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Rigidification of algebras over multi-sorted theories

JULIA E BERGNER

We define the notion of a multi-sorted algebraic theory, which is a generalization of an
algebraic theory in which the objects are of different “sorts.” We prove a rigidification
result for simplicial algebras over these theories, showing that there is a Quillen
equivalence between a model category structure on the category of strict algebras over
a multi-sorted theory and an appropriate model category structure on the category
of functors from a multi-sorted theory to the category of simplicial sets. In the latter
model structure, the fibrant objects are homotopy algebras over that theory. Our two
main examples of strict algebras are operads in the category of simplicial sets and
simplicial categories with a given set of objects.

18C10; 18G30, 18E35, 55P48

1 Introduction

Algebraic theories are useful in studying many standard algebraic objects, such as
monoids, abelian groups, and commutative rings. An algebraic theory provides a
functorial means of describing particular algebraic objects without specifying generating
sets for the operations to which the objects are subject, or for the relations between
these operations (Lawvere [12]). Given a category C of algebraic objects, the associated
algebraic theory TC (if it exists) is a small category with products satisfying the property
that specifying an object of C is equivalent to giving a product-preserving functor
TC! Sets .

Consider a category C with an associated algebraic theory T . If a functor from T to the
category of simplicial sets preserves products, then it is essentially a simplicial object in
C and is thus a combinatorial model for a topological object in C , such as a topological
group when C is the category of groups. We call such a functor a strict T –algebra
(Definition 2.3). If the functor preserves products up to homotopy, we call it a homotopy
T –algebra (Definition 2.4). A homotopy T –algebra can be viewed as a simplicial
set with the appropriate algebraic structure “up to homotopy,” in a higher-order sense.
Using an appropriate notion of weak equivalence on homotopy T –algebras (Badzioch
[2, 5.6]), the following result relates strict and homotopy T –algebras:
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Theorem 1.1 (Badzioch [2, 1.4]) Let T be an algebraic theory. Any homotopy
T –algebra is weakly equivalent as a homotopy T –algebra to a strict T –algebra.

As a motivation for the work in this paper, consider the category of monoids. There is
an associated algebraic theory TM , and thus a simplicial monoid can be specified by
a TM –algebra. However, the notion of simplicial monoid can be generalized to that
of a simplicial category, by which we mean a category enriched over simplicial sets,
since a simplicial monoid is a simplicial category with one object. We would like to
have a generalization of Badzioch’s theorem which applies to simplicial categories.
From the point of view of algebraic structure, the main difference between a simplicial
monoid and a simplicial category with more than one object is that in the latter case the
description of the algebraic structure is more complicated, in that two morphisms can
be combined by the composition operation only if they satisfy certain compatibility
conditions on the domain and range. Therefore, we would like to describe a more
general notion of theory which is capable of describing algebraic structures in which
the elements have various sorts or types, and in which the operations which can be
used to combine a collection of elements depend on these sorts.

There is in fact such a “multi-sorted” theory, TOCat , such that a product-preserving
functor TOCat ! Sets is essentially a category with object set O (Example 3.5).
A simplicial category, analogously, can be viewed as a product-preserving functor
TOCat ! SSets .

A simpler example of an algebraic structure which requires the use of a multi-sorted
theory, which we will describe in more detail in Example 3.2, is that of a group acting
on a set. There are two sorts of elements, namely, the elements of the group and the
elements of the set. Two elements of the group can be combined via multiplication, or
an element can be inverted. An element of the group and an element of the set can be
combined via the group action. However, the elements of the set cannot be combined
with one another in any nontrivial way, so the operations which we allow depend on the
sort of element involved. The example of a module over a ring is constructed similarly
in Example 3.3.

Another application of the notion of a multi-sorted theory gives a convenient description
of an operad. In Example 3.4, we characterize the theory Toperad of operads. An operad
in the category of sets is then a product-preserving functor from Toperad to the category
of sets. Thus, we can describe an operad of sets as a diagram of sets given by this
multi-sorted theory. We can similarly describe operads of spaces.

A multi-sorted theory T is a category with products, so we can define strict and
homotopy T –algebras as before (see Definitions 3.6 and 3.7). Using a definition of
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weak equivalence for homotopy T –algebras (Proposition 4.11), the main result which
we prove for multi-sorted theories is the following generalization of Theorem 1.1:

Theorem 1.2 Let T be a multi-sorted algebraic theory. Any homotopy T –algebra is
weakly equivalent as a homotopy T –algebra to a strict T –algebra.

As Badzioch does, we actually prove a stronger statement in terms of a Quillen equiva-
lence of model category structures (Theorem 5.1).

Using our example of the theory Toperad of operads, an operad in the category of
simplicial sets is a strict Toperad –algebra. A homotopy operad, or sequence of simplicial
sets with the structure of an operad only up to homotopy, is then a homotopy Toperad –
algebra and can be rigidified to a strict operad using this theorem.

Returning to the example of simplicial categories, let O be a set and SCO the category
of simplicial categories with object set O in which the morphisms are the identity on
the objects. In [3], we use Theorem 1.2 to prove a relationship between SCO and the
category of Segal categories with the same set O in dimension zero. In [4], we use the
ideas of this proof to prove an analogous relationship between the category of all small
simplicial categories and the category of all Segal categories.

Throughout this paper, we frequently work in the category of simplicial sets, SSets .
Recall that a simplicial set is a functor op! Sets , where � denotes the cosimplicial
category whose objects are the finite ordered sets Œn�D .0; : : : ; n/ and whose morphisms
are the order-preserving maps. The simplicial category op is then the opposite of this
category. Some examples of simplicial sets are, for each n� 0, the n–simplex �Œn�,
its boundary P�Œn�, and, for any 0 � k � n, the simplicial set V Œn; k�, which is P�Œn�
with the k th face removed. More information about simplicial sets can be found in
Goerss and Jardine [8, I.1].

In this paper, we begin by recalling the definition of an algebraic theory and stating some
of its basic properties. Using this definition as a model, we then define a multi-sorted
theory. We should note here that this notion is not a new one; similar definitions are
given by Adámek and Rosický [1, 3.14] and by Boardman and Vogt [5, 2.3]. (The still
more general definition of a finite limit theory is used by Johnson and Walters [11],
and Rosický proves a similar result to Theorem 1.2 for limit theories [17].) Because
our perspective is slightly different, however, we will give a precise definition followed
by some examples. Given a multi-sorted theory T , we define strict and homotopy
T –algebras over a multi-sorted theory T and show that the existence of a model
category structure on the category of all T –algebras. We also show the existence of
a model category structure on the category of all functors T ! SSets in which the
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fibrant objects are the homotopy T –algebras. We then show that there is a Quillen
equivalence between these two model categories.

