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The normaliser decomposition for p–local finite groups

ASSAF LIBMAN

We construct an analogue of the normaliser decomposition for p–local finite groups
.S;F ;L/ with respect to collections of F –centric subgroups and collections of
elementary abelian subgroups of S . This enables us to describe the classifying space
of a p–local finite group, before p–completion, as the homotopy colimit of a diagram
of classifying spaces of finite groups whose shape is a poset and all maps are induced
by group monomorphisms.

55R35, 55P05

1 The main results

For finite groups Dwyer [5] defined three types of homology decompositions of classi-
fying spaces of finite groups known as the “subgroup”, “centraliser” and “normaliser”
decompositions. These decompositions are functors F W D! Spaces, where D is a
small category which is constructed using collections H of carefully chosen subgroups
of G . The essential property of these functors is, that given a finite group G , the spaces
F.d/ have the homotopy type of classifying spaces of subgroups of G . Moreover
the category D is constructed using information about the conjugation in G of the
subgroups in H . We say that D depends on the fusion of the collection H of G .

The purpose of this note is to construct an analogue of the normaliser decomposition
for p–local finite groups in certain important cases. Throughout this note we will
freely use the terminology and notation that by now has become standard in the theory
for p–local finite groups. The reader who is not familiar with the jargon is advised
to read Section 2 prior to this section, and is also referred to [4] where p–local finite
groups were initially defined.

It should be noted that the analogues of the “subgroup” and the “centraliser” decom-
positions for p–local finite groups was already known to Broto, Levi and Oliver [4,
Section 2].

The normaliser decomposition which is introduced in this note enabled the author
together with Antonio Viruel to analyze the nerve jLj of p–local finite groups .S;F ;L/
with small Sylow subgroups S . We prove that these are classifying spaces of, generally
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1268 Assaf Libman

infinite, discrete groups [10]. The author also used normaliser decompositions to give
an analysis of the spectra associated with the nerve, jLj, of the linking systems due to
Ruiz and Viruel in [15] and other “exotic” examples, see [9]. These results will appear
separately as they involve techniques that have little to do with the actual construction
of the normaliser decomposition.

We now describe the main results of this paper. Throughout we work simplicially,
thus a space means a simplicial set. The category of simplicial sets is denoted by
Spaces. The nerve of a small category D is denoted Nr.D/ or jDj. We obtain a functor
j � jW Cat! Spaces where Cat is the category of small categories. A more detailed
discussion can be found in Section 3

1.1 Definition Let .S;F ;L/ be a p–local finite group. A collection is a set C of
subgroups of S which is closed under conjugacy in F . That is if P � S belongs to C
then so do all the F –conjugates of P . A collection C is called F –centric if it consists
of F –centric subgroups of S .

1.2 Definition A k –simplex in a collection C is a sequence P of proper inclusions
P0 <P1 < � � �<Pk of elements of C . Two k –simplices P and P0 are called conjugate
if there exists an isomorphism f 2 IsoF .Pk ;P

0
k
/ such that f .Pi/D P 0i for all i D

0; : : : ; k . The conjugacy class of P is denoted ŒP�.

1.3 Definition The category xsdC is a poset whose objects are the conjugacy classes
ŒP� of all the k –simplices in C where k D 0; 1; 2; : : :. A morphism ŒP�! ŒP0� in xsdC
exists if P0 is conjugate to a subsimplex of P.

Recall from 2.8 that in every p–local finite group it is possible to choose morphisms
�
Q
P

in the linking system L which are lifts of inclusions P �Q of F –centric subgroups.
The choice can be made in such a way that �R

Q
ı �

Q
P
D �R

P
for inclusions P �Q�R.

1.4 Definition Let C be an F –centric collection in .S;F ;L/ and let P be a k –
simplex in C . Define AutL.P/ as the subgroup of

Qk
iD0 AutL.Pi/ whose elements

are the .kC1/–tuples .'i/
k
iD0

which render the following ladder commutative in L

P0

�
P1
P0
����! P1

�
P2
P1
����! � � �

�
Pk
Pk�1
����! Pk

'0

??y '1

??y ??y'k

P0 ����!

�
P1
P0

P1 ����!

�
P2
P1

� � � ����!

�
Pk
Pk�1

Pk
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1.5 Proposition The assignment .'i/
k
iD0
7! '0 gives rise to a canonical isomorphism

of AutL.P/ with a subgroup of AutL.P0/. More generally, if P0 is a subsimplex of P
in C then restriction induces a monomorphism of groups AutL.P/! AutL.P0/.

Proof The second assertion follows immediately from Proposition 2.11. The first
follows from the second by letting P0 be the 1–simplex P0 .

Notation BAutL.P/ denotes the subcategory of L whose only object is P0 and
whose morphism set is AutL.P/.

1.6 Definition Given an F –centric collection C in a p–local finite group .S;F ;L/,
let LC denote the full subcategory of L generated by the objects set C .

Frequently, the inclusion LC � L induces a weak homotopy equivalence on nerves.
For example, this happens when C contains all the F –centric F –radical subgroups of
S . This fact is proved by Broto, Castellana, Grodal, Levi and Oliver [2, Theorem 3.5].

The following theorem applies to all F –centric collections. The decomposition ap-
proximates L if the inclusion LC � L induces an equivalence as explained above.

Theorem A Fix an F –centric collection C in a p–local finite group .S;F ;L/. Then
there exists a functor ıC W xsdC! Spaces such that

(1) There is a natural weak homotopy equivalence

hocolimxsdC ıC
'
��! jLCj:

(2) There is a natural weak homotopy equivalence B AutL.P/
'
�! ıC.ŒP�/ for every

k –simplex P.

