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Widths of surface knots

YASUSHI TAKEDA

We study surface knots in 4—space by using generic planar projections. These
projections have fold points and cusps as their singularities and the image of the
singular point set divides the plane into several regions. The width (or the total width)
of a surface knot is a numerical invariant related to the number of points in the inverse
image of a point in each of the regions. We determine the widths of certain surface
knots and characterize those surface knots with small total widths. Relation to the
surface braid index is also studied.

57Q45; 5TM25

1 Introduction

The notion of width for classical knots was introduced by Gabai [8] as a generalization
of the bridge index, which plays an important role in the classical knot theory. The
width was useful for solving difficult problems. More precisely, we consider a generic
projection p of an embedded circle in R?® into the line R as in Figure 1. Then non-
degenerate critical points appear as its singularities and their images divide the line into
several intervals. For each such interval, we consider the number of points in p~!(x)
for a point x in the interval, and we call it the local width, which does not depend on
the choice of x. The width of a knot is the minimum of the total of local widths over
all embedded circles representing the given knot.

By a surface knot, we mean (the isotopy class of) a closed connected (possibly non-
orientable) smoothly embedded surface in R*. For a surface knot, Carter—Saito [5,
Section 4.6] considered the analogy of the width. They applied the notion of chart for
the definition of width for surface knots. A chart is a planar projection of a surface
knot together with an associated graph, which was first introduced in the surface braid
theory (see Kamada [12]). The graph is constructed by using a generic projection into
3—space of a surface knot. The generic projections into 3—space of surface knots have
double points, triple points, and branch points as their singularities, and the charts
represent the state of the combination of these singularities. Moreover, charts form
several planar regions which are surrounded by curves representing double points and
fold lines, and the width of a surface knot which Carter—Saito introduced is defined
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Figure 1: Local widths of an embedded circle in R?

by using the number of points in the fiber over a point (local width) in each of these
regions like the width for classical knots. They considered the minimum (over all
representatives of the given isotopy class) of the maximum of local widths over all the
regions.

However, the width which Carter—Saito defined is slightly different from the one which
Gabai defined. In fact, Carter—Saito considered the maximum of local widths for the
definition of width and Gabai considered the total of local widths. Moreover, the width
of surface knots has not been studied so much until now as far as the author knows.

In this paper, for surface knots, we study the width defined by Carter—Saito, and the
total width which is the straightforward analogy of the width for classical knots defined
by Gabai. For this purpose, we consider generic planar projections of surface knots
instead of charts. In the surface knot theory, we often use generic projections into
3—space: in fact, many results have been obtainted by using projections into 3—space,
and since we can view the diagrams in 3—space, they facilitate the study of surface knots.
Generic planar projections have also been useful (for example, see Carrara, Carter and
Saito [3], Carrara, Ruas, and Saeki [4], Saeki and Takeda [16] and Yamamoto [22]).
Planar projections have fold points and cusps as their singularities. Cusps appear as
discrete points and fold points appear as a 1-dimensional submanifold. Let us call
the set of cusps and fold points in the surface the singular set. For a given surface
knot, the image of the singular set divides the plane into several regions. For each such
region, we consider the number of points in the pre-image of a point in that region
and the maximum or the total of these numbers over all the regions. Then we take the
minimum of these numbers over all embedded surfaces representing the given surface
knot. Roughly speaking, this defines the width and the total width of a surface knot.
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The paper is organized as follows. In Section 2 we define the width and the total
width of surface knots and recall the definitions of the genericity of mappings and the
triviality of surface knots. In Section 3 we study the width and determine the width of
some surface knots such as ribbon surface knots and n—twist spun 2-bridge knots. In
Section 4 we consider the relationship between the width and the surface braid index
and show that the width is always smaller than or equal to the twice of the surface
braid index plus two. We also show that in general the difference between these two
invariants can be arbitrarily large. In Section 5 we give some characterization theorems
of surface knots with small total widths.

Throughout the paper, we work in the smooth category.

The author would like to thank Professor Osamu Saeki for helpful suggestions and
Professor Mitsuyoshi Kato for his constant encouragement. He also thanks the referee
for careful reading and useful comments. The author has been supported by JSPS
Research Fellowships for Young Scientists.

2 Preliminaries

In this section, we prepare several notions from singularity theory and define the width
and the total width for surface knots in R*. For singularity theory, the reader is referred
to Golubitsky and Guillemin [9], for example.

Definition 2.1 Let F be a closed connected surface. Denote by C*°(F, R?) the set
of all smooth mappings from F to R?, endowed with the Whitney C* topology.
Let f and g be elements of C®(F,R?). Then f is equivalent to g if there exist
diffeomorphisms p: F — F and ¢: R? — R? such that go ' = go p.