We note that the key here is the fact that we are considering functors which preserve
categorical products. An interesting question which we hope to address further in future
work is whether such a rigidification holds in a category such as chain complexes where
the “product” we are interested in, the tensor product, is not a categorical product.

Acknowledgments I am grateful to Bill Dwyer for suggesting this approach to study-
ing simplicial categories and operads. I would also like to thank Bernard Badzioch and
Michael Johnson for helpful conversations about this work, Jiřı́ Rosický for pointing
out his related results, and the referee for numerous suggestions for the improvement of
this paper. Partial support from a Clare Boothe Luce Foundation Graduate Fellowship
is also gratefully acknowledged.

2 A summary of algebraic theories

We first recall the definition of an ordinary algebraic theory. More details about algebraic
theories can be found in Borceux [6, Chapter 3].

Definition 2.1 An algebraic theory T is a small category with finite products and
which has as objects Tn for n�0 together with, for each n, an isomorphism TnŠ .T1/

n .
In particular, T0 is the terminal object in T .

We can use theories to describe certain algebraic categories, namely those which are
determined by sets with n–ary operations for each n� 2. To do so, we need to use the
notion of adjoint pairs of functors. Recall that a pair of functors

F W C //D WRoo

is adjoint (where F is the left adjoint and R is the right adjoint) if there is a natural
isomorphism

'X ;Y W HomD.FX;Y /! HomC.X;RY /

for all objects X in C and Y in D . The adjoint pair is sometimes written as the triple
.F;R; '/ (Mac Lane [13, IV.1]).

Now, consider a category C such that there exists a forgetful functor

ˆW C! Sets

taking an object of C to its underlying set, and its left adjoint (a free functor)

LW Sets! C:
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In other words, C is required to have free objects. If the category C and the adjoint
pair .ˆ;L/ satisfy some additional technical conditions (see [6, 3.9.1] for details), we
will call C an algebraic category.

Given an object X of an algebraic category C , we have a natural map

"X W Lˆ.X /!X

and given a set A, we have another map

�AW A!ˆL.A/:

In order to discuss a theory over the algebraic category C , consider a set A together
with a map mAW ˆL.A/!A satisfying two conditions: the composite map

A
�A //ˆL.A/

mA //A

is the identity map on A, and the diagram

.ˆL/2A
ˆL.mA/ //

ˆ"LA

//ˆL.A/
mA //A

is a coequalizer. These maps define an algebraic structure on the set A, specifically the
structure possessed by the objects of C [12]. (Note that via this structure ˆL defines a
monad on the category of sets [13, VI.1].)

For example, if C D G , the category of groups, ˆ is the forgetful functor taking a
group to its underlying set, and L is the free group functor taking a set to the free
group on that set, then these two conditions are precisely the ones defining a group
structure on the set A.

We would like to discuss the algebraic theory T corresponding to C to simplify this
way of talking about algebraic structure. Let X be an object of C . We consider natural
transformations of functors C! Sets

ˆ.�/� � � � �ˆ.�/„ ƒ‚ …
n

!ˆ.�/:

Using the adjointness of ˆ and L, we have that

ˆ.X /Š HomSets.f1g; ˆ.X //Š HomC.Lf1g;X /
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where f1g denotes the set with one object, and we can think of Lf1g as the free object
in C on one generator, since L is the free functor. Hence, we have

ˆ.X /n D HomSets.f1g; ˆ.X //
n

D HomSets.
a

n

f1g; ˆ.X //

D HomSets.f1; : : : ; ng; ˆ.X //

D HomC.Lf1; : : : ; ng;X /:

Now, by Yoneda’s Lemma we have a bijection between the set of natural maps ˆ.X /n!
ˆ.X / and the set HomC.Lf1g;Lf1; : : : ; ng/. The objects

Lf�g D T0;Lf1g D T1; : : : ;Lf1; : : : ; ng D Tn; : : :

are the objects of the algebraic theory T corresponding to C . The morphisms are the
opposites of the ones in C between these objects. More precisely stated, T is the
opposite of the full subcategory of representatives of isomorphism classes of finitely
generated free objects of C .

Given an object X of C , define a functor HX W T ! Sets such that

HX .Lf1; : : : ; ng/D HomC.Lf1; : : : ; ng;X /Dˆ.X /
n:

Now, the algebraic category C is equivalent to the category of the functors HX , namely,
the full subcategory of the category of functors AW T ! Sets whose objects preserve
products, or those for which the canonical map A.Tn/! A.T1/

n induced by the n

projection maps is an isomorphism of sets for all n� 0 [12].

Example 2.2 Let G denote the category of groups. Consider the full subcategory of
G whose objects Tn are the free groups on n generators for n � 0 (where T0 is the
trivial group). The opposite of this category is TG , the theory of groups. It can be
shown that the category of product-preserving functors TG! Sets is equivalent to the
category G .

Product-preserving functors from the theory T to Sets are called algebras over T .
We would also like to consider functors from an algebraic theory to the category SSets

of simplicial sets. To do so, we must first define a simplicial algebra over a theory T .
For simplicity, we will also use the term “algebra” to refer to these simplicial algebras.

Definition 2.3 [2, 1.1] Given an algebraic theory T , a (strict simplicial) T –algebra
A is a product-preserving functor AW T ! SSets . Namely, the canonical map

A.Tn/!A.T1/
n;
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induced by the n projection maps Tn! T1 , is an isomorphism of simplicial sets. In
particular, A.T0/ is the one-point space �Œ0�.

The category of all T –algebras will be denoted AlgT . Similarly, we have the notion
of a homotopy algebra, for which we only require products to be preserved up to
homotopy:

Definition 2.4 [2, 1.2] Given an algebraic theory T , a homotopy T –algebra is a
functor X W T ! SSets which preserves products up to homotopy, ie, for each n the
canonical map

X.Tn/!X.T1/
n

is a weak equivalence of simplicial sets. In particular, we assume that X.T0/ is weakly
equivalent to �Œ0�.

There exists a forgetful functor, or evaluation map,

UT W AlgT ! SSets

such that UT .A/DA.T1/. This functor has a left adjoint, the free T –algebra functor

FT W SSets!AlgT

where, if Y is any simplicial set,

FT .Y /.T1/D
a
n�0

HomT .Tn;T1/�Y n=�

where the identifications come from the structure of the algebraic theory [2, 2.1]. More
specifically, if T0 denotes the initial theory (given by representatives of isomorphism
classes of finite sets), this free functor is given by a coend

FT .Y /.T1/D

Z T0

HomT .Tn;T1/�Y n

as given by Schwede in [18, 2.3].

