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Knot Floer homology in cyclic branched covers

J ELISENDA GRIGSBY

In this paper, we introduce a sequence of invariants of a knot K in S3 : the knot Floer
homology groups 1HFK .†m.K/I eK ; i/ of the preimage of K in the m–fold cyclic
branched cover over K . We exhibit 1HFK .†m.K/I eK ; i/ as the categorification
of a well-defined multiple of the Turaev torsion of †m.K/� eK in the case where
†m.K/ is a rational homology sphere. In addition, when K is a two-bridge knot, we
prove that 1HFK .†2.K/I eK ; s0/Š1HFK .S3IK/ for s0 the spin Spinc structure
on †2.K/ . We conclude with a calculation involving two knots with identical
1HFK .S3IK; i/ for which 1HFK .†2.K/I eK ; i/ differ as Z2 –graded groups.

57R58, 57M27; 57M05

1 Introduction

Let Y be a closed, connected, oriented 3–manifold and s a Spinc structure on Y . In
[13], Ozsváth and Szabó assign to the pair .Y I s/ a graded abelian group, denoted
bHF .Y I s/.

The additional data of an oriented, nullhomologous link L in Y induces a filtration on
the chain complex used to compute bHF .Y I s/ for each Spinc structure s [11], [16] .
The filtered chain homotopy type of this complex is an invariant of the oriented link L

in Y . One can, in particular, calculate the associated graded object of this filtration,
yielding a sequence of graded abelian groups 1HFK .Y IL; s; i/, called the knot Floer
homology groups of L in Y .

Now consider †m.K/, the m–fold cyclic branched cover of S3 branched along K .
Let pW †m.K/! S3 denote the associated projection map and eK D p�1.K/ denote
the preimage of K in †m.K/. Consideration of eK in each cyclic branched cover,
†m.K/, yields a sequence of invariants of the original knot K in S3 . Namely, for
each m 2 ZC we have:

Definition 1.1 1HFK .†m.K/I eK / D
L

s;i
1HFK .†m.K/I eK ; s; i/, the knot Floer

homology groups of eK �†m.K/.
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Our aim here is to study this sequence of invariants, focusing on the case where K is
a two-bridge knot and mD 2. Then †2.K/ is a lens space (Chapter 12 in [2]) with
H1.†

2.K//D Zn , n an odd integer. Our main result, stated more precisely in Section
4, is:

Theorem 4.3 For K a two-bridge knot in S3 , there exists a Spinc structure, s0 , on
†2.K/ for which

1HFK .†2.K/I eK I s0/Š 1HFK .S3
IK/:

This result falsely suggests that the groups 1HFK .†m.K/I eK / contain no more infor-
mation than the groups 1HFK .S3IK/. In fact, there are knot pairs K1 , K2 in S3 for
which

1HFK .S3
IK1/Š 1HFK .S3

IK2/

but for which
1HFK .†2.K/IeK1 / 6Š 1HFK .†2.K/IeK2 /

as Z2 –graded groups. Such a pair (the two-bridge knots K.15; 4/ and K.15; 7/) is
discussed in detail in Section 4.1.

We also show that for K a nullhomologous knot in a rational homology sphere Y ,
1HFK .Y IK/ is a categorification of a multiple of the Turaev torsion of Y �K . The

connection, established by Kirk and Livingston in [5], between the Casson–Gordon
invariant of K and various torsions of †2.K/ bears further examination, particularly
since it may yield new obstructions to K being slice.

The paper is laid out as follows:

In Section 2 we recall the relevant definitions and theorems in Heegaard Floer homology
as well as describe and develop notation for certain natural handlebody decompositions
and Heegaard diagrams associated to K � S3 and eK �†m.K/.

In Section 3 we discuss torsions of chain complexes and prove that 1HFK .Y IK/ is the
categorification of a multiple of the Turaev torsion of Y �K in the case where Y is a
rational homology sphere.

In Section 4 we study the invariant 1HFK .†2.K/I eK / for the case where K is a
two-bridge knot in S3 . We also compute 1HFK .†2.K/I eK / in a few Spinc structures
for the two-bridge knots K.15; 7/ and K.15; 4/, whose double branched covers are the
lens spaces �L.15; 7/ and �L.15; 4/, respectively.
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2 Background and conventions

We begin by reminding the reader of the Floer homology setup for 1HFK .Y /. For
details, see Ozsváth and Szabó [11; 12; 13]. For the knot Floer homology refinements,
see also Rasmussen [16].

2.1 Heegaard Floer homology background

Let K be a nullhomologous knot in a closed, oriented, connected 3–manifold Y .
Although Ozsváth and Szabó’s theory assigns homology groups more generally to
nullhomologous links in Y , we will focus on knots in this paper.

In [11], Ozsváth and Szabó present the data of a knot K in Y by means of a doubly-
pointed Heegaard diagram compatible with K . More specifically, they construct a
handlebody decomposition of Y arising from a generic self-indexing Morse function

f W Y ! R

with a single index 0 and 3 critical point and g index 1 and 2 critical points. This
decomposition yields a Heegaard diagram for Y . The data of two points on the
Heegaard surface, S , specifies the knot, K .

Definition 2.1 A doubly-pointed Heegaard diagram for a pair .Y;K/ is a tuple
.S; Ę; Ě; w; z/ where

� Ę is the g–tuple of co-attaching circles for the g 1–handles

� Ě is the g–tuple of attaching circles for the g 2–handles

� w; z 2 S � Ę � Ě

� K is the isotopy class of �
w [ 
z , where 
w and 
z are gradient flow lines
from the index 3 to index 0 critical points associated to any generic metric on
Y , intersecting S at z and w , respectively.

We gather the standard definitions and notation here for the reader’s convenience:

� Symg.S/D S�g=†g is the g–fold symmetric product of the Heegaard surface,
S .
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� T˛ D ˛1� : : :�˛g (resp. Tˇ ) is the half-dimensional torus of co-attaching (resp.
attaching) circles of the 1–handles (resp. 2–handles) inside Symg.S/.

� VzDfzg�Symg�1.S/ (resp. Vw ) is the codimensionC 1 subvariety of Symg.S/

consisting of g–tuples where one point is constrained to lie at z (resp. w ).
� nz D .� /\Vz (resp. nw D .� /\Vw ) is the algebraic intersection number of

a class with Vz (resp. Vw ) in Symg.S/.

This data gives rise to a Z–filtered chain complex, bCF whose

� generators are elements x 2 T˛ \Tˇ ,
� differential is given by:b@xD

X
y2T˛\Tˇ

X
f�2�2.x;y/j�.�/D1;nw.�/D0g

#.cM.�// y

� where cM.�/ is the moduli space of holomorphic maps of the standard unit disk
into Symg.S/ with boundary conditions as in [13], in the homotopy class of � ,
modded out by the standard R action (for the sake of simplicity, count # cM.�/

with Z2 coefficients),
� �.�/ is the expected dimension of the moduli space M.�/ (before we mod out

by the R action), given by the Maslov index of � ,
� and the relative Z filtration on generators is given by

F.x/�F.y/D nz.�/� nw.�/

where � 2 �2.x; y/.

The relative Z filtration is improved to an absolute Z filtration by requiring that the
Euler characteristic of the associated bi-graded complex is the symmetrized Alexander
polynomial of K . We will have more to say on this point in Section 3. See also Section
2.3 of [11].

The homology groups of the associated graded object of this Z–filtered complex are
Ozsváth and Szabó’s knot Floer homology groups; ie, 1HFK .Y IK; j / is the homology
of the chain complex Fj=Fj�1 .

For convenience, we introduce a couple more pieces of notation:

� s.x; y/D nz.�/�nw.�/ is the Z–filtration difference between x and y in 1CFK

(where � 2 �2.x; y/).
� m.x; y/ D �.�/� 2nw.�/ is the relative homological grading of x and y in

1CFK (where, again, � 2 �2.x; y/).
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2.2 Natural handlebody decompositions

In what follows, whenever we refer to a handlebody decomposition for S3 �K , we
will always mean one with

� a single 0–handle h0 ,

� g 1–handles h˛1
; : : : h˛g

,

� (g� 1) 2–handles hˇ1
; : : : ; hˇg�1

,

� no 3–handles.

We will also specify an oriented meridian, �, for K (along which the final 2–handle,
hˇg

, will be attached to build S3 ) such that the attaching circle of hˇg
goes over one of

the h˛i
(for definiteness, h˛g

) geometrically once and over all of the other 1–handles
geometrically 0 times. � generates H1.S

3�K/ and specifies an orientation.

We will use the notation hb.S3�KI�/ to denote such a handlebody decomposition.

Similarly, hb.S3IKI�/ will denote the extension of hb.S3�KI�/ to a handlebody
decomposition for S3 . In particular,

hb.S3
IKI�/D hb.S3

�KI�/[ h�[ h3:

Accordingly, we construct a doubly-pointed Heegaard diagram hd.S3IKI�/ for the
pair .S3;K/ by choosing an oriented arc ı on S meeting � transversely in a single
intersection point and having 0 geometric intersection with all other co-attaching
(attaching) circles for the 1–handles (2–handles). Our two basepoints z and w are
then the initial and final points, respectively, of ı . See Figure 1.

hd.S3IKI�/ has the properties:

� Ę D ˛1 [ : : : [ ˛g are the coattaching circles associated to the 1–handles,
h˛1

; : : : h˛g
,

� Ě D ˇ1 [ : : : [ ˇg�1 [ .ˇg D �/ are the attaching circles associated to the
2–handles hˇ1

; : : : ; hˇg�1
; hˇgD� ,

� The orientation convention for K given in Definition 2.1 has the property that if
��S is a longitude which agrees with the orientation on K , then �\�D ı\�.