Definition 2.2 Let f be an element of C*®°(F, R?). Then f is said to be C™ stable
if there exists a neighborhood Ny of f in C*°(F, R?) such that each g in Ny is
equivalent to f .

Definition 2.3 Let f: F — R? be a smooth mapping from F to R?. Then ¢ € F is
called a fold point if we can choose local coordinates (x, y) centered at ¢ and (U, V)
centered at f(g) such that f', in a neighborhood of ¢, is of the form:

U=x, V=y%

Moreover, g € F is called a cusp if we can choose local coordinates (x, y) centered at
g and (U, V) centered at f(g) such that f, in a neighborhood of ¢, is of the form:

U =x, V=xy+y3.
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We denote by S1(f) the set of fold points and cusps, and by S 12( /) the set of cusps.

Note that S;(f) is a regular 1-dimensional submanifold of F' and S 12( f) is a discrete
set.

Recall the following well-known characterization of C°° stable mappings in
C>®(F,R?).

Proposition 2.4 Let f: F — R? be a smooth mapping from a closed connected
surface F to R?. Then f is C* stable if and only if f has only fold points and cusps
as its singularities, its restriction to the set of fold points is an immersion with normal
crossings, and for each cusp ¢, we have:

SN @) nSi(f) = g}

Let F be a closed connected surface. For a smooth map f: F — R?, we set
S(f) ={x € F|rank dfy <2},

which is called the singular point set of f.1f f is C° stable, then we clearly have
S1(f) =S(f).

The following theorem is well-known (see Thom [20]).

Theorem 2.5 Let f: F — R? be a C*® stable mapping from a closed connected
surface F to R*. Then the number of cusps of f has the same parity as the Euler
characteristic y(F) of F.

Definition 2.6 Let f: F — R* be an embedding of a closed connected surface. Let
7: R* — R? be an orthogonal projection. Then we say that 7 is generic with respect
to f (or with respectto f(F))if o f is C stable.

By Mather [15], almost every orthogonal projection is generic with respect to f.

Definition 2.7 Let f: F — R* be an embedding of a closed connected surface F.
Let 7: R* — R? be an orthogonal projection which is generic with respect to 1. In this
cace, 7 o f has fold points and cusps as its singularities. Let S(;r o f)(C F) denote
the set of these singularities. The singular value set 7 o f(S(w o f)) divides the plane
R? into several regions. For a point x in a given region, we call the number of elements
in the set (7 o f)~!(x) the local width, which does not depend on the choice of x
and is always even (see the proof of Lemma 3.2). Let w(f, w) (or w(f(F),x)) be
the maximum of the local widths over all the regions and tw( f, ) (or tw(f(F), m))
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be the total of the local widths over all the regions. The width w( f(F)) of a surface
knot f(F) is the minimum of w( f ,7), where f runs over all embeddings isotopic
to f and 7 runs over all orthogonal projections which are generic with respect to
f Moreover, the total width tw(f(F)) of a surface knot f(F) is the minimum
of tw( f 7), where f runs over all embeddings isotopic to f and 7 runs over all
orthogonal projections which are generic with respect to f

Let us now recall the definitions of a handlebody, the standard projective planes in R*
and the normal Euler number.

An orientable handlebody is a compact orientable 3—manifold obtained by attaching
a finite number of 1-handles to a 3—ball (the number of 1-handles may possibly be
zero). A non-orientable handlebody is a compact non-orientable 3—manifold obtained
by attaching a finite number of 1-handles to a 3—ball.

The standardly embedded projective plane in R* is constructed as in Figure 2, by
attaching an unknotted disk in R3 x [0, 00) to a “trivially embedded” Mdbius band in
R3 x{0}. We have two trivially embedded Mdbius bands up to isotopy, and accordingly
we have two kinds of standard projective planes in R*. These surface knots have normal
Euler number £2. Normal Euler number is an isotopy invariant of surface knots (for
example, see Carter and Saito [5]).

D? C R? %[0, 00)

attach

R3 x {0}

Figure 2: The standardly embedded projective plane in R*

There are several definitions of trivial surface knots in the litterature (for example, see
Hosokawa and Kawauchi [10]). In this paper, we adopt the following definition.

Algebraic € Geometric Topology, Volume 6 (2006)



1836 Yasushi Takeda

Definition 2.8 For a surface knot, we say that it is strongly trivial if it is the boundary
of a handlebody embedded in R*. Moreover, we say that a non-orientable surface
knot is trivial if it is the connected sum of some copies of the standardly embedded
projective planes in R*, that is, the connected sum of k copies of the standardly
embedded projective plane with normal Euler number 42 and / copies with normal
Euler number —2 for some k >0 and / >0 with k +/ > 1.