3 Multi-sorted algebraic theories

We now generalize the definition of an algebraic theory to that of a multi-sorted theory.
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Definition 3.1 Given a set S , an S –sorted algebraic theory (or multi-sorted theory)
T is a small category with objects T˛n where ˛n D< ˛1; : : : ; ˛n > for ˛i 2 S and
n� 0 varying, and such that each T˛n is equipped with an isomorphism

T˛n Š

nY
iD1

T˛i
:

For a particular ˛n , the entries ˛i can repeat, but they are not ordered. In other words,
˛n is a an n–element subset with multiplicities. There exists a terminal object T0

(corresponding to the empty subset of S ).

Notation Lower-case Greek letters (with or without subscripts), say ˛ or ˛i , will be
used to denote objects of S , whereas underlined ones, say ˛n or simply ˛ , will denote
an n–element subset of objects of S (with multiplicities) for n� 1.

Notice that a theory with a single sort is a theory in the sense of the previous section.

We would like to speak of multi-sorted theories corresponding to categories which are
analogous to the algebraic categories which we had in the ordinary case. However,
because we have several objects (or “sorts”) T˛ where we only had the object T1 in
an ordinary theory, we have many pairs of adjoint functors, one for each sort.

Let C a category with coproducts such that given any element ˇ 2 S , we have a
forgetful functor

ˆˇW C! Sets

and its left adjoint, the free functor

LˇW Sets! C:

We would like the category C and these adjoint pairs to satisfy the following analogous
conditions to those of [6, 3.9.1]:

(1) The category C has coequalizers and kernel pairs (ie, pullbacks of diagrams
X ! Y  X ).

(2) Each ˆˇ reflects isomorphisms and preserves regular epimorphisms (ie, those
that are coequalizers).

(3) For all ˇ 2 S , the composite functor ˆˇLˇ preserves filtered colimits.

These conditions make C a kind of generalized algebraic category.
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Now, for each object X in C and element ˇ 2 S , we have a map

"X ;ˇW Lˇˆˇ.X /!X

and, for each set A a map
�A;ˇW A!ˆˇLˇ.A/:

As before, in order to make sense of the notion of theory, we consider a set A together
with, for each ˇ 2 S , a map

mA;ˇW ˆˇLˇ.A/!A

satisfying two conditions: the composite map

A
�A;ˇ //ˆˇLˇ.A/

mA;ˇ //A

is the identity map on A, and the diagram

.ˆˇLˇ/
2A

ˆˇLˇ.mA;ˇ/ //

ˆˇ"LˇA;ˇ

//ˆˇLˇ.A/
mA;ˇ //A

is a coequalizer. These maps define a “multi-sorted algebraic structure” on C . In
particular, we have a notion of composition for certain elements of C depending on their
sorts. Given this structure, we can now construct the S –sorted theory corresponding to
the category C .

Given ˛i ; ˇ 2 S , we consider natural transformations of functors C! Sets

ˆ˛1
.�/� � � � �ˆ˛n

.�/!ˆˇ.�/:

As before, we can apply these functors to an object X of C and rewrite to obtain a map

HomSets.f1g; ˆ˛1
.X //� � � � �HomSets.f1g; ˆ˛n

.X //! HomSets.f1g; ˆˇ.X //

which, by adjointness, is equivalent to

HomC.L˛1
f1g;X /� � � � �HomC.L˛n

f1g;X /! HomC.Lˇf1g;X /:

Since C has coproducts, we can rewrite this map as

HomC.L˛1
f1gq � � �qL˛n

f1g;X /! HomC.Lˇf1g;X /:

Then, by Yoneda’s Lemma, there is a bijection between the set of natural transformations

ˆ˛1
.�/� � � � �ˆ˛n

.�/!ˆˇ.�/
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and the set

HomC.Lˇf1g;

na
kD1

L˛k
f1g/:

The objects of the theory T corresponding to C are given by finite coproducts of “free”
objects L˛k

f1g of C for all choices of ˛k , and the morphisms are the opposites of
those of C . Let X be an object of C and .˛1; : : : ; ˛n/ 2 Sn an n–tuple of elements in
S . We define the functor HX ;˛1;:::;˛n

W T ! Sets such that

HX ;˛1;:::;˛n
.

na
kD1

L˛k
f1g/D HomC.

na
kD1

L˛k
f1g;X /Dˆ˛1

.X /� � � � �ˆ˛n
.X /:

(Note that we still write the “coproduct” to denote an object of T to be consistent
with previous notation, even though in T it is actually a product.) The category C is
equivalent to the category of all such functors if it satisfies the conditions given above.

We now consider some examples.

Example 3.2 Consider pairs .G;X /, where G is a group and X is a set. We can
obtain two different 2–sorted theories from these pairs, one corresponding to the
category of unstructured pairs, and the other corresponding to the category of pairs
.G;X / with a given action of the group G on the set X .

In each case, we have two forgetful functors and their respective left adjoints. We
begin with the category of unstructured pairs, which we denote P . The objects are
the pairs .G;X / and the morphisms .G;X /! .H;Y / consist of pairs .'; f / where
'W G!H is a group homomorphism and f W X ! Y is a map of sets. For each sort
i D 1; 2 we have a forgetful map

ˆi W P! Sets

and its left adjoint
Li W Sets! P :

When i D 1, we have, for any group G and set X ,

ˆ1.G;X /DG

(where on the right-hand side G denotes the underlying set of the group G ) and for
any set S

L1.S/D .FS ; �/

where FS denotes the free group on the set S .
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Similarly, when i D 2, we define

ˆ2.G;X /DX

and
L2.S/D .e;S/

where e denotes the trivial group.

In order to determine the objects of our theory, consider functors

Fi;j W P! Sets

such that Fi;j .G;X /DGi �X j . In other words,

Fi;j .G;X /D HomP.L1f1; : : : ; igqL2f1; : : : ; j g; .G;X //

where f1; � � � ; ig denotes the set with i elements and similarly for f1; : : : ; j g. The ob-
jects of the theory will be representatives of the isomorphism classes of the L1f1; : : : ; ig

qL2f1; : : : ; j g for all choices of i and j . This coproduct in P is defined to be the
coproduct of each element in the pairs. Thus we have

.G;X /q .G0;X 0/D .G �G0;X qX 0/

where G �G0 denotes the free product of groups. So, our corresponding theory is the
opposite of the full subcategory of P whose objects are of the form L1f1; : : : ; igq

L2f1; : : : ; j g.