A natural handlebody decompostion and doubly-pointed Heegaard diagram can be
constructed for the m–fold cyclic branched cover †m.K/ as follows:
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..

˛2

˛3

˛1

˛4

ˇ1
ˇ2

ˇ3

�Dˇ4

w
z

ı

Figure 1: Example of a doubly-pointed Heegaard diagram

(1) Begin with the natural Zm –equivariant handlebody decomposition of †m.K/�eK which associates to each handle, h, in the handlebody decomposition of
S3�K , m handles in the handlebody decomposition of †m.K/� eK consisting
of a chosen lift eh of h and m� 1 translates �m.eh/; �2

m.
eh/; : : : ; �m�1

m .eh/ of eh .
We now have a Zm –equivariant handlebody decomposition for †m.K/� eK
but too many 0–handles (the theory requires a handlebody decomposition for
†m.K/ with a single 0 and 3 handle).
To correct this, recall that � is the core circle for a single one of the 1–handles,
h˛g

. Use m � 1 of the lifts of h˛g
: �m.eh˛g

/; : : : ; �m�1
m .eh˛g

/ to cancel the
extra 0–handles �m.eh0/; : : : ; �

m�1
m .eh0/. This new handlebody decomposition

is still Zm –equivariant with respect to the projection map (only now the action
on eh0 and eh˛g

are trivial). We denote this handlebody decomposition by
hb.†m.K/� eK I e�/.

(2) We extend this to a Zm –equivariant handlebody decomposition of †m.K/ by
adding one more 2–handle attached along e� , which will be our choice of
meridian for the knot eK in †m.K/, and a 3–handle to fill in the rest of the
solid torus neighborhood of eK . We denote this handlebody decomposition by
hb.†m.K/I eK I e�/.

(3) Associated to this hb.†m.K/I eK I e�/ is the corresponding doubly-pointed Hee-
gaard diagram hd.†m.K/I eK I e�/ with basepoints w and z on either side ofe� .
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An example should make everything concrete.

2.3 Example: K = right handed trefoil

Consider the genus 2 Heegaard diagram for S3 compatible with K = the right handed
trefoil pictured in Figure 2. This is what we have been calling hd.S3IKI� D ˇ2/.
Notice that if we remove the 3–handle and hˇ2

we get a handlebody decomposition for
S3�K .

˛2

˛1

ˇ1

ˇ2D�

Figure 2: Genus 2 Heegaard diagram for the RH Trefoil

A presentation for �1.S
3�K/ is generated by h˛1

; h˛2
with the single relation given

by the attaching map of the 2–handle hˇ1
. This relation can be read off by traversing

ˇ1 and keeping track of the intersections with ˛1 and ˛2 :

�1.S
3
�K/D hh˛1

; h˛2
j@.hˇ1

/D h˛1
h˛2

h˛1
h�1
˛1

h�1
˛2

h�1
˛1
i

The associated Heegaard diagram for †2.K/ that we have been calling
hd.†2.K/I eK I ě2/ has the following properties:

� ę1; �2.ę1/; ę2 are the co-attaching circles for the lifts of the 1–handles (note
that we have used �2.ę2/ to cancel the extra 0–handle)

� ě
1; �2. ě1/;

ě
2 are the attaching circles for the lifts of the 2–handles (note thatě

2 still intersects ę2 geometrically once and intersects no other ˛ curves)

One obtains a handlebody decomposition for †2.K/� eK by removing the 3–handle
and the 2–handle, ehˇ2

.
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A presentation for �1.†
2.K/� eK / is therefore generated by eh˛1

;eh�2.˛1/;
eh˛2

with
the following relations:

@.ehˇ1
/Deh˛1

�eh˛1
�eh�1

˛2
� �2.eh˛1

/�1
�eh�1

˛2

@.�2.ehˇ1
//D �2.eh˛1

/ �eh˛2
� �2.eh˛1

/ �eh�1

˛1

3 2HFK .Y / and L�.Y �K /

The aim of this section is to understand 1HFK .Y IK/ as the categorification of a well-
defined multiple of a version of the Turaev torsion of Y �K in the case where Y is a
rational homology sphere. K , as before, is a nullhomologous knot in Y .

To understand 1HFK .Y IK/ as a categorification, we must first recall that the chain
complex for 1CFK .Y IK/ splits as a sum of chain complexes, naturally indexed by
elements of Spinc.Y0.K//, where Y0.K/ denotes the canonical 0 surgery on K . The
set, Spinc.Y0.K//, is often referred to as the set of relative Spinc structures of the
pair .Y;K/ and denoted Spinc.Y;K/. In Section 2.3 of [11] (see also Section 2.6 of
[13]), Ozsváth and Szabó describe, given a doubly-pointed Heegaard diagram, how to
construct a map

T˛ \Tˇ! Spinc.Y;K/

and a splitting

Spinc.Y;K/Š Spinc.Y /�Z:

Taking the Euler characteristic of each summand in this splitting will yield a formal
polynomial in two variables, one of which indexes the Spinc.Y / structure and one of
which indexes the Z factor.

In brief, we obtain such a formal two-variable polynomial as a multiple of the Reide-
meister torsion of the maximal abelian cover of Y �K . Specifically, computation of
the Reidemeister torsion yields a rational expression in Q.H1.Y //.T / which depends
on the choice of a lift of a Z–basis for C�.Y � K/ to a ZŒH1.Y /�ŒT;T

�1�–basis
for C�.Y �K/ŒH1.Y�K /� , where .Y �K/ŒH1.Y�K /� is the maximal abelian cover of
Y �K . A multiple of this rational expression yields a well-defined formal two-variable
polynomial in ZŒSpinc.Y /�ŒT;T �1� once we use Turaev’s correspondence between
Spinc structures on 3–manifolds and lifts of Z–module bases to ZŒH1.Y /� bases of the
maximal abelian cover of Y .

Before launching into a formal discussion of these ideas, we state our main result.
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Theorem 3.1 Let Y be an oriented rational homology sphere and K an oriented,
nullhomologous knot in Y .

Let eW �1.Y �K/! Z be given by e.
 /D lk.
;K/. Let r W �1.Y �K/!H1.Y /

be the projection onto H1.Y /.

Let L�.Y �K/ 2Q.Spinc.Y /.T // be the variant of the Reidemeister torsion of the knot
complement given in Definition 3.3. Then

. L�.Y �K// � .T � 1/D
X

s2Spinc
.Y /

ps.T / � s

where
ps.T /D

X
i

�.1HFK .Y IK; s; i// �T i :

Recall that

�.1HFK .Y IK; s; i//D
X

fd2d0CZg

.�1/d�d0rk.1HFKd .Y IK; s; i//:

In the above, d is the absolute homological grading of a generator, defined in [14]. We
can, however, define �.1HFK .Y IK; s; i// without reference to this absolute grading
for a rational homology sphere by using the relative Z2 homological grading on
generators induced by comparing the local intersection numbers of T˛ and Tˇ at two
generators x and y (see Theorem 3.7).

We then lift this relative Z2 grading to an absolute Z2 grading by making the choice
which insures X

j

.�1/j rk.bHFj .Y //D jH1.Y IZ/j

for j 2 Z2 .

One should think of L�.Y �K/ as a rational function in the formal variables fsjs 2
Spinc.Y /g and T . In the numerator of a particular form of this rational expression,
the s term records the Spinc structure and the exponent on the T variable records the
filtration level of a generator in 1HFK .Y /.

3.1 Background on torsions of chain complexes

We start by recalling some definitions. The classical references for this material are the
papers of Milnor [7], [8]. The particular version of interest to us is developed in Turaev
[19].
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First, recall that the torsion can be defined for a finite acyclic chain complex

0 // Cm
@m // : : : @2 // C1

@1 // C0

@0 // 0

of vector spaces over a field F with fixed F–bases fcqg for each Cq . One then chooses,
for each q , a collection fbqg of elements whose images form a basis for im.@q/ in
Cq�1 .

Given two bases fbg and fcg for a given vector space, let Œb=c� denote the determinant
of the change of basis matrix (ie, the nonsingular matrix A D .aij / where bi DPn

jD1 aij cj ).

Then

Definition 3.2 The torsion of C� is defined as

�.C�/D

mY
qD0

Œf@qC1.bqC1/; bqg=fcqg�
.�1/qC1

:

It is well-known that �.C�/ depends only upon the original choices of bases fcqg for
Cq .

Classically, we have been interested in torsions of chain complexes arising as covers.
For example, the Alexander polynomial of a knot is (a multiple of) the torsion of the
infinite cyclic cover of the knot complement.