A surface knot is trivial if it is strongly trivial. However, a trivial surface knot may not
necessarily be strongly trivial. In fact, if a surface knot is strongly trivial, then its Euler
characteristic must be even. More precisely, a trivial surface knot is strongly trivial
if and only if its normal Euler number vanishes. Furthermore, for a closed connected
non-orientable surface of non-orientable genus g, the number of trivial surface knots
diffeomorphic to it is equal to g + 1, and if g is even, then a strongly trivial surface
knot diffeomorphic to it exists and is unique (for example, see [10]).

The following lemma is often used throughout this paper.

Lemma 2.9 (Carrara, Ruas and Saeki [4]) Let 7: R* — R? and 71: R> - R be
orthogonal projections. For an embedding f: F — R* of a closed connected surface
F,if wo f is C™ stable without cusps and ;o o f: F — R is a Morse function'
with at most four critical points, then f(F) is strongly trivial.

3 Widths of certain surface knots

In this section, we characterize those surface knots with width two and determine the
widths of ribbon surface knots and n—twist spun 2—bridge knots.

Let we begin by the following lemma.

Lemma 3.1 Let F be a closed connected surface and f: F — R* be an embedding.
Let w: R* — R? be an orthogonal projection which is generic with respect to f .
Suppose that there exists a proper arc [ in R? isotopic to a line in R?> such that
o f(S(mwo f)) intersects | transversely at two points both of which are the images of
fold points. Let N(I) be a tubular neighborhood of [ in R? and let Ay and A; be the
connected components of R*>~ Int N (/). Then there exist embeddings f;: F; — R* of
closed connected surfaces F; into R*, i =0, 1, such that

(1) f(F) is isotopic to the connected sum fo(Fo)tt f1(F1),
(i1) 7 is generic with respectto fi,i =0,1,

1 A smooth function on a smooth manifold is a Morse function if its critical points are all non-degenerate.
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(iii) 7o fo(Fo) Nmwo f1(F1) =2,

(iv) fori =0, 1, there exists a 2—disk Di2 C F; such that
(iv-1) Fi~IntD? = (o £)"1(4;),
(iv-2) filF,-\IntDiZ = f|F,~\IntD,-2’

(v) fori=0,1, wo fi|p2 is a mapping as depicted in Figure 3.

Proof Set/; =dN(/)N A;,i =0,1. Then (o £)~1(/;) is a closed 1—dimensional
manifold, and the embedding f|(;o f)-1(;) into 7~ 1(l;) = R3 is a trivial knot, since
70 flmopy-1ay): (o f)71(li) — I; = R is a Morse function with one maximum and
one minimum. Therefore, f((7 o f)~'(/;)) bounds a 2—disk Aiz in 77 1(l;),i=0,1.
We slightly push the interior of the 2—disk into 7! (IntN(/)) and we denote it by le
Then we get the desired embeddings f;: F; = (o f)~1(4;) U Dl.2 —R*i=0,1,
such that fi|(zo £y-1(4;) = S l(mof)-1(4,) and fi(D}) = 512 O

D} CcR*

7 e (D
O !

7o fi(D})
Figure 3: The mapping 7 o fi|,2

Let f: F — R* be an embedding of a closed connected surface F and 7: R* — R?

be an orthogonal projection which is generic with respect to /. Then w o f(S(wo f))

has fold crossings and cusps. We have four regions locally near a fold crossing, and
we have two regions locally near a cusp.

Algebraic € Geometric Topology, Volume 6 (2006)



1838 Yasushi Takeda

Lemma 3.2 Let f: F — R* be an embedding of a closed connected surface F
and w: R* — R? be an orthogonal projection which is generic with respect to f .
Then, the local widths around a fold crossing of w o f(S(; o f)) are of the forms
n,n+2,n+2,n+4 for some n > 0 even. The local widths around the image of a
cusp are of the forms n,n + 2 for some n > 2 even. See Figure 4.

n+2 n+2

n+4 n+2

Figure 4: Local widths around a fold crossing (left) and around a cusp (right)

Proof If apoint x € R? crosses the image of a fold curve, then the number of elements
in the inverse image (7 o f)~!(x) changes by +2. Furthermore, since F is compact,
o f is not surjective, and the local width for the unbounded region must be zero.
Therefore, the local width of each region should be an even number.

Let x € R? be a fold crossing. Then the mapping 7o f near (o f)~!(x) is easily seen
to be equivalent to the mapping as depicted in Figure 5 for some n > 0. Furthermore,
each local width should be even. Therefore, the desired conclusion follows.

For a cusp, the situation is as depicted in Figure 6 for some n. Since the mapping
7o f near a cusp point is an open map, each local width around the image of a cusp
should be positive. Then, the desired conclusion follows. This completes the proof. O

Let us give a characterization of surface knots with width two.

Theorem 3.3 Let F C R* be a surface knot. Then w(F) = 2 if and only if F is
strongly trivial.