When we equip each pair .G;X / with an action of G on X to obtain another category
which we denote PA, the process is identical until we have to specify the coproduct,
since in this case we need to take the group actions into account. We then have the
coproduct in PA

.G;X /q .G0;X 0/D .H; .H �G X /q .H �G0 X 0//

where H DG �G0 and we have defined

H �G X D f.h;x/jh 2H;x 2X g=�

when .hg;x/ � .h;gx/ for any g 2 G . We can now take the opposite of a full
subcategory of PA as above to obtain the corresponding theory. In particular, the
objects of the theory look like

L1f1; : : : ; igqL2f1; : : : ; j g D .Fi ;Fi � f1; : : : ; j g/;

where Fi denotes the free group on i generators.
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Example 3.3 A very similar example is the case of a commutative ring R and an
R–module A. Again, we have two different 2–sorted theories: one where we have a
ring R and regard A merely as an abelian group, and the other where we consider the
R–module structure on A.

As before, we begin with PR, the category of pairs with no additional structure. We
have the forgetful map

ˆ1W PR! Sets

where ˆ1.R;A/DR for any ring R and abelian group A, where on the right side R

is the underlying set of the ring R. Its left adjoint is the functor

L1W Sets! PR

where for any set S , L1.S/D .ZŒS �; e/, where ZŒS � is the free commutative ring on
the set S and e denotes the trivial (abelian) group. Then we have the map

ˆ2W PR! Sets

such that ˆ2.R;A/DA, where again on the right hand side A is the underlying set
of the abelian group A. Its left adjoint is the map

L2W Sets! PR

where L2.S/D .Z;FAS / where FAS denotes the free abelian group on the set S .

To know what the objects of this 2–sorted theory are, we need to know what the
coproduct is. We have that

.R;A/q .R0;A0/D .R˝Z R0;A˚A0/;

and from there we can obtain a theory as in the previous example.

Now consider the category PM whose objects are pairs .R;A/ where R is a ring
and A is a module over A. If A and A0 are modules over R and R0 , respectively, we
have a coproduct similar to that in the group action example. So, we say that

.R;A/q .R0;A0/D .R˝Z R0; .R0˝Z A/˚ .R˝Z A0//

and construct the corresponding theory as before.

Example 3.4 Another example of a multi-sorted theory is the N–sorted theory of
symmetric operads. Recall that an operad in the category of sets is a sequence of sets
fP .k/gk�0 , a unit element 1 2 P .1/, each with a right action of the symmetric group
†k , and operations

P .k/�P .j1/� � � � �P .jk/! P .j1C � � �C jk/
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satisfying associativity, unit, and equivariance conditions [14, II.1.4].

There is a notion of a free operad on n generators at levels m1; : : : ;mn (Markl, Shnider
and Stasheff [14, Section II.1.9], Rezk [16, 2.3.6]). Specifically, such a free operad has,
for each 1� i � n, a generator in P .mi/. Note that the values of mi can repeat. For
example, one can think of the free operad on n generators, each at level 1, as the free
monoid on n generators.

In the category of operads, consider the full subcategory of isomorphism classes of free
operads. Each object in this category, then, can be described as the free operad on n

generators at levels m1; : : : ;mn for some n� 0 and m1; : : : ;mn . The opposite of this
category is the theory of operads. Using the notation we have set up for multi-sorted
theories, we have that T˛ for ˛ 2 N is just the free operad on one generator at level ˛
and for ˛n D< ˛1; : : : ; ˛n >, we have that T˛n is the free operad on n generators at
levels ˛1; : : : ˛n .

There is also a notion of non-symmetric (or non–†) operads, where we no longer
have an action of the symmetric group or an equivariance condition [14, II.1.14]. We
can define the theory of non–† operads analogously, taking the opposite of the full
subcategory of isomorphism classes of free non–† operads in the category of all
non–† operads.

Example 3.5 Consider the category OCat whose objects are the categories with a
fixed object set O and whose morphisms are the functors which are the identity map
on the objects. There is a theory TOCat associated to this category. The objects of the
theory are isomorphism classes of categories which are freely generated by directed
graphs with vertices corresponding to the elements of the set O . This theory will be
sorted by pairs of elements in O , corresponding to the morphisms with source the first
element and target the second. In other words, this theory is .O�O/–sorted.

In particular, consider ˛ D .x;y/ 2O�O . Then, if x ¤ y , T˛ is the category with
object set O and one nonidentity morphism with source x and target y . If xD y , then
T˛ is the category freely generated by one morphism from x to itself and no other
nonidentity morphisms.

In general, if ˛ D< ˛1; : : : ; ˛n >, then T˛ is the category with object set O and
morphisms freely generated by the morphisms given for each ˛i as in the previous
case.

Consider the forgetful functor ˆ˛W OCat ! Sets where, for any object X in OCat

and ˛ D .x;y/,
ˆ˛.X /D HomX .x;y/:
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Its left adjoint then is the free functor L˛ defined by, for a set A,

L˛.A/D

(
C with HomC .x;y/DA if x ¤ y

C with HomC .x;y/D FA if x D y

where FA is the free monoid generated by the set A and where in each case there are
no other nonidentity morphisms in the category C .

As with ordinary algebraic theories, we can define strict and homotopy T –algebras for
a multi-sorted theory T .

Definition 3.6 Given an S –sorted theory T , a (strict simplicial) T –algebra is a
product-preserving functor AW T ! SSets . Here, product-preserving means that the
canonical map

A.T˛n/!

nY
iD1

A.T˛i
/;

induced by the projections T˛n!T˛i
for all 1� i �n, is an isomorphism of simplicial

sets.

As before, we will denote the category of strict T –algebras by AlgT .

Definition 3.7 Given an S –sorted theory T , a homotopy T –algebra is a functor
X W T ! SSets which preserves products up to homotopy, ie, for all ˛ 2 Sn , the
canonical map

X.T˛n/!

nY
iD1

X.T˛i
/

induced by the projection maps T˛n! T˛i
(for each 1� i � n) is a weak equivalence

of simplicial sets.

We would like to prove a rigidification result similar to Theorem 1.1 above. We begin
by finding model category structures for T –algebras and homotopy T –algebras. We
then find a Quillen equivalence between these model category structures T –algebras
for any multi-sorted theory T .

4 Model category structures

In this section, we define, given a multi-sorted theory T , model category structures on
the category of diagrams T ! SSets and on the category of T –algebras. We begin
with a review of model category structures.
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Recall that a model category structure on a category C is a choice of three distinguished
classes of morphisms: fibrations, cofibrations, and weak equivalences. A (co)fibration
which is also a weak equivalence will be called an acyclic (co)fibration. With this
choice of three classes of morphisms, C is required to satisfy the following five axioms
(Dwyer and Spaliński [7, 3.3]).

(MC1) C has all small limits and colimits.

