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The C –polynomial of a knot

STAVROS GAROUFALIDIS

XINYU SUN

In an earlier paper the first author defined a non-commutative A–polynomial for
knots in 3–space, using the colored Jones function. The idea is that the colored
Jones function of a knot satisfies a non-trivial linear q–difference equation. Said
differently, the colored Jones function of a knot is annihilated by a non-zero ideal
of the Weyl algebra which is generalted (after localization) by the non-commutative
A–polynomial of a knot.

In that paper, it was conjectured that this polynomial (which has to do with repre-
sentations of the quantum group Uq.sl2/) specializes at q D 1 to the better known
A–polynomial of a knot, which has to do with genuine SL2.C/ representations of
the knot complement.

Computing the non-commutative A–polynomial of a knot is a difficult task which so
far has been achieved for the two simplest knots. In the present paper, we introduce
the C –polynomial of a knot, along with its non-commutative version, and give an
explicit computation for all twist knots. In a forthcoming paper, we will use this
information to compute the non-commutative A–polynomial of twist knots. Finally,
we formulate a number of conjectures relating the A , the C –polynomial and the
Alexander polynomial, all confirmed for the class of twist knots.

57N10; 57M25

1 Introduction

1.1 The non-commutative A–polynomial of a knot

In [6] the first author defined a non-commutative A–polynomial for knots in 3–space,
using the colored Jones function. The idea is that the colored Jones function of a knot
satisfies a non-trivial linear q–difference equation. Said differently, the colored Jones
function of a knot is annihilated by a non-zero ideal of the Weyl algebra. By localizing,
the Weyl algebra becomes a principal ideal domain, so that there is a single polynomial
generator, the non-commutative A–polynomial of a knot.

In [6], it was conjectured that this polynomial (which has to do with representations of
the quantum group Uq.sl2/) specializes at qD 1 to the better known A–polynomial of
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1624 Stavros Garoufalidis and Xinyu Sun

a knot, which has to do with genuine SL2.C/ representations of the knot complement,
Cooper–Culler–Gillet–Long–Shalen [4].

Computing the A–polynomial of a knot is a difficult task. For knots with a small
(about 10) number of crossings, or with a small (about 7) number of ideal tetrahedra,
a numerical method was developed by Culler, see [5]. For an alternative method that
involves elimination, see Boyd [3]. For 2–bridge knots, simpler elimination methods
are known. All methods exhibit that the complexity of the A–polynomial (both with
respect to the degrees of the monomials appearing, and with respect to their coefficients)
is exponential in the number of crossings.

1.2 Can we compute the non-commutative A–polynomial?

At a first glance, it is not obvious that one can compute the non-commutative A–
polynomial of a knot. Let us explain a theoretical algorithm for computation. Given
a planar projection of a knot with c crossings, there is an explicit c–dimensional
multisum formula for the colored Jones polynomial, where the summand is q–proper
hypergeometric, see Garoufalidis and Lê [8, Section 3]. This has been implemented in
Bar-Natan’s KnotAtlas as a way of computing the colored Jones function of a knot,
see [1].

Given as input a multisum formula for the colored Jones polynomial, the general theory
of Zeilberger–Wilf computes a linear q–difference equation by solving a system of
linear equations; see [24]. If one is lucky (and for general multisums unlucky cases are
known to exist) the linear q–difference equation is of minimal order, thus computing the
non-commutative A–polynomial. Even if one is unlucky, there are costly factorization
algorithms that in theory will compute a minimal order q–difference equation; see
Petkovšek, Wilf and Zeilberger [21].

Using a computer implementation of the WZ method (Paule and Riese [18; 19; 20]), en-
abled the first author to give an explicit formula for the non-commutative A–polynomial
of the two simplest knots: 31 and 41 ; see [6].

The main drawback of this implementation is that it works well when the number
of summation variables is 1, but it becomes costly when the number of summation
variables increases.

For 2–bridge knots, an alternative geometric method has been developed by Le that
uses special properties of the Kauffman bracket skein module, Lê [16]. Unfortunately,
this method cannot be extended to the case of non-2–bridge knots. In addition, the
method is too costly to compute the non-commutative A–polynomial of the 52 knot.

Thus, two questions arise:
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Question 1 How can we reduce the number of summation variables in the WZ method?

Question 2 How can we compute the non-commutative A–polynomial of the 52 and
the 61 knots?

1.3 The cyclotomic function of a knot

To answer Question 1, we should look for efficient multisum formulas for the colored
Jones function of a knot. Thinking geometrically, it would be better to use a single
variable for a whole sequence of twists between two strands, rather than use one variable
for each crossing.

As it turns out, Habiro [10] introduced such formulas for the colored Jones function
of a knot. It is a good moment to review the colored Jones function, and Habiro’s
formulas.

A knot K in 3–space is a smoothly embedded circle, considered up to 1–parameter
ambient motions of 3–space that avoid self-intersections. The colored Jones function
JK of a knot K is a sequence of Laurent polynomials with integer coefficients:

JK W N �! ZŒq˙�:

Technically, JK .n/ is a quantum group invariant of the knot colored by the n–dimen-
sional irreducible representation of sl2 , normalized to 1 for the unknot; see Turaev
[23]. When nD 2, JK .2/ is the celebrated Jones polynomial of a knot, introduced in
[13]. One may think informally that the colored Jones function of a knot encodes the
Jones polynomial of a knot and its parallels.

In [10], Habiro introduced a key repackaging of the colored Jones function JK , namely
the so-called cyclotomic function

yJK W N �! ZŒq˙�;

As the notation indicates, yJK is in a sense a linear transformation of JK . More
precisely, we have for every n� 1:

(1) JK .n/D

1X
kD0

C.n; k/ yJK .k/

where

(2) C.n; k/D fn� kg : : : fn� 1gfnC 1g : : : fnC kg
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1626 Stavros Garoufalidis and Xinyu Sun

and

fag D
qa=2� q�a=2

q1=2� q�1=2
:

Notice that for every fixed n, the summation in Equation (1) is finite, since C.n; k/D 0

for k � n.

Habiro used an integrality property of the cyclotomic function (namely, the fact that
yJK .n/2ZŒq˙� for all n) in order to show that the Ohtsuki series of an integer homology

sphere determines its Witten–Reshetikhin–Turaev invariants, [10]. The same integrality
property was used by Thang Lê and the first author to settle the Volume Conjecture to
all orders, for small complex angles; see [7].

For our purposes, it is important that:

(a) The transformation JK �!
yJK can be inverted to define yJK in terms of JK ;

see for example [8, Section 4].

(b) yJK satisfies a linear q–difference equation; see [8].

(c) The cyclotomic function of twist knots has a single-sum formula; see Equation
(3) below.

We will use (c) to compute a minimal q–difference equation for the cyclotomic function
of twist knots. Since JK determines and is determined by yJK , in principle our results
determine the non-commutative A–polynomial of twist knots. This motivates the
results of our paper. En route, we will introduce the C –polynomial of a knot and its
non-commutative cousin.

