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On the existence of branched coverings between surfaces
with prescribed branch data, I

EKATERINA PERVOVA
CARLO PETRONIO

For the existence of a branched covering T — ¥ between closed surfaces there are
easy necessary conditions in terms of X(g), x(X), orientability, the total degree,
and the local degrees at the branching points. A classical problem dating back to
Hurwitz asks whether these conditions are also sufficient. Thanks to the work of
many authors, the problem remains open only when X is the sphere, in which case
exceptions to existence are known to occur. In this paper we describe new infinite
series of exceptions, in particular previously unknown exceptions with T not the
sphere and with more than three branching points. All our series come with systematic
explanations, based on several different techniques (including dessins d’enfants and
decomposability) that we exploit to attack the problem, besides Hurwitz’s classical
technique based on permutations. Using decomposability we also establish an easy
existence result.

57M12; 57M30, 57TNO05

1 Problem and new partial solutions

In this section we state the Hurwitz existence problem, we outline its relevance to
other areas of topology and our motivations for picking it up, and we state our new
contributions towards its solution, also explaining the techniques we have used to obtain
them. We address the reader to Section 2 for an overview of the known results and
techniques, which will help putting our results into context.

Basic definitions A branched covering is a map f: S — ¥, where T and ¥ are
closed connected surfaces and £ is locally modelled on maps of the form C> z +> keC
for some & = 1. The integer k is called the local degree at the point of b corresponding
to 0 in the source C. If k > 1 then the point of X corresponding to 0 in the target C
is called a branching point. The branching points are isolated, hence there are finitely
many, say n, of them. Removing the branching points in ¥ and all their pre-images in
3, the restriction of f gives a genuine covering, whose degree we will denote by d .
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If the i-th branching point on X has m; pre-images, the local degrees (d;j)j=1,....m;
at these points give a partition of ¢, namely d;; > 1 and Z;":’I dij = d . In the sequel
we will always assume that in a partition (d1,...,dn) of d we have d1 = ... = d,,,
which allows us to regard the partition as an array of integers rather than an unordered
set with repetitions.

Branch data Suppose we are given closed connected surfaces S and %, integers
n>=0and d =2, and for i =1,...,n a partition (d;j)j=1,.. m; of d. The 5-tuple
(’i, Y,n,d, (d; j)) will be called the branch datum of a candidate branched covering.
To such a datum we will always associate the integer 7 defined as m; + ...+ my.

Compatibility We define a branch datum to be compatible if the following conditions
hold:

(D) x(E)—fi=d-(x(X)=n);

(2) n-d—"niseven;

(3) If X is orientable then 3 is also orientable;

(4) If X is non-orientable and d is odd then T is also non-orientable;

(5) If X is non-orientable but Y is orientable then each partition (djj)j=1,..,m; of
d refines the partition (d/2,d/2).

The meaning of Condition (5) is that (d;j)j=1,...,m,; is obtained by juxtaposing two
partitions of d/2 and reordering. Note that d is even by Condition (4).

The problem It is not too difficult to show that if a branched covering DRSS >
exists then the corresponding branch datum, with n,d, (d;;j),n defined as above, is
compatible. Conditions (1), (3), and (4) are obvious, Condition (5) follows from the
fact that the covering factors through the orientation covering of X, and a short proof
of Condition (2) will be given for the sake of completeness in Section 3.

We will call Hurwitz existence problem the question of which compatible branch data
are actually realized by some branched covering. In the sequel we will always consider
the branch datum (i ¥.n,d,(d;j)), and the corresponding 7, to be fixed. We will
also mostly assume that each partition (d;j)j=1,... m; is different from (1,...,1), for
in this case we could just reduce n.

.....

Remark 1.1 A perhaps more traditional viewpoint is to consider only X, n, d, (d;;)
to be given, and then determine the corresponding bl using Conditions (1), (3), and (4).
In this context, these conditions are replaced by the requirement that 7 + d - (x(X) —n)
should be at most 2. However, for non-orientable 3 and even d, two possibilities exist
for =, so we prefer to stick to our datum which also includes >,
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Even if we have stated the problem in full generality, we will confine ourselves in the
rest of this section to the case ¥ = S, the sphere, because a full solution has been
obtained (in the affirmative) whenever x(X) < 0, and the case ¥ = P, the projective
plane, reduces to the case ¥ = S. Among the many sources for this solution, that we
will discuss in Section 2, we single out here the fundamental contribution of Edmonds,
Kulkarni and Stong [4], that we will frequently refer to, and the more recent one
by Baranski [2]. We also mention the very interesting paper by Zheng [24], which
introduces a new approach to the problem and describes many experimental results.

Motivation Surfaces are central objects in mathematics. They are interesting on their
own (being the subject matter of, for instance, Teichmiiller theory) and they are relevant
to diverse fields such as algebraic geometry, complex analysis, and three-dimensional
topology. Branched coverings between surfaces naturally occur within all these fields
of investigation, so the basic Hurwitz existence problem stated above can be viewed in
our opinion as one of the crucial ones in modern mathematics.

As discussed in Section 2, the problem has indeed attracted enormous attention over
about a century, including that of outstanding mathematicians. The general solution of
the problem for ¥ = S is however still missing, which suggests that the problem is
actually rather hard.

Besides being intrinsically interesting and very difficult, the existence problem for
branched coverings with prescribed branch data naturally emerges in several contexts.
For instance, it is relevant to the study of generating sets of surface groups. The reason
is that a branched covering between surfaces naturally induces an orbifold-covering
between 2—orbifolds (see Section 3 below), and coverings of the latter type correspond to
subgroups of orbifold fundamental groups. Therefore existence of a branched covering
matching a given datum is equivalent to existence in a certain Fuchsian group of a
subgroup with given signature (Singerman [19]), which can be applied to deciding
whether an arbitrary generating set of a surface group is Nielsen-equivalent to the
standard generating set.

There are enumerative aspects of the Hurwitz problem which are not directly faced in the
present paper but have obvious connections with our topic, and these aspects are relevant
to the Gromov—Witten theory of algebraic curves. The Hurwitz number associated to a
given datum is the number of equivalences classes of coverings realizing this datum
and, as indicated in Okounkov and Pandharipande [17], the stationary Gromov—Witten
invariant of a curve is equal to the sum of the Hurwitz numbers associated to certain
branch data, determined through a specific correspondence between branch data and
descendants in Gromov—Witten theory.
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Our own motivation for picking up the existence problem was to investigate the be-
haviour of Matveev’s complexity [13] for 3—manifolds under finite covering. Conjectural
formulae for complexity have been given by Martelli and Petronio [12] for Seifert
3—manifolds, ie, for circle fibrations over 2—orbifolds, an important class of 3—manifolds
which has been classified for a long time (see eg Matveev and Fomenko [6]). It turns
out that a finite covering between Seifert 3—manifolds induces a covering between the
corresponding base 2—orbifolds, and such a covering can be interpreted as a branched
covering between surfaces, as already mentioned above. Therefore understanding
branched coverings between surfaces can be viewed as a first necessary step towards the
analysis of coverings between Seifert 3—manifolds and hence of Matveev’s complexity
under such coverings.