In general, we start with a finite chain complex of Z–modules and construct a cover of
X via a surjective homomorphism �1.X /! G . Call such a cover X ŒG� . C�.X

ŒG�/

is a free ZŒG�–module with a basis given by a choice of lift of the Z–module basis
downstairs. If G is an abelian group, we can construct the field of fractions Q.G/

of ZŒG� by inverting all non-zerodivisors. The free ZŒG�–module basis we chose for
C�.X

ŒG�/ then becomes a free Q.G/–basis for C�.X
Q.G// WDQ.G/˝ZŒG�C�.X

ŒG�/.
If C�.X

ŒG�/ is an acyclic complex, we can compute its torsion.

3.2 Torsion of .Y �K /Q.G�Z/

Let K be a nullhomologous, oriented knot in an oriented rational homology sphere, Y ,
and let � D �1.Y �K/. We are interested in the torsion of the chain complex arising
from the surjective Hurewicz homomorphism

�!H1.Y �K/:
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Notice that a choice of oriented meridian � for the knot yields a splitting

'� D r � eW H1.Y �K/
Š // H1.Y /�Z ŠG �Z

specified by
'�.h/D .h� e.h/�; e.h//:1

Here,
eW �! Z

is given by linking number with K :

e.h/D lk.h;K/

and
r W �!H1.Y /ŠG

is the composition �1.Y �K/! �1.Y / with �1.Y /!H1.Y /.

Let � W ZŒ��! ZŒZ� denote the Z–ring extension of e and let �W ZŒ��! ZŒG� denote
the Z–ring extension of r .

Then let C�. AY �K / denote the Z–linear chain complex of the universal cover, AY �K ,
of Y �K and form the free ZŒG �Z�–module ZŒG �Z�˝�˝� C�. AY �K / and denote
it by

C�..Y �K/ŒG�Z�/:

At this point, we can form Q.G �Z/, the ring of quotients of ZŒG �Z� and construct

CQ.G�Z/ WDQ.G �Z/˝ZŒG�Z� C�..Y �K/ŒG�Z�/:

Now, to compute �.CQ.G�Z//, we fix a handlebody decomposition for Y �K with

� a single 0–handle h0 ,

� g 1–handles h˛1
; : : : ; h˛g

, where, again, we are choosing h˛g
to be �, a

meridian, (hence, e.h˛g
/D 1 and r.h˛g

/D 0),

� .g� 1/ 2–handles hˇ1
; : : : ; hˇg�1

,

� no 3–handles.

which yields a Z–module basis for C�.Y �K/.

The boundary maps

@�W C�..Y �K/ŒG�Z�/! C��1..Y �K/ŒG�Z�/

1Note that I am abusing notation here (and will throughout), denoting an element of H1 or �1 by a
loop representing it, and vice versa.
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are most easily expressed using Fox calculus (see [4]). Specifically @2 is the .g�1/�g

matrix

.@2/ij D .�˝ �/

�
@hˇi

@h
j̨

�
2 ZŒG �Z�:

and @1 is the g� 1 matrix

.@1/i D .�˝ �/.h˛i
� 1/ 2 ZŒG �Z�:

After verifying that the chain complex CQ.G�Z/ is acyclic (addressed by Lemma 3.4,
whose proof we give in Section 3.4), we can pick lifts eh0;eh˛i

;eh
ǰ

of the the Z–module
bases downstairs and compute the torsion by comparing that lift with

� b2 D f
ehˇ1

; : : : ;ehˇg�1
g

� @2.b2/D f@.ehˇ1
/; : : : ; @.ehˇg�1

/g

� b1 D f
eh˛g
g

� @.b1/D f@.eh˛g
/g

� b0 D fg

Then,

� Œb2=c2�D 1

� Œ@2.b2/b1=c1�D �˝�.Œ@
g
2
�/, where @g

2
is the g�g matrix obtained by inserting

the tuple representing the g th basis element of the chosen basis fh˛1
; : : : h˛g

g

into the g th row of @2 .

� Œb1=c0�D �˝�.Œ@
g
1
�/, where @g

1
is the 1�1 matrix obtained by deleting the first

g� 1 rows from @1 . In other words, Œb1=c0�D �˝ �.h˛g
� 1/D T 1�T 0:

We obtain the torsion of CQ.G�Z/ by computing the rational expression

.�˝ �/

 
Œ@

g
2
�

Œ@
g
1
�

!
D
�˝ �.Œ@

g
2
�/

T 1�T 0

with respect to the initial choices eh0;eh˛i
;eh

ǰ
of lifts.
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3.3 Euler chains and bases for chain complexes

All we lack in the above is a nice way of specifying a Q.G �Z/–basis for the chain
complex CQ.G�Z/ , ie, a lift of a particular Z–module basis for C�.Y �K/. Without
such a lift, � has an indeterminacy coming from this choice.

It turns out that Turaev gives us exactly the tools we need to specify such a lift. In brief,
he explains how to associate to an Euler chain (defined in Section 2.5 in [19]) on Y �K

a ZŒH1.Y �K/�–module basis for the maximal abelian cover, .Y �K/ŒH1.Y�K /� .

Furthermore, given a doubly-pointed Heegaard diagram for Y compatible with a knot
K , Ozsváth and Szabó construct a map

T˛ \Tˇ! Eul.Y0.K//! Eul.Y �K/:

There is a natural splitting of Eul.Y �K/Š Eul.Y /�Z which, via Turaev’s identifica-
tion of Euler chains and Spinc structures, allows us to realize the torsion of the chain
complex of the maximal abelian cover as a formal element of Q.Spinc.Y //.T /.

So, choosing a lift of a Z–module basis for C�.Y �K/ to a ZŒH1.Y �K/�-module
basis for C�.Y �K/ŒH1.Y�K /� is just a matter of specifying an element of Eul.Y �K/.

We specify such an element by using Ozsváth and Szabó’s identification [11]

T˛ \Tˇ! Spinc.Y;K/$ Eul.Y0.K//:

Their map comes complete with a natural map

Eul.Y0.K//! Eul.Y �K/

induced by forgetting the final two and three handle (and corresponding arcs in the
spider-like Euler chain) along with a splitting

p1 �p2W Eul.Y �K/! Eul.Y /�Z:

Here, the map p1W Eul.Y �K/! Eul.Y / is obtained via the unique extension of an
Euler chain for Y �K to one for Y .2

The map p2W Eul.Y �K/ ! Z is defined as follows. Let � 2 Eul.Y �K/ be the
restriction of � 0 2 Eul.Y0.K// and s�0 be the element of Spinc.Y0.K// associated to
� 0 via Turaev’s identification. Then

p2.�/D
1

2
hc1.s�0/; Œ yF �i;

2Recall that in going from Y �K to Y we add a 2–handle along a meridian � for the knot and a
3–handle, and � has a unique intersection point with a single ˛ curve. The arc connecting h0 to h3 is
uniquely specified by the basepoint, w .
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where Œ yF � is the homology class of a capped-off Seifert surface for K in Y0.K/.

Notice that this splitting is defined so that it respects the natural �–induced splitting

'�W H1.Y �K/
Š // .H1.Y /�Z/

specified by '�.h/D .h� e.h/�; e.h//, where eW H1.Y �K/! Z is defined by

e.h/D lk.h;K/D h.h0/; Œ yF �i;

where h0 2H1.Y0.K// is the induced image under the inclusion map

H1.Y �K/!H1.Y0.K//

(again, we are assuming that K is an oriented knot).

We are finally ready to define the variant of Reidemeister torsion for which 1HFK .Y;K/

is a categorification in the case when Y is a rational homology sphere.

Definition 3.3 Let Y be a rational homology sphere, K a nullhomologous, oriented
knot in Y , � a choice of meridian for K .

Let hd.Y IK; �/ be a doubly-pointed Heegaard diagram compatible with K .

Then consider the summands of the formal determinant of the matrix

ˇ1 : : : ˇg�1

˛1
:::

˛g�1

0@ 1A
where the entries of the matrix are formal sums of intersection points between the
appropriate ˛ and ˇ curves, and each intersection point in the matrix is assigned a ˙1

according to its local intersection number (see Lemma 3.6).

By acting on this formal sum by Ozsváth and Szabó’s map

f W T˛ \Tˇ! Spinc.Y;K/

composed with the splitting

p1 �p2W Spinc.Y;K/! Spinc.Y /�Z

we get a formal element of ZŒSpinc.Y /�ŒT;T �1�; ie, a formal polynomial, ps.T /, in
the variables fsjs 2 Spinc.Y /g and T;T �1 .

We define:

L�.Y �K/D
ps.T /

T � 1
:
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Remark Note that L�.Y �K/ is actually the Reidemeister torsion of the maximal
abelian cover of Y �K , where the usual indeterminacy coming from a choice of basis
has been eliminated.

More precisely, let eW �1.Y �K/! Z be given by

e.
 /D lk.
;K/;

r W �1.Y �K/!H1.Y /

be the projection onto H1.Y /, and

�W ZŒ�1.Y �K/�! ZŒT;T �1�;

�W ZŒ�1.Y �K/�! ZŒH1.Y /�

the natural group ring extensions.