Due to its length, the computation of the non-commutative A–polynomial of twist
knots will be postponed to a subsequent publication; see [9].

1.4 What is a q–holonomic function and a q–difference equation?

Since we will be dealing with q–difference equations all along this paper, let us review
some general facts about the combinatorics and geometry of q–difference equations.

There are two synonymous terms to q–difference equations: namely recursion relations,
and operators. We will adopt the operator point of view when dealing with recursion
relations, in accordance to basic principles of physics and discrete math. An excellent
reference is [21]. Likewise, there is a synonymous term to a solution of a q–difference
linear equation: namely, a q–holonomic function.

For us, a (discrete) function f is a map:

f W N �!Q.q/

Algebraic & Geometric Topology, Volume 6 (2006)



The C –polynomial of a knot 1627

with values in the field of rational functions in q . Consider two operators E and Q

that act on the set of discrete functions by

.Ef /.n/D f .nC 1/; .Qf /.n/D qnf .n/:

It is easy to see that the operators E and Q satisfy EQD qQE , and that E and Q

generate a non-commutative Weyl algebra

ADQ.q/hQ;Ei=.EQ� qQE/:

If P D
Pd

jD0 aj .Q; q/E
j is an element of A, then the equation Pf D 0 is equivalent

to the linear q–difference equation:

dX
jD0

aj .q
n; q/f .nC j /D 0

for all natural numbers n. Given a a discrete function f as above, one may consider
the set

If D fP 2AjPf D 0g

of all linear q–difference equations that f satisfies. It is easy to see that If is a left
ideal in A. The following is a key definition:

Definition 1.1 We say that f is q–holonomic iff If ¤ 0.

In other words, f is q–holonomic iff it is a solution of a linear q–difference equation.
Unfortunately, the Weyl algebra A is not a principal (left)-ideal domain. However, it
becomes one after a suitable localization:

Aloc DQ.q;Q/hEi= .E˛.Q; q/�˛.qQ; q/E j˛.Q; q/ 2Q.Q; q// :

Moreover, the localized algebra still acts on discrete functions f . Thus, given a q–
holonomic function f , one may define its characteristic polynomial Pf 2Aloc , which
is a generator of the ideal If over Aloc . If we want to stress the dependence of an
operator P on E;Q and q , we will often write P D P .E;Q; q/.

There are three ways to view a q–holonomic function f :

� The D–module Mf D Aloc=.Pf / and some of its elementary invariants: its
rank, and its characteristic curve

Chf D f.E;Q/ 2 C2
jPf .E;Q; 1/D 0g:

The former is the E–degree of Pf and the latter is a Lagrangian complex curve
in C2 .
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� The quantization point of view, where we think of the operator Pf .E;Q; q/

as a q–deformation of the polynomial Pf .E;Q; 1/. The zeros of the latter
polynomial define the characteristic curve, which is supposed to be a classical
object.

� The multi-graded point of view. We may think of Pf .E;Q; q/ as a polynomial
in three variables E;Q and q with integer coefficients. Then, Pf .E;Q; q/ and
Pf .E;Q; 1/ are, respectively, tri and bi-graded versions of Pf .E; 1; 1/.

Of course, Pf .E;Q; q/ is determined entirely by f .

As an example, consider the colored Jones function JK of a knot K , and let AJK D

AJK .E;Q; q/ denote its characteristic polynomial, which here and below we will call
the non-commutative A–polynomial of the knot. The first author conjectured in [6]
that the evaluation of the non-commutative A–polynomial at q D 1 coincides with the
A–polynomial of a knot, whose zeros parametrize the SL2.C/ character variety of the
knot complement, restricted to a boundary torus. For a definition of the A–polynomial,
see [4].

1.5 The non-commutative C –polynomial of twist knots

We now have all the ingredients to define the non-commutative C –polynomial of a
knot.

Definition 1.2 Given a knot K , let CK .E;Q; q/ denote the characteristic polynomial
of its cyclotomic function yJK and let CK .E;Q/ denote CK .E;Q; 1/. We will call
CK .E;Q; q/ (resp. CK .E;Q/) the non-commutative C –polynomial (resp. the C –
polynomial) of K .

The reader should not confuse our C –polynomial with the cusp polynomial of a knot,
due to X Zhang [26].

Consider the family of twist knots Kp for integer p , shown in Figure 1. The planar
projection of Kp has 2jpjC2 crossings, 2jpj of which come from the full twists, and
2 come from the negative clasp.

For small p , these knots may be identified with ones from Rolfsen’s table (see [22]) as
follows:

K1 D 31; K2 D 52; K3 D 72; K4 D 92

K�1 D 41; K�2 D 61; K�3 D 81; K�4 D 101:

Let yJp.n/ denote the cyclotomic function of Kp . Using Masbaum [17, Theorem 5.1]
(compare also with [6, Section 3]), it follows that:
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...

p

full
twists

Figure 1: The twist knot Kp , for integers p

(3) yJp.n/D

1X
kD0

qn.nC3/=2Cpk.kC1/Ck.k�1/=2.�1/nCkC1 .q2kC1� 1/.qI q/n

.qI q/nCkC1.qI q/n�k

;

where the quantum factorial and quantum binomial coefficients are defined by:

.AI q/n D

8̂<̂
:
.1�A/ � � � .1�Aqn�1/ if n> 0;

1 if nD 0;
1

.1�Aq�1/���.1�Aqn/
if n< 0,

�
m

n

�
q

D

(
.qm�nC1Iq/n

.qIq/n
if n� 0;

0 otherwise.

We warn that we are using the unbalanced quantum factorials (common in discrete
math) and not the balanced ones (common in the representation theory of quantum
groups).

Equation (3) is the promised answer to Question 1 for the cyclotomic function of
twist knots. For every fixed p , the summand in (3) is q–proper hypergeometric in the
variables n; k . Notice that the summand is not q–hypergeometric in all three variables
n; k;p .

Our first result is an explicit formula for the non-commutative C –polynomial of twist
knots.

Definition 1.3 (a) For p 2 Z, let us define Cp.E;Q; q/ 2Aloc by:

Cp.E;Q; q/DEjpjC

jpj�1X
iD0

ap.Q; i/E
i ;(4)
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where
(5)

ap.q
n; i/D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

q.p�i/.nCpC1/ .qIq/nCp�1

.qIq/nCi

�Pi
jD0 q.2nCpCiC1/j

�
p�j
p�i

�
q

�
p�iCj�1

j

�
q

�
Pi�1

jD0 q.2nCpCiC1/jCnCp
�
p�j�1

p�i

�
q

�
p�iCj�1

j

�
q

�
if p > 0;

0 if p D 0;

q.p�iC1/.n�p/ .qIq/n�p�1

.qIq/nCi

�
�
Pi

jD0 q.2n�pCi/j
�
�p�j�1

i�j

�
q

�
�p�iCj

j

�
q

C
Pi�1

jD0 q.2n�pCi/jCn�p
�
�p�j�2

i�j�1

�
q

�
�p�iCj

j

�
q

�
if p < 0.