(3) The natural maps ıC.ŒP�/ ! jLCj are induced by the inclusion of categories
BAutL.P/� LC .

(4) If P0 is a subsimplex of P then the equivalence (2) renders the following square
commutative

B AutL.P/
' //

B resP
P0

��

ıC.ŒP�/

��
B AutL.P0/

' // ıC.ŒP0�/
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1270 Assaf Libman

Moreover if P and P0 are conjugate k –simplices and  2 IsoL.P0;P
0
0
/ maps

AutL.P0/ onto AutL.P/ by conjugation then the following square commutes

B AutL.P0/
' //

Bc 
��

ıC.ŒP0�/

B AutL.P/
'

// ıC.ŒP�/

Remark When .S;F ;L/ is associated with a finite group G one may consider the
G –collection H consisting of all the subgroups of G which are conjugate to elements
of the F –collection C . Dwyer [5, Section 3] constructs a poset xsdH and a functor
ı

Dwyer
H W xsdH! Spaces which he calls the normaliser decomposition. We will show

in 5.2 that xsdHDxsdC and that ıC and ıDwyer
H can be connected by a natural zigzag

of mod–p equivalences. That is, a zigzag of natural transformations which at every
object of xsdC give rise to an H�.�IZ=p/–isomorphism.

We now describe the second type of normaliser decomposition that we shall construct
in this note. It is based on collections E of elementary abelian subgroups of S .

1.7 Definition For a k –simplex E in E define AutF .E/ as the subgroup of AutF .Ek/

consisting of the automorphisms f such that f .Ei/DEi for all i D 0; : : : ; k .

Consider an F –centric collection C in .S;F ;L/.

1.8 Definition Fix an elementary abelian subgroup E of S . The objects of the
category xCL.CIE/ are pairs .P; f / where P 2 C and f W E!Z.P / is a morphism
in F . Morphisms .P; f /! .Q;g/ in xCL.CIE/ are morphisms  2 L.P;Q/ such
that g D �. / ıf where � W L! F is the projection functor.

Observe that AutF .E/ acts on xCLC .E/ by pre-composition. That is, every h 2

AutF .E/ indices the assignment .P; f / 7! .P; f ı h/.

1.9 Definition For a k –simplex E in E let MNL.CIE/ denote the subcategory of L
whose objects are P 2 C for which Ek �Z.P /. A morphism ' 2 L.P;Q/ belongs
to MNL.CIE/ if �.'/jEk

is an element of AutF .E/.

Recall that the homotopy orbit space of a G–space X , ie the Borel construction
EG �G X , is denoted by XhG .
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1.10 Proposition Let E be a k –simplex in E . There is a map

�EW j MNL.CIE/j ! j xCL.CIEk/jh AutF .E/

which is a homotopy equivalence if Ek is fully F –centralised. The map is natural with
respect to inclusion of simplices.

Proof This is immediate from Proposition 5.3.

A comment on the categories xCL.CIE/ is in place. If C is the collection of all the
F –centric subgroups of S and E is fully F –centralised, then it is shown by Broto,
Levi and Oliver [4, Theorem 2.6] that j xCL.CIE/j has the homotopy type of the nerve of
the centraliser linking system jCL.E/j. The categories MNL.CIE/ are more mysterious.
Even when E is a 1–simplex E , the category MNL.CIE/ is in general only a subcategory
of the normaliser linking system NL.E/ because the largest subgroup which appears
as an object of MNL.CIE/ is CS .E/ which in general is smaller than NS .E/. When
CS .E/DNS .E/ these categories are equal.

The next decomposition result, Theorem B, depends on a collection of elementary
abelian groups E and a collection C of F –centric subgroups of S . It approximates L
if C contains, for example, all the F –centric F –radical subgroups of S . The collection
E must be large enough as explicitly stated in the theorem. For example the collection
of all the non-trivial elementary abelian subgroups will always be a valid choice.

1.11 Definition Given a group H and a prime p let �p.H / denote the subgroup of
H generated by all the elements of order p in H .

Theorem B Consider a p–local finite group .S;F ;L/, an F –centric collection C
and a collection E of elementary abelian subgroup of S which contains the subgroups
�pZ.P / for all P 2 C . Then there exists a functor ıE W xsdE ! Spaces with the
following properties.

(1) There is a natural weak homotopy equivalence hocolimxsdE ıE
'
���! jLCj:

(2) For a k –simplex E in E there is a weak homotopy equivalence

j xCL.CIEk/jh AutF .E/
'
���! ıE.ŒE�/:

(3) Fix a k –simplex E where Ek is fully F –centralised. The equivalences (1)
and (2) give a natural map ıE.ŒE�/! jLCj whose precomposition with �E of
Proposition 1.10 is induced by the realization of the inclusion of MNL.CIE/ in
LC .
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1272 Assaf Libman

(4) If E0 is a k –subsimplex of an n–simplex E then the following square commutes
up to homotopy

j xCL.CIEn/jh AutF .E/

��

' // ıE.ŒE�/

��
j xCL.CIE0k/jh AutF .E0/

' // ıE.ŒE0�/

The homotopy is natural with respect to inclusion of simplices. In addition, the
square commutes on the nose if E0

k
DEn .

Acknowledgments The author was supported by grant NAL/00735/G from the Nuf-
field Foundation. Part of this work was supported by Institute Mittag-Leffler (Djursholm,
Sweden).

2 On p–local finite groups

The term p–local finite group was coined by Broto, Levi and Oliver [4]. It cropped up
naturally in their attempt [3] to describe the space of self equivalences of a p–completed
classifying space of a finite group G . They discovered that the relevant information
needed to solve this problem lies in the fusion system of the p–subgroups of G and
certain categories which they later on called “linking systems”. Historically, fusion
systems were first introduced by Lluis Puig [13].

