – again by induction on the quasi-Postnikov
system.

At the nth stage, we assume that we have a map of simplicial spaces f hniW X hni�!
Y hni� , where:

a) X hni� ' PnX hni� and Y hni� ' PnY hni� ; and

b) zPn.f hni/#W zPn�AX hni�! zPn�AY hni� is '�W zBƒ! zB� .

Our goal is to extend f to .nC1/–stage Postnikov pieces. Because the sections
zsƒn W
zBƒ! zEƒ.�nC1ƒ; nC 2/ and zs�n W zB�! zE

�.�nC1�; nC 2/ will ultimately be
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induced by the natural Postnikov maps W�!PnW�'X hni� and V�!PnV�'Y hni� ,
say, we know that if f hni extends we will have naturality for the sections, so our
object is to choose zsƒn and zs�n so that the diagram

(7–1)

zBƒ
'# //

zsƒn
��

zB�

zs�n
��

zEƒ.�nC1ƒ; nC 2/' �AX�
f# // zE�.�nC1�; nC 2/

commutes up to homotopy. This means that .zsƒn ; zs
�
n / is just the obstruction class in

H nC2
' .'I�n'/ described by Theorem 6.3.

7.2 An example of the obstructions to realizability

We now apply the above theory to the map of …–algebras 'W ƒ! Sn�1 considered
in Section 5.16. By [9, Theorem 3.16], we know that the resolution (5–14), as well as
the constant free resolution W�! Sn�1 , are realizable by simplicial spaces.

The relevant part of the realization of (5–14) is described in (7–2), where the indexing
is based on the Stover resolution comonad in the obvious way, with d0 on SnC2

hˇ;2i�h˛;�2i

equal to the difference of the degree 2 map to SnC2
ˇ

and �2 to Sn
˛ ,, and all face maps

d1 and d2 are inclusions.

The inductive approach to realizing 'W ƒ! Sn�1 described in Section 7.1 begins
with f h0iW X h0i�! Y h0i� , which is just B'W Bƒ! BSn�1 . Moreover, the proof
of Theorem 6.3 shows that this always extends uniquely to f h1iW X h1i� ! Y h1i�
(although the lifting �.1/ as required in Remark 6.2 need not exist).

The construction of Postnikov systems (Ax 1 of Theorems 4.10 and 4.12) shows that
the existence of f h1i is equivalent to having a 2–truncated augmented simplicial space
V0� ! Sn�1 realizing the augmented simplicial …–algebra V� ! Sn�1 induced by
'W ƒ! Sn�1 .

Using Lemma 5.11, we may assume that the composite of the maps

Sn 2
�! Sn �

�! Sn�1

is actually null, so we can describe V0� explicitly by (7–3). Moreover, X h1i� , and thus
V0� , is unique up to homotopy (in sT ).

However, in constructing V0� ! Sn�1 we have “distorted” the original augmented
simplicial space V�! X in such a way that we no longer have a strict augmentation
V0�! X.
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(7–2)

SnC2

hˇ;2i�h˛;�2i

d0D2

%%JJJJJJJJJJJJJJJJJJJJJJJJJJ
d1

**UUUUUUUUUUUUUUUUU

SnC1
h˛;2;�i

d2 //

d1

%%LLLLLLLLLL

d0D�

��:::::::::::::::::::
SnC1
h˛2;�i

[ enC2
G;C� d1

**UUUUUUUUUUUUUUUU

d0DC�

%%

��2

��

SnC2

hˇ2i�h˛�2i
[ enC3

H

"DH

��

SnC1
h˛;2�i

[ enC2
˛;F d1

//

d0DF

%%

SnC2
ˇ
D SnC1

˛2�
[ enC2

˛ıF
[ enC2

GıC�

"D ˇ

��????????????????????

Sn
h˛;2i

d1 //

d0D2

**VVVVVVVVVVVVVVVVVVVVVVVVV Sn
˛2
[ enC1

G

"DG

''OOOOOOOOOOOOOO

Sn
˛

"D˛ // X

V2
//
//

// V1
//
// V0

// X;

Figure 1: A minimal free resolution V� in sT

We can see this geometrically, using the Toda bracket

(7–4) h�; 2; ˛i D fˇ; ˇC˛ ı �2
g � �nC2X

(see, for example, [5, Section 6]), which we used in the decomposition

SnC2
ˇ
D SnC1

˛2�
[ enC2

˛ıF
[ enC2

GıC�

in (7–2). Because we no longer have this in (7–3), we must have 0 2 h�; 2; ˛i for any
augmentation ˛W Sn! X on Sn � V0

0

More formally, (7–4) yields a non-vanishing second-order homotopy operation in
Œ†V0

2
;X� which is the obstruction to rectifying the homotopy augmentation V0�! X

realizing V�!ƒ, using [6, Theorem 7.13 and Lemma 5.12]. But then we may use
the equivalent obstruction theory of Blanc, Dwyer and Goerss [8; 10] to deduce that
the zk–invariant zk1 2H 3

ƒ
. zBƒI �ƒ/Š Z=2 does not vanish, for the choice of X h0i�

described in (7–3) (with �W Sn! Sn�1 replaced by ˛W Sn! X and 2� replaced by
ˇW SnC2! X).

However, since the zk–invariants are natural (Definition 4.7), we deduce from the long
exact sequence (5–13) that the corresponding obstruction for the diagram – that is,
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(7–3)

SnC2

h2�;2i�h�;�2i

d0D2

##HHHHHHHHHHHHHHHHHHHHHHHH
d1Dincl :

))SSSSSSSSSSSSSSS

SnC1
h�;2;�i

d2D0 //

d1Dincl :

&&LLLLLLLLLL

d0D�

��;;;;;;;;;;;;;;;;;;;
�

��2

��

SnC2

h4�i�h�3i
[ enC3

H

"DH

��1
1111111111111111111111111

SnC1
h�;2�i

[ enC2
�;F

d1D0 //

d0DF

$$

SnC2
2�

"D2�

��;;;;;;;;;;;;;;;;;;;

Sn
h�;2i

d1D0 //

d0D2

**TTTTTTTTTTTTTTTTTTTTTT �

Sn
�

"D� // Sn�1

V0
2

//
//

// V
0
1

//
// V00 // Sn�1;

Figure 2: An augmentation of V0� to Sn�1

zk1 2H 3.'I�'/Š Z=2 – is also non-zero, which implies that ' cannot be realized
by a map of spaces f W X! Sn�1 (or even of suitable Postnikov sections).

7.3 Remark There is a more elementary way to see that ' is not realizable: if it
were, from (1–4) and (7–4) we would have

(7–5) f6�; 18�g D f6�; 6�C �3
g D 'fˇ; ˇC˛ ı �2

g D f�.h�; 2; ˛i/

D h�; 2; '.˛/i D h�; 2; �i D f�; 12�g;

a contradiction. Nevertheless, we hope the cohomological approach helps to illustrate
how the general theory works.
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