In particular, Cp.E;Q; q/ is monic with respect to E with coefficients in ZŒQ˙; q˙�.

(b) For p 2 Z, let us define Cp.E;Q/ 2 ZŒE;Q˙� by:

(6) Cp.E;Q/DEjpjC

jpj�1X
iD0

bp.Q; i/E
i ;

where
(7)

bp.Q; i/D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Qp�i.1�Q/p�i�1
�Pi

jD0 Q2j
�
p�j
p�i

��
p�iCj�1

j

�
�
Pi�1

jD0 Q2jC1
�
p�j�1

p�i

��
p�iCj�1

j

��
if p > 0;

0 if p D 0;

Q�p�iC1.1�Q/�p�i�1
�
�
Pi

jD0 Q2j
�
�p�j�1

i�j

��
�p�iCj

j

�
C
Pi�1

jD0 Q2jC1
�
�p�j�2

i�j�1

��
�p�iCj

j

��
if p < 0.

Notice that Equation (7) uniquely determines ap.Q; i/. A direct definition of ap.Q; i/

would be cumbersome, since there is no nice formula for
�
k
l

�
q

as a rational function in
q and QD qn when k and l are linear forms on n.

Theorem 1 For every p 2 Z, Cp.E;Q; q/ is the non-commutative C –polynomial of
the twist knot Kp .

An immediate corollary is:

Corollary 1.4 For every p 2 Z, Cp.E;Q/ is the C –polynomial of the twist knot
Kp .

Our next result gives a 3–term recursion relation (with respect to p ) for the C –
polynomial of twist knots.
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Theorem 2 (a) The C –polynomial of twist knots satisfies the 3–term relation:

(8) CpC2.E;Q/D .Q�Q2
CECQ2E/CpC1.E;Q/�Q2E2 Cp.E;Q/

for all p � 0, with initial conditions:

C0.E;Q/D 1; C1.E;Q/DQCE:

Likewise, for p � 0 it satisfies a 3–term recursion relation:

(9) Cp�2.E;Q/D .Q�Q2
CECQ2E/Q�2 Cp�1.E;Q/�E2Q�2 Cp.E;Q/;

with intial conditions

C0.E;Q/D 1; C�1.E;Q/D�1CE:

(b) Moreover,

(10) C
op

p .M � 2CM�1; 1/D�p.M /

for all p .

Here, �K .t/ 2 ZŒt˙� denotes the Alexander polynomial of a knot, normalized by
�K .t/ D �K .t

�1/, and �unknot.t/ D 1; see [22]. Moreover, �p.t/ denotes the
Alexander polynomial of the twist knot Kp .

In addition, if P D P .E;Q/ is a polynomial, then P op

(11) P op.E;Q/DEdegE P P .E�1;Q/

is essentially P , with its E–powers reversed.

1.6 Relation between the A–polynomial and the C –polynomial of twist
knots

The next theorem relates the C –polynomial of twist knots to the better-known A–
polynomial of [4]. In order to formulate our next theorem, we need to define a rational
map of degree 2

(12) �W Q.E;Q/ �!Q.L;M /

by

�.E/D
L.M 2� 1/2

M.LCM /.1CLM /
; �.Q/D

1CLM

LCM
:

For a motivation of this rational map, see Section 5.1.
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Let Ap.L;M / denote the A–polynomial of the twist knot Kp . The later has been
computed by Hoste–Shanahan in [12, Theorem 1] (where is was denoted by AJ .2;2p/ ).
It is known that the A–polynomial of a knot in S3 has even powers in M 2 .

Theorem 3 (a) For every p 2 Z we have:

�C
op

p .E;Q/DAp.L;M
1=2/ �

(
.1CLM /p

M p.LCM /3p�1 if p � 0I

1
.M.LCM /.1CLM //jpj

if p < 0:
(13)

(b) For every p , Cp is an irreducible polynomial over QŒE;Q�.

We can phrase the above theorem geometrically, as follows. The rational map � gives
a rational map C2 �!C2 where the domain has coordinates .E;Q/ and the range has
coordinates .L;M /. Then, we can restrict the above map to the affine curves defined
by C

op
p and Ap .

Corollary 1.5 For all twist knots K , the map � of (12) induces a Zariski dense map
of degree 2:

(14) �W f.L;M / 2 C2
jAK .L;M /D 0g �! f.E;Q/ 2 C2

jC
op
K
.E;Q/D 0g

Thus, one can associate two plane curves to a knot, namely the A–curve, and the
C –curve, which, in the case of twist knots, are related by the map � above. Thus one
may consider their degrees and their genus, discussed at length in Kirwan [14]. The
genus has the advantage of being a birational invariant.

Rather than diverge to a lengthy algebraic geometry discussion, outside the scope of
the present paper, we state our next result here, and postpone its proof in a subsequent
publication.

Theorem 4 For every p 2 Z, the genus of the Cp.E;Q/ polynomial is zero.

The proof uses the Noether formula for the genus of a plane curve (see [14, Theorem
7.37]):

(15) genus.C /D
.d � 1/.d � 2/

2
�

X
P

ı.P /

where d is the degree and the (finite) sum is over the delta invariants of the singular
points of C . Since ı.P / > 0 at the singular points of C , and the left hand side is
nonnegative, if one finds enough singular points P 0 such that the contribution makes
the right hand side vanish, then if follows that these are all the singular points of C
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and moreover, the genus of C is zero. In our case, d D 3jpj � 2, the singular points
P 0 are

Œ0; 0; 1�; Œ1; 0; 0�; Œ0; 1; 1�; Œ0; 1; 0�:

in homogeneous coordinates, and their delta invariants are given by:

ı.Œ0; 0; 1�/D jpj.jpj � 1/ ı.Œ1; 0; 0�/D .2jpj � 3/.jpj � 1/

ı.Œ0; 1; 1�/D jpj � 1 ı.Œ0; 1; 0�/D jpj � 1:

As a comparison, a Maple computation confirms that for jpj � 30 we have:

(16) genus.Ap.L;M
1=2//D

(
2p� 2 if p > 0I

2jpj � 1 if p < 0:

Unfortunately, the above method does not prove that the genus of the Ap polynomial
is given by (16) for all p , since it is hard to prove that the only singular points of Ap

for all p are the ones suggested by Maple.

We thank N. Dunfield suggestions and for pointing the curious fact about the genus of
the Cp polynomials.

1.7 Plan of the proof

As is obvious from a brief look, the paper tries to bring together two largely disjoint
areas: Quantum Topology and the Discrete Mathematics. Thus, the proofs require
some knowledge of both areas. We have tried to separate the arguments in different
sections, for different audiences.

In Section 2, we show that the sequence of polynomials Cp.E;Q/ from Equation
(6) satisfy the 3–term recursion relations (8) and (9). Combining this result with a
3–term recursion relation for the A–polynomial of twist knots (due to Hoste–Shanahan),
together with a matching of initial conditions allows us to prove Equation (13). A
side-bonus of Equation (13) and of work of Hoste–Shanahan (that uses ideas from
hyperbolic geometry) is that the non-commutative polynomials of Equation (4) are
irreducible– a property that the WZ algorithms cannot guarantee in general.