2.1 Definition Fix a prime p and let S be a finite p–group. A fusion system over S

is a sub-category F of the category of groups whose objects are the subgroups of S

and whose morphisms are group monomorphisms such that

(1) All the monomorphisms that are induced by conjugation by elements of S are
in F .

(2) Every morphism in F factors as an isomorphism in F followed by an inclusion
of subgroups.

We say that two subgroups P;Q of S are F –conjugate if they are isomorphic as
objects of F .

When g is an element of S and P;Q are subgroups of S such that gPg�1 �Q, we
let cg denote the morphism P !Q defined by conjugation, namely cg.x/D gxg�1

for every x 2 P .
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We let HomS .P;Q/ denote the set of all the morphisms P!Q in F that are induced
by conjugation in S . Also notice that the factorization axiom (2) implies that all the
F –endomorphisms of a subgroup P are in fact automorphisms in F . Thus we write
AutF .P / for the set of morphisms F.P;P /.

2.2 Definition A subgroup P of S is called fully F –centralised (resp. fully F –
normalised) if its S –centraliser CS .P / (resp. S –normaliser NS .P /) has the maximal
possible order in the F –conjugacy class of P . That is, jCS .P /j � jCS .P

0/j (resp.
jNS .P /j � jNS .P

0/j) for every P 0 which is F –conjugate to P .

2.3 Definition A fusion system F over a finite p–group S is called saturated if

I Every fully F –normalised subgroup P of S is fully F –centralised and moreover
AutS .P /DNS .P /=CS .P / is a Sylow p–subgroup of AutF .P /.

II Every morphism 'W P ! S in F whose image '.P / is fully F –centralised
can be extended to a morphism  W N'! S in F where

N' D fg 2NS .P / W 'cg'
�1
2 AutS .P /g:

2.4 Definition A subgroup P of S is called F –centric if P and all of its F –
conjugates contain their S –centralisers, that is CS .P

0/DZ.P 0/ for every subgroup
P 0 of S which is F –conjugate to P .

2.5 Definition A centric linking system associated to a saturated fusion system F
over S consists of

(1) A small category L whose objects are the F –centric subgroups of S ,

(2) a functor � W L! F and

(3) group monomorphisms ıP W P ! AutL.P / for every F –centric subgroup P of
S ,

Such that the following axioms hold

(A) The functor � acts as the inclusion on object sets, that is �.P /D P for every
F –centric subgroup P of S . For any two objects P;Q of L, the group Z.P /

acts freely on the morphism set L.P;Q/ via the restriction of ıP W P!AutL.P /
to Z.P /. The induced map on morphisms sets

� W L.P;Q/! F.P;Q/

identifies F.P;Q/ with the quotient of L.P;Q/ by the free action of Z.P /.
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(B) For every F –centric subgroup P of S the map � W AutL.P /!AutF .P / sends
ıP .g/, where g 2 P , to cg .

(C) For every f 2 L.P;Q/ and every g 2 P there is a commutative square in L

P
f

����! Q

ıP .g/

??y ??yıQ.�.f /.g//

P ����!
f

Q:

Remark A morphism f 2 L.P;Q/ is called a lift of a morphism ' 2 F.P;Q/ if
' D �.f /.

2.6 Definition A p–local finite group is a triple .S;F ;L/ where F is a saturated
fusion system over the finite p–group S and L is a centric linking system associated
to F . The classifying space of .S;F ;L/ is the space jLj^p , that is the p–completion
in the sense of Bousfield and Kan [1], of the realization of the small category L.

2.7 When S is a Sylow p–subgroup of a finite group G , there is an associated
p–local finite group denoted .S;FS .G/;LS .G//. See [4, Proposition 1.3, remarks
after Definition 1.8]. We shall write F for FS .G/ and L for LS .G/.

Morphism sets between P;Q� S are

F.P;Q/D HomG.P;Q/DNG.P;Q/=CG.P /

where NG.P;Q/D fg 2 G W gPg�1 �Qg and CG.P / acts on NG.P;Q/ by right
translation.

A subgroup P of S is, by [4, Proposition 1.3], F –centric precisely when it is p–centric
in the sense of [5, Section 1.19], that is, Z.P / is a Sylow p–subgroup of CG.P /. In
this case CG.P /DZ.P /�C 0

G
.P / where C 0

G
.P / is the maximal subgroup of CG.P /

of order prime to p . Morphism sets of LD LS .G/ have, by definition, the form

L.P;Q/DN.P;Q/=C 0G.P /:

The functor � W LS .G/!FS .G/ is the obvious projection functor. The monomorphism
ıP W P ! AutL.P / is induced by the inclusion of P in NG.P /.

It is shown by Broto, Levi and Oliver [4, after Definition 1.8] that .S;FS .G/;LS .G//

is a p–local finite group and that jLS .G/j
^
p ' BG^p . It should also be remarked that

there are examples of p–local finite groups that cannot be associated with any finite
group. These are usually referred to as “exotic examples”.
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2.8 In every p–local finite group .S;F ;L/ one can choose morphisms �Q
P
2L.P;Q/

for every inclusion of F –centric subgroups P �Q, in such a way that

(1) �.�
Q
P
/ is the inclusion P �Q,

(2) �R
Q
ı �

Q
P
D �R

P
for every F –centric subgroups P �Q�R of S , and

(3) �P
P
D id for every F –centric subgroup P of S .

This follows from [4, Proposition 1.11]. Using the notation there, one chooses �Q
P
D

ıP;Q.e/ where e is the identity element in S . Whenever possible, in order to avoid
cumbersome notation, we shall write � for �Q

P
.