Then

.�˝ �/

 
Œ@

g
2
�

Œ@
g
1
�

!
D
�˝ �.Œ@

g
2
�/

T � 1

yields the Reidemeister torsion associated to the maximal abelian cover of Y �K . If
the basis of the chain complex for the maximal abelian cover is specified by Ozsváth–
Szabó’s map to Spinc structures, then we arrive at L�.Y �K/.

L�.Y �K/ is the variant of Reidemeister torsion which will (when multiplied by .T �1/)
be the categorification of the knot Floer homology for a rational homology sphere.

3.4 CQ.G�Z/ is an acyclic complex

We return now to the proof of an important point which we left unresolved in an earlier
part of this section.

Lemma 3.4 The chain complex CQ.G�Z/ is acyclic.

Proof of Lemma 3.4 We need only show that the determinants of the matrices
.�˝ �/.@

g
2
/ and .�˝ �/.@g

1
/ are units in Q.G/.T /.

.�˝ �/Œ@
g
1
�D T � 1 is clearly a nonzerodivisor in ZŒG�ŒT;T �1� and hence a unit in

Q.G/.T /.

To see that Œ@g
2
� must be a unit in Q.G/.T /, consider the ring homomorphism

'W Q.G/.T /!Q
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which sends T and all h 2G to 1. If '.p/D q is a unit in Q, then p must be a unit
in Q.G/.T /.

But '..�˝ �/.@g
2
// is exactly the relation matrix for H1.Y IQ/. H1.Y IQ/D 0 then

implies that '..�˝ �/Œ@g
2
�/ is a unit in Q.

3.5 Proof of Theorem 3.1

The relationship between generators of the knot Floer homology and summands of the
determinant of the differential

@2W .CQ.G�Z//2! .CQ.G�Z//1

used to compute the Reidemeister torsion is clear, since the generators of 1CFK are
themselves summands of an analogous formal determinant (see, eg, the discussion in
the proof of Proposition 4.4).

Under this correspondence, the relative element of Spinc.Y;K/ specified by the differ-
ence between a pair of generators is an element of H1.Y0.K//ŠH1.Y �K/.

Furthermore, by the naturality of the H1 action on all of these sets, the splitting

H1.Y �K/!H1.Y /�Z

matches the splitting
Spinc.Y;K/Š Spinc.Y /�Z:

We need only verify that s.x; y/, the relative filtration grading of two generators, x
and y, defined by nz.�/ � nw.�/ (for � 2 �2.x; y/), matches up with the relative
T exponent of the corresponding summands and that m.x; y/, the relative Maslov
grading of the generators agrees mod 2 with the relative sign of the summands in the
determinant.

Lemma 3.5 Suppose K is an oriented, nullhomologous knot in a closed, connected,
oriented 3–manifold Y and hd.Y IK; �/ is a doubly-pointed Heegaard diagram as in
Section 2. Then consider the map eW � ! Z given by e.
 /D lk.
;K/. Let x, y be
Floer homology generators and let 
x; 
y 2 � be their corresponding summands in the
Fox determinant, Œ@g

2
�. Then

e.
x/� e.
y/D s.x; y/:

Proof of Lemma 3.5 First, recall that the filtration difference between two genera-
tors x and y is well-defined whenever x and y are in the same Spinc structure. Then
there exists a topological disk � 2 �2.x; y/ and s.x; y/D nz.�/� nw.�/.
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Recall also that in hd.Y IK/ we have a distinguished ˇ circle, �, which is a meridian
for K , and next to which we place the two basepoints as shown in Figure 1. Recall
(Section 2.13 of [13]) that we can represent disks in �2.x; y/ uniquely as Z–linear
combinations of fundamental domains Di , which are the closures of the connected
components of S �˛1� : : :�˛g �ˇ1� : : :� .ˇg D �/.

Let Dz and Dw be the fundamental domains containing the basepoints z and w , re-
spectively. Given a representation of a disk � as a Z–linear combination of fundamental
domains, nz and nw are then the coefficients on Dz and Dw , respectively.

Now suppose x and y are two generators in the same Spinc structure, � 2 �2.x; y/ is a
disk connecting them, and

P
i Di is the linear combination of fundamental domains

representing � . Note that

@.Dw/D��C (other stuff);

and
@.Dz/D �C (other stuff):

Therefore,

@.�/D nz.@Dz/C nw.@Dw/C (other stuff)

D .nz � nw/�C (other stuff)

Call this (other stuff) 
 . Note that 
 is exactly the image under the Hurewicz map
�1.Y �K/!H1.Y �K/ of 
�1

x �
y , where 
x and 
y are the summands corresponding
to x and y in the Fox determinant, Œ@g

2
�. In other words,

e.
 /D e.
�1
x � 
y/D�.e.
x/� e.
y//:

Furthermore,
.nz � nw/�D�


in H1.Y �K/. Therefore,

e.
x/� e.
y/D�e.
 /

D .nz.�/� nw.�// � e.�/

D nz.�/� nw.�/

D s.x; y/;

as desired.
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Lemma 3.6 Let x and y be two elements of 1CFK .Y / in the same Spinc structure.
Let 
x; 
y 2 ZŒ�� be the corresponding summands in the Fox determinant, Œ@g

2
�. Then

.�1/m.x;y/ D sgn.
x/ � sgn.
y/:

Proof of Lemma 3.6 Recall the following standard fact from Lagrangian Intersec-
tion Floer theory.

Theorem 3.7 (Floer, Robbin–Salamon [17]) Let L1 and L2 be two Lagrangian
submanifolds in a symplectic manifold X . Given x; y 2L1\L2 and � 2 �2.x; y/ a
pseudoholomorphic disk connecting them, we have

.�1/�.�/ D deg.x/ � deg.y/

Here deg denotes the local intersection number of L1 and L2 at x and �.�/ is the
Maslov index of � .

In our setting, T˛ and Tˇ play the role of Lagrangians in the symplectic manifold
Symg.S/. Since the mod 2 Maslov index difference depends only on the local intersec-
tion degrees of the two intersection points x and y in T˛\Tˇ , we need only prove that
sgn.
x/ � sgn.
y/D deg.x/ � deg.y/, a straightforward calculation in local coordinates
on Symg.S/.

3.6 Relationship to twisted Alexander polynomials

We mention some closely-related constructions developed in Wada [20], Kirk and
Livingston [5] and Kitano [6].

As usual, we assume Y is an oriented rational homology sphere, and K in Y is an
oriented, nullhomologous knot.

Then we have an isomorphism

f W H1.Y /! Za1
� : : :�Zak

where the elements ai are well defined under the added condition that ai divides aiC1

for all 1� i < k . Let ci denote .pi ıf /.c/, where

pi W .Za1
� : : :�Zak

/! Zai

denotes the projection onto the i th component. Then for each i we have a character
�i W H1.Y /! S1 � C which lands in the cyclotomic field Q.�ai

/ for �ai
a primitive
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ai th root of unity. By multiplying characters, we obtain the 1–dimensional tensor
product representation:

�.c/.z/D .�1˝ : : :˝�k/.c/.z/

D �c1
a1
� � � �ck

ak
.z/

Now we can form what is known as the �–twisted Alexander polynomial of K by
using eW � ! Z coming from the intersection number with a Seifert surface and its
Z–ring extension �W ZŒ��! ZŒZ�.

Definition 3.8 (Wada) Let Y , K , � be as above. Let F be a field and �W ZŒ��!

Gln.F/ a representation. Then the �–twisted Alexander polynomial of K in Y is the
rational expression

�K ;�.T /D

 
.�˝ �/Œ@

g
2
�

T � 1

!
where @2 is the Fox matrix associated to the presentation

hh˛1
; : : : h˛g

jhˇ1
; : : : ; hˇg�1

i

of �1.Y �K/ and @g
2

is @2 with the g th column removed. Here, the presentation
is again assumed to have the property that h˛g

is a meridian of the knot, implying
e.h˛g

/D 1 and f .h˛g
/D 0:

Kitano proves, in [6], that Wada’s �–twisted polynomial is the Reidemeister torsion of
the chain complex associated to �˝ � . Since this chain complex is exactly the chain
complex CQ.G�Z/ (the only difference is an extra map Q.G/! Q.�a1

; : : : ; �ak
/ �

C, yielding an element of Q.�ak
/ŒT;T �1�),3 Wada’s �–twisted polynomial is the

Reidemeister torsion in a slightly different form.

Kirk and Livingston, in [5], define yet another version of a �–twisted Alexander
polynomial, which differs slightly from Wada’s definition. They again begin with
homomorphisms eW �!Z and f W �!Za1

� : : :�Zak
and form the Q.�ak

/ŒT;T �1�

chain complex

C�.Y �KIQ.�ak
/ŒT;T �1��/W DQ.�a1

; : : : �ak
/˝� C�. AY �K /

where here, the T action is given (once a � with e.�/D 1 is chosen) by

T n.g˝ c/D .g ��.��n//˝ .�n
� c/

extended linearly.

3Note that, since ai jak for all i , Q.�a1
; : : : �ak

/DQ.�ak
/:
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Definition 3.9 (Kirk–Livingston) The i th �–twisted Alexander polynomial, denoted
�i , is the order of the torsion of the i th homology of

C�.Y �KIQ.�ak
/ŒT;T �1��/;

considered as a Q.�ak
/ŒT;T �1�–module.