New results A branch datum will be called exceptional if it is compatible but not
realizable by any branched covering. As already mentioned, for ¥ = S exceptional
data are known to exist. All examples discussed in the literature refer to the case where
d is non-prime, n is 3, and S is also equal to S.

The main results obtained in the paper are listed below. They improve the understanding
of exceptional data in that they place most of the exceptions occurring for non-prime
d<2and T =%=§5 (as described by Zheng in [24; 23]) within infinite series of
exceptions, thus providing some sort of explanation for their emergence, and they show
that such systematic exceptions occur also for b # S. Moreover, Theorems 1.4 and 1.5
below show that there are several exceptional series of data with » > 3 branching
points.

A result of rather different nature is given by Theorem 1.7, which provides a simple
condition for realizability. More such conditions, based on a generalization of the
results of Baranski [2], will be described in [18].

Proposition 1.2 Let d > 8 be even and consider compatible branch data of the form
(£.5.3,d,(2,....2),(5.3,2,....2), (d3j)j=1,...m3) -

o If S =T, the torus, whence m3 = 2, the datum is realizable if and only if
(d31,d32) #(d/2,d/2);

.....

does not have the form (k,k,d/2 — k,d/2 — k) for some k > 0, or
(d/2,d/6,d/6,d/6) for d a multiple of 6.

Proposition 1.3 Let (S, S.3,d. (dij)) be a compatible branch datum with even d

and (dy;)=(2,...,2).If (d2j) =(3,3,2,...,2) or (d2j) =(3,2,...,2,1) then the
datum is realizable if and only if d31 # d /2.
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Theorem 1.4 Suppose that d and all d;j for i = 1,2 are multiples of some k with
1 < k < d. If the branch datum (S, S,n,d, (dij)) is realizable then d;; < d/k for
i=3,...,nandforall j.

Theorem 1.5 Suppose that d and all d;j fori = 1,2 are even. If the branch datum
(S.S.n.d,(dij)) is realizable then (d;;) refines the partition (d/2,d/2) for i =
3,....n.

Corollary 1.6 Suppose that d is a multiple of 2k for some k with 1 <k <d/2,
that all dyj are multiples of k, and that all d;; for i = 2,3 are even. If the branch
datum (S, S,n,d, (dl-j)) is realizable then d;j < d/k fori =2,3 and d;; < d/2k for
i=4,...,nandforall j.

The last three criteria are especially expected to cover very many exceptional branch
data. For example they imply that all the following series of data are exceptional:

(S.S.d/k+1.d,(k,....k),(k,....k),(d/k+1,1,...,1),
2. 1....),....2,1,....1), kld,
(S.S.d/24+1,d.(2....,2),(2....,2).(2.....2),
2.1,....1),....(2,1,....1)), d=2 mod 4,
(S.S.d/2k +2.d.(k,....k),(2,....2).(2,....2),(d/2k + 1,1,...,1),
2,1,....1),...,(2,1,.... 1)), 2kld.

We note that the exceptionality of the first of these series was already conjectured in
general and proved for d < 20 by Zheng in [24, Conjecture 16].

Theorem 1.7 Let (£,S,3,d, (di;)) be a compatible branch datum. Let p >3 be
odd and suppose that all d;; are divisible by p. Then the datum is realizable.

Techniques Various equivalent ways of formulating the Hurwitz existence problem,
and techniques to attack it, were developed over the time. We only mention here that
the main classical tool, which goes back to Hurwitz himself, is a reformulation of the
problem in terms of permutations. The main techniques we employ are as follows:

e Dessins d’enfants This is a classical notion due to Grothendieck, introduced
within the study of algebraic maps between Riemann surfaces. This topic is tightly
related to our existence problem, but dessins d’enfants were never employed
directly before to attack the problem itself, and our adjustment of the notion
proved rather fruitful, leading to Propositions 1.2 and 1.3, and to Theorem 1.4.
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e Decomposability The second tool we use is based on the idea of expressing a
covering as a composition of two non-trivial ones, and the corresponding idea of
finding certain “block decompositions” (first considered by Ritt) of permutations
with given cycle structures. This idea leads to Theorem 1.5 and Corollary 1.6. It
also allows us to establish the only realizability result of this paper, Theorem
1.7.

Comments on the new results A very efficient algorithm to treat the existence
problem was developed in [24] by Zheng, who also produced a vast collection of
experimental data listing all the exceptional data up to degree 22. The number of these
exceptions is very large, and it appears rather hard to detect any sensible pattern in
the list. However, we note that over a half of these exceptions fall in the domain of
Theorem 1.5 and a smaller, but still noticeable, percentage is covered by Theorem 1.4.

We also notice that these two theorems cover all the exceptional data with d < 17
and n = 5. In these cases, the exceptions with even d are almost always covered by
Theorem 1.5, although a few are explained by Theorem 1.4. At the level of d = 18
there are only two exceptional data with #» = 5 which are not covered by these results,
and a few more appear with 19 < d < 22. To appreciate the power of these statements,
in particular for large n, notice also that the total number of exceptional data in these
degrees, even of those with n > 5, is in the hundreds.

Comments on the new techniques A detailed account on the established methods
for facing the question of realizability of branch data will be given in Section 2, but
we would like to mention here that all these methods have a chiefly algebraic flavour,
except Bardnski’s recent one.

The use we make of dessins d’enfants to prove Propositions 1.2 and 1.3, and Theorem 1.4
provides the first application of such a notion to the Hurwitz existence problem. Besides
the fact that the results are valuable on their own, we consider it rather interesting
to have a transparent geometric explanation of non-existence for infinite series of
coverings. In addition, the method appears to be generalizable to more infinite series.

Even if very simple, our idea of analyzing coverings which should be, if existent,
compositions of other coverings proved rather fruitful and also allowed us to explain
non-realizability of many data in purely geometric terms, as already stated above.