2.9 From [4, Lemma 1.10(a)] it also follows that every morphism 'W P ! Q in
L factors uniquely as an isomorphism '0W P ! P 0 in L followed by the morphism
�W P 0!Q. In fact P 0 D �.'/.P /

2.10 It was observed by Broto, Levi and Oliver [4, remarks after Lemma 1.10] that
every morphism in L is a monomorphism in the categorical sense. It was later observed
by Broto, Castellana, Grodal, Levi and Oliver [2, Corollary 3.10] and independently by
others, that every morphism in L is also an epimorphism. As an easy consequence we
record for further use:

2.11 Proposition Consider a p–local finite group .S;F ;L/ and a commutative
square in F on the left of the display below

P
f

����! P 0

incl

??y ??yincl

Q ����!
g

Q0

P
zf

����! P 0

�
Q
P

??y ??y�Q0
P 0

Q ����!
zg

Q0

where P;P 0;Q and Q0 are F –centric subgroups of S . Then for every lift zg of g in L
there exists a unique lift zf of f in L which render the square on the right commutative
in L. We denote zf by zgjP .

Given a lift zf for f , if there exists a lift zg for g rendering the square on the right
commutative, then it is unique.

Proof The first assertion follows immediately from [4, Lemma 1.10(a)] by setting
 D inclQ

0

P 0
; z D �

Q0

P 0
and z ' D zg�Q

P
. The second assertion follows immediately from

the fact that �Q
P

is an epimorphism.
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2.12 Fix a p–local finite group .S;F ;L/. Given a subgroup P of S , there are two
important p–local finite groups associated with it: the centraliser of P when P is
fully F –centralised and the normaliser of P when P is fully F –normalised. Both
were defined by Broto Levi and Oliver in [4].

The centraliser fusion system CF .P /, where P is fully F –centralised, is a subcategory
of F . As a fusion system it is defined over the S –centraliser of P denoted CS .P /.
Morphisms Q!Q0 in CF .P / are those morphisms 'W Q!Q0 in F that can be
extended to a morphism x'W PQ! PQ0 in F which induces the identity on P . The
objects of the centric linking system CL.P / associated to CF .P / are the CF .P /–
centric subgroups of CS .P /. The set of morphisms Q!Q0 in CL.P / is a subset of
L.PQ;PQ0/ consists of those morphisms f W PQ!PQ0 such that �.f / induces the
identity on P and carries Q to Q0 . It is shown in [4] that .CS .P /;CF .P /;CL.P //

is a p–local finite group.

Now fix a subgroup K � AutF .P / where P is fully normalised in F . The K–
normaliser fusion system N K

F .P / is a subcategory of F defined over NS .P /. The
objects of N K

F .P / are the subgroups of NS .P /. A morphisms ' 2F.Q;Q0/ belongs
to N K

F .P / if it can be extended to a morphism x'W PQ! PQ0 in F which induces
an automorphism from K on P . The fusion system N K

F .P / is saturated. When
K D AutF .P / we denote this category by NF .P / and call it the normaliser fusion
system of P . The centric linking system NL.P / associated to NF .P / has the NF .P /–
centric subgroups of NS .P / as its object set. The set of morphisms Q!Q0 is the
subset of L.PQ;PQ0/ consisting of those f W PQ! PQ0 such that �.f / carries Q

to Q0 and induces an automorphism on P .

3 The Grothendieck construction

Throughout this paper we work simplicially, namely a “space” means a simplicial set.
For further details, the reader is referred to Bousfeld and Kan [1], May [12], Goerss
and Jardine [7] and many other sources. In this section we collect several results from
general simplicial homotopy theory that we shall use repeatedly in the rest of this note.

Homotopy colimits Fix a small category K and a functor U W K! Spaces. The
simplicial replacement of U is the simplicial space

`
� U which has in simplicial

dimension n the disjoint union of the spaces U.K0/ for every chain

K0!K1! � � � !Kn

of n composable arrows in K. The homotopy colimit of U denoted hocolimK U

is the diagonal of
`
� U regarded as a bisimplicial set. See Bousfield and Kan [1,

Section XII.5].
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Consider a functor F W K!L between small categories. For a functor U W L! Spaces
there is an obvious natural map, cf [1, Section XI.9].

hocolimK F�U ! hocolimL U:

For an object L2L, the comma category .L#F / has the pairs .K;L
k2K
���! FK/ as its

objects. Morphisms .K;L k
�!FK/! .K0;L

k0
�!FK0/ are the morphisms xW K!K0

such that Fx ık D k 0 . Similarly one defines the category .F #L/ whose object set
consists of the pairs .K; kW FK!L/. Compare MacLane [11].

3.1 Definition The functor F W K!L is called right-cofinal if for every object L2L
the category .L # F / has a contractible nerve.

The following theorem was probably first proved by Quillen [14, Theorem A]. See also
Hollender and Vogt [8, Section 4.4] and Bousfield and Kan [1, Section XI.9].

Cofinality Theorem Let F W K! L be a right cofinal functor between small cate-
gories. Then for every functor U W L! Spaces the natural map

hocolimK F�U ! hocolimL U

is a weak homotopy equivalence.

Associated with a functor U W K! Spaces there is a functor F�U W L! Spaces called
the homotopy left Kan extension of U along F . It is defined on every object L 2L by

F�U.L/D hocolim
�
.F #L/

proj
��!K

F
�! Spaces

�
:

See [8, Section 5], [6, Section 6]. The following theorem is originally due to Segal.
See eg [8, Theorem 5.5].