(MC2) If f and g are maps in C such that their composite gf exists, then if two of
f , g , and gf are weak equivalences, then so is the third.

(MC3) If a map f is a retract of g and g is a fibration, cofibration, or weak equiva-
lence, then so is f .

(MC4) If i W A!B is a cofibration and pW X ! Y is a fibration, then a dotted arrow
lift exists in any solid arrow diagram of the form

A //

i
��

X

p

��
B //

>>~
~

~
~

Y

if either

(i) p is a weak equivalence, or
(ii) i is a weak equivalence.

(In this case we say that i has the left lifting property with respect to p and
that p has the right lifting property with respect to i .)

(MC5) Any map f can be factored two ways:

(i) f D pi where i is a cofibration and p is an acyclic cofibration, and
(ii) f D qj where j is an acyclic cofibration and p is a fibration.

An object X in C is fibrant if the unique map X !� from X to the terminal object
is a fibration. Dually, X is cofibrant if the unique map �!X from the initial object
to X is a cofibration. The factorization axiom MC5 guarantees that each object X

has a weakly equivalent fibrant replacement bX and a weakly equivalent cofibrant
replacement eX . These replacements are not necessarily unique, but they can be chosen
to be functorial in the cases we will use Hovey [10, 1.1.3].

The model category structures which we will discuss are all cofibrantly generated.
In a cofibrantly generated model category, there are two sets of morphisms, one of
generating cofibrations and one of generating acyclic cofibrations, such that a map is a
fibration if and only if it has the right lifting property with respect to the generating
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acyclic cofibrations, and a map is an acyclic fibration if and only if it has the right
lifting property with respect to the generating cofibrations (Hirschhorn [9, 11.1.2]). To
describe such model categories, we make the following definition.

We are now able to state the theorem, due to Kan, that we will use to prove our model
category structures in this paper.

Theorem 4.1 [9, 11.3.2] Let M be a cofibrantly generated model category with
generating cofibrations I and generating acyclic cofibrations J . Let N be a category
that satisfies axiom MC1 such that there exists a pair of adjoint functors

F WM�N WU:

If FI D fFu j u 2 Ig and FJ D fFv j v 2 J g, and if

(1) each of the sets FI and FJ permits the small object argument [9, 10.5.15], and

(2) U takes (possibly transfinite) colimits of pushouts along maps in FJ to weak
equivalences,

then there is a cofibrantly generated model category structure on N for which FI is a
set of generating cofibrations and FJ is a set of generating acyclic cofibrations, and
the weak equivalences are the maps that U sends to weak equivalences in M.

We will refer to the standard model category structure on the category SSets of
simplicial sets. In this case, a weak equivalence is a map of simplicial sets f W X !
Y such that the induced map jf jW jX j ! jY j is a weak homotopy equivalence of
topological spaces. The cofibrations are monomorphisms, and the fibrations are the
maps with the right lifting property with respect to the acyclic cofibrations [8, I.11.3].
This model category structure is cofibrantly generated; a set of generating cofibrations
is I D f P�Œn�! �Œn� j n � 0g, and a set of generating acyclic cofibrations is J D

fV Œn; k�!�Œn� j n� 1; 0� k � ng.

We will also need the notion of a simplicial model category M. For any objects X and
Y in a simplicial category M, the function complex is the simplicial set Map.X;Y /.

Definition 4.2 [9, 9.1.6] A simplicial model category M is a model category M
that is also a simplicial category such that the following two axioms hold:

(SM6) For every two objects X and Y of M and every simplicial set K , there are
objects X ˝K and Y K in M such that there are isomorphisms of simplicial
sets

Map.X ˝K;Y /ŠMap.K;Map.X;Y //ŠMap.X;Y K /

that are natural in X , Y , and K .
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(SM7) If i W A! B is a cofibration in M and pW X ! Y is a fibration in M, then
the map of simplicial sets

i� �p�W Map.B;X /!Map.A;X /�Map.A;Y / Map.B;Y /

is a fibration which is an acyclic fibration if either i or p is a weak equivalence.

It is important to note that a function complex in a simplicial model category is only
homotopy invariant in the case that X is cofibrant and Y is fibrant. For the general
case, we have the following definition:

Definition 4.3 [9, 17.3.1] A homotopy function complex Maph.X;Y / in a simpli-
cial model category M is the simplicial set Map. eX ; bY / where eX is a cofibrant
replacement of X in M and bY is a fibrant replacement for Y .

Several of the model category structures that we use are obtained by localizing a
given model category structure with respect to a map or a set of maps. Suppose that
P D ff W A! Bg is a set of maps with respect to which we would like to localize a
model category M.

Definition 4.4 A P –local object W is a fibrant object of M such that for any
f W A! B in P , the induced map on homotopy function complexes

f �W Maph.B;W /!Maph.A;W /

is a weak equivalence of simplicial sets. A map gW X ! Y in M is then a P –local
equivalence if for every local object W , the induced map on homotopy function
complexes

g�W Maph.Y;W /!Maph.X;W /

is a weak equivalence of simplicial sets.

Given a multi-sorted theory T , let SSetsT denote the category of functors T !SSets .
Note that the category AlgT of strict T –algebras is a full subcategory of SSetsT .

The category SSetsT is an example of a category of diagrams. In general, given any
small category D , there is a category SSetsD of D–diagrams in SSets , or functors
D!SSets . We can obtain two model category structures on SSetsD by the following
results.

Theorem 4.5 [8, IX 1.4] Given the category SSetsD of D–diagrams of simplicial
sets, there is a simplicial model category structure SSetsD

f
in which the weak equiva-

lences and fibrations are objectwise and in which the cofibrations are the maps which
have the left lifting property with respect to the maps which are both fibrations and
weak equivalences.
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Theorem 4.6 [8, VIII 2.4] There is a simplicial model category SSetsDc in which
the weak equivalences and the cofibrations are objectwise and in which the fibrations
are the maps which have the right lifting property with respect to the maps which are
cofibrations and weak equivalences.

We now return to the situation where our small category is a multi-sorted theory T .
We would like to have an evaluation map and its left adjoint as in the ordinary case
(see the end of section 2 above), but here we will have one for each ˛ 2 S . These
evaluation maps look like

U˛W AlgT ! SSets

such that
U˛.A/DA.T˛/

for any T –algebra A.