Organization of the paper In Section 2 we quickly review the results previously
known on the Hurwitz existence problem, with the aim of helping the reader put our
new contributions in the right perspective. In Section 3 we describe the main approaches
historically taken to face the problem (and used in the rest of our paper), also trying to
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make the relations between them completely transparent. In Section 4 we develop the
technique of dessins d’enfants, which allows us to establish Propositions 1.2 and 1.3
and Theorem 1.4. In Section 5 we apply the technique of decomposability of coverings
to prove Theorems 1.5 and 1.7 and Corollary 1.6.
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2 Known results and techniques

In this section we outline the main partial solutions of the Hurwitz existence problem
which have been obtained over the time.

Known results for ¥ # S We begin by reviewing several results whose overall
content is that, to get a complete solution of the Hurwitz existence problem, it would be
sufficient to settle the case where the base surface X is the sphere S. The first theorem
we cite is attributed to Shephardson in Ezell [5, page 125] and explicitly proved in
Husemoller [9, Theorem 4] and Edmonds, Kulkarni and Stong [4, Proposition 3.3]:

Theorem 2.1 A compatible branch datum with X orientable and x(X) < 0 is realiz-
able.

The next result is proved in [5, Theorem 3.4] and [4, Proposition 3.3]:

Theorem 2.2 A compatible branch datum with ¥ and S non-orientable and x(2)<0
is realizable.

We then quote the following elementary fact, stated in [4, Proposition 2.7], and its
consequence [4, Proposition 3.4]:

Proposition 2.3 A compatible branch datum with ¥ non-orientable and S ori-
entable is realizable if and only if it is possible to decompose for all i the partition

’ V4
0 and (df})]

(dij)j=1,..,m; of d into partitions (allfj)j=1 it

the branch datum

of d/2 in such a way that

(2.5 2n,d/2,(d};). (d}}))

is realizable, where X' is the orientable double covering of X.
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Corollary 2.4 A compatible branch datum with ¥ non-orientable, S orientable and
x(X2) <0 is realizable.

The next result is due to Edmonds, Kulkarni and Stong [4, Theorem 5.1]. We recall
that P is the projective plane.

Theorem 2.5 A compatible branch datum with ¥ = P and non-orientable S is
realizable.

These theorems imply that only the following instances of the Hurwitz existence
problem remain open:

e X =8;

e Y =P and X orientable.

However, Proposition 2.3 reduces the latter instance to the former one, to which we
will therefore confine ourselves henceforth.

Known results for ¥ =S When the base surface is the sphere S, not every compat-
ible branch datum is realizable. The easiest example is given in degree d = 4 with
n = 3 branching points by the partitions (3, 1), (2, 2), (2, 2), which implies that s is
S too. A proof follows from Proposition 2.9 below, established in Section 4. In the
rest of our paper the base surface X will always be the sphere S. Recall that a branch
datum is exceptional if it is compatible but not realizable.

We will now review the main existence and non-existence theorems proved in the
literature. However, we will not attempt to give a comprehensive list of the abstract
statements. Instead, we will concentrate on the results which can be applied in a more
direct fashion. The following was established in [4, Proposition 5.7].

Theorem 2.6 For all non-prime d there exist exceptional branch data of degree d
withn=3 and ¥ =S.

Turning to existence, the most general known result appears to be the following:

Theorem 2.7 A compatible branch datum is realizable if one of the partitions (d;j) is
given by (d) only.
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This fact was first stated by Thom [20, Theorem 1] for > also equal to S, was reproved
by Khovanskii and Zdravkovska [10, Theorem 2] and Baranski [2, Theorem 6] in the
same context, and was generalized to arbitrary S in [4, Proposition 5.2]. A variation
on this result is given in [4, Proposition 5.3], where the realizable branch data with one
partition of the form (d — 1, 1) are classified. In [4, page 775] a similar classification
is announced for data with n = 3 and one partition of the form (m,1,...,1).

Theorems 2.6 and 2.7, together with Proposition 2.9 below, are the main known results
relevant to the case n = 3, which we are most interested in. However, there are also
some results relevant to the case where » is “large” (usually compared to ). In this
respect, a major contribution of Edmonds, Kulkarni and Stong is the following [4,
Theorem 5.4]:

Theorem 2.8 A branch datum with d # 4 and n-d —n = 3(d — 1) is realizable. The
exceptional data with d = 4 are precisely those with partitions (2, 2),...,(2,2),(3,1).

Since we do not consider partitions of d of the form (1,..., 1), one easily sees that
n-d—n=n, so aconsequence of this result is that for fixed d # 4 the number of
exceptional branch data of degree d is finite [4, Corollary 4.4]. The next result is
established in [4, Corollary 6.4]:

Proposition 2.9 For S =S, n =3 and even d a branch datum with partitions
(x,d —x),2,...,2),(2,...,2) isrealizable if and only if x = d /2.

The following results are due to Baranski [2, Proposition 10, Theorem 12, Corollary
15]. We note that the first one extends Theorem 2.7 in the special case where s =85,
while the second one implies that for fixed d the number of exceptional branch data
of degree d with S =S is finite (which was already known after [4] for arbitrary b
and d # 4).

Proposition 2.10 A branch datum with S =S is realizable if there exists r such that
mi+...4+my=0r-1)-d+1.

Proposition 2.11 A compatible branch datum with S =S and n=d is realizable.

Proposition 2.12 A compatible branch datum with Y = S, d;jj <2 foralli, j, and
m; =d —\/d/2 forall i isrealizable.

Considering Theorem 2.6 and the fact that all known exceptional branch data occur with
non-prime degree d, one is naturally led to conjecture that for prime d the Hurwitz
existence problem always has a positive solution. It is claimed in [4, page 787] that
establishing this conjecture in the special case n = 3 would imply the general case.
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Established techniques and related known results The proofs of Theorems 2.1
and 2.2 are based on a reformulation of the main problem in terms of representations
of the fundamental group of the n—punctured surface X into the symmetric group
S, . This technique, already alluded to several times above, goes back to Hurwitz
himself [8, Section I.1] and was later revisited and refined by Ezell [5, Theorem 2.1],
Singerman [19, Theorem 1], where a more complicated situation (which includes
cusped surfaces) is considered, and Husemoller [9, Theorems 3 and 5], where surfaces
with boundary are also accepted. The permutation technique will be carefully reviewed
and reinterpreted below in Section 3. It is however worth remarking here that the main
algebraic results on permutations leading to Theorems 2.1 and 2.2 were also established
in an abstract context in [3].

In the special case where £ = S and n = 3, the Hurwitz existence problem can be
reinterpreted in terms of algebraic maps between algebraic curves. In this context
Belyi’s theorem [22, Proposition 3] could be viewed, in a sense, as a solution of the
problem, but the necessary and sufficient condition for existence it gives is an abstract
algebraic one which it does not seem to be possible to check in practice.