Segal’s Pushdown Theorem Fix a functor F W K! L of small categories. Then for
every functor U W K! Spaces there is a natural weak homotopy equivalence

hocolimL F�U
'
���! hocolimK U:

The Grothendieck construction Recall that a small category K gives rise to a simpli-
cial set Nr.K/ called the nerve of K. Its n–simplices are the chains of n composable
arrows K0!K1!� � �!Kn in K. See, for example, Goerss and Jardine [7, Example
1.4] or Bousfield and Kan [1, Section XI.2]. We shall also use the notation jKj for the
nerve of K.
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Given a functor U W K! Cat Thomason [17] defined the translation category K
R

U

associated to U as follows. The object set consists of pairs .K;X / where K is an
object of K and X is an object of U.K/. Morphisms .K0;X0/! .K1;X1/ are pairs
.k;x/ where kW K0!K1 is a morphism in K and xW U.k/.X0/!X1 is a morphism
in U.K1/. Composition of .K0;X0/

.k0;x0/
�����!.K1;X1/ and .K1;X1/

.k1;x1/
�����!.K2;X2/

is given by
.k1;x1/ ı .x0; k0/D .k1 ı k0;x1 ıU.k1/.x0//:

This category is also called the Grothendieck construction of U and the notation TrKU

is also used. Thomason [17] shows that there is a natural weak homotopy equivalence

(3–1) �W hocolimK jU j
'
���! jTrKU j

A natural transformation U ) U 0 gives rise to a canonical functor TrKU ! TrKU 0 .
The induced map jTrK.U /j ! jTrK.U

0/j corresponds via � (3–1) to the induced map
hocolimK jU j ! hocolimK jU

0j. Furthermore, for every object K in K the natural
map

jU.K/j ! hocolimK jU j

corresponds under (3–1) to the inclusion of categories

(3–2) U.K/! TrK U; where X 7! .K;X / and x 7! .1K ;x/:

Consider now a functor F W K! L of small categories. Given U W L! Cat there is a
naturally defined functor

(3–3) F!W TrKF�U ! TrLU; where
�

F!.K;X 2 F�U.K//D .FK;X /

F!.k;x/D .Fk;x/:

The functor F! is a model for the map hocolim F�jU j ! hocolim jU j in the sense
that the following square commutes

jTrKF�U j
�

����! hocolimK F�jU j

jF!j

??y ??y
jTrLU j

�
����! hocolimL jU j

3.2 Definition For a functor U W K! Cat define F�U W L! Cat by

F�U.L/D Tr
�
.F #L/

proj
��!K

U
�! Spaces

�
The maps � (3–1) provide a natural weak homotopy equivalence jF�U j

'
�! F�jU j.

The equivalence in the pushdown theorem can be realized as the nerve of a functor
between the transporter categories as follows.
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3.3 Proposition The functor F#W TrLF�U ! TrKU defined by

F#W
�
L; .K;FK!L/;X 2 UK

�
7! .K;X /

F#W
�
L

`
�!L0;K

k
�!K0;U.k/.X /

x
�!X 0

�
7! .k;x/:

renders the following diagram commutative where the arrow at the top of the square is
an equivalence by the pushdown theorem.

(3–4) hocolimL jF�U j
�

' ))RRRRRRRRRRRRRR
hocolimL F�jU j

� //

�

��

�oo hocolimK jU j

� �

��
jTrL.F�U /j

jF#j

// jTrK.U /j

It is useful to point out that if ?W K!Cat is the constant functor on the trivial category
with one object and an identity morphism, then TrK.?/D Nr.K/.

4 EI categories

Fix an EI category A, namely a category all of whose endomorphisms are isomorphisms.
We shall assume that the category A is finite. We shall also assume that A is equipped
with a height function, namely a function hW Obj.A/! N such that h.A/� h.A0/ if
there exists a morphism A!A0 in A and equality holds if and only if A!A0 is an
isomorphism. Clearly, if A is an EI-category then so is Aop . The finiteness condition
also implies that if A is heighted then so is Aop .

We can always choose a full subcategory Ask of A which contains one representative
from each isomorphism class of objects in A. We say that Ask is skeletal in A. Clearly
the inclusion Ask �A is an equivalence of categories. In the language of Słomińska
[16] Ask is an EIA category.

Throughout we let k denote the poset f0 ! 1 ! � � � ! kg considered as a small
category.

4.1 Definition The subdivision category s.A/ is the category whose objects are
height increasing functors AW k ! A, namely h.A.i// < h.A.i C 1// for all i < k .
Morphisms A! A0 in s.A/ are pairs .�; '/ where �W k 0! k is a strictly increasing
function and 'W ��.A/!A0 is a natural isomorphism of functors k 0!A. Composition
of .�; '/W A! A0 and .�0; '0/W A0! A00 is given by .� ı �0; �0�.'/ ı'0/.
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Note that � is determined by the heights of the values of A namely �.i/D j if and
only if h.A0.i//D h.A.j //.

We shall further assume that A contains a subcategory I which is a poset with the
property that every morphism 'W A!A0 in A can be factored uniquely as ' D �'0

where '0 is an isomorphism in A and � is a morphism in I . The ladder

� � � // A.n� 2/
'n�1 //

.'0nı'n�1/
0 Š

��

A.n� 1/
'n //

'0n Š

��

A.n/

� � � // A0.n� 2/
�

// A0.n� 1/
�

// A0.n/

shows that the the full subcategory sI.A/ of s.A/ consisting of the objects A in which
all the arrows A.i/! A.i C 1/ belong to I is a skeletal subcategory of s.A/. We
obtain two skeletal subcategories of s.A/

(4–1) s.Ask/� s.A/ and sI.A/� s.A/:

We observe that Homs.A/.A;A0/ has a free action of Auts.A/.A0/ with a single orbit.
Also every .�; '/W A! A0 in s.A/ gives rise to a natural group homomorphism upon
restriction and conjugation with the isomorphism 'W ��A� A0

(4–2) '�W Auts.A/.A/! Auts.A/.A0/:

4.2 Proposition There is a right cofinal functor pW s.A/!A defined by

p.A/D A.0/; .AW k!A/:

Proof Słomińska [16, Proposition 1.5] shows that the functor pW s.Ask/! Ask is
right cofinal (Definition 3.1) hence so is pW s.A/!A.