In Section 3, we give a crash course on the WZ algorithm that computes recursion rela-
tions of sums of hypergeometric functions. The ideas are beautiful and use elementary
linear algebra. Using an explicit formula for the cyclotomic function of twist knots
(given in terms of a single sum of a q–hypergeometric function), in Section 4 we apply
the WZ algorithm to confirm that the cyclotomic function of twist knots satisfies the
q–difference equation

Cp.E;Q/ yJp.n/D 0
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for all n 2 N. This, together with the irreducibility of Cp.E;Q; q/ obtained above,
conclude the proof of Theorem 1.

In Section 5 we present some open questions (all confirmed for twist knots) about the
structure of the C –polynomial and the A–polynomial of knots.

Finally, in the Appendix we give a table of the non-commutative C –polynomial of
twist knots with at most 3 crossings.
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2 Proof of Theorems 2 and 3

2.1 Proof of Theorem 2

Proof (of Theorem 2) Consider the family of polynomials Cp.E;Q/ given by (6). In
this section we will show that this family of polynomials satisfies the recursions stated
in Theorem 2. Together with Theorem 1 (to be shown later), it will conclude the proof
of Theorem 2.

For convenience, we will convert the recursions in (8) and (9) in backward shifts. That
is, we define

Dp.E;Q/D C
op

p .E;Q/

D Cp.E
�1;Q/Ejpj:

Then we need to prove that

(17) Dp.E;Q/D .QE �Q2.E � 1/C 1/Dp�1.E;Q/�Q2Dp�2.E;Q/:

It is clear from Equation (31) that

(18) Dp.E;Q/D 1C

jpjX
iD1

b0p.Q; i/E
i

and
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b0p.Q; i/DQi.1�Q/i�1

�

8̂̂̂̂
<̂
ˆ̂̂:

�Pp�i
jD0

Q2j
�
p�j

i

��
iCj�1

j

�
�
Pp�i�1

jD0
Q2jC1

�
p�j�1

i

��
iCj�1

j

��
if p > 0;

0 if p D 0;

Q2pC1
�
�
P�p�i

jD0
Q2j

�
�p�j�1

i�1

��
iCj

j

�
C
P�p�i�1

jD0
Q2jC1

�
�p�j�2

i�1

��
iCj

j

��
if p < 0.

When p > 0, let

s.1/
p .E;Q; i; j /DQi.1�Q/i�1Q2j

�
p� j

p� i � j

��
i C j � 1

j

�
Ei ;

s.2/
p .E;Q; i; j /DQi.1�Q/i�1Q2jC1

�
p� j � 1

p� i � j � 1

��
i C j � 1

j

�
Ei ;

D.1/
p .E;Q/D

pX
iD1

p�iX
jD0

s.1/
p .E;Q/;

D.2/
p .E;Q/D

pX
iD1

p�i�1X
jD0

s.2/
p .E;Q/;

and we have

(19) Dp.E;Q/D 1CD.1/
p .E;Q/�D.2/

p .E;Q/:

Using the same method mentioned before, it is easy to check that both s
.1/
p .E;Q; i; j /

and s
.2/
p .E;Q; i; j / satisfy the same recursion

�Q2s
.l/
p�2

.E;Q; i; j � 1/�E.�1CQ/Qs
.l/
p�1

.E;Q; i � 1; j /

CQ2s
.l/
p�1

.E;Q; i; j � 1/C s
.l/
p�1

.E;Q; i; j /� s.l/
p .E;Q; i; j /D 0;

for l D 1; 2.

Summing the above recursion over i �1 and j �0, and noticing that t
.1/
p .E;Q; i; j /D

0 when i > p , j < 0, or j > p� i , we obtain

�Q2D
.1/
p�2

.E;Q/�E.�1CQ/QD
.1/
p�1

.E;Q/CQ2D
.1/
p�1

.E;Q/(20)

CD
.1/
p�1

.E;Q/�D.1/
p .E;Q/

DE.�1CQ/Qs
.1/
p�1

.E;Q; 0; 0/

D�EQ:
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Similarly

�Q2D
.2/
p�2

.E;Q/�E.�1CQ/QD
.2/
p�1

.E;Q/CQ2D
.2/
p�1

.E;Q/(21)

CD
.2/
p�1

.E;Q/�D.2/
p .E;Q/

DE.�1CQ/Qs
.2/
p�1

.E;Q; 0; 0/

D�EQ2:

Now Equation (17) follows immediately from Equations (19), (20) and (21), which
proves the theorem for p > 0.

For the case of p < 0, it is interesting that the backward-shifting 3–term recursion is
the same as that when p > 0. To prove it, we only need to define, like before,

s.1/
p .E;Q; i; j /DQ2pC1Ci.1�Q/i�1Q2j

�
p� j � 1

p� i � j

��
i C j

j

�
;

s.2/
p .E;Q; i; j /DQ2pC1Ci.1�Q/i�1Q2jC1

�
�p� j � 2

p� i � j � 1

��
i C j

j

�
;

and realize that both of them satisfy the same recursion

�Q2s
.l/
p�2

.E;Q; i; j /�E.�1CQ/Qs
.l/
p�1

.E;Q; i � 1; j /

CQ2s
.l/
p�1

.E;Q; i; j � 1/C s
.l/
p�1

.E;Q; i; j /� s.l/
p .E;Q; i; j � 1/D 0;

for l D 1; 2. This finishes the proof of part (a) of Theorem 2.

It remains to prove Equation (10). The recursion relation for Cp from part (a) together
with the initial conditions imply that

C
op

p .E; 1/D 1CpE:

Since �Kp
.M /D 1Cp.M CM�1� 2/, this concludes Equation (10) and Theorem

2.

2.2 Proof of Theorem 3

Consider the family of polynomials Cp.E;Q/ given by Equation (6). In Section 2.1
we showed that Cp.E;Q/ satisfy the 3–term recursion relations (8) and (9).

We will show that their evaluation �C op.E;Q/ satisfies Equation (13). In [12, Theorem
1], Hoste–Shanahan give a 3–term recursion relation for the A–polynomial of twist
knots:

Ap.L;M /D x.L;M /Ap�sgn.p/.L;M /�y.L;M /Ap�2sgn.p/.L;M /;
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where

x.L;M /D�LCL2
C2LM 2

CM 4
C2LM 4

CL2M 4
C2LM 6

CM 8
�LM 8;

y.L;M /DM 4.LCM 2/4:

Theorem 2 gives a 3–term relation for the C –polynomial of twist knots. Assume, for
simplicity, that p > 0. Then, Theorem 2 implies that C

op
p .E;Q/ satisfies a 3–term

relation:

C
op

pC2
.E;Q/D .EQ�EQ2

C 1CQ2/C
op

pC1
.E;Q/�Q2 C

op
p .E;Q/:

Using the rational map � of Equation (12), a computation shows that

�.EQ�EQ2
C 1CQ2/D

1CLM

M.LCM /2
x.L;M 1=2/; �.Q/D

.1CLM /2

.LCM /2
:

Thus, it follows that both sides of (13) satisfy the same 3–term recursion relation for
p > 0. Moreover, an explicit computation shows that (13) is verified for pD 1; 2. The
result follows for p > 0, and similarly for p < 0.