Proof Suppose that w(F) = 2. We may assume that for an orthogonal projection
m: R* — R? which is generic with respect to F, we have w(F,7) = w(i,7) = 2,
where i: F — R* is the inclusion mapping. Then the local width of each region of
R? <~ 7(S(m oi)) must be equal to 0 or 2. Therefore, by Lemma 3.2 there are no fold
crossings nor cusps. Since F' is connected, we see that the image of the singular set
S(|F) must be as depicted in Figure 7 up to isotopy of R?. Then by using Lemma
3.1, we see that either (i) F is isotopic to a connected sum FiffF>ff---f{F, for some
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050

Figure 5: The situation near a fold crossing

r > 1 such that  is generic with respect to F; and the image of the singular set
S(r|F;) is as depicted in Figure 8 up to isotopy of R2, j =1,2,...,r, or (ii) the
image of the singular set S(r|F) is as depicted in Figure 9 up to isotopy of R?. In
case (i), each Fj is strongly trivial by Lemma 2.9. Therefore, F is also strongly trivial.
In case (ii), F is strongly trivial by Lemma 2.9. Conversely, if F is strongly trivial,
then we see easily that w(F) = 2. This completes the proof. |

Let us recall the notion of a ribbon surface knot, which plays an important role in the
theory of surface knots (Cochran, Kamada, Kawauchi, Tanaka and Yasuda [6; 11; 13;
18; 23]).

Definition 3.4 Let A=A, UA,U---U Ay (or B= B; U B, U---U Bj) denote a
finite disjoint collection of 3—balls embedded in R*. Parametrize each component B;
of B as b;j: D? x [0,1] — R4, Suppose that for each i =1,2,...,/, we have

() 94 Nb;(D?x][0,1]) = b;(D* x {0,1}), and
(i) b;(D?x(0,1)) N A =b;(D? x I;) for a finite set I; C (0, 1).
Then the surface knot
F= <8A ~Ul_ b (D* x {0, 1})) | Ul 6:(@D? x [0, 1))

1
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v
-y

Figure 6: The situation near a cusp

Figure 7: The image of the singular set of a surface knot F with w(F) =1
(after a suitable smoothing) is called a ribbon surface knot if F is connected.

Note that a surface knot which is strongly trivial is a ribbon surface knot. If a ribbon
surface knot is non-orientable, then the genus must be even.

Proposition 3.5 Let F C R* be a ribbon surface knot which is not strongly trivial.
Then we have w(F) = 4.

Proof By isotopy of F we may assume that

Aj ={(x1,x2,x3,x4) €ER* | x; =0,x3 + x5 + (xg— )2 <1/}, j=1,2,... k.
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\ 2

Figure 8: The image of the singular set S (7| F;)

Py
\ 4

R
N
7

Figure 9: The image of the singular set S(rr|F)

We define 7: R* — R? by m(xy, X2, x3,X4) = (x3,x4). Then 7 is generic for 04;
and 7(S([p4;)) is as depicted in Figure 10. Moreover, we may further assume that
each b;|(o3x[o,1] satisfies 5;(0,0),5;(0,1) € S(7|54) and b;|(oyx7, is an embedding
into the closure of {(0,0, x3,x4) € R*}~ A4, where I, =[0,e) U(1 —¢,1] and ¢ > 0
is sufficiently small. We define

b: U!_ (D*x[0,1]); — R*

by b(x) = bi(x),x € (D? x[0,1]);, where (D? x[0,1]); is a copy of D? x [0, 1],
i=1,2,...,1.

We may assume that 7 ob restricted to Hf —1 ({0} x [0, 1]); is an immersion with normal
crossings. Furthermore, by pushing the crossings out of 7(A4) one by one by an isotopy
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of F, we may assume that 7(A) does not contain any double point of 7 o b restricted
to LI{_, ({0} x [0, 1]); (see Figure 11).

Now the fiber of the normal disk bundle to b; ({0} [0, 1]) in R* is a 3—dimensional disk.
If we fix b; ({0} x [0, 1]), then the isotopy class of b; (D? x [0, 1]) is determined by the
homotopy class of a unit normal vector field along b; ({0} x [0, 1]), which corresponds
to the unit normal vector to b; (D? x {*}) in the 3—dimensional disk fiber. Therefore,
we may assume that the tangent plane to b; (D? x {t}) at b; ({0} x {t}) is not parallel
to the fibers of 7: R* — R2, 1 €[0, 1].

By taking B = nglbi (D?* x [0, 1]) “thin” enough, we may then assume that S(r o
bilap2x[o,17) consists exactly of two arcs for each i. Now (S (| F)) is as depicted
in Figure 12 and we see that the local width of each region is equal to 0,2 or 4.
Therefore, we have w(F) < 4. Then by Theorem 3.3, the desired conclusion follows.

This completes the proof. a

X3

7(S(laa;))

!
L
~

Bl=

s

1 2 . k

ee | oo o

Figure 10: 7 (S(x |6A,~ )

Let us recall the notion of bridge index for classical knots. Here, we give a definition
suitable for our purpose.