They go on to prove that Wada’s invariant, labeled W , is related to �0 and �1 by the
simple formula

W D
�1

�0

:

4 2HFK for double-branched covers of two-bridge knots

We now turn to exploring 1HFK .†m.K/I eK / in the case mD 2 and K a two-bridge
knot. Our main result is Theorem 4.3.

We start by recalling a few standard facts about two-bridge knots. A good reference is
Chapter 12 of [2].

First, there is a one-to-one correspondence between isotopy classes of two-bridge knots
and lens spaces arising as their double branched covers.

Theorem 4.1 [18; 3] A two bridge knot K in S3 with twist numbers

.c1;�c2; c3;�c4; : : : ; cn/

(see Figure 3) has double branched covering �L.p; q/ where p
q

is the continued
fraction expansion

p

q
D c1C

1

c2C
1

� � � C
1

cn

:

We will denote the two-bridge knot whose double branched cover is �L.p; q/ by
K.p; q/.

A particularly useful projection of a two-bridge knot for our purposes is the Schubert
normal form. We construct the Schubert normal form of the knot K.p; q/ as a union of
4 segments on S2 : 2 straight “underbridges” U1 and U2 and two curvy “overbridges”
O1 and O2 (All of the following is explained very nicely in [15]).

(1) A neighborhood of U1 looks like Figure 4 and a neighborhood of U2 looks like
the mirror image of U1 reflected across a central vertical axis as in Figure 5.
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c1

crossings

�c2

crossings

�cn

crossings

cn�1

crossings

Figure 3: A two-bridge knot with twist numbers .c1;�c2; c3;�c4; : : : ; cn/

...a0 ap

a1
a2 a3 a4 a5 ap�1

a2p�1 a2p�2 a2p�3 a2p�4
a2p�5

apC1

Figure 4: A neighborhood of U1

...bp b0

bp�1
b5 b4 b3 b2 b1

bpC1 b2p�5 b2p�4 b2p�3
b2p�2

b2p�1

Figure 5: A neighborhood of U2

O1 and O2 are formed by connecting ai mod 2p to b.i�q/ mod 2p . See Figure 6 for
the example of K.3; 1/.
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a0

a3

b0

b3 U1

U2

O1

O2

Figure 6: Schubert normal form (U1 [U2 [O1 [O2 ) for K.3; 1/ D the
right-handed trefoil

Using Proposition 2.2 in [15], we get a genus 2 handlebody decomposition for K.p; q/

that extends to a Heegaard decomposition of S3 . Schematically, we can draw this
handlebody decomposition for S3�K by

(1) placing the feet of two 1–handles at a0; ap and b0; bp , respectively,

(2) letting ˛1 D U1C core of the 1 handle whose feet are at a0 and ap , pushed out
to the Heegaard surface,

(3) similarly letting ˛2 D U2C core of the 1–handle whose feet are at b0 and bp ,
pushed out to the Heegaard surface,

(4) letting ˇ1 D boundary of a regular neighborhood of either O1 or O2 .

Figure 7 provides an illustration of this for K D right-handed trefoil.

Hence, Schubert normal form for a two-bridge knot K yields a genus 2 doubly-pointed
Heegaard diagram hd.S3IKI�Dˇ2D h˛2

/. One easily checks that h˛1
; h˛2

are both
primitive in H1.S

3�K/.

As described in Section 2, this handlebody decomposition lifts to one for †2.K/� eK
with an action of Z2 . If we denote the non-trivial element of Z2 by �2 , then hb.†2.K/

� eK I e�/ has

� one 0–handle eh0

� three 1–handles eh˛1
; �2.eh˛1

/;eh˛2

� two 2–handles ehˇ1
; �2.ehˇ1

/.
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˛2DU2

˛1DU1

ˇ1D@.N.O1//

Figure 7: A handlebody decomposition for S3�K.3; 1/

hb.†2.K/I eK I e� D eh˛2
/ and hd.†2.K/I eK / are as described in Section 2.

We begin our 1HFK .†2.K/I eK / calculation by splitting generators into Spinc classes.
The following (very easy) observation will help us:

Lemma 4.2 Suppose h is a 1–cycle in S3 . Let eh and �2.eh/ be its two lifts in
†2.K/. Then ehC �2.eh/D 0 in H1.†

2.K//.

In particular, if eh and �2.eh/ are themselves 1–cycles in †2.K/, then eh D��2.eh/ in
H1.†

2.K//.

Proof of Lemma 4.2 Let
p!.h/D

X
g2Z2

g.eh/
(eh is a choice of lift of h) be the transfer map on chains (see, eg, Defn. 11.2 in [1])
associated to the map

pW †2.K/! S3:

Since hD 02H1.S
3/ and the transfer map is a homomorphism on homology, p!.h/DehC �2.eh/D 0 2H1.†

2.K//, as desired.

Theorem 4.3 Given any knot K in S3 and a particular doubly-pointed Heegaard
diagram hd.S3IK/, we can construct hd.†2.K/I eK /. Then with respect to these
particular Heegaard diagrams there is a natural map on chains

f W 1CFK .S3
IK/!1CFK .†2.K/I eK /
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given by
f .x/D .ex; �2.ex//

for x 21CFK .S3IK/ .

All generators in the image of f lie in the same Spinc structure, which we will denote
s0 .

If K is a two-bridge knot and hd.S3IK/ is the Heegaard diagram associated to the
Schubert normal form of K , then f is a chain map and induces an isomorphism on
homology; ie,

f�W 1HFK .S3
IK/! 1HFK .†2.K/I eK ; s0/

is an isomorphism.

Here x is a g–tuple of intersection points of ˛ and ˇ curves in hd.S3IK/, ex is a
choice of lift of that g–tuple in hd.†2.K/I eK /, and �2.ex/ is the image of that g–tuple
under the non-trivial deck transformation.

Remark It is worthwhile to mention that in the case where K is a two-bridge knot in
S3 , s0 is the unique spin element of Spinc.†2.K//.

More precisely, consider the first Chern class map c1W Spinc.Y /!H 2.Y IZ/:

c1.s/D s�xs;

where xs is the conjugate Spinc structure (see [13], Section 2.6). In our situation, the
map �2 is the conjugation map on Spinc structures: �2.s/Dxs for all s 2 Spinc.Y /.

But it is clear that s0 D �2.s0/, so

c1.s0/D c1. xs0/I

ie, s0 is spin.

Furthermore, s0 is the unique Spinc structure with this property, for if s¤ s0 , we have
s¤ �2.s/, implying c1.s/¤ 0. But H 2.Y IZ/Š Zk (k odd) has no 2–torsion, so

c1.s/� c1.�2.s//D 2c1.s/¤ 0;

so c1.s/¤ c1.xs/.

Proof of Theorem 4.3 We begin by showing that all generators of the form f .x/D
.ex; �2.ex// in 1CFK .†2.K/I eK / are in the same Spinc structure. Recall [13] that two
generators x and y of 1HFK .Y / lie in the same Spinc structure iff there exists some
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path x! y along ˛ curves and some path y! x along ˇ curves such that the union
represents the 0 element in H1.Y /.

In our situation, we have two generators, .ex; �2.ex// and .ey; �2.ey//, and we wish to
show that we can find a 1–cycle as above representing 0 2H1.†

2.K//.

But now note that for any two generators x and y of 1HFK .S3/ we can find a path

˛ traveling from x to y along ˛ curves and a path 
ˇ traveling from y to x along ˇ
curves in the Heegaard diagram for S3 . The union, 
 D 
˛

S

ˇ , is a closed 1–cycle

representing the trivial (only) element in H1.S
3/.

But p!.
 / (where, again, p! is the transfer map) in the Heegaard diagram hd.†2.K/IeK I˛2/ exactly gives a path from .ex; �2.ex// to .ey; �2.ey// along ˛ curves and a path
from .ey; �2.ey// to .ex; �2.ex// along ˇ curves.

Since p!.
 /D 0 in H1.†
2.K//, all generators of the form .ex; �2.ex// lie in the same

Spinc structure, which we have called s0 .

We now turn to showing that, in the case of a two-bridge knot,

1HFK .†2.K/I eK ; s0/Š 1HFK .S3
IK/:

We will do so by showing that the lifted Heegaard diagram associated to the Schubert
normal form for K, hd.†2.K/I eK Ieh˛2

/, has the property that no other generators lie
in s0 . The differentials and filtrations in this central Spinc structure will match the
differentials and filtrations downstairs.

Proposition 4.4 Let K be a two-bridge knot, hd.S3IK; h˛2
/ be the genus 2 Heegaard

diagram for K obtained from Schubert normal form, and hd.†2.K/I eK ;eh˛2
/ be the

lifted genus 3 Heegaard diagram for eK in †2.K/.

Then the map f W 1CFK .S3IK/! 1CFK .†2.K/I eK I s0/ described in Theorem 4.3
is a bijection of sets. In particular, all elements of 1CFK .†2.K/I s0/ are of the form
.ex; �2.ex// for x 21CFK .S3IK/.

Proof of Proposition 4.4 We have already shown that all of the �2 –invariant gen-
erators (those of the form .ex ; �2.ex//) are in s0 . We now need only show that no
non-�2 –invariant generators are in s0 .