Each functor U˛ has a left adjoint, the free functor

F˛W SSets!AlgT

such that, given a simplicial set Y and object Tˇ in T ,

F˛.Y /.Tˇ/D
a
n�0

.HomT .T˛;:::;˛;Tˇ/�Y n/=� :

As before, this free functor can be defined precisely as a coend over the initial (single-
sorted) theory, regarded as the subcategory of the initial S –sorted theory whose objects
are .T˛/n for n� 0,

F˛.Y /.Tˇ/D

Z T0

HomT ..T˛/
n;Tˇ/�Y n:

Given a theory T (regular or multi-sorted), define a weak equivalence in the category
AlgT of T –algebras to be a map which induces a weak equivalence of simplicial sets
after applying the evaluation functor U˛ for each sort ˛ . Similarly, define a fibration
of T –algebras to be a map f such that U˛.f / is a fibration of simplicial sets for all
˛ . Then define a cofibration to be a map with the left lifting property with respect to
the maps which are fibrations and weak equivalences.

The following theorem is a generalization of a result by Quillen [15, II.4].

Theorem 4.7 Let T be an S –sorted theory. There is a cofibrantly generated model
category structure on AlgT with the weak equivalences, fibrations, and cofibrations as
defined above.
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Proof We use a slightly generalized version of Theorem 4.1 with the adjoint pairs
F˛W SSets � AlgT WU˛ for all ˛ 2 S and using the cofibrantly generated model
structure on SSets as given above. The existence of limits and colimits follows
just as they do in the case where T is an ordinary theory [15, II.4]. Thus, verifying
conditions (1) and (2) will result in a model structure on AlgT for which the set
FI D fF˛ P�Œn� ! F˛�Œn� j ˛ 2 S; n � 0g is a set of generating cofibrations and
FJ D fF˛V Œn; k�! F˛�Œn� j ˛ 2 S; n� 1; 0� k � ng is a set of generating acyclic
cofibrations.

We first show that FI and FJ satisfy the small object argument. Consider some T –
algebra A, which can be written as a directed colimit colimm.Am/ and can therefore
be computed objectwise. Thus, we can show that F˛ P�Œn� is small:

HomAlgT .F˛ P�Œn�; colimm.Am//D HomSSets. P�Œn�;U˛colimm.Am//

D HomSSets. P�Œn�; colimm.U˛Am//

D colimmHomSSets. P�Œn�;U˛Am/

D colimmHomAlgT .F˛ P�Œn�;Am/:

The object V Œn; k� can be shown to be small analogously, so we have proved statement
(1).

To prove statement (2), we need to show that taking a pushout along a map in FJ results
in a map which is a weak equivalence in AlgT . Note that since weak equivalences
are taken levelwise, a (transfinite) directed colimit of weak equivalences is still a weak
equivalence, so checking a single pushout suffices.

Consider a map F˛V Œn; k�! F˛�Œn� in FJ and a map F˛V Œn; k�! A for some
object A of AlgT . We then take the pushout B in the following diagram:

F˛V Œn; k� //

��

A

��
F˛�Œn� // B

:

Suppose that X ! Y is a map in AlgT with the right lifting property with respect to
the maps in FJ . Note by adjointness that it is just a levelwise fibration of simplicial
sets. Then in the diagram

F˛V Œn; k� //

��

A

��

// X

��
F˛�Œn� // B // Y
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a lift F˛�Œn�!X exists, which implies by universality that there is also a lift B!X .

Now consider the diagram

V Œn; k� //

��

U˛A

��

// U˛X

��
�Œn� // U˛B // U˛Y

where the left-hand square is given by adjointness and the right-hand square by applying
U˛ to the right-hand square of the previous diagram. Then there exists a lift U˛B!

U˛X . Since any fibration of simplicial sets occurs as U˛X !U˛Y for some X ! Y

in AlgT , the map U˛A! U˛B is an acyclic cofibration of simplicial sets and in
particular a weak equivalence.

We now need a model category structure on the category of homotopy T –algebras.
However, the category of homotopy T –algebras does not have all small limits and
colimits (axiom MC1). Thus, we instead define a model category structure on all
diagrams T ! SSets in such a way that the fibrant objects are homotopy T –algebras.

The following theorem holds for model categories M which are left proper and cellular.
We will not define these conditions here, but refer the reader to [9, 13.1.1, 12.1.1] for
more details. It can be shown that SSetsT satisfies both these conditions [9, 13.1.14,
12.5.1].

Theorem 4.8 [9, 4.1.1] Let M be a left proper cellular model category and P a set
of morphisms of M. There is a model category structure LPM on the underlying
category of M such that:

(1) The weak equivalences are the P –local equivalences.

(2) The cofibrations are precisely the cofibrations of M.

(3) The fibrations are the maps which have the right lifting property with respect to
the maps which are both cofibrations and P –local equivalences.

(4) The fibrant objects are the P –local objects.

To localize the model structure SSetsT
f

, we first need an appropriate map. To do so for
ordinary algebraic theories, Badzioch uses free diagrams which are corepresented by
the objects Tn of the theory T [2, 2.9]. In particular the n projection maps Tn! T1

induce maps
na

iD1

HomT .T1;�/! HomT .Tn;�/:
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He defines his localization with respect to the set of these maps. We would like to
define similar free diagrams in a multi-sorted theory.

For each ˛nD<˛1; : : : ; ˛n > and 1� i � n, there exists a projection map T˛n!T˛i

inducing a map
HomT .T˛i

;�/! HomT .T˛n ;�/:

Taking the coproduct of all such maps results in a map

p˛n W

na
iD1

HomT .T˛i
;�/! HomT .T˛n ;�/:

These maps are the ones which we will use to localize SSetsT . We define P to be
the set of all such maps p˛n for each ˛n and n� 0.

Proposition 4.9 There is a model category structure LSSetsT on the category
SSetsT with weak equivalences the P –local equivalences, cofibrations as in SSetsT

f
,

and fibrations the maps which have the right lifting property with respect to the maps
which are cofibrations and weak equivalences.

Proof This proposition is a special case of Theorem 4.8.

The following propositions are proved by Badzioch for ordinary theories. His proofs
can be generalized to apply to multi-sorted theories as well.

Proposition 4.10 [2, 5.5] An object Z of LSSetsT is fibrant if and only if it is a
homotopy T –algebra which is fibrant as an object of SSetsT

f
.

Proposition 4.11 [2, 5.6] If Z and X 0 are homotopy T –algebras in SSetsT and
there is a P –local weak equivalence f W Z!X 0 , then f is also a weak equivalence
in SSetsT

f
, ie, an objectwise weak equivalence.

Proposition 4.12 [2, 5.8] A map f W X !X 0 is a P –local equivalence if and only
if for any T –algebra Y which is fibrant in SSetsTc , the induced map of function
complexes

f �W Map.X 0;Y /!Map.X;Y /

is a weak equivalence of simplicial sets.

These results can actually be stated in more generality; they are really just statements
about the fibrant objects in a localized model category structure (see chapter 3 of [9]
for more details).