4.3 Definition The category xs.A/ has the isomorphism classes ŒA� of the objects
of s.A/ as its object set. There is a unique morphism ŒA�! ŒA0� if there exists a
morphism A! A0 in s.A/. There is an obvious projection functor

� W s.A/!xs.A/; A 7! ŒA�:

When D is a full subcategory of s.A/ one obtains a sub-poset xD of xs.A/ whose
objects are the isomorphism classes of the objects of D .

Clearly xs.A/ is a poset and it should be compared with Słomińska’s construction of
s0.A/ in [16, Section 1]. Also note that xsI.A/D xs.A/ because sI.A/ is skeletal in
s.A/. Similarly xs.Ask/Dxs.A/.
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4.4 Lemma Let J W C ! D be a functor of small categories with a left adjoint
LW D! C such that L ıJ D Id. Then J is right cofinal.

Proof Fix an object d 2 D . We have to prove that the category .d # J / has a
contractible nerve. Let .d # D/ denote the category .d # 1D/. It clearly has a
contractible nerve because it has an initial object. The functors J and L induce
obvious functors

J�W .d # J /! .d #D/; .c; d
f
�! Jc/ 7! .Jc; d

f
�! Jc/

L�W .d #D/! .d # J /; .d 0; d
f
�! d 0/ 7! .Ld 0; d

f
�! d 0

�
�! JLd 0/:

It is obvious that L�ıJ�D Id. Furthermore the unit �W Id!LJ gives rise to a natural
transformation Id! J�ıL� . Therefore J� induces a homotopy equivalence on nerves
so j.d # J /j ' jd #D/j ' �.

4.5 Proposition For every functor F W s.A/! Cat and every A 2 s.A/ there is a
functor

TrBAut.A/F.A/! .��F /.ŒA�/

which induces a weak homotopy equivalence on nerves. It is natural in the sense that
every morphism .�; '/W A! A0 in s.A/, gives rise to a square

TrAut.A/F.A/ //

Tr'�F.'/

��

.��F /.ŒA�/

��.Œ'�/

��

�
(

TrAut.A0/F.A0/ // .��F /.ŒA0�/

which commutes up to a natural transformation � which is functorial in .�; '/. Here
'�W Aut.A/! Aut.A0/ is the homomorphism induced by restriction and conjugation
by 'W ��A � A0 as we described in (4–2). The square commutes on the nose if
F.'/W F.A/ �! F.A0/ is the identity.

Proof Fix an object AW k!A in s.A/. Let …A be the full subcategory of .� # ŒA�/
consisting of the objects .A0; ŒA0�

D
�! ŒA�/. It is isomorphic to the full subcategory of

s.A/ consisting of the isomorphism class of A. The inclusion J W …A! .� # ŒA�/ has
a left adjoint L where

LW .B; ŒB�! ŒA�/ 7! ��B; where Œ��B�D ŒA� for �W k 0 ,! k:

Clearly � is unique if it exists. There is a natural map B! ��B induced by the identity
on ��B under the bijection s.A/.B; ��B/ � s.A/.��B; ��B/. We obtain a natural
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transformation Id! JL which gives rise to bijections for every object .A0; ŒA0�! ŒA�/
in .� # ŒA�/

Hom.�#ŒA�/.B;JA0/D Homs.A/.B;A0/� Homs.A/.�
�B;A0/D Hom…A.LB;A0/:

Thus L is left adjoint to J and we apply Lemma 4.4. By definition …A is a connected
groupoid with automorphism group BAuts.A/.A/. Therefore upon realization, the
functor

Tr
�
BAuts.A/.A/!s.A/ F

�!Cat
� restriction
������! Tr

�
.�#ŒA�/!s.A/ F

�!Cat
�
D .��F /.ŒA�/

induces a weak homotopy equivalence. Also, for a morphism 'W A! A0 we get an
obvious '�W …A!…0A by restriction and conjugation by the isomorphism 'W ��A!
A0 . It gives rise to the following diagram

BAuts.A/.A/
incl //

'�
��

…A

'�

��

J // .� # ŒA�/

Œ'��
��

BAuts.A/.A0/
incl // …A0

J // .� # ŒA0�/

The morphism ' provides a canonical natural transformation Œ'��ıJıincl!Jıinclı'� .
This provides the natural transformation � in the statement of the proposition and its
naturality with ' . If F.'/W F.A/ �! F.A0/ is the identity, then F.�/ becomes the
identity and the square in the statement of the proposition commutes.

5 Proof of the main results

Fix a p–local finite group .S;F ;L/ and an F –centric collection C . Choose a sub-
category I � LC of distinguished inclusions, cf 2.8. Note that LC possesses a height
function, see Section 4, by assigning to a subgroup P in C its order. Also every
morphism in LC factors uniquely as an isomorphism followed by a morphism in I .