The results of Bardnski stated above are based on a geometric criterion [2, Lemma 5]
for the realizability of a branched covering of S with ¥ also equalto S.

To conclude, we quickly discuss the question (already mentioned above) of counting
the number of (suitably defined) equivalence classes of branched coverings realizing
a given branch datum. This counting problem in fact goes back to Hurwitz as well,
for whom it was a primary motivation and who solved it in [8, pages 16, 22] for the
case n = 2d — 2 and all partitions of the form (2,1,...,1), with T =S8. Complete
formulae for the general case were given by Mednykh [14, page 138], [15, Theorem
C]. Of course, a branch datum is realizable if and only if the corresponding counting
formula returns a positive value, so these formulae give an implicit solution to the
Hurwitz existence problem. But again the actual computation appears to be hopeless.
A variation of Mednykh’s formulae, where some explicit computation is possible, was
recently derived in [16] for special types of branched coverings.

Computational aspects The realizability of any specific branch datum can in principle
be checked either using the formulae of Mednykh just mentioned, or via Hurwitz’s
reformulation in terms of permutations. However the former approach is too complicated
to be practical. The latter one is suited for computer implementation, but it involves
operating with conjugacy classes of permutations which already in the case » = 3 and
d = 11 are too huge for the capacity of today’s computers. A much more efficient
method was recently developed by Zheng in [24], where the existence problem was
expressed in terms of coefficients of certain generating functions. As already mentioned,
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the formulae also established by Zheng for calculating these coefficients allowed him
to treat exceptional data up to degree 22, see [24; 23].

3 Alternative viewpoints on the problem

We start by describing equivalent formulations of the Hurwitz existence problem in
terms of ordinary coverings of surfaces with boundary and in terms of 2—orbifolds.
In some cases, one of these reformulations will be easier to handle than the original
viewpoint of branched coverings.

Surfaces with boundary Let ¥, denote the surface obtained from ¥ by remov-
ing n open discs with disjoint closures. A branched covering realizing a datum

.....

.....

restrictions to these components are (d;j)j=1,...,
covering X7 — X, induces a realization of the branch datum. We will therefore
consider also such a covering a realization of the datum.

m; - Conversely, any such genuine

2—orbifolds Let (X; py,..., py) denote the (closed locally orientable) 2—orbifold
with underlying surface ¥ and cone points of orders pi,..., p,. Choosing p;
to be divisible by d;; for j = 1,...,m;, a branched covering realizing a datum

(f, Y. n,d, (d,-j){:ll"“’m") induces an orbifold-covering [21]

(g.ﬂ Pi Pn DPn
’dll’ ’dlml’ ’dnl, ,dnmn

And again, with details that we can safely leave to the reader, a covering between
2—orbifolds induces a branched covering between surfaces.

)%(Z’pl”pn)

Covering from permutations We will denote by S, T and P the sphere, the torus
and the projective plane respectively, whence by gT = T#...#T (g times) and gP =
P#...#P (g times) the orientable and non-orientable surfaces of genus g = 1. The
following group presentations are well-known:

m1((gDn) =(a1.b1.....ag.bg.er,....en| a1, b1] - [ag. bgl-e1 - en)
nl((gP)n) = (cl,...,cg,el,...,en| c%---cé-el ceeep).
In both cases the ¢;’s are represented by the boundary circles. In the orientable case
ay, by is a meridian-longitude pair on the k-th copy of T. In the non-orientable case
¢k is the only non-trivial loop on the k-th copy of P.
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The first alternative viewpoint on the Hurwitz existence problem described above allows
one to establish the following fact, originally due to Hurwitz, Husemoller, Ezell, and
Singerman. We quickly review the geometric argument underlying the proof because
we will need it below.

Theorem 3.1 A compatible branch datum (f, Y,n,d, (d; j)) is realizable if and only
if there exists a representation 0: w1(X,) — G4 such that:

(1) Im(0) acts transitively on {1,...,d};
(2) 0(e;) has precisely m; cycles of lengths d;y, ..., dim, ;

(3) For non-orientable ¥ and orientable %, each permutation 0(cy) consists of
cycles of even length only.

Proof Our proof only works for n > 0, ie, it does not for genuine coverings. Recall
first [6, Chapter 2] that ¥, can be obtained as shown in Figure 1 from a disc A by

€n—1,+

En—l,—
€n—1,+

€n—1,—

€1+

€1+

€1,—

Figure 1: Construction of punctured surfaces

identifying each arc €; _ to the arc ¢; + and, depending on orientability, either each
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a,— to o 4 and By _ to Bg 4, oreach yg _ to yk 4. The figure also shows loops
corresponding to the generators of 77;(X,) used in the above presentations.

The degree-d coverings of ¥, are now obtained as follows. We first take the disjoint

union of d copies (A(h));f:1 of A, with the corresponding arcs 6;’;): etc. Then we
glue each 61(}2 to some eﬁﬁei) (h)), where 6(e;) € G4, and similarly for the other arcs,

using permutations O(ak)’and 0(by), or B(cy). The corresponding covering is induced
by the identification of each A® with A, and of course the covering is connected
if and only if the subgroup of &, generated by 6(ey),...,0(ey—1) and either the
B(ay)’s and 6(by)’s or the B(cy)’s acts transitively on {1,...,d}. Tt is also obvious
that for i = 1,...,n —1 the way the i -th component of 93, is covered depends on
the cyclic structure of 6(e;) as described in the statement.

Considering the form of the presentation of w1 (X,) given above, we see that we can
define O(e,) € G4 in a unique fashion so to get a representation 6. To conclude we
must show that the way the n-th component of 9%, is covered depends on the cyclic
structure of 6(e;), and that the covering over non-orientable X, is orientable if and
only if each 8(cy) contains cycles of even length only. Both assertions are easy and
left as an exercise. |

The parity condition Using Theorem 3.1 we can now explain Condition (2) of the
definition of compatible branch datum.

Lemma 3.2 If a datum is realizable then n-d — 7 is even.

Proof The conclusion is evident when X is orientable, so we assume it is not. Consider
a representation 6 realizing the datum as in Theorem 3.1. Notice that 0(ey) --- 0(ey)
is an even permutation, since its inverse is the product of either commutators or squares.
A permutation is even if and only if it contains an even number of cycles of even length,
ie, if the sum of a contribution £ — 1 for each cycle of length £ is even. Now the lengths
of the cycles of 0(e;) are the d;;’s, whence

n

Zi(dij—l)=n-d—h“

i=1j=1

is even. d

4 Exceptions via dessins d’enfants

As mentioned in Section 1 many exceptional branch data exist when X is the sphere S,
and in this section we present several classes of them, using a variation on Grothendieck’s
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dessins d’enfants [7]. This notion in its original form is only relevant to the case of
n = 3 branching points, but we actually generalize it to arbitrary n > 3.