Hence, we can consider the category LSSetsT to be our homotopy T –algebra model
category structure.
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5 Rigidification of algebras over multi-sorted theories

We are now able to prove the following statement, which is a stronger version of
Theorem 1.2:

Theorem 5.1 There is a Quillen equivalence of model categories between AlgT and
LSSetsT .

We begin with the necessary definitions.

Definition 5.2 [10, 1.3.1] If C and D are model categories, then the adjoint pair
.F;R; '/ is a Quillen pair if one of the following equivalent statements is true:

(1) F preserves cofibrations and acyclic cofibrations.

(2) R preserves fibrations and acyclic fibrations.

The following theorem is useful for showing that we have a Quillen pair of localized
model category structures.

Theorem 5.3 [9, 3.3.20] Let C and D be left proper, cellular model categories and
let .F;R;  / be a Quillen pair between them. Let S be a set of maps in C and LSC
the localization of C with respect to S . Then if LFS is the set in D obtained by
applying the left derived functor of F to the set S [9, 8.5.11], then .F;R;  / is also a
Quillen pair between the model categories LSC and LLFSD .

Definition 5.4 [10, 1.3.12] A Quillen pair is a Quillen equivalence if for all cofibrant
X in C and fibrant Y in D , a map f W FX ! Y is a weak equivalence in D if and
only if the map 'f W X !RY is a weak equivalence in C .

We need to find an adjoint pair of functors between AlgT and LSSetsT and prove
that it is a Quillen equivalence. Let

JT W AlgT ! SSetsT

be the inclusion functor. We need to show we have an adjoint functor taking an arbitrary
diagram in SSetsT to a T –algebra. We first make the following definition.

Definition 5.5 Let D be a small category and SSetsD the category of functors
D! SSets . Let P be a set of morphisms in SSetsD . An object Y in SSetsD is
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strictly P –local if for every morphism f W A! B in P , the induced map on function
complexes

f �W Map.B;Y /!Map.A;Y /

is an isomorphism of simplicial sets. A map gW C !D in SSetsD is a strict P –local
equivalence if for every strictly P –local object Y in SSetsD , the induced map

g�W Map.D;Y /!Map.C;Y /

is an isomorphism of simplicial sets.

Now, given a category of D–diagrams in SSets and the full subcategory of strictly
P –local diagrams for some set P of maps, we have the following result. (Adámek
and Rosický also prove this fact [1, 1.38], using slightly different terminology.)

Lemma 5.6 Consider two categories, the category of all diagrams X W D!SSets and
the category of strictly local diagrams with respect to the set of maps P Dff W A!Bg.
Then the forgetful functor from the category of strictly local diagrams to the category
of all diagrams has a left adjoint.

Proof Without loss of generality, assume that we have just one map f in P ; otherwise
replace f by

`
˛ f˛ . Given an arbitrary diagram X , we would like to construct a

strictly local diagram from X . So, suppose that X is not strictly local, ie, the map

f �W Map.B;X /!Map.A;X /

is not an isomorphism. To ensure that f � is surjective, we obtain an object X 0 as the
pushout in the following diagram:`

n�0

`
A��Œn�!X A��Œn� //

��

X

��`
n�0

`
A��Œn�!X B ��Œn� // X 0

where each coproduct is taken over all maps A��Œn�!X for each n� 0. Then, to
ensure that f is injective, we obtain X 00 by taking the pushout`

n�0

`
.B

`
A B/��Œn� //

��

X 0

��`
n�0

`
B ��Œn� // X 00
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again where the second coproduct is over all maps .B
`

A B/��Œn�!X 0 , and where
the map

B
a
A

B! B

is the fold map.

In the construction of X 0 , for any strictly local object Y we obtain a pullback diagram

Map.X 0;Y / //

Š

��

Map.
`

B;Y /

Š

��
Map.X;Y / // Map.

`
A;Y /

showing that the map X !X 0 is a strict local equivalence since f W A! B is.

In the construction of X 00 , we obtain a similar diagram, but it takes more work to
show that the map X 0!X 00 is a strict local equivalence. We first obtain the pullback
diagram

Map.X 00;Y / //

��

Map.
`

B;Y /

��
Map.X 0;Y / // Map.

`
.B

`
A B/;Y /

Since it is a pullback diagram then suffices to show that the right hand vertical arrow is
an isomorphism.

Recall that the object B
`

A B is defined as the pushout in the diagram

A //

��

B

��
B // B

`
A B

which enables us to look at the pullback diagram

Map.B
`

A B;Y / //

��

Map.B;Y /

Š

��
Map.B;Y / // Map.A;Y /:

Hence the map
B! B

a
A

B
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is a strict local equivalence. But, this map fits into a composite

B //

id

66B
`

A B //B

Since the identity map is a strict local equivalence, it follows that the map

B
a
A

B! B

is a strict local equivalence, since it can be shown that the strictly local equivalences
satisfy model category axiom MC2.

Therefore, we obtain a composite map X ! X 00 which is a strict local equivalence.
However, we still do not know that the map

Map.B;X 00/!Map.A;X 00/

is an isomorphism. So, we repeat this process, taking a (possibly transfinite) colimit to
obtain a strictly local object eX such that there is a local equivalence X ! eX .

It suffices to show that the functor which takes a diagram X to the local diagram eX is
left adjoint to the forgetful functor. So if J is the forgetful functor from the category
of strictly local diagrams to the category of all diagrams and K is the functor we have
just defined, we claim that

Map.X;J Y /ŠMap.KX;Y /

for any diagram X and strictly local diagram Y . But, proving this statement is
equivalent to showing that

Map.X;Y /ŠMap. eX ;Y /

which was shown above for each step, and it still holds for the colimit. In particular,
the map X ! eX DKX and the identity Y D J Y induce natural isomorphisms

Map.KX;Y /!Map.X;Y /!Map.X;J Y /;

and the restriction of this composite to the 0–simplices of each object,

Hom.KX;Y /! Hom.X;J Y /

is exactly the isomorphism we need to show that K is left adjoint to J .

To apply this lemma to our situation, we first need to verify that AlgT is precisely
the category of strictly local diagrams in SSetsT with respect to the set of maps
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P , defined in the last section, to obtain the model category structure for homotopy
T –algebras.

To do so, we will need the following homotopical version of the Yoneda Lemma.