Definition 3.6 Let K be a classical knot and 7: R® — R a generic orthogonal
projection. Let m(K, ) be the number of local maxima of 7|g: K — R. Then
the bridge index b(K) of K is defined to be the minimum of m(I? , ), where K
runs through all embeddings of S' into R3 isotopic to K, and 7 runs through all
orthogonal projections R* — R generic with respect to K. A knot having bridge index
n is called an n—bridge knot.

Note that an orthogonal projection 7: R® — R is generic with respect to K if
7|g: K — R has only non-degenerate critical points as its singularities.
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7 o b restricted to ngl ({0} x [0, 1]);

Figure 11: Pushing the crossings of 7 o b restricted to I_Ill.=1 ({0} x [0, 1]);

out of w(A)

Figure 12: 7(S(r|F))

Definition 3.7 Let Ri be the 3—dimensional upper half-space, ie,
R:}i— = {(X1,X2,X3, x4) | X3 Z O,X4 = O}

and R? the plane R? = {(x1,x2, X3, x4) | x3 =0, x4 = 0}. Let k be an arc properly
embedded in the half-space Ri. When the half-space is rotated around the plane R?
in R*, the continuous trace of k forms a 2—sphere. This 2—sphere is said to be derived
from k by (untwisted) spinning, and we call the resulting surface knot a spun knot.
Moreover, put the knotted part of k in a 3-ball as in Figure 13 and twist it # times,
n € 7, as the half-space spins once around R?. Then we call the resulting surface knot
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an n—twist spun knot. In general, k is associated with a knot in R3, which is obtained
by connecting the end points of & in an obvious way by an arc in R?. See also Zeeman
[24].

RZ

| Yonce

n times

Figure 13: The n—twist spun trefoil

Proposition 3.8 Let F C R* be an n—twist spun 2—bridge knot with n # +1. Then
we have w(F) = 4.

Proof Let K be a 2-bridge knot and 7: R® — R the orthogonal projection defined
by m(x1,X3,x3) = x3. Then there exists a knot K isotopic to K such that & is
generic for K " and 7| g has two local minima ao, a; and two local maxima a;, a3
with a9 <0 < a; <ap < az. We may assume that the values of the local maxima and
the local minima are all distinct and that K is in a position as described in Figure 14.
Rotate the part K' NR3 = K N{x3 >0, x4 =0} around R? = {x3 = x4 = 0} in R*.
Then we get the O—twist spun Fy of K. The orthogonal projection 7: R* — R? defined
by (x1,Xx2,X3,X4) = (X3, Xx4) is generic for Fy and 7(S(7|F,)) is as depicted in
Figure 15. Therefore, we have w(Fy) < 4. For the n—twist spun F, of K, rotate
K'n [R{i around R? once and twist the “knotted part” n times. Then 7| x does not
change and the image of the singular set is again as depicted in Figure 15. Therefore, we
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have w(Fy,) < 4. If w(F,) = 2, then by Theorem 3.3 F}, is strongly trivial. However,
for n # £1, it is known that F}, is not strongly trivial (Cochran [6]). Therefore, we
have w(Fy) =4 for n # +1. O

“knotted part”

as 3—string braid
as /-\/ cx1=x2=0

al -\ \

O. K‘J
do

Figure 14: Bridge presentation

(—)C3=0

X4

(AR
NS

Figure 15: A planar projection of a 0—twist spun 2-bridge knot and the
associated local widths

X3

dh

Remark 3.9 By an argument similar to that in the proof of Proposition 3.8, we can
show that the width of an n—twist spun m—bridge knot is smaller than or equal to 2m.
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However, even if n # %1, the equality may not hold. In fact, for every knot, its O—twist
spun is a ribbon surface knot (see, for example, [6]). Hence, by Proposition 3.5, we
have 4 = w(F) < 2m if F is a O—twist spun m—bridge knot with m > 3.

4 Braid index and width

In this section, we study the relationship between the braid index and the width of a
surface knot. Throughout this section, we assume that surface knots are orientable.

The notion of surface braid was introduced by Kamada [12]. Kamada and Viro showed
that every orientable surface knot is isotopic to a simple closed surface braid.

A closed surface braid in D? x S? C (D*x S?)U(D3x S1) = 5% is a closed oriented
surface F embedded in D? x S? such that the restriction map pr,|p: F — S? of
the projection pry: D? x S2 — S? to the second factor is an orientation preserving
branched covering. We say that it is a simple closed surface braid if pry|p is a
simple branched covering. An orientation preserving branched covering f: F — M
between closed oriented surfaces is simple if for every branch point y € M, we have
# £~1(y) =deg(f)— 1, where # denotes the number of elements and deg( f)> 0 is
the mapping degree of /. The mapping degree of pry|p: F — S? is called the degree
of the closed surface braid.