Definition 4.1 A dessin d’enfant on S is a graph D C S where:

(1) For some n = 3 the set of vertices of D issplitas V; U...U V,_q and the set of
edges of D issplitas EiU...U Ey_3;

(2) Fori=1,...,n—2 eachedgein E; joins a vertex of V; to one of V;,1;

(3) Fori =2,...,n—2 any vertex of V; has even valence and going around it we
alternatively encounter edges from E;_; and edges from Ej;

@) b \ D consists of open discs.

The length of one of the discs in b \ D is the number of edges of D along which the
boundary of the disc passes (with multiplicity).

Proposition 4.2 The realizations of a branch datum (’f, S,n,d, (d; j)) correspond
to the dessins d’enfants D C % with the set of vertices splitas ViU Vou...UV,—q
such that for i =1 and i = n— 1 the vertices in V; have valences (djj)j=1,...m, , for
i =2,...,n—2 the vertices in V; have valences (2d;j)j=1,...,m; » and the discs in
b \ D have lengths (2(n —2)dnj)j=1,...m, -

Proof Suppose a realization f: S — S exists, let the branching points be x1, ..., X,
fori =1,...,n—2 choose a simple arc «; joining x; to x;4+1, suppose the o;’s
meet at their ends only and avoid Xxj,, and let & be their union. Then define D as
f~Na) and set V; = f~1(x;) and E; = f~!(e;). To conclude that D is a dessin
d’enfant with valences and lengths as required, the only non-obvious facts concern the
components of b \ D. But S\« is an open disc, the restriction of f to any component
of = \ D is a covering onto this disc with a single branching point, and such a covering
is always modelled on the covering z — zK of the open unit disc onto itself, so the
components of s \ D are open discs. More precisely, there is one such disc for each
element of f~!(x,), and it is easy to see that the j-th one has length as required.

Reversing this construction is a routine matter left to the reader. |
From dessins to permutations and back We recall that the conjugacy classes in &4
are given precisely by the partitions of d, with the class of a permutation being the

array of lengths of its cycles. The following is a consequence of Theorem 3.1, in which
we emphasize the constructive nature of the theorem:
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Corollary 4.3 The realizations of a branch datum (5, S,n,d, (d; j)) correspond to
the choices of t; = 0(e;) in &, for i = 1,...,n—1 such that (ty,...,Ty—1) Is
transitive and, setting t, = ‘L’n__ll

given by (dij)j=1,...m; -

---fl_l,fori =1,...,n the conjugacy class of t; is

Combining Proposition 4.2 and Corollary 4.3 we deduce a correspondence between
(suitable) dessins d’enfants in S and (suitable) choices of 11, ..., 1,1 € S4. Since
we will use it in the sequel, we spell out this correspondence explicitly in the next two
propositions. Proofs are easy and hence omitted.

Proposition 4.4 Given a dessin d’enfant D, with notation as in the definition, corre-
sponding to a realization of a branch datum (E, S,n,d, (d; j)), permutations

71,..., Ty—1 corresponding to the same realization are constructed as follows:

e FEnumerate the edges of E; as el.(l) Yy efd) , Starting in an arbitrary fashion for

(k)

E1 and so that for i = 2 around each vertex of V; each edge e;

(k)
i—1

e Fori<n—2andke€{l,...,d} select the vertex of V; to which elgk) is incident
and define t; (k) to be h such that the next e® O

i i

is followed by

the edge e;_’; with the same number k ;

around the vertex is e

e For k € {l,...,d} select the vertex of V,_1 to which e® " is incident and

n—2
define t,—1 (k) to be h such that the next e,(l*_)2 around the vertex is e,(lh_)z.

Concerning this statement, recall that > is oriented and note the following about the
Q) (k)

edge ¢;"’ needed to define 7;(k): for i =1 this edge comes immediately after e;"”,

while for i =2,...,n— 2 there is the edge el.(f)l located in between. Notice also that
(h)

n—2

the edge e

(k)
€, s-

To describe the opposite correspondence, given 7y, ..., 7,—1 € G4, we construct a
graph D(tq, ..., 1,—1) with vertices ViU...UV,_q, where V; is the set of cycles of 7;,
andfori=1,...,n—2and k =1,...,d anedge efk) joins the cycles of t; and 74
which contain k. Note that D(ty, ..., t,—1) is connected if and only if {(ty,..., Ty—1)
is transitive. Then we consider in D(tq,..., 7,—1) the lo((lzg)s consg{u)lcted as follows:

TR Having thus

when used in the definition of t,—; (k) again comes immediately after

we start with some vertex of V; and follow the path e
arrived to a vertex of V,_1, we follow the path
(G20 (5l (k) G L () B G A S (9)]
e,'5 e, 3" sees €y " , €4 "
which takes us to a vertex of V. From there we proceed similarly starting from

e(tl_ltz_lts_l"'fn_—ll(k)) k)

) until we find the edge ¢,

again.
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Proposition 4.5 Given 71, ..., 1,—1 € &4 corresponding to a realization of a branch
datum (5, S,n,d, (d,-j)), the space obtained from D(ty,...,T,—1) by attaching discs
to the loops just described is >, and D(ty,...,1t4—1) C S is a dessin d’enfant corre-
sponding to the same realization of the branch datum.

A sample application To investigate the realizability of a given branch datum
(E, S,3.d,(d; j)) using the permutation approach of Corollary 4.3, one should fix a
certain 7y with cycle lengths (d;;) and then let 7, vary in the conjugacy class (d3;),
checking that (7, 75) is transitive and that 7; - 7, has cycle lengths (d3;). Since
conjugacy classes are huge, this method is only feasible for very small d, and we
exploited it using the software GAP for d < 10 (but note that Zheng’s alternative
method [24] allows one to treat much higher degrees). On the other hand, the realizabil-
ity criterion through dessins d’enfants, stated in Proposition 4.2, has the advantage of
usually requiring the consideration of a much smaller number of cases. The geometric
nature of the criterion often also makes it very easy to apply it. As a first example, we
give a very simple proof of a result stated in Section 2 and originally established in [4].