Lemma 5.7 Let T˛ be an object in a multi-sorted algebraic theory T and A a strict
T –algebra. There is an isomorphism of simplicial sets

MapSSetsT .HomT .T˛;�/;A/ŠA.T˛/:

Proof Since A is a simplicial set-valued functor, we can regard it as a simplicial
diagram of set-valued functors

A.�/0(A.�/1WA.�/2 � � �

which further induces a simplicial diagram

HomSSetsT .HomT .T˛;�/;A.�/0/( HomSSetsT .HomT .T˛;�/;A.�/1/W � � � :

Using the classical Yoneda Lemma [9, 11.5.8], we have a natural isomorphism at each
level

HomSetsT .HomT .T˛;�/;A.�/n/ŠA.T˛/n;

where SetsT denotes the category of functors T ! Sets .

Now, regarding sets as constant simplicial sets as necessary, notice that there are natural
isomorphisms

HomSetsT .HomT .T˛;�/;A.�/n/

Š HomSSetsT .HomT .T˛;�/;HomSSetsT .�Œn�;A.�///

Š HomSSetsT .HomT .T˛;�/��Œn�;A.�//

ŠMapSSetsT .HomT .T˛;�/;A/n:

Since all the simplicial maps above are natural, we obtain a natural simplicial functor

MapSSetsT .HomT .T˛;�/;A/!A.T˛/

which is an isomorphism.

Using this lemma, we are able to prove the following.

Lemma 5.8 A diagram AW T ! SSets is a strict T –algebra if and only if A is
strictly local with respect to the maps

p˛n W

na
iD1

HomT .T˛i
;�/! HomT .T˛;�/:
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Proof A diagram A is a strict T –algebra if and only if for each ˛nD< ˛1; : : : ; ˛n >

there is a natural isomorphism

nY
iD1

A.T˛i
/ŠA.T˛/

induced by the projection maps in T . Using Lemma 5.7, this statement is equivalent
to having an isomorphism

MapSSetsT .HomT .T˛;�/;A/Š

nY
iD1

MapSSetsT .HomT .T˛i
;�/;A/

ŠMapSSetsT .

na
iD1

HomT .T˛i
;�/;A/

:

Since all the isomorphisms in sight are induced by projections, it follows that this
statement is equivalent to having A strictly local with respect to all the maps p˛n .

In particular, a map f W X !X 0 is a strict P –local equivalence if and only if for every
A in AlgT (regarded as an object in SSetsT via the map JT ) the induced map

MapSSetsT .X
0;A/!MapSSetsT .X;A/

is an isomorphism of simplicial sets.

Applying Lemma 5.6 to the functor JT , we obtain its left adjoint functor

KT W SSetsT !AlgT :

Proposition 5.9 The adjoint pair of functors

KT W SSetsT
//AlgT W JT :oo

is a Quillen pair.

Proof Using Lemma 5.8, we can regard AlgT as a subcategory of SSetsT via
the map JT . Since in both cases, the fibrations and weak equivalences are defined
objectwise, JT preserves fibrations and acyclic fibrations.

Lemma 5.10 Each map KT .p˛n/ is a weak equivalence in AlgT .
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Proof First, we note that the functor HomT .T˛;�/ is a strict T –algebra and that
JT A D A for any strict T –algebra A, again regarding JT as an inclusion functor.
Then, for each map p˛n we have the following composite isomorphism:

MapAlgT .KT .HomT .T˛;�//;A/ŠMapSSetsT .HomT .T˛;�/;A/

ŠA.T˛/

Š

nY
iD1

A.T˛i
/

Š

nY
iD1

MapSSetsT .HomT .T˛i
;�/;A/

ŠMapSSetsT .

na
iD1

HomT .T˛i
;�/;A/

ŠMapAlgT .KT .

na
iD1

HomT .T˛i
;�//;A/:

Since all the isomorphisms are naturally induced by the map p˛n and adjoints, it
follows that KT is a strict local equivalence, or a weak equivalence in AlgT .

Now, we need to show that the same adjoint pair is still a Quillen pair when we replace
the model structure SSetsT with the model structure LSSetsT .

Proposition 5.11 The adjoint pair

KT W LSSetsT
//AlgT WJToo

is a Quillen pair.

Proof Consider again the set of maps

P D fp˛n W

a
i

HomT .T˛i
;�/! HomT .T˛;�/g:

Notice in particular that the objects involved in these maps are free diagrams and
therefore cofibrant in SSetsT

f
. The model category structure LSSetsT is obtained

by localizing with respect to these maps. Then using Lemma 5.10, we have that each
map KT .p˛n/ is a weak equivalence in AlgT . Hence, it follows from Theorem 5.3
that the pair of adjoints forms a Quillen pair even after the localization on SSetsT

f
.
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Before stating the main theorem, that the above Quillen pair is actually a Quillen
equivalence, we first need a lemma. Badzioch’s proof [2, 6.5] for ordinary theories
generalizes for our case of multi-sorted theories, but we give a slightly different proof
here.

Lemma 5.12 If X is cofibrant in LSSetsT , then the unit map �W X ! KT X D

JT KT X is a weak equivalence in LSSetsT .

Proof Case 1: The cofibrant object X is a free diagram, so it can be written asa
˛

HomT .T˛n ;�/:

The proof for such an object is then similar to the argument in the proof of Lemma
5.10.

Case 2: Let X be any cofibrant diagram. Then X ' hocolimop Xi where each Xi is a
free diagram. Using Proposition 4.12, it then suffices to show that Map.KT X;Y /'

Map.X;Y / for any T –algebra Y which is fibrant in SSetsT
cof

. Using case 1, we
have the following:

Map.X;Y /'Map.hocolimop Xi ;Y /

' holimMap.Xi ;Y /

' holimMap.KT Xi ;Y /

'Map.hocolimop KT Xi ;Y /

'Map.KT X;Y /:

Notice in particular that this weak equivalence is induced by the map �. The lemma
follows.

Now, the proof of the main theorem follows from this lemma exactly as it does for
ordinary theories in [2, 6.4].

Theorem 5.13 The Quillen pair of functors

KT W LSSetsT
//AlgT WJT :oo

is a Quillen equivalence.

Proof Let X be a cofibrant object in LSSetsT , A a fibrant object in AlgT , and
f W X ! A D JT A a map in LSSetsT . We need to show that f is a P –local
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equivalence if and only if its adjoint map gW KT X ! A is a weak equivalence in
AlgT . There is a commutative diagram

X
� //

f

��

KT X

g

��
JT A

D // A

First assume that f is a P –local equivalence. Then g must also be a P –local
equivalence since � is, by the previous lemma. However, g is a map in AlgT , and so
it is an objectwise weak equivalence, or a weak equivalence in AlgT .

Conversely, suppose that g is a weak equivalence in AlgT . Then it is a P –local
equivalence. Hence, f D g ı � is also a P –local equivalence.

Hence, we have a Quillen equivalence of model categories between strict T –algebras
and homotopy T –algebras.

References
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