We claim that (Definitions 1.3 and 4.3)

xsdC Dxs.LC/:

To see this recall that sI.LC/ is a skeletal subcategory of s.LC/, see (4–1), hence
xs.LC/DxsI.LC/. The functor � W L!F gives a functor xsI.LC/!xsdC because it maps
the morphisms �2 I to inclusion of subgroups of S . It is an isomorphism of categories
because conjugation 1.2 of two k –simplices P0 < � � � < Pk and P 0

0
< � � � < P 0

k

induced by an isomorphism 'k 2 IsoF .Pk ;P
0
k
/ can be lifted to an isomorphism of the
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corresponding objects in sI.LC/ by lifting the isomorphism 'k W Pk ! P 0
k

to L and
using Proposition 2.11 to obtain the commutative ladder in LC :

P0
� //

Š

��

P1
� //

Š

��

� � �
� // Pk

z'k

��
P 0

0 �
// P 0

1

� // � � � � // P 0
k

We remark that a k –simplex P0 < � � � < Pk in C can be identified with the object
P0

�
�! � � �

�
�! Pk of s.LC/. Under this identification we clearly have

AutL.P/D Auts.LC/.P/:

When G is a discrete group we let BG denote the category with one object and G as
its set of morphisms. For every k –simplex P in C we identify BAutL.P/ with the
obvious subcategory of BAutL.P0/.

5.1 Theorem Let C be an F –centric collection in a p–local finite group .S;F ;L/.
Then there exists a functor zıC W xsdC! Cat with the following properties

(1) There is a naturally defined functor TrxsdC.zıC/ ! LC which induces a weak
homotopy equivalence on nerves.

(2) For every k –simplex P there is a canonical functor BAutL.P/!zıC.ŒP�/ which
induces a weak homotopy equivalence on nerves. If P0 is a subsimplex of P then
the following square commutes

BAutL.P/ //

resP
P0

��

zıC.ŒP�/

��
BAutL.P0/ // zıC.ŒP0�/

(3) The natural inclusion BAutL.P/� LC is equal to the composition

BAutL.P/! zıC.ŒP�/� TrxsdC.zıC/! LC

(4) An isomorphism of k –simplices  W P0
�
�! P in s.LC/ induces a commutative

square
BAutL.P/ //

c 

��

zıC.ŒP�/

��
BAutL.P0/ // zıC.ŒP0�/
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Proof We have seen that xsdC D xs.LC/. Let ?W xs.LC/! Cat denote the constant
functor on the trivial small category with one object and identity morphism. Use the
projection functor � W s.LC/!xs.LC/ to define

zıC D ��.?/

According to Proposition 4.5 we have a canonical functor

BAutL.P/D TrBAutL.P/.?/! ��.?/.ŒP�/D zıC.ŒP�/

which induces a weak homotopy equivalence. Since ? is constant, the square in the
statement of Proposition 4.5 commutes and we obtain the naturality assertions in point
(2) and (4). The natural functor of (1) is defined using Proposition 3.3 and Proposition
4.2 by

TrxsdC.zıC/D Trxs.LC/.��.?//
�#
��! Trs.LC/.?/D s.LC/

p
�! LC :

It induces a weak homotopy equivalence by Segal’s Pushdown Theorem, Proposition
3.3 and Cofinality Theorem. Whence point (1). Inspection of the functor �# , the
inclusion BAutL.P/� .� # ŒP�/D ��.?/.ŒP�/ and Equation (3–2) yield point (3)

Proof of Theorem A Apply Theorem 5.1 above and define ıC D jzıCj.

5.2 We now relate the construction in Theorem A to Dwyer’s normaliser decom-
position [5, Section 3]. We will show that the two functors are related by a zigzag of
natural transformations which induce a mod–p equivalence.

Fix a finite group G and the p–local finite group .S;F ;L/ associated with it. A
collection C of F –centric subgroups of S gives rise to a G –collection H of p–centric
subgroups of G (cf [5, Section 1.19], 2.7) by taking all the G–conjugates of the
elements of C . We let T H denote the transporter category of H . That is, the object
set of T H is H and the morphism set T H.H;K/ is the set NG.H;K/ D fg 2 G W

g�1Hg � Kg. We also let T C denote the full subcategory of T H having C as its
object set. Almost by definition T C is skeletal in T H . We also obtain a zigzag of
functors (see 2.7)

T H T C! LC :
Dwyer [5, Section 3] defines a category xsdH whose objects are the G–conjugacy
classes ŒH� of the k –simplices H0 < � � � < Hk in H . There is a unique morphism
ŒH�! ŒH0� in xsdH if and only if H0 is conjugate in G to a subsimplex of H. It follows
directly from the definition of H as the smallest G –collection containing C and from
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the definition of F D FS .G/ that xsdHDxsdC . We obtain a commutative diagram (see
Definition 4.1)

s.T H/

�2

��

s.T C/ //

�1

��

�oo s.LC/

�

��
xs.T H/ xs.T C/ xs.LC/:

Fix a k –simplex PD P0 < � � �< Pk in C . Note that .�2 # ŒP�/ is isomorphic to the
subcategory of T H of the objects P0 which admit a morphism to P. It contains a full
subcategory …P of the objects of s.T H/ that are isomorphic to P; cf the proof of
Proposition 4.5. By inspection …P is the translation category of the action of G on
the orbit of P, that is it is the transported category of the G –set ŒP� in H thought of as
a functor BAutL.P/! Sets, cf [5, Section 3.3]. Thus

ı
Dwyer
H .ŒP�/DEG �G ŒP�D Nr.…P/:

The inclusion J W …P ,! .�2 # ŒP�/ has a left adjoint LW .P0; ŒP0�! ŒP�/ 7! ��P0 where
.�; '/W P0 ! P is a morphism in s.LC/, see Definition 4.1. Compare the proof of
Proposition 4.5. Lemma 4.4 implies that J is right cofinal. We obtain a zigzag of
functors

ı
Dwyer
H �����!