Proof of Proposition 2.9 If the datum is realizable then the dessin d’enfant associ-
ated to the last two branching points is just a circle embedded in S. Such a dessin
decomposes S into two discs of the same length, so x =d —x, whence x =d/2. The
same argument proves also the opposite implication. O

Graph fattening and applications To apply Proposition 4.2 it is sometimes useful
to switch the viewpoint: instead of trying to embed a dessin D in the surface 3, we
try to thicken a given graph D to a surface with boundary so to get s by capping off
the boundary circles. An application of this method is given by the following proof of
one of the results stated in Section 1.

Proof of Proposition 1.2 We give a unified proof. A dessin d’enfant D corresponding

to the first two partitions in the given branch datum, as an abstract graph, is homeomor-
phic to one of the graphs X and Y shown in Figure 2, with the two visible vertices

X Y Y B
p -
” o 8

Figure 2: The two graphs with vertices of valences 5 and 3
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lying in V;. To get D we must then insert on each edge of X or ¥ an odd number of
vertices belonging to V; and V, alternatively. With a slight abuse of notation, suppose
we add 2« + 1 vertices on «, then 28 + 1 on 8, and so on. Using the fact that V; has
d /2 vertices, we see that « + 8 +y + 8 = d /2 —4, and this is the only constraint on

o, B,,6.

Up to symmetry, the possible thickenings of X and Y to orientable surfaces with
boundary are those described in Figure 3, as explained in the caption. The associated

h
" , C X5

Figure 3: Thickenings of X and Y, always given by the immersion in the plane

closed surfaces & and the half-lengths of the discs added are as follows:

X1:S, e+ Ly+ 1,8+ La+28+y+5+595)
X:S, (a+1,y+Ly+6+2,a+28+5+4)
X3:T, (e+1,a+284+2y+26+7)

Y1:S, (@+1,8+y+2.y+8+2,a+p+8+3)
,:T, (e+1,a+284+2y +25+7)

Y3:T, B+y+2,20+B+y+25+6)

Yo:T, (a+B+y+3,a+B+y+25+5).
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We must then determine all the possible values which can be attained by these strings as
o, B, y, § vary among non-negative integers under the constraint « +8+y+8 =d/2—4.

Let us now specialize the proof for z = T, corresponding to cases X3, Y5, Y3, and
Y4. Tt is obvious that the string (d/2,d/2) cannot be realized. If 1 <k <d/2—3 we
can realize (d/2+k,d/2—k) using Y4 withae =d/2—-3—-k,B=y=0,6=k—1.
Using X3 and Y3 we can obviously realize (d — 1, 1) and (d — 2,2). This proves the
first assertion.

Turning to S =S, let us first concentrate on case Y;. We denote the unordered
elements of (d3j)j=1,..,4 by x,y,z,w =d —x — y —z, and solve in the unknowns
o, B, y,§ the system

x =a+1 o =x—1
y=pB+y+2 N B =d/2—x—z—1

z =y+5+2 Yy =x+y+z—1-d/2
w=oaoa+p+5+3 § =d/2—x—y—1.

This solution is acceptable if and only if «, 8, v, § are all non-negative, namely if the
following holds:

x4y <d/2-1
(%) XxX+z <d/2-1
x+y+z =2d/2+1.

We deduce that a branch datum with & = S is realizable using case Y if and only if
it is possible to extract from (d3;);=1,... 4 integers x, y, z satisfying (x). Let us now
denote by £ the largest of the d3;’s and prove the following facts:

Claim 1 If{ = d/2 then the branch datum cannot be realized using Y7 .

Claim 2 If{ < d/2 then the branch datum can be realized using Y, if and only if it
does not have the form (k,k,d/2—k,d/2—k).

Claim 1 is easy: of course we cannot choose x, y, or z to be £, otherwise one of the first
two conditions in (x) would be violated, whence x+y+z=d —{€<d—-d/2=d/2,
which contradicts the last condition in (). Turning to Claim 2, it is clear that from
(k,k,d/2—k,d/2—k) we cannot extract x, y, z satisfying (). To prove the converse,
let us choose x, y, z, w in increasing order, ie,

x<y<zsw=4L=d—-x—y—z<d/2
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which implies the last condition in (). Under these assumptions the second condition
in (*) implies the first one. If the second condition is violated then we have

x<y<z=d/2—t<l=:d/2—s
x+z=d/2=>x>t
Xt+ty=t+s=>y<s

z<l =t =5,

These facts imply that x < y <s <¢ < x. Calling k this common value, we deduce
that (x, y, z, w) has the form (k,k,d/2—k,d/2—k), and the claim is established.

To conclude the proof for S =S it is now sufficient to establish the following:

Claim 3 If{ > d/2 then a branch datum can be realized using X or X, if and only
if (dsj)j=1,...4 is not (d/2.d/6.d/6,d/6).

Claim 4 No branch datum with (d3;)j=1,...4 of the form (k,k,d/2—k,d/2—k)
can be realized using X; or X;.

.....

Let us prove Claim 3. Again we denote the d3;’s by x, y,z, w, and we choose them
in increasing order, ie,

x<y<z<w=4L=d-—-x—y—z,

whence x + y +z < d/2. If we want to realize the datum using X; we have the
following forced choice up to symmetry:

X =oa+1 o =x—1

y=vyr+l1 B=d/2—x—y—z—1
=

z =0+1 y = y—1

w=aoa+28+y+5+5 8 = z—1.

This is an acceptable solution unless x + y 4+ z = d/2. So we turn to case X, and try
to realize the case x < y <z <{ =x+ y+ z. We first solve

x =a+1 a =x—1

y =y+l1 N p=y-1

z =y+8§4+2 y = y—1
X+y+z=a+28+5+4 § =z—y—1
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which is acceptable only for z > y. We are left to deal withthe case x < y =z <{ =
X + 2y and we try to use X, solving

x =y+1 N B =x—-1
y=y+8+2 y =x-1
X+2y = a+28+5+4 § = y—x—1

which is acceptable only for y > x. We have thus realized the branch datum for all
(d3j)j=1,..,4 except (d/2,d/6,d/6,d/6), which of course cannot be realized.

Turning to Claim 4, we begin using X;. Since y+ 1 <y +d§d+2and o+ 1 <
o+ 2B + 8 + 4, there is only one attempt we can make:

k =a+1 o = k—1

k =y+1 N g = -1
d/2—k = y+68§+2 y = k-1
d/2—k = a+28+5+4 8§ = d/2—-2k—1

which is not acceptable. We then try X7. Up to symmetry there is again one case only,
which is of course impossible. a

A similar argument allows one to prove Proposition 1.3.

Exceptional data with non-prime degree Here we obtain the proof of Theorem 1.4.
We start with a lemma.