For part (b), Hoste–Shanahan prove that the A–polynomial of twist knots is irreducible;
see [11]. This, together with Equation (13) implies that any nontrivial factor of
C

op
p .E;Q/ must satisfy the property that its image under � is a monomial in 1CLM

or LCM . This implies that any nontrivial factor of C
op

p .E;Q/ will be of the form
.Q˙ 1/2CQE . If C

op
p .E;Q/ had any such factor, then evaluating at Q D �1, it

follows that E divides Cp.E;�1/. This is a contradiction, by the explicit formula of
Corollary 1.4.

3 A crash course on the WZ algorithm and Creative Tele-
scoping

In this section we review briefly some key ideas of Zeilberger on recursion relations
of combinatorial sums. An excellent reference is [21], which we urge the reader for
references of the results in this section.

A term is F.n; k/ called hypergeometric if both F.nC1;k/
F.n;k/

and F.n;kC1/
F.n;k/

are rational
functions over n and k . In other words,

(22)
F.nC 1; k/

F.n; k/
2Q.n; k/;

F.n; kC 1/

F.n; k/
2Q.n; k/:

Examples of hypergeometric terms are F.n; k/D .anCbkC c/! (for integers a; b; c ),
and ratios of products of such. The latter are actually called proper hypergeometric. A
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key problem is to construct recursion relations for sums of the form

(23) S.n/D
X

k

F.n; k/;

where F.n; k/ is a proper hypergeometric term. The summation can be defined to be
over all integers, even though in the cases that we consider in the paper, the summand
vanishes for negative integers. Due to the telescoping nature of Sister Celine’s method,
we may allow for a definite or indefinite summation range. Sister Celine proved the
following:

Theorem 5 Given a proper hypergeometric term F.n; k/, there exist an integer I and
a set of functions ai.n/ 2Q.n/, 0� i � I , such that

IX
iD0

ai.n/F.nC i; k/D 0:(24)

The important part of the above theorem is that the functions ai.n/ are independent of
k . Therefore if we take the sum over k on both sides, we get

IX
iD0

ai.n/
X

k

F.nC i; k/D 0:(25)

In other words, we have:

(26)
IX

iD0

ai.n/S.nC i/D 0:

So, Equation (24) produces a recursion relation. How can we find functions ai.n/ that
satisfy Equation (24)? The idea is simple: divide Equation (24) by F.n; k/, and use
(22) to convert the divided equation into an equation over the field Q.n; k/. Moreover,
ai.n/ appear linearly. Clearing denominators, we arrive at an equation (linear with
respect to ai.n/) over Q.n/Œk�. Thus, the coefficients of every power of k must vanish,
and this gives a linear system of equations over Q.n/ with unknowns ai.n/. If there
are more unknowns than equations, one is guaranteed to find a nonzero solution. By a
counting argument, one may see that if we choose I high enough (this depends on the
complexity of the term F.n; k/), then we have more equations than unknowns.

We should mention that although it can be numerically challenging to find ai.n/ that
satisfy Equation (24), it is routine to check the equation once ai.n/ are given. Indeed,
one only need to divide the equation by F.n; k/, and then check that a function in
Q.n; k/ is identically zero. The latter is computationally trivial.
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This algorithm produces a recursion relation for S.n/. However, it is known that the
algorithm does not always yield a recursion relation of the smallest order.

Applying Gosper’s algorithm, Wilf and Zeilberger invented another algorithm, the WZ
algorithm. Instead of looking for 0 on the right-hand side of Equation (24), they instead
looked for a function G.n; k/ such that

NX
iD0

ai.n/F.nC i; k/DG.n; kC 1/�G.n; k/:(27)

Summing over k , and using telescoping cancellation of the terms in the right hand side,
we get a recursion relation for S.n/. How to find the ai.n/ and G.n; k/ that satisfy
(27)? The idea is to look for a rational function Cert.n; k/ (the so-called certificate of
(27)) such that

G.n; k/D Cert.n; k/F.n; k/:

Dividing out (27) by F.n; k/ as before, one reduces this to a problem of linear algebra.
Just as before, given ai.n/ and Cert.n; k/, it is routine to check whether (27) holds.

Now, let us rephrase the above equations using operators. Let us define two operators
N and K that act on a function F.n; k/ by:

.NF /.n; k/D F.nC 1; k/; .KF /.n; k/D F.n; kC 1/:

Then, we can rewrite Equation (27) as 
IX

iD0

ai.n/N
i

!
F.n; k/D .K� 1/G.n; k/D .K� 1/Cert.n; k/F.n; k/:(28)

Here, we think of n and k as operators acting on functions F.n; k/ by multiplication
by n and k respectively. In other words,

.nF /.n; k/D nF.n; k/; .kF /.n; k/D kF.n; k/:

Beware that the operators N and n do not commute. Instead, we have:

N nD .nC 1/N;

and similarly for k and K .

Implementation of the algorithms are available in various platforms, such as, Maple
and Mathematica. See, for example, [25] and [19].

Let us mention one more point regarding Creative Telescoping, namely the issue of
dealing with boundary terms. In the applications below, one considers not quite the
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unrestricted sums of Equation (23), but rather restricted ones of the form:

(29) S 0.n/D

1X
kD0

F.n; k/;

where F.n; k/ is a proper hypergeometric term. When we apply the Creating Tele-
scoping summation, we are left with some boundary terms R.n/ 2Q.n/. In that case,
Equation (26) becomes:  

IX
iD0

ai.n/N
i

!
S 0.n/DR.n/:

This is an inhomogeneous equation of order I which we can convert into a homogeneous
recursion of order I C 1 by following trick: apply the operator

.N � 1/
1

R.n/

on both sides of the recursion, we get�
1

R.nC 1/
N �

1

R.n/

� IX
iD0

ai.n/N
i

!
S 0.n/D 0;

i.e.

 
aI .nC 1/

R.nC 1/
N IC1

C

IX
iD1

�
ai�1.nC 1/

R.nC 1/
�

ai.n/

R.n/

�
N i
�

a0.n/

R.n/

!
S 0.n/D 0:

One final comment before we embark in the proof of the stated recursion relations.
In Quantum Topology we are using q–factorials rather than factorials. The previous
results translate without conceptual difficulty to the q–world, although the computer
implementation costs more, in time. A term is F.n; k/ called q–hypergeometric if

F.nC 1; k/

F.n; k/
;
F.n; kC 1/

F.n; k/
2Q.q; qn; qk/:

Examples of q–hypergeometric terms are the quantum factorials of linear forms in
n; k , and ratios of products of quantum factorials and q raised to quadratic functions
of n and k . The latter are called q–proper hypergeometric.