The braid index Braid( F) of an oriented surface knot F in R* is the minimum degree
of simple closed surface braids in S* = R* U {oo} that are isotopic to F.

For classical knots, the bridge index is smaller than or equal to the braid index. On the
other hand, the relation between the width and the braid index for classical knots has
not been studied as far as the author knows.

For surface knots, we have the following.

Proposition 4.1 Let F C R* be an orientable surface knot. Then we have

w(F) <2(Braid(F) + 1).

Proof Let S? C R* be the standard 2—sphere, ie, S = {(x1, X2, X3, X4) € R* | x; =
0, x% + x% + xi =1}, and D? x S? be its tubular neighborhood. We may assume
that ' C D? x S? and the restriction pry|g of pro: D? x S? — S? is a simple
branched covering of degree equal to Braid( F'). We may further assume that the critical
values of pry|F all lie near (0,1,0,0) € S? and that outside of the pre-image of a
neighborbhood of (0, 1,0,0), F is almost parallel to S2. Let us define the orthogonal
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projection r: R* — R? by m(x1, X2, X3, x4) = (x3,x4). Then, we may assume that
the image of the singular points of | is as depicted in Figure 16.

Let y € S? be a branch point of g = pr»|f and let x € F be the branch point such
that y = g(x). Furthermore, let B =~ I x J be a small neighborhood of y in S? ,
where I = J =[—1,1] and y corresponds to (0,0), and let B be the component of
g~ 1(B) which contains x. Set J, = {t}xJ C I x J for t € I. Then (g|§)_1(Jt) C
pry ' (J;) = D* x J can be regarded as a 2-string braid for ¢ # 0. See Figure 17 (1).

Then we deform F (or more precisely, we deform B) by an isotopy in R* so that
this sequence of 2—string braids is deformed as in Figure 17 (2). Note that then
is generic on B and the image of the singular points in B = I x J is as depicted in
Figure 17 (3). Three cusps are created, while the branch point in question is eliminated.

We perform the above described deformation for each branch point of g. Then we get a
surface F isotopic to F such that & is generic with respect to F and that the singular
values of 7|z and the local widths are as depicted in Figure 18, where b =Braid( F).
Therefore, we have w(F) <2(b + 1). This completes the proof. a

image of the singular points of pr;|F

image of the fold curves

Figure 16: Image of the singular points of 7 |f

Let us consider a branch point of a surface braid as above. Since it is simple, there
may be a “sheet” of F over that point which does not intersect a neighborhood of the
corresponding branch point in F'. If the sheet can be deformed as depicted in Figure
19, then the width decreases by 2. Therefore, the following conjecture seems to be
plausible.
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(1) -

!
D§i

3)

Figure 17: Deformation of a branch point

Conjecture 4.2 Let F C R* be an orientable surface knot. Then we have

w(F) < 2Braid(F).

By the following proposition, the difference between the width and (twice) the braid
index can be arbitrarily large.

Proposition 4.3 For every n > 3, there exists a surface knot F in R* with Braid( F)
=n and w(F) =4.

For the proof, we need the following.

Lemma 4.4 For surface knots F; and F, in R*, we always have

w(F1§F2) < max{w(F), w(F2)}.
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2b—2
b =Braid(F)

0 2642 2p42
v

w £

4

2b+2 2b+2

Figure 18: Image of S(rr|z) by 7 and local widths

Proof We may assume that there exists an orthogonal projection 7: R* — R? which is
generic with respect to both Fy and F, such that w(Fy, ) = w(Fy) and w(F,,w) =
w(Fy). We may further assume that 7w (F;) N (F,) = . Let us consider fold points
of m|F, and m|f, whose images by m lie in the outermost boundaries of m(Fy)
and 7 (F,) respectively. If we perform the connected sum operation using small disk
neighborhoods of these fold points and by connecting F; and F, by an appropriate
cylinder (see the proof of Proposition 3.5), then 7 is generic with respect to Fif F,
and w(F1§F,, n) = max{w(Fy, ), w(F,,m)}. Thus the conclusion follows. This
completes the proof. m|

Remark 4.5 The referee kindly pointed out that there is an example for which the
equality does not hold in Lemma 4.4 as follows. By Viro [21], it is known that there
exists a ribbon 2—sphere knot F C R*, which is not strongly trivial, such that Fff P4
is isotopic to Py, where P is the trivial projective plane with normal Euler number
2. Let K C R* be a Klein bottle knot, which is strongly trivial, such that PffP—
is isotopic to K, where P_ is the trivial projective plane with normal Euler number
—2. Then FfK is isotopic to K. Since w(F) =4, w(K) =2 and w(F{K) =2, the
equality does not hold in Lemma 4.4. However, we do not know such an example if
both F; and F, are orientable. The author would like to thank the referee for pointing
out this example.
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Figure 19: A possible deformation of neighborhoods of the corresponding
branch points in F