Lemma 4.6 Suppose that d = kh with k,h = 2. Let (s;)j=1,..,p, (tj)j=1,..4 be
partitions of h with p,q =2 and p+q =h+2. Thenforall | <r <(p+q—h), if
n=p+q—r—h+2, the following branch datum is exceptional:

(S.S.n.d, (ksy,....ksp), (kty,....ktg), (h+r1,....1),
2.1,.... 1), (2,1, D).

Proof It is easy to see that the datum is compatible. The proof of exceptionality
is by induction on n. The base of induction is n = 3. We remark that in this case
the statement of the lemma could be inferred from results announced by Edmonds,
Kulkarni, and Stong [4, page 775], which are however stated without proof, so for the
sake of completeness we provide an independent argument.

When n = 3, the branch datum does not contain partitions (2,1,...,1). To prove
the lemma in this case, we proceed by induction on /. If 4 =2 we have p=q =2
and (#1,2) = (s1,52) = (1, 1), while for & = 3 we have two cases: either one of the
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partitions (#;)j=1,...p and (sj)j=1,...q has the form (1,...,1) or not. So the next
claim serves both to prove the base step of the induction and to deal with the first case
of the inductive step.

Claim Suppose that k,h > 2. Let (sj)j=1,.,p be a partition of h with p > 2.
Then the branch datum (S, S, 3, kh, (ksy. ..., ksp), (k,....k),(h+p—1,1,...,1))
is exceptional.

First note that the number of 1°s in the third partition is (k—1)h— p+ 1. Take arbitrary
11, 7z € Gy, with cyclic structures (ksy,...,ksp) and (k, ..., k) such that (11, 12)
is transitive, and consider the associated graph D(tq, 13). If 71, 7o realize the above
datum, 1 - 75 has (k —1)h— p + 1 fixed points. Remark that to each fixed point of
71 - T there corresponds in D(tq, ;) a pair of edges having the same ends. More
precisely, let us define a multi-edge of D(tq, 13) as the set of all edges having two
given vertices as ends. Then one sees that a multi-edge ¢ gives rise to at most #(¢)
fixed points of 77 - 75, and all fixed points arise like this. The case of #(¢) fixed points
actually occurs only if 7; and t, contain cycles which are the inverse of each other,
but this is easily recognized to be incompatible with the assumptions of the claim. So a
multi-edge ¢ contributes with at most #(¢) — 1 fixed points. We conclude that the total
number of fixed points is at most the sum of all the multiplicities of the multi-edges,
which is equal to £/, minus the number of multi-edges.

Let us now estimate the number of multi-edges. By definition of D(zy, 12), the
set of its vertices is split as V; U V,, where V; consists of p vertices of valences
ksi,..., ks, and V, consists of /i vertices of valence k. This implies that at least
s; multi-edges are incident to the j-th vertex of V;. However, if there are exactly
s; multi-edges, connectedness of D(t;, 72) easily implies that p = 1, which was
excluded. So there are at least s; + 1 multi-edges. Therefore there are in total at least
Zf _,(sj +1) = h+ p multi-edges. From the above we deduce that t; - 75 has at most
kh—(h+ p) = (k—1)h — p fixed points. This implies that 71, 7, cannot realize the
branch datum, hence the Claim is established.

To conclude the inductive proof on /4 (still with » = 3, which is the base of our more
general induction) we have to deal with the case where /& = 3 and both partitions
(8j)j=1,..,p and (tj)j=1,...4 contain at least one entry larger than 1. This implies that
p,q < h—1 and, taking into account the inequality p +¢ = h + 2, that p,q > 3.
Suppose that a datum as in the statement of the lemma (under the current assumptions) is
realizable and consider the dessin d’enfant D constructed as in the proof of Proposition
4.2.
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We first show that D contains vertices v and u such that all the edges of D incident to
v join v to u. Indeed, notice that S2\ D consists of some bigons and one 2(p+¢—1)—
gon. Successively compressing each bigon into a single edge (see Figure 4), we get an

ihd

Figure 4: The passage from D to D

embedded graph D in S? with the same vertices as D, whose complement consists of
a single disc. Therefore D is a tree and not a point, so it contains vertices of valence 1.
Any such vertex v and the vertex u joined to it in D has the desired property.

Now let D’ be the graph obtained from D by deleting v and all the edges incident to
it. Obviously, D’ is still a dessin d’enfant and its complement consists of some bigons
and one 2(p 4+ g — 2)—gon. Without loss of generality, we may assume that v € V,
and u € Vq. If the valence of v in D is kt, and that of u is ksp then the valence
of u in D’ is k(sp — ;) and this number is positive, otherwise p = ¢ = 1, which
is excluded. Therefore D’ realizes a branch datum as in the statement, with n = 3,
k'=k,hW=h—ty, p'=p,q =q—1, apartition (sJ/.) of A’ obtained from (s;) by
replacing sp by sp — 1, and reordering, and another partition (lJf) of &’ obtained from
(¢j) by dropping f,. To conclude the proof for the case n = 3 we must show that the
conditions k', i, p’,q’ =2 and p’ + ¢’ = I’ + 2 are fulfilled. Of course £/, p’ = 2.
Moreover g’ = 2 because ¢ = 3, which implies that 2/’ > 2. Now i/ =h—t, <h—1
and p+g=h+2,s0

P+d=prq-1zh+2—-1=h+1=h"+2.
The case n = 3 is eventually settled.

Suppose now that 7 =4, so the last partition has the form (2, 1, ..., 1). This implies that
p+qg—h=r+2=3,and, since p,q <h,wehave p,q = 3. Assume, by contradiction,
that the datum is realizable by a map f. Let y; be the branching point corresponding
to the 7-th partition and consider the dessin d’enfant D constructed as in the proof
of Proposition 4.2 with x,_» = Y2, X4,—1 = Vu, X» = y1 (the other x;’s must be the
other y;’s, the order does not matter). In particular D contains f “Nap—s Uap_3),
where a,_> and o3 join y, to y, and y, to some other y; respectively. Recall that
Viis f~1(xi), 50 Vo1 = f~1(yn) and V,_o = f~1(»»). Considering valences, one
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concludes that there are only two possibilities for /! (a,_, U a,_,), where a)_, is
the half of «;,_3 incident to y,. These possibilities are shown in Figure 5, where the
@)

elements of V,_; are the black dots and those of V,_, are the grey dots. Let e, ”,,

e

Figure 5: The two possibilities for /1 (ct;—» U o, _3)