Sister Celine’s algorithm and the WZ algorithm work equally well in the q–case.
In either algorithms, we can (roughly speaking) replace n and k with qn and qk

respectively, and the rest of the original proofs still apply naturally. The implementations
of the q–case include [18], [15] and [25].
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4 The non-commutative C –polynomial of twist knots

4.1 Proof of Theorem 1

First, let us make a remark for the trivial twist knot K0 .

Remark 4.1 The colored Jones function of the trivial knot is J0.n/D 1 for all n� 1.
Consequently, the cyclotomic function of the trivial knot is yJ0.n/ D ın;0 (that is, 1

when n D 0 and 0 otherwise). The non-commutative C –polynomial of the trivial
knot is C0.E;Q; q/D 1. The A–polynomial of the trivial knot is A0.L;M /D 1 and
the Alexander polynomial of the trivial knot is �0.M / D 1. This confirms all our
theorems for p D 0.

Proof (of Theorem 1) First we will prove that yJp.n/ satisfies the recursion relation:

(30) Cp.E;Q; q/ yJp D 0;

where Cp.E;Q; q/ is given by Equation (4). We begin with rewriting the above
equation as a recursion in backward shifts:

yJp.n/C

jpjX
iD1

a0p.n; i/
yJp.n� i/D 0;(31)

where

a0p.n; i/D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

qi.nC1/ .qIq/n�1

.qIq/n�i

�Pp�i
jD0

q.2n�iC1/j
�
p�j

i

�
q

�
iCj�1

j

�
q

�
Pp�i�1

jD0
q.2n�iC1/jCn

�
p�j�1

i

�
q

�
iCj�1

j

�
q

�
if p > 0;

0 if p D 0;

q.2pCiC1/n .qIq/n�1

.qIq/n�i

�
�
P�p�i

jD0
q.2n�i/j

�
�p�j�1

i�1

�
q

�
iCj

j

�
q

C
P�p�i�1

jD0
q.2n�i/jCn

�
�p�j�2

i�1

�
q

�
iCj

j

�
q

�
if p < 0.

When p > 0, we define a number of functions for the purpose of convenience:

sp.n; k/D
qn.nC3/=2Cpk.kC1/Ck.k�1/=2.�1/nCkC1.q2kC1� 1/.qI q/n

.qI q/nCkC1.qI q/n�k

;

t .1/
p .n; k; i; j /D .�1/iq�i.2n�iC3/=2Ci.nC1/C.2n�iC1/j

.qI q/n�1.qI q/nCkC1.qI q/n�k

.qI q/n.qI q/nCk�iC1.qI q/n�i�k

�
p� j

p� i � j

�
q

�
i C j � 1

j

�
q

;
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t .2/
p .n; k; i; j /D .�1/iq�i.2n�iC3/=2Ci.nC1/C.2n�iC1/j

�
.qI q/n�1.qI q/nCkC1.qI q/n�k

.qI q/n.qI q/nCk�iC1.qI q/n�i�k

�
p� j � 1

p� i � j � 1

�
q

�
i C j � 1

j

�
q

;

rp.n; k/D

pX
iD1

a0p.n; i/sp.n� i; k/

sp.n; k/
;

Certp.n; k/D
qpkCpnCp.qkC1� 1/.qn� qk/

.q2kC1� 1/.qn� 1/
;

Dp.n; k/D Certp.n; k/�Certp.n; k � 1/
sp.n; k � 1/

sp.n; k/
� 1:

It is clear that X
k�0

sp.n; k/D yJp.n/:

Since

t .h/
p .n; k; i; j /D 0 if j > p� i � hC 1 or i > p; when hD 1; 2;

and

sp.n� i; k/

sp.n; k/
D .�1/�iq�i.2n�iC3/=2 .qI q/�iCn.qI q/�kCn.qI q/1CkCn

.qI q/n.qI q/�i�kCn.qI q/1�iCkCn

;

we obtainX
j�0

t .1/
p .n; k; i; j /�

X
j�0

t .2/
p .n; k; i; j /D

p�iX
jD0

t .1/
p .n; k; i; j /�

p�i�1X
jD0

t .2/
p .n; k; i; j /

D a0p.n; i/
sp.n� i; k/

sp.n; k/
;

and thereforeX
i�1

X
j�0

�
t .1/
p .n; k; i; j /� t .2/

p .n; k; i; j /
�
D

pX
iD1

a0p.n; i/
sp.n� i; k/

sp.n; k/

D rp.n; k/:

We are going to show that

(32) 1C rp.n; k/D Certp.n; k/�Certp.n; k � 1/
sp.n; k � 1/

sp.n; k/
:
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If (32) is true, we can multiply both sides by sp.n; k/ and obtain

sp.n; k/C

pX
iD1

a0p.n; i/sp.n�i; k/DCertp.n; k/sp.n; k/�Certp.n; k�1/sp.n; k�1/:

Summing over k � 0, and using telescoping summation of the right hand side, and the
boundary condition Certp.n;�1/D 0, completes the proof of (31). Notice incidentally
that Certp.n; k/ is the corresponding certificate of (4) in the WZ algorithm.

A recursion for both of the functions t
.h/
p .n; k; i; j /; hD 1; 2; is

�qp.qk � qn/.�qC qn/.�1C q1CkCn/t
.h/
p�1

.�1C n; k;�1C i; j /

Cq2CkC2n.�1C qn/t
.h/
p�2

.n; k; i;�1C j /

�q2CkC2n.�1C qn/t
.h/
p�1

.n; k; i;�1C j /

�q2Ck.�1C qn/t
.h/
p�1

.n; k; i; j /C q2Ck.�1C qn/t
.h/
p .n; k; i; j /D 0:

This can be checked by dividing the equation by t
.h/
p .n; k; i; j / and then both sides

are rational functions in q; qn; qp; qk ; the identity can then be checked easily.

Summing over i � 1 and j � 0, and noticing that t
.h/
p .n; k; i;�1/D 0, we get

(33)

�qp.qk � qn/.�qC qn/.�1C q1CkCn/rp�1.n� 1; k/

Cq2CkC2n.�1C qn/rp�2.n; k/� q2CkC2n.�1C qn/rp�1.n; k//

�q2Ck.�1C qn/rp�1.n; k/C q2Ck.�1C qn/rp.n; k/

D qp.qk � qn/.�qC qn/.�1C q1CkCn/
�
t
.1/
p�1

.n; k; 0; 0/� t
.2/
p�1

.n; k; 0; 0/
�

D qp.�qC qn/.�qk C qn/.�1C q1CkCn/:

What is left to prove now is that Dp.n; k/ satisfies the same recursion as in (33), and
(32) is true for all n when p D 1 and 2. Checking the former assertion is simple
arithmetic since Dp.n; k/ is a rational function, while the latter can be proved by
checking (31) directly for pD 1 and 2. For any specific p , sp.n; k/ is hypergeometric,
so this can be done using any of the software packages developed for the WZ algorithm;
see for example [18].