The proof will rely on the fact that for a two-bridge knot,

rk.1CFK .S3
IK//D jH1.†

2.K//j;
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which will imply that no non-�2 –invariant generators can appear in s0 .4

First, note that for K a two-bridge knot with the standard genus 2 Heegaard decom-
position given by Schubert normal form, all generators in 1CFK .†2.K/I eK / for the
genus 3 Heegaard diagram constructed as the lift of this genus 2 Heegaard diagram
(as described in Section 2.2) are naturally of the form .ex; �2.ey//, where x and y are
generators in 1CFK .S3/, and ex; �2.ey/ 2 Teff \Tefi are lifts of x and y.

More precisely, note that the generators in 1CFK .S3IK/ are naturally identified with
intersection points of ˛1 with ˇ1 (since ˇ2 , the chosen meridian of the knot, inter-
sects only ˛2 ). Similarly, the generators of 1CFK .†2.K/I eK / in the lifted Heegaard
diagram for †2.K/, are in one-to-one correspondence with formal summands of the
determinant ě

1 �2.ě1/ę1

�2.ę1/

� �
where the entries in the matrix above are formal sums of intersection points of the
corresponding ˛ and ˇ curves. A summand of this matrix can be thought of as a pair
.ex; �2.ey// where x, y are generators of 1CFK .S3IK/ and ex and ey are the lifts which
lie on the ę1 curve.5

We can then measure the Spinc structure of a non-�2 –invariant generator .ex; �2.ey//
by comparing it to the �2 –invariant generator .ey; �2.ey//. More precisely:

Lemma 4.5 If .ex; �2.ey// is a generator of 1CFK .†2.K/; eK /, then its corresponding
element of Spinc.†2.K// relative to s0 , ie,

s.ex; �2.ey//� s.ey; �2.ey//;
thought of as an element of H1.†

2.K//; is represented by the lift, e
 , of the word 

in �1.S

3�K/ read off as we travel from x to y along ˇ1:

Proof of Lemma 4.5 s.ex; �2.ey//� s.ey; �2.ey//, as an element of H1.†
2.K//, is

represented by the cycle obtained by connecting .ex; �2.ey// to .ey; �2.ey// along ˛
curves and .ey; �2.ey// to .ex; �2.ey// along ˇ curves (see Definition 2.4 and Section 2.6
of [13]; also see [19]).

We construct such a path as the product of:
4This condition on rk. bCFK .S3IK// holds for a wider class of knots (eg, alternating knots), and

therefore, similar results may hold in wider generality.
5Such an identification of generators of bCFK .†2.K/I eK / with pairs of generators of bCFK .S3IK/

is possible for a general choice of Heegaard diagram for K in S3 , but different generators will require
different lifts of T˛ and Tˇ in order to make the identification.
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� the appropriate lift of a loop between x and y (along ˛1 and back along ˇ1 ) in
hd.S3IK/ to a loop between ex and ey in hd.†2.K/I eK /,

� the constant path from �2.ey/ to �2.ey/,
� a path from the lone intersection point between ě

2 and ę2 to itself along ě
2 .

The element of H1.†
2.K// represented by this path is represented by the word in

�1.†
2.K// read off as we travel from ex to ey along f̌1 , which is the lift, e
 , of the

word 
 in �1.S
3�K/ read off as we travel from x to y along ˇ1 .

But now I claim that, since rk.1CFK .S3IK// D jH1.†
2.K//j for the Heegaard

diagram associated to Schubert normal form for K a two-bridge knot (see [16], [15],
[10]), e
 ¤ 0 unless xD y.

Lemma 4.6 Let K a two-bridge knot in S3 and x; y two generators of 1CFK .S3IK/

associated to the handlebody decomposition coming from Schubert normal form. Let

 .x; y/ be the word in �1.S

3 �K/ read off as we travel from x to y along ˇ1 ande
 .x; y/ a lift of 
 to a word in �1.†
2.K/� eK /.

Then x¤ y implies that e
 .x; y/¤ 0 as an element of H1.†
2.K//.

Proof of Lemma 4.6 The crucial observation is that the Fox matrix associated to
the homomorphism

�1.S
3
�K/! Z2

is a presentation matrix for H1.†
2.K//, and its summands are in natural one-to-one

correspondence with the generators of 1CFK .S3IK/. See Section 3.5 for a more
detailed discussion of Fox calculus.

Fix a generator, x, of 1CFK .S3IK/ and begin reading off the relation corresponding
to the boundary of ˇ1 , beginning at x. Let

t W �1.S
3
�K/! Z2

be the homomorphism inducing the branched double cover of K and

� W ZŒ�1.S
3
�K/�! ZŒZ2�

the group-ring extension.

Recall that the generators of 1CFK .S3IK/ correspond one-to-one with the intersection
points of ˛1 and ˇ1 . For convenience, label the generators of 1CFK .S3IK/ by yi ,
according to the order in which we encounter them as we travel along ˇ1 from x.
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Then
@ˇ1

@˛1

D

X
yi2

1CFK .S3IK /

˙
 .x; yi/I

ie, the Fox derivative of ˇ1 by ˛1 is the formal sum of the words connecting x to
each of the other generators of 1CFK .S3IK/, with signs in the sum given by the local
intersection number of ˛1\ˇ1 at yi . Notice that there are exactly rk.1CFK .S3IK//

summands in the Fox determinant.

Furthermore, �. @ˇ1

@˛1
/ is a presentation matrix for H1.†

2.K//, after replacing the
formal elements of Z2 by square roots of unity (˙1).

But rk.1CFK .S3IK// D jH1.†
2.K//j, so all summands must have the same sign

once we replace the formal elements of Z2 with ˙1 and take into account local
intersection multiplicities.

Since the element of H1.†
2.K// represented by e
 .x; yk/ is precisely

kX
iD1

�.˙
 .x; yi// � hę1
;

and hę1
is a primitive generator of H1.†

2.K//, we conclude that e
 .x; y/ cannot be
0 in H1.†

2.K// for any y¤ x.

The following two lemmas prove that the map

f W 1CFK .S3
IK/!1CFK .†2.K/I eK I s0/

given above also preserves the relative filtration and homological gradings in the case
that K is a two-bridge knot. Hence, f is a chain map respecting the filtration, so
f�W 1HFK .S3IK/! 1HFK .†2.K/I eK I s0/ is an isomorphism.

Lemma 4.7 For K any knot in S3 ,

s.x; y/D s.f .x/; f .y//

for all pairs of generators x and y in 1HFK .S3IK/.

Proof of Lemma 4.7 Let x and y be two generators in 1HFK .S3IK/ and � 2
�2.x; y/ a topological disk with nz.�/� nw.�/D 1.

We have already observed in the proof of Theorem 4.3 that if 
 is the boundary of the
image of � in the Heegaard surface, S , then e
 D p!.
 / will be the boundary of the
image of e� 2 �2.f .x/; f .y// in eS .
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Lemma 3.5 asserts that s.x; y/ is equal to the coefficient on �, our choice of meridian,
in 
 .

But by the way we have defined hd.†2.K/I eK ; e�/, the coefficient on e� in e
 is equal
to the coefficient on � in 
 .

Lemma 4.8 For K a two-bridge knot in S3 and hd.S3IK/ a Heegaard diagram for
K coming from Schubert normal form as before,

m.x; y/Dm.f .x/; f .y//:

Proof of Lemma 4.8 Consider hd.S3IK/ and hd.†2.K/I eK ;eh˛2
/ obtained from

Schubert normal form. It will be convenient to destabilize each of these Heegaard
diagrams once by canceling the h˛2

; hˇ2
pair and the eh˛2

;ehˇ2
pair, respectively.

Call these destabilized Heegaard diagrams hdı.S3IK/ and hdı.†2.K/I eK ;eh˛2
/,

respectively.

Note that there is a natural one-to-one correspondence between 1CFK generators
corresponding to hd and hdı (see Prop. 6.1 in [11]) which induces the isomorphism on
1HFK corresponding to the (de)stabilization.

This destabilized Heegaard diagram for K coming from Schubert normal form is
particularly nice because we can find relative Maslov gradings between all generators
just by looking at disks coming from “finger moves.”

Namely, we know that we obtain hdı.S3IK/ from the standard genus 1 Heegaard
diagram for S3 by performing finger moves of the curve ˇ across the curve ˛ .

In fact, one can check that for each generator, there is a natural disk connecting it to at
least one adjacent generator by a finger. Each of these disks has either nw D 1; nz D 0

or nw D 0; nz D 1, and these “finger disks” are enough to determine the relative Maslov
grading of any two generators.

Now, suppose that x and y are two generators in 1CFK .S3IK/ connected by a finger
disk. Then .ex; �2.ex// and .ey; �2.ey// are connected by the lift of the finger disk,
which is a quadrilateral. Such a quadrilateral always represents a holomorphic disk in
Sym2.S/ of Maslov index 1.

Therefore,
m.f .x/; f .y//Dm.x; y/

whenever x and y are connected by a finger disk.