'
j.�2/�.?/j

incl
 ���
'
j.�1/�.?/j

mod-p
�����! j��.?/j D jzıCj D ıC :

The third map induces a mod–p equivalence by the following argument. For any
object ŒP� we obtain a map .�1/�.?/.ŒP�/! ��.?/.ŒP�/ which by Proposition 4.5 is
equivalent to the map

B AutG.P/! B AutL.P/:
Since P0 is p–centric then CG.P0/ D Z.P0/ � C 0

G
.P0/ where C 0

G
.P0/ is a char-

acteristic p0–subgroup of CG.P0/ and AutL.P0/ D NG.P0/=C 0
G
.P0/. Therefore

AutG.P/! AutG.P/=C 0
G
.P0/ induces a mod–p equivalence as needed.

We shall now prove Theorem B. Fix an F –centric collection C and a collection E of
elementary abelian subgroups in .S;F ;L/. Recall from Definition 1.8 and Definition
1.9 the definitions of xCL.CIEk/ and MNL.CIE/ where E is a k –simplex in E .

5.3 Proposition Fix a k –simplex E in E , namely a functor EW k! FE . There is a
functor

�W MNL.CIE/! TrBAutF .E/

�
xCL.CIE/

�
which is fully faithful and natural with respect to inclusion of simplices. If Ek is fully
F –centralised, its image is also skeletal and in particular induces homotopy equivalence
j MNL.CIE/j

'
���! j xCL.CIEk/jh AutF .E/:
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Proof The objects of H WDBAutF .E/
R
xCL.CIE/ are pairs .P; f / where P 2 C and

f 2F.E;Z.P //. Morphisms are pairs .';g/ where ' 2 L.P;P 0/ and g 2AutF .E/
such that f 0 D �.'/ ı f ı g (see Section 3). Since f; f 0 are monomorphisms, g is
determined by ' . Define �W MNL.CIE/!H by

�.P /D .P;E
incl
��!Z.P /� P /(5–1)

�.P
'
�! P 0/D .P

'
�! P 0; �.'/j�1

Ek
/:

It is well defined and fully faithful by the definition of MNL.CIE/. Naturality with respect
to inclusion of simplices is readily verified. Consider an object .P; f / 2H . Note that
f .Ek/�Z.P /, hence for g WDf �1 2 IsoF .f .Ek/;Ek/ we must have (see Definition
2.3) Ng � CS .f .Ek// � P . By axiom II of Definition 2.3 we can extend g to an
isomorphism hW P ! P 0 in F . Clearly P 0 is in C because the latter is a collection.
Fix a lift zh 2 L.P;P 0/ for h. We have �.zh/ ı f D h ı inclPf .Ek/

ı g�1 D inclP
0

Ek
.

Therefore .idEk
; zh/ is an isomorphism .P; f /Š

�
P 0; inclP

0

Ek

�
in H . This shows that

� embeds MNL.CIE/ into a skeletal subcategory of H and the result follows.

Proof of Theorem B For every P 2 C define �.P /D�pZ.P /, see Definition 1.11.
Note that if f W P ! P 0 is an isomorphism in F then f �1W �.P 0/ ! �.P / is an
isomorphism in F . Also if P � P 0 in C then Z.P /�Z.P 0/ because P and P 0 are
F –centric so their centres are equal to their S –centralisers. It easily follows that this
assignment forms a functor

�W LC! FEop
:

Fix E 2 E . Since every homomorphism f W E!Z.P / factors through �.P / we see
that xCL.CIE/D .� #E/. In particular 3.2

(5–2) ��.?/W E 7! xCL.CIE/:

We now observe that FE is an EI-category. The assignment E 7! jEj gives rise to
a height function in the sense of Section 4. Furthermore the set I of inclusions in
FE forms a poset where every morphism in FE factors uniquely as an isomorphism
followed by an element in I . We conclude that

xsE DxsI.FE/�xs.FE/:

There is an isomorphism � W s.FEop
/! s.FE/ which is the identity on objects. On

the morphism set between EW k! FE and E0W n! FE such that ��E� E0 for some
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injective �W n! k (see Definition 4.1), � has the effect

Homs.FE op
/.E;E

0/D IsoFE op.��E;E0/D

IsoFE .E0; ��E/
f 7!f �1

��������!
�

IsoFE .�
�E;E0/D Homs.FE /.E;E0/:

The functor pW s.FEop
/! FEop of Proposition 4.2 fits into a commutative diagram

s.FEop
/

p //

� �

��

FEop

s.FE/
� // FEop

where �.E/DEk . Since � is an isomorphism, � is right cofinal. We obtain a zigzag
of functors

xsdE �
 ��� s.FE/

�
���! FEop �

 ��� LC ?
���! Cat:

Define
zıE D �� ı�

�
ı ��.?/; and ıE D jzıE j:

Since � is right cofinal, the Cofinality Theorem and Segal’s Pushdown Theorem imply
a weak homotopy equivalence

hocolimxsdE ıE
'
�! jLCj:

This is point (1) of the theorem. Inspection of (3–2), Proposition 3.3 and (3–3) shows
that this equivalence is given as the realization of a functor TrxsdEzıE ! LC where

.E;Ek

f
�! P / 7! P

.E! E0;g 2 AutF .E0/;P
'2L
���! P 0/ 7! ':

Point (2) follows from (5–2) and Proposition 4.5. Point (3) follows from Proposition
1.10, inspection of � in Proposition 5.3, of (5–2) and the functor TrxsdE.zıE/! LC .
Point (4) is a consequence of Proposition 4.5.
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