Proof of Proposition 4.3 Let F; be the spun (2, p)-torus knot, where p is an odd
integer with p > 3. Furthermore, let F be the connected sum of n —2 copies of Fj.
Then by Tanaka [19], we have Braid( /') =n. On the other hand, since the (2, p )-torus
knot is a 2-bridge knot, we have w(F) = 4 by Proposition 3.8. Then by Lemma
4.4, we have w(F) < 4. Since Braid(F) = n > 3, F is not strongly trivial, and
hence w(F) > 2 by Theorem 3.3. Therefore, we have w(F) = 4. This completes the
proof. |

5 Total widths of surface knots

In this section, we give several characterization theorems of surface knots with small
total widths.

The following is an immediate consequence of Theorem 3.3.

Theorem 5.1 Let F C R* be a surface knot. Then tw(F) = 2 if and only if it is
strongly trivial.
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Let f: F — R? be a C™ stable mapping of a closed surface into the plane. For a
point x € S(f)~ S 12 (f), we give a local orientation of S(f) at x as follows. For a
sufficiently small disk neighborhood A of f(x) in RZ, AN £(S(f)) is an arc and
A~ f(S(f)) consists of two regions. Let us take points, say y; and y,, from each
of the two regions. We may assume that the number of elements in the inverse image
f~Y(yy) is greater than that of f~!(y,). Then we orient AN £(S(f)) so that the
left hand side region corresponds to y;. Finally we give a local orientation of S(f) at
x sothat f|g(r) preserves the orientation around x. See Figure 20.

yi
N
n+2 n
X f(x)

Figure 20: Local orientation

It is easy to see that the above local orientations vary continuously and that they define
a globally well-defined orientation on S(f').

On the other hand, by considering the “line” dfy (TxS(f)) foreach x € S(f)~ Slz(f),
we obtain a smooth mapping S( /) ~ Sl2 (f) = RP!. It is not difficult to see that this
mapping extends to a smooth mapping z7: S(f) — RP'. We orient RP! so that the

lines rotating in the counter-clockwise direction correspond to the positive direction of
RP!.

Then we define rot( /') to be the mapping degree of 77: S(f) — RP!.

Then the following lemma is proved in Levine [14].
Lemma 5.2 The Euler characteristic x(F) of F coincides with rot( f').

Using Lemma 5.2, we prove the following.
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Theorem 5.3 Let F C R* be a surface knot which is diffeomorphic to the 2—sphere
S2. Then tw(F) < 6 if and only if it is strongly trivial.

Proof If tw(F) =2, then by Theorem 5.1, F is strongly trivial. Furthermore, there
does not exist a surface knot F* with tw(F) = 4, since F is connected. Therefore, we
may assume fw(F) = 6 and there exists an orthogonal projection 7: R* — R? which
is generic with respect to F such that tw(F, n) = tw(F).

If 7(S(x|F)) has no fold crossings, then it is of the form “Type A” as depicted
in Figure 21 up to isotopy of R?. Then, by Lemma 3.1, F is the connected sum
of surface knots F; and F, such that 7w(S(|f,)) (or n(S(7|F,))) is of the form
“Type B” (resp. “Type C”) as depicted in Figure 21 up to isotopy of R2. Since F
is diffeomorphic to the 2—sphere, so are F; and F,. Then, by Lemma 5.2, Type B
and Type C must correspond to Type D and Type E of Figure 21 respectively. By
Lemma 2.9, we see that [ is strongly trivial. Furthermore, there exists an orthogonal
projection Jrf: R* — R! which is generic with respect to F, such that nf |F, has
exactly two critical points. In fact, such a projection can be obtained by composing
m: R* = R? and a suitable projection R — R! (for example, see Fukuda [7]). Thus,
F is also strongly trivial, and hence so is F' = F{{F,.

If 7(S(sr|F)) has one fold crossing, then it is of the form “Type A” as depicted in
Figure 22 or in Figure 23 up to isotopy of R2. Then, by Lemma 3.1, F is the connected
sum of surface knots F; and F, such that w(S(|F,)) (or 7 (S(7|F,))) is of the form
“Type B” (resp. “Type C”) as depicted in Figure 22 or in Figure 23 up to isotopy of
R2. Since F is diffeomorphic to the 2—sphere, so are F; and F,. Then, by Lemma
5.2, Type B and Type C must correspond to Type D and Type E of Figure 22 or
Figure 23 respectively. By Lemma 2.9, F; is strongly trivial. Furthermore, there exists
an orthogonal projection nf : R* = R! which is generic with respect to F, such that
Jrf | F, has exactly four critical points. Therefore, F, is strongly trivial by Scharlemann
[17]. (In fact, “Type E” of Figure 23 does not occur by Akhmet’ev [1, 23. Corollary].)
Thus, F = F}{ F, is strongly trivial.