Now we claim that every generator is connected to every other generator by some series
of finger disks. We can see this as follows:
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Notice that ˇ1 in hdı.S3IK/ is the image, after destabilizing the hd.S3IK/ coming
from Schubert normal form, of a regular neighborhood of either one of the overbridges
(note that a regular neighborhood of O1 is isotopic to a regular neighborhood of O2 ).
Similarly, ˛1 is the union of one of the underbridges (whichever one was not canceled
in the destabilization) – U1 , say – with the core of the 1–handle whose feet are placed
at a0 and ap .

Now, focus on any two adjacent generators of the Heegaard Floer homology (see Figure
8). These two adjacent generators correspond to where ˇ1 , considered either as N.O1/

or N.O2/, intersects ˛1 . For definiteness, say that the two adjacent generators we are
considering are associated to N.O1/. Note that O1 can be decomposed as the union of
� a small overbridge Osmal l , which exits a neighborhood of U1 at ai and a2p�i

� an arc, Oa , connecting one of ai and a2p�i with an endpoint of U1 (either a0

or ap ), and
� an arc, Ob , connecting the other endpoint (a2p�i or ai ) with an endpoint of U2

(either b0 or bp ).

Since bp and b0 are where the basepoints w and z are positioned in the destabilized
Heegaard diagram, a regular neighborhood of the arc connecting ai (or a2p�i ) to b0

(or bp ) will be a finger disk connecting these two adjacent generators.

In other words, every two adjacent generators is connected by a finger disk. So every
pair of generators is connected by some sequence of finger disks.

Therefore,
m.f .x/; f .y//Dm.x; y/

for all pairs of generators x; y in 1CFK .S3IK/, as desired.

4.1 Examples: K.15; 7/ and K.15; 4/

1HFK .†2.K/I eK / distinguishes between knots with the same knot Floer homology.
In [10] Ozsváth and Szabó prove that for K an alternating knot in S3 , the knot Floer
homology is determined completely by the Alexander polynomial and the signature.

K(15,7) and K(15,4) are two-bridge knots with the same Alexander polynomial and
signature but differing Z2 –graded knot Floer homologies in the double branched cover.6

6The double-branched covers of K.15; 7/ and K.15; 4/ are different 3-manifolds (the lens spaces
-L(15,7) and -L(15,4), respectively). In fact, bHF .†2.K.15; 7/// 6ŠbHF .†2.K.15; 4/// as Q–graded
groups (See Proposition 4.8 in [9] for an inductive formula for the Q grading of generators in lens spaces).
This immediately implies that bHFK .†2.K.15; 7//I eK .15; 7// 6Š bHFK .†2.K.15; 4//I eK .15; 4// as
Q–graded groups. We will show the stronger statement that bHFK .†2.K.15; 7//I eK .15; 7// 6Š

bHFK .†2.K.15; 4//I eK .15; 4// as Z2 –graded groups.

Algebraic & Geometric Topology, Volume 6 (2006)



Knot Floer homology in cyclic branched covers 1385

w z

finger disc

adjacent generators

a2p�1

ai

��

U1

Oa

Ob

Osmall

Figure 8: Adjacent generators in a genus 1 (destabilized) Heegaard diagram
compatible with a two-bridge knot

x1 x2 x3 x4

x5x6x7x8

y1 y7 y2 y6 y3y5 y4

filtration level
�1

filtration level
0

filtration level
1

Figure 9: Z–filtered chain complex for �CFK.S3IK.15; 7//

The computations of both 1HFK .S3IK/ and 1HFK .†2.K/I eK / for these two knots
are given below.

Computation for K.15; 7/

We start by computing 1HFK .S3IK/ for K D K.15; 7/. In the genus 1 Heegaard
diagram compatible with K given in Figure 10, we have 15 generators, which we label
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. . . . . . . .x1 x2 x3 x4 x5 x6 x7 x8

y1y7 y2y6 y3y5 y4

w

z

�

�

Figure 10: Genus 1 (destabilized) Heegaard diagram for K.15; 7/ in S3

s0 s˙1 s˙2 s˙3 s˙4

.x1;x1/, .y1;y1/ .x1;x8/ .x1;x2/; .y1;y2/ .x1;x7/ .x1;x3/; .y1;y3/

.x2;x2/, .y2;y2/ .x2;x3/; .y2;y3/ .x2;x8/ .x2;x4/; .y2;y4/

.x3;x3/, .y3;y3/ .x3;x4/; .y3;y4/ .y1;y7/ .x3;x5/; .y3;y5/

.x4;x4/, .y4;y4/ .x4;x5/; .y4;y5/ .x4;x6/; .y4;y6/

.x5;x5/, .y5;y5/ .x5;x6/; .y5;y6/ .x5;x7/; .y5;y7/

.x6;x6/, .y6;y6/ .x6;x7/; .y6;y7/ .x6;x8/

.x7;x7/, .y7;y7/ .x7;x8/; .y7;y8/

.x8;x8/,

s˙5 s˙6 s˙7

.x1;x6/ .x1;x4/; .y1;y4/ .x1;x5/; .y1;y5/

.y1;y6/ .x2;x5/; .y2;y5/ .x2;x6/; .y2;y6/

.x2;x7/ .x3;x6/; .y3;y6/ .x3;x7/; .y3;y7/

.y2;y7/ .x4;x7/; .y4;y7/ .x4;x8/

.x3;x8/ .x5;x8/

Table 1: Spinc structures s0; : : : s˙7 for †2.K.15; 7//
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w

ˇ

z

x1

�2.ˇ/

�2.x1/

�2.˛/

˛

�

� �

�

�

��

�

Figure 11: Genus 2 (destabilized) Heegaard diagram for �K.15; 7/ in L.15; 7/

x1; : : : ;x8 and y1; : : : ;y7 . This Heegaard diagram for S3 compatible with K was
obtained by taking the handlebody decomposition of S3�K coming from the Schubert
normal form for K and destabilizing once.

The differential counts maps of the disk into Sym1.S/ D S . See Figure 10 for an
example.

The filtered chain complex for bCF is pictured in Figure 9. The i -th vertical slice of
this filtered chain complex is the chain complex Fi=Fi�1 D

1CFK .S3IK; i/.

We construct a Heegaard diagram for †2.K/ compatible with eK by taking the
branched double cover of the Heegaard surface † around the two basepoints w and z .
The ˛ and ˇ curves of our original Heegaard diagram then lift to two ˛ curves and
two ˇ curves, and w and z lift to the two basepoints for the doubly-pointed Heegaard
diagram for †2.K/.

All generators of 1HFK .†2.K/I eK / are of the form .exi ; �2.exj // or .eyi ; �2.eyj //,
where �2 is the non-trivial element of Z2 . Under the Z2 action on the ˛ and ˇ curves,
we get a natural Z2 action on these generators:

�2.exi ; �2.exj //D .�2.exi /; exj /:
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. . . . . . . .x1 x2 x3 x4 x5 x6 x7 x8

y7 y6 y5 y4 y3 y2 y1

w

z

�

�

Figure 12: Two holomorphic disks, one in �2.x5;y4/ and the other in �2.y5;x4/

We shall refer to such a pair of generators as a conjugate pair , since they are in
conjugate Spinc structures with respect to the central Spinc structure, s0 .

�2 –invariant generators

The �2 –invariant generators are those of the form .exi ; �2.exi // or .eyi ; �2.eyi //. Fur-
thermore, for every topological bigon downstairs we see a corresponding topological
quadrilateral upstairs (as detailed in the proof of Lemma 4.8). See the shaded disk in
�2.y5;x4/ in Figure 10 and its lift in �2..ey 5; �2.ey 5//; .ex 4; �2.ex 4/// in Figure 11.

�2 –non-invariant generators

We will first state how the generators split up according to Spinc structures, then
explicity compute 1HFK .†2.K/I eK I s˙2/. Here we use s˙2 to denote the conjugate
Spinc structures on †2.K/ corresponding to ˙2 2H1.†

2.K//Š Z15 .

Each column in Table 1 gives the generators in two conjugate Spinc structures si-
multaneously (except in the case of the “central” Spinc structure, s0 , which is its
own conjugate). When we write .x1;x8/, for example, we refer to two generators
simultaneously: .ex 1; �2.ex 8// 2 s1 and .�2.ex 1/;ex 8/ 2 s�1 .

Now let’s more closely examine one of the Spinc structures, s˙2 .
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w

�
ˇ

z

�2.ˇ/

�2.˛/

˛

zx4

zy5

zy4

zx5

�2.zx4/

�2.zy5/

�2.zy4/

�2.zx5/

� �

�

�

��

�

�

Figure 13: Two holomorphic disks, one in �2..�y5; �2.�y4//; .�x4; �2.�x5///

and one in �2..�y4; �2.�y5//; .�x5; �2.�x4///

To see that these are the generators in the two conjugate Spinc structures s˙2 , connect,
for example, .ex 1; �2.ex 1// to .ex 1; �2.ex 2// by the path in Sym2.eS / which is the
product of the constant path ex 1 ! ex 1 with the path �2.ex 1/ ! �2. ex2 / along the
�2. ě/ curve. Close the path to a loop 
 by taking a path �2.ex 1/! �2.ex 2/ along the
�2.ę/ curve. Since ę � ěD �2.ę/ � �2. ě/D 1;

and ę � �2. ě/D �2.ę/ � ěD�1;

we see that if we assert that ę is the positive generator of H1.†
2.K//, then the loop


 represents the element 2 2H1.†
2.K//.