When p < 0, we can define

Algebraic & Geometric Topology, Volume 6 (2006)



1644 Stavros Garoufalidis and Xinyu Sun

t .1/
p .n; k; i; j /D .�1/�iq�i.2n�iC3/=2C.2pCiC1/nC.2n�i/j

.qI q/n�1.qI q/�kCn.qI q/1CkCn

.qI q/n.qI q/�i�kCn.qI q/1�iCkCn

�
�p� j � 1

�p� i � j

�
q

�
i C j

j

�
q

;

t .2/
p .n; k; i; j /D .�1/�iq�i.2n�iC3/=2C.2pCiC1/nC.2n�i/j

.qI q/n�1.qI q/�kCn.qI q/1CkCn

.qI q/n.qI q/�i�kCn.qI q/1�iCkCn

�
�p� j � 2

�p� i � j � 1

�
q

�
i C j

j

�
q

;

and follow the same steps as above, where we only need to mention that both of the
functions satisfy the following recursion

�qp.qk � qn/.�qC qn/.�1C q1CkCn/tp�1.n� 1; k; i � 1; j /

Cq2CkC2n.�1C qn/tp�2.n; k; i; j /� q2CkC2n.�1C qn/tp�1.n; k; i; j � 1/

�q2Ck.�1C qn/tp�1.n; k; i; j /C q2Ck.�1C qn/tp.n; k; i; j � 1/D 0:

So far, we have shown that yJp.n/ is annihilated by an explicit operator Cp.E;Q; q/:

Cp.E;Q; q/ yJp D 0:

If we prove that the above recursion has minimal E -degree, it will follow that
Cp.E;Q; q/ is indeed the non-commutative C –polynomial of the twist knot Kp .
Since Cp.E;Q; q/ is monic in E , minimality will follows from the fact that the
polynomial Cp.E;Q; 1/ is irreducible over QŒE;Q�. This in turn follows from part
(b) of Theorem 3 and by the fact that the A–polynomial of twist knots is irreducible
(see [11]). This concludes the proof of Theorem 1.

5 Odds and ends

5.1 Motivation for the rational map �

In this section we give some motivation for the strange-looking rational map � . We
warn the reader that this section is heuristic, and not rigorous. However, it provides a
good motivation.

Let us fix a sequence:
f W N �!Q.q/
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and let
g D yf W N �!Q.q/

be defined by:

g.n/D

1X
kD0

C.n; k/g.k/;

where C.n; k/ are as in Equation (2). Let us suppose that f .k/ is annihilated by an
operator

Pf .Ek ;Qk ; q/D

dX
jD0

aj .q; q
j /E

j

k
:

The question is to find (at least heuristically) an operator Pg.E;Q; q/ that annihilates
g.n/. To achieve this, we will work in the Weyl algebra W generated by the operators
E;Q;Ek and Qk with the usual commutation relations.

Since C.n; k/ is closed form, a calculation shows that:

C.nC 1; k/

C.n; k/
D
.1� q�n/.1� q1CkCn/

.1� qk�n/.1� q1Cn/

C.n; kC 1/

C.n; k/
D�q�1�k.1� q1Ck�n/.1� q1CkCn/:

In other words, C.n; k/ is annihilated by the left ideal in W generated by the operators
P1 and P2 where

P2 D .1�Q�1/.1� qQQk/� .1�QkQ�1/.1� qQ/E

P1 D�q�1Q�1
k .1� qQkQ�1/.1� qQkQ/�Ek

Lemma 5.1 g.n/ is annihilated by the operators P1 and P where

P D

dX
jD0

aj .q; q
k/

C.n; kC d/

C.n; kC j /
E

j

k
:

Proof It is easy to see that g.n/ is annihilated by P1 . Moreover,

0D

dX
jD0

aj .q; q
k/f .kC j /

D
1

C.n; kC d/

dX
jD0

aj .q; q
k/

C.n; kC d/

C.n; kC j /
C.n; kC j /f .kC j /
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D
1

C.n; kC d/
Pg.n/:

Thus, P annihilates g.n/.

According to Sister Celine’s algorithm, we want to eliminate Qk (thus obtaining k –free
operators), and then set Ek D 1. This will produce an operator in E;Q and q that
annihilates g.n/. Finally, after setting q D 1, we will get a polynomial which contains
the characteristic polynomial of g.n/.

Now, here comes the heuristic: let us commute the evaluation at q D 1 from last to
first, and denote it by � . Let us define two rational functions R1;R2 2Q.Q;Qk/ by:

R1.Q;Qk/D
.1�Q�1/.1�QkQ/

.1�QkQ�1/.1�Q/

R2.Q;Qk/D�Q�1
k .1�QkQ�1/.1�QkQ/:

Observe that

�
C.n; kC d/

C.n; kC j /
DR2.Q;Qk/

d�j :

Thus, by the above calculation,

�P .E;Q;Ek ;Qk/DRd
2 �P .R

�1
2 Ek ;Qk/

�P1 DR1.Q;Qk/�E:

Now, we want to eliminate Qk and then set Ek D 1. The relation �P1 D 0 is linear
in Qk . Solving, we obtain that:

Qk D
1CQE

QCE
:

Substituting this into Rd
2
�Pf .R

�1
2

Ek ;Qk/ and setting Ek D 1, we obtain:

Rd
2 �Pf .R

�1
2 Ek ;Qk/DRd

3 �P .R3; .1CQE/=.QCE/; 1/

D �P
op

f
.R3; .1CQE/=.QCE/; 1/;

where

R3.E;Q/D
E.Q2� 1/2

Q.ECQ/.1CEQ/
:

In other words, after we rename .E;Q/ to .L;M /, we have:

�P .L;M /D �P
op

f
.R3; .1CQE/=.QCE/; 1/

D ��P op.E;Q; 1/:
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In other words, we expect the characteristic polynomials Pg.L;M / and Pf .E;Q/ of
g and f to be related by:

(34) Pg.L;M /�L;M � P
op

f
.E;Q/;

where �L;M means equality, up to multiplication by monomials in L, M , LCM ,
1CLM , M �1 and M C1. This is exactly how we came up with the strange looking
rational map � , and with Theorem 3.

In general, Equation (34) does not take into account repeated factors in Pg.L;M /

and P
op

f
.E;Q/. Let us make this more precise. Given G 2 QŒL;M �, let us factor

G D u
Q

i G
ni

i where u is a unit, and Gi are irreducible and ni 2 Z. This is possible,
since QŒL;M � is a unique factorization domain. Now, let us define

rad.G/D
Y

i

G
sgn.ni /
i

to be the square-free part of G .

Then, the equation

(35) rad.G.L;M //� rad.� F.E;Q//;

implies that F determines G up to multiplication by suitable monomials, and up to
repeated factors. We may also invert the above equation, keeping in mind that the map
� is 2-to-1.

Let us end this heuristic section with a lemma that sheds some light into a possible
relation between the A and the C –polynomials of a knot.

Let �0 denote equality of rational functions in E;Q modulo multiplication by mono-
mials in E;Q; 1C 2QCQ2CQS and 1� 2QCQ2CQS . These are precisely the
monomials that map under � to monomials in L;M;LCM; 1CLM;M � 1 and
M C 1.