If 7(S(x|F)) has two fold crossings, then it is of the form “Type A” as depicted in
Figure 24 or as depicted in Figure 25. In the former case, we see that F is strongly
trivial as before (see Figure 24). In the latter case, we see that x(F) < x(S?) by
Lemma 5.2, which is a contradiction. Thus, this case does not occur.

If 7(S(x|F)) has three or more fold crossings, then it is of the form as depicted in
Figure 26. Then, we see that x(F) < x(S?) by Lemma 5.2, so that this case does not
occur.

Hence F is always strongly trivial. This completes the proof. a
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Type A

o

Type C

Type D

Type E

Figure 21: Possible images of the singular set with no fold crossing for F =~ S?

Corollary 5.4 Let F C R* be an n—twist spun 2-bridge knot with n # +1. Then we
have tw(F) = 8.

Proof Since F is not strongly trivial, by Theorem 5.3 we have tw(F) > §. On the
other hand, since F has planar projection as in Figure 15, we have tw(F) < 8. This
completes the proof. a
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0

Type D
yp Type E

Figure 22: Possible images of the singular set with one fold crossing for
F = S?, part 1

Similarly, for surface knots diffeomorphic to the projective plane, we have the following
characterization.

Theorem 5.5 Let F be a surface knot which is diffeomorphic to the projective plane
RP?. Then tw(F) < 6 if and only if it is trivial.
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0
00
2
Type A
0 0
2
Type D Type E

Figure 23: Possible images of the singular set with one fold crossing for
F =~ S?, part 2

Proof If tw(F) =2, then by Theorem 5.1, F is strongly trivial. Furthermore, there
does not exist a surface knot F with tw(F) = 4, since F is connected. Therefore, we
may assume fw(F) = 6 and there exists an orthogonal projection 7: R* — R? which
is generic with respect to F such that tw(F, ) = tw(F).
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Type E

Type D

Figure 24: Possible images of the singular set with two fold crossings for
F = S?, part 1

We use the argument of the proof of Theorem 5.3. If 7(S(;r|F)) has no fold crossings,
then it is of the form “Type A as depicted in Figure 21. Since F is diffeomorphic
to the projective plane, by Lemma 3.1 we see that F' = F{{F,, where n(S(7|F,))
is of the form “Type D’ as depicted in Figure 21 and 7 (S(x|F,)) is of the form
“Type A” as depicted in Figure 27. By Lemma 2.9, Fy is strongly trivial. Since there
exists an orthogonal projection nf : R* — R! which is generic with respect to F, such
that nf | F, has exactly three critical points, we see that [, is trivial by Bleiler and
Scharlemann [2]. Therefore, F is trivial.
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Figure 25: Possible image of the singular set with two fold crossings for
F~S?, part 2

Figure 26: Possible images of the singular set with three or more fold cross-
ings for F =~ S?

If 7(S(;r|F)) has one fold crossing, then it is of the form “Type A” as depicted
in Figure 22 or in Figure 23 up to isotopy of R?. Since F is diffeomorphic to the
projective plane, by Lemma 3.1 we see that F' = F{F,, where n(S(7|F,)) is of the
form “Type D as depicted in Figure 22 or Figure 23 and 7 (S(x|F,)) is of the form
“Type B” or “Type C” as depicted in Figure 27. By Lemma 2.9, F; is strongly trivial.
Since there exists an orthogonal projection ﬂf: R* — R! which is generic with respect
to F, such that nfl F, has exactly three critical points, we see that F, is trivial by [2].
Therefore, F is trivial.

If 7(S(xr|F)) has two fold crossings, then it is of the form “Type A” as depicted in
Figure 24 or as depicted in Figure 25. In the former case, we see that F' is trivial as
before (see “Type D” in Figure 27). In the latter case, we see that x(F) < x(RP?) by
Lemma 5.2, which is a contradiction. Thus, this case does not occur.
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If 7(S(;r|F)) has three or more fold crossings, then it is of the form as depicted in
Figure 26. Then, we see that x(F) < x(RP?) by Lemma 5.2, so that this case does
not occur.

Hence F is always trivial. This completes the proof. a

: N

Type B
Type A
0 2
0
Type C Type D

Figure 27: Possible images of the singular set for F = RP? with tw(F) =6

Remark 5.6 We do not know if a similar characterization theorem holds for surface
knots of higher genus. For example, in Figures 28 and 29 we have listed all the possible
configurations of the planar image of the singular set for knotted Klein bottles with
total width smaller than or equal to six. In general, we have many cusps and cannot
apply Lemma 2.9 directly. Furthermore, we have no unknotting theorem as in [2; 17]
for embedded Klein bottles as far as the author knows.
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