We see this because a pushoff of 
 has one intersection with �2.ę/ with local multi-
plicity �1 (at �2.ey1 /) and one intersection with ę with local multiplicity 1 (at ex2 ).
Recall that �2.ę/D�ę in H1.†

2.K//.

The same type of calculation can be performed to verify that all of the other generators
are in the stated Spinc structures.
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. . . . . . . .x1 x2 x3 x4 x5 x6 x7 x8

y7 y6 y5 y4 y3 y2 y1

w

z

�

�

Figure 14: Two holomorphic disks, one in �2.x5;y4/ and the other in �2.x6;y3/

Now focus on, for example, . ex4 ; �2. ex5 // and .ey5 ; �2.ey4 // (and the corresponding
pair .�2. ex4 /; ex5 /; .�2.ey5 /; ey4 / in the conjugate Spinc structure).

Notice that in the Heegaard diagram for .S3;K.15; 7// pictured in Figure 12 we see a
topological disk in �2.x5;y4/ and a topological disk in �2.y5;x4/, both with nw D 0

and nz D 1.

If we lift both of these to the Heegaard diagram for .†2.K/I eK / we get two quadrilat-
erals, one representing a disk in �2.. ex5 ; �2. ex5 //; .ey4 ; �2.ey4 /// and one in

�2..ey5 ; �2.ey5 //; .ex4 ; �2. ex4 ///:

Taking the difference of these two disks yields two disks, one in

�2..ey4 ; �2.ey5 //; .ex5 ; �2. ex4 ///

and one in �2..ey5 ; �2.ey4 //; .ex4 ; �2. ex5 ///: Both of these disks have nz D nw D 0 and
Maslov index 1. Both of these disks are holomorphic because they are topological
quadrilaterals (see Figure 13).

A similar argument shows that there is another pair of disks, one in

�2..ey 4; �2.ey 3//; .ex 4; �2.ex 5///
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�2.˛/

˛

zy3
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�2.zy4/

�2.zx5/
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Figure 15: A holomorphic disk in �2..�x6; �2.�x5//; .�2.�y4/; �y3//

and one in
�2..�2.ey 4/; ey 3/; .�2.ex 4/;ex 5//;

both with nz D nw D 0.

There also exist topological disks in Sym2.eS / which are the sum of a pair of lifts of
disks. Focus, for example, on the pair .ex 6; �2.ex 5// and .�2.ey 4/; ey 3/. In the Heegaard
diagram downstairs, we see a disk in �2.x6;y3/ with nw D 0 and nz D 1. We also
see a disk in �2.x5;y4/. See Figure 14.

The sum of the lifts of these two disks to the Heegaard diagram for †2.K/ again breaks
up into two disks. One of the disks is in

�2.. ex6 ; �2. ex5 //; .�2.ey4 /; ey3 //

and the other is between the conjugate generators, ie, in

�2..�2. ex6 /; ex5 /; .ey4 ; �2.ey3 ///:

Both of these disks have nw D 0 and nz D 1. See Figure 15 for one of the two disks.

Using similarly obtained disks, we easily calculate the relative filtration levels and
Maslov grading of all generators in s˙2 . The generators of the 1CFK complex for
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.x7;x8/

.x6;x7/

.x5;x6/

.y4;y5/.y1;y2/

.y5;y6/.y2;y3/

.y6;y7/.y3;y4/

.x1;x2/

.x2;x3/

.x3;x4/

.x4;x5/

filtration level
�1

filtration level
0

filtration level
1

Figure 16: �CFK.†2.K/; �K.15; 7/; s˙2/

x8 x1 x6 x7

x5x4x3x2

y1 y7 y3 y6 y2 y5 y4

filtration level
�1

filtration level
0

filtration level
1

Figure 17: Z–filtered chain complex for �CFK.S3IK.15; 4//

K.15; 7/ as well as arrows corresponding to some of the differentials are pictured in
Figure 16. We omit the �’s and the �2 ’s, since we are thinking of this as the chain
complex for both s2 and s�2 .
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. . . . . . . .

x1 x7
x5 x3 x8

x6 x4
x2

y2 y4 y6 y1 y3 y5
y7

w

�

z
�

Figure 18: Genus 1 (destabilized) Heegaard diagram for K.15; 4/ in S3

s0 s˙1 s˙2 s˙3 s˙4

.x1;x1/; .y1;y1/ .x2;x3/; .y2;y3/ .x1;x2/ .x3;x4/; .y3;y4/ .x2;x4/; .y2;y4/

.x2;x2/; .y2;y2/ .x4;x5/; .y4;y5/ .x5;x6/; .y5;y6/ .x3;x5/; .y3;y5/

.x3;x3/; .y3;y3/ .x6;x7/; .y6;y7/ .x7;x8/; .y1;y2/ .x4;x6/; .y4;y6/

.x4;x4/; .y4;y4/ .x1;x8/ .x2;x8/; .y1;y7/ .x5;x7/; .y5;y7/

.x5;x5/; .y5;y5/ .x1;x3/ .x6;x8/; .y1;y3/

.x6;x6/; .y6;y6/ .x3;x8/; .y1;y6/

.x7;x7/; .y7;y7/ .x1;x7/

.x8;x8/

s˙5 s˙6 s˙7

.x2;x5/; .y2;y5/ .x2;x7/; .y2;y7/ .x1;x5/; .y1;y5/

.x4;x7/; .y4;y7/ .x1;x4/ .x2;x6/; .y2;y6/

.x1;x6/ .x3;x7/; .y3;y7/

.x3;x6/; .y3;y6/

.x5;x8/; .y1;y4/

.x4;x8/

Table 2: Spinc structures s0; : : : ; s˙7 for †2.K.15; 4//
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ˇ

z

�

�2.ˇ/

�2.˛/

˛

� �

�

�

��

�

�

Figure 19: Genus 2 (destabilized) Heegaard diagram for �K.15; 4/ in L.15; 4/

.x2;x3/

.x4;x5/

.x6;x7/

.x1;x8/

.y4;y5/

.y2;y3/

.y6;y7/

filtration level
�1

filtration level
0

filtration level
1

Figure 20: �CFK.†2.K/; �K.15; 4/; s˙1/
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.x1;x2/

filtration level
0

Figure 21: �CFK.†2.K/; �K.15; 4/; s˙2/

.x2;x4/

.x3;x5/

.x5;x7/

.x4;x6/

.x3;x8/

.x6;x8/

.x1;x7/

.y1;y3/

.y1;y6/

.y5;y7/

.y3;y5/

.y2;y4/

.y4;y6/

filtration level
�1

filtration level
0

filtration level
1

Figure 22: �CFK.†2.K/; �K.15; 4/; s˙4/

Note that we have made no claims about whether there are any more holomorphic
disks than the ones described.7 However, just based on the information contained in
Figure 16 we can see that 1HFK .†2.K/I eK I s˙2/ must have support in three different
filtration levels, with

1HFK .†2.K/I eK ; s˙2; i � 1/Š 1HFK .†2.K/I eK ; s˙2; i C 1/Š Z3
2:

7In fact, we cannot possibly have listed all of the d1 differentials, for .d0C d1/
2 ¤ 0 in Figure 16.
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.y3;y7/ .y3;y6/ .y2;y6/

.x2;x6/ .x4;x8/ .x3;x6/ .x5;x8/ .x3;x7/ .x1;x5/

.y1;y5/ .y1;y4/

filtration level
0

Figure 23: �CFK.†2.K/; �K.15; 4/; s˙7/

Computation for K.15; 4/

We now turn to computations of 1HFK .S3IK/ and 1HFK .†2.K/I eK / for K D

K.15; 4/. Recall that our aim is to prove that

1HFK .†2.K/I eK .15; 7// 6Š 1HFK .†2.K/I eK .15; 4//

as Z2 –graded groups. We will do so by showing that 1HFK .†2.K/I eK .15; 4/; sk/

does not look like 1HFK .†2.K/I eK .15; 7/; s˙2/ (computed in the previous subsec-
tion) for any k 2 Z15 with order 15.

In the genus 1 Heegaard diagram compatible with K given in Figure 18, we have 15

generators, which we label x1; : : : ;x8 and y1; : : : ;y7 . See Figure 17 for the filtered
chain complex.

We construct a genus 2 Heegaard diagram for †2.K/ compatible with eK in exactly
the same way we did before (see Figure 19).

�2 –non-invariant generators

The generators split up according to Spinc structures as detailed in Table 2.

Using the methods described in the previous subsection, we find relative filtration and
Maslov gradings for s˙1; s˙2; s˙4 , and s˙7 . The generators of the 1CFK complex
for K.15; 4/ in these Spinc structures as well as arrows corresponding to some of the
differentials are pictured in Figures 20 - 23.
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Again, we make no claims about whether there are any more holomorphic disks than
the ones described. However, we have enough information about the homology of the
associated graded chain complexes to determine that

1HFK .†2.K/I eK .15; 7/; s˙2/ 6Š 1HFK .†2.K/I eK .15; 4/; sk/

for any k relatively prime to 15.
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