Lemma 5.2 If F and G satisfy (35), then

rad.F.E;Q//

�
0 rad

�
ResM

�
G

�
MQ� 1

M �Q
;M

�
;EMQ�M 2Q�QCQ2M CM

��
where ResM denotes the resultant with respect to M .
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Proof There is a geometric proof, which translates Equation (35) into the statement
that � induces a Zariski dense rational map of degree 2:

f.L;M / 2 C2
jG.L;M /D 0g �! f.E;Q/ 2 C2

jF.E;Q/D 0g:

Geometrically, it is clear that the domain determines the range and vice-versa.

There is an alternative algebraic proof. Let us try to invert the rational map � . In other
words, consider the system of equations

E D
L.M 2� 1/2

M.LCM /.1CLM /
I

QD
1CLM

LCM
;

with E;Q known and L;M unknown. Solving the last with respect to L gives:

LD
MQ� 1

M �Q
:

Substituting into the first equation gives:

E DM CM�1
�Q�Q�1:

Generically, this has two solutions in Q. Nevertheless, the above equation is equivalent
to

EMQ�M 2Q�QCQ2M CM D 0:

So, we can take resultant to eliminate M :

ResM

�
G

�
MQ� 1

M �Q
;M

�
;EMQ�M 2Q�QCQ2M CM

�
:

The result follows.

5.2 Questions

In this section we formulate several questions regarding the structure and significance
of the (non-commutative) C –polynomial of a knot.

Our first question may be thought of as a refined integrality property for the cyclotomic
function of a knot.

Question 3 For which knots K , is the non-commutative C –polynomial monic in E

with coefficients in ZŒQ˙; q˙�?

Motivated by Corollary 1.5, it is tempting to formulate the following
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Question 4 For which knots K , does the map � of Equation (12) give a Zariski dense
rational map of degree 2:

(36) �W f.L;M / 2 C2
jAK .L;M

1=2/D 0g �! f.E;Q/ 2 C2
jC

op
K
.E;Q/D 0g:

In view of Lemma 5.2, (36) is equivalent to

(37) rad.�C
op
K
.E;Q//� rad.A.L;M 1=2//:

Question 5 Is the genus of the C –polynomial CK .E;Q/ of a knot always zero?

Remark 5.3 It seems that Questions 3 and 5 cannot be positive the same time for the
2–bridge knot K13=5 and for the simplest hyperbolic non-2–bridge knot m082.

Theorem 6 If CK .E; 1/¤ 0, then the Alexander polynomial �K .M / divides

C
op
K
.M � 2CM�1; 1/:

The above theorem provides a nontrivial consistency check of Question 4. Indeed, in
[4, Section 6] Cooper et al. prove that AK .1;M

1=2/ is divisible by the Alexander
polynomial �K .M / at least when the latter has unequal complex roots. On the other
hand

�.E/jLD1 DM � 2CM�1; �.Q/jLD1 D 1:

Thus,

�C
op
K
.E;Q/jLD1 D C

op
K
.M � 2CM�1; 1/:

Thus, if a knot satisfies Question 4, then �K .M / divides C
op
K
.M �2CM�1; 1/. This

is precisely Theorem 6.

Question 6 Does the C –polynomial of a knot have a classical geometric definition?

In other words, we are asking for a geometric meaning of the rational map � of Equation
(12).

Question 7 Is there any relation between the bi-graded knot invariant CK .E;Q; 1/

and some version of Knot Floer Homology? Theorem 6 states that under mild hypothe-
sis, CK .M � 2CM�1; 1; 1/ is divisible by the Alexander polynomial of K .
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5.3 Proof of Theorem 6

Proof The proof utilizes the algebra of generating functions and the fact that the
generating function of the cyclotomic function of a knot (evaluated at 1) is given by
the inverse Alexander polynomial. For a reference of the latter statement, see [7].

Now, let us give the details of the proof. We start from the recursion relation of the
cyclotomic function:

CK .E;Q; q/ yJK D 0:

Let us evaluate at q D 1, and set

CK .E; 1; 1/D

dX
jD0

aj Ej ; IK .n/D yJK .n/jqD1:

Then, we have for all n:

(38)
dX

jD0

aj IK .nC j /D 0:

Let us use the generating function:

FK .z/D

1X
nD0

IK .n/z
n:

Equation (38) implies that

0D

1X
nD0

dX
jD0

aj IK .nC j /zn

D

dX
jD0

aj z�j
1X

nD0

IK .nC j /znCj

D

dX
jD0

aj z�j FK .z/C terms.z/

D z�dC
op
K
.z; 1; 1/FK .z/C terms.z/;

where terms.z/ is a Laurent polynomial in z . Thus, assuming that C op.z; 1; 1/¤ 0, it
follows that

FK .z/D�
terms.z/

C
op
K
.z; 1; 1/

:
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The Melvin–Morton–Rozansky Conjecture (proven by Bar-Natan and the first author in
[2]), together with the cyclotomic expansion of the colored Jones function implies that

FK .M � 2CM�1/D
1

�K .M /
:

For example, see [7, Lemma 2.1]. Thus,

�
terms.M � 2CM�1/

C
op
K
.M � 2CM�1; 1; 1/

D
1

�K .M /
:

The result follows.

Appendix A A table of non-commutative C –polynomials

We finish with a table of the non-commutative C –polynomial of twist knots Kp for
p D�3; : : : ; 3, taken from Theorem 1. In each matrix, the upper left entry indicates
the Cp.E;Q; q/ polynomial and the entries in the Ei –row and Qj –column indicate
the coefficient of Qj Ei in Cp.E;Q; q/. For example, C1.E;Q/DEC q2Q.

0@ C1 Q0 Q1

E0 0 q2

E1 1 0

1A
0BB@

C2 Q0 Q1 Q2 Q3

E0 0 0 q6 �q7

E1 0 q3C q4 �q5 q7

E2 1 0 0 0

1CCA
0BBBBB@

C2 Q0 Q1 Q2 Q3 Q4 Q5

E0 0 0 0 q12 �q13� q14 q15

E1 0 0 q8C q9C q10 �q10� 2q11� q12 2q13C q14 �q15� q16

E2 0 q4C q5C q6 �q7� q8 q10C q11 �q13 q16

E3 1 0 0 0 0 0

1CCCCCA
0@ C�1 Q1

E0 �1

E1 1

1A
0BB@

C�2 Q�2 Q�1 Q0

E0 0 �q�2 q�1

E1 �q�4 q�2 �q�1� 1

E2 1 0 0

1CCA
0BBBBB@

C�3 Q�4 Q�3 Q�2 Q�1 Q0

E0 0 0 �q�6 q�5C q�4 �q�3

E1 0 �q�9� q�8 q�7C 2q�6 �q�5� 2q�4� q�3 q�3C q�2C q�1

E2 �q�12 q�9 �q�7� q�6 q�4C q�3 �q�2� q�1� 1

E3 1 0 0 0 0

1CCCCCA
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