er(lj_)z be the edges with an endpoint at the 2—valent black vertex. Suppose we have the
r(llzZ ,(1J_)2 are incident to two distinct grey
vertices, which we denote by v” and v”. Then we remove all univalent black vertices
together with the edge adjacent to any such vertex, and contract the set e’(lilz U e,(lj_)2
to a point, which now becomes a new grey vertex. This gives a new dessin d’enfant
D’ and we can now analyze which branch datum it realizes. We first notice that there
is a natural correspondence between the complementary discs of D’ and those of D,
and the length of the j-th one of D’ is 2d;; = 2ks; less than that of the j -th one of
D. Moreover the contraction leading from D to D’ fuses v" and v” together, so the
number of grey vertices is decreased by one. Since exactly half of all the edges incident
to a grey vertex belong to E,_;, and all these edges are destroyed (either by removal
or by contraction), the valence of any grey vertex distinct from v’, v” is halved, and the
valence of the new vertex obtained by fusing is half the sum of the valences of v" and
v”. However the grey vertices were non-terminal in D but they become terminal in
D'. All this shows that D’ is a dessin d’enfant realizing, up to re-ordering the #; ’s and
the entries in the second partition, the datum (S, S,n—1,d,(ksy,....ksp), (k(t; +
n).kty, ... ktg),(h+r1,....1),(2,1,....1),...,(2,1,...,1)). Since ¢ = 3 we
again get a datum of the form described in the statement, but with » — 1 in place of n.
This contradicts the inductive assumption.

case shown in Figure 5-left, ie, that e and e
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If we have the case shown in Figure 5-right, we remove all the black vertices and
all the edges incident to them. Then the valence of each grey vertex gets halved,
and two of the complementary discs are merged into a single disc. A discussion
similar to the above one shows that we get a dessin d’enfant realizing (up to re-
ordering) the datum (S,S,n —1.d, (k(sy + $2). ks3. ..., ksp). (kt1,... ki), (h +
r,....,1),2,1,...,1),...,2,1,..., 1)). As before, the datum is non-realizable by
the inductive assumption, whence the conclusion in all cases. O

Proof of Theorem 1.4 We assume n > 3 otherwise the statement is empty. We
first claim that m,m, > 2. By contradiction, suppose that dy; = d, all the d5;’s
are multiples of k, and d3; > d/k. Then my =1, my < d/k, mzy <d —d/k,
and m; < d — 1 for i = 4. By the Riemann—Hurwitz condition (n —2)d + 2 =
mi+...+my<l4+d/k+(d—d/k)+ (n—3)(d—1), which implies that n <2, a
contradiction.

Suppose now that there is a realizable datum of the form
(S, S, n, d, (kSl, - ,kSp), (kll, ey ktq), (d/k+r, d32, ey d3m3)’ (dij)j=1,...,mi)’

with r = 1 and p,q = 2. By Theorem 3.1 we can find permutations ty, ..., 7,
such that the cyclic structure of t; is given by the i -th partition and 7175 ...7, = 1.
Obviously, we can present 73 as a product of a cycle 7 of length d/k +r and a
permutation 73’ of cyclic structure (1,...,1,d3s.....,d3y;). Notice that 7374 ... 1y
can be obtained as the product of

n
(daa+ ...+ dsmy—ms+ 1)+ (d=mi)=p+q—r—d/k—1
i=4
transpositions. The collection of these transpositions together with the permutations
71, T2, rg provides thus a realization of the datum

(S.S.p+q—r—d/k+2.d, (ksy,....ksp), (kty,....ktg),(d/k+r1,....1),
2. 1,....D,...,2,1,....1),

which is non-realizable by Lemma 4.6, whence the conclusion. |

S5 Exceptions due to decomposability

We now describe another technique that can be employed to prove exceptionality of
branch data. The basic underlying remark is that certain patterns in a branch datum
force the covering realizing the datum to be decomposable, namely the composition of
two non-trivial coverings, and one can deduce strong restrictions on the whole datum
from the information that all its realizations are decomposable.
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Decomposability of coverings and permutations We will now state an easy result
characterizing decomposable coverings, apparently due to Ritt and cited (in a less
detailed fashion) in [11, Theorem 1.7.6]. We first introduce some terminology and
establish a lemma which are necessary for the statement.

Definition 5.1 If 1 < k < d and k|d we call block decomposition of order k for
7 € G4 apartition of {1,2,...,d} into d/k subsets (the blocks) such that each block
has k elements and  induces a well-defined permutation T of the blocks. We say that
G < G4 has ablock decomposition of order k if there is a common such decomposition
for all the elements of G.

Lemma 5.2 Let t have cyclic structure (dy, ..., dm). Then t admits a block decom-
position of order k if and only if (dy,...,dn) can be partitioned into sets D1, ..., D¢
and there exist integers p1,..., p; = 1 such that for all j
pjlx VxeDj and Z Xk
xEDj p]
In this case T has cyclic structure (p1,..., pt).
Proof Suppose the block decomposition exists, and take a cycle (Bj, ..., Bp) of T,

with Bj ={rj 1,....rj k}. Since ©(Bj) = Bjy for j =1,..., p—1, up to changing
notation we have

T(r1,1) =712.,1 T(ra,1) =713,1 T(rp—1,1) =7p,1-

Now we either have 7(rp,1) = rq,1 or, up to changing notation, 7(r, 1) = ry,2. Pro-
ceeding similarly we see that T contains a cycle

(r1,17'~~9rp,17r1,25'~-arp,27~'~7r1,b17'-~7rp,b1)

of order x; = p-b;. Repeating the same argument from r; 5, 4; and so on we find

cycles of length xp,...,xs of T such that p|x; and ) j_, % = k. The conclusion
follows by considering the totality of the cycles of T, and the opposite implication is
proved along the same lines. |

Corollary 5.3 Let 0: 7(Z,) — &, be associated as in Theorem 3.1 to a branched
covering realizing a branch datum (’f Y.n,d, (d; j)). Then the covering is decom-
posable if and only if Im(6) has a block decomposition. Moreover, if Im(6) has a
block decomposition of order k with the decomposition of 6(e;) corresponding to
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a partition of (d;j) into D;y, ..., Dj;; and integers p;i,..., pis; then the covering
factors through coverings realizing branch data

S804 Atk (i)
( AR ( Pii XEDif)i=1,...,n,j=1,...,t,-)
(=2 () )y )

Note that to apply this result for any given 6 one could use [1].

Very even data Here we apply the methods of the previous paragraph and those of
Section 4 to describe two more infinite classes of exceptional data. Theorem 1.5 is in
fact an immediate consequence of the following result:

Proposition 5.4 If d is even and all d;j are also even for i = 1,2 then any covering
realizing a branch datum (S, S,n,d, (d; j)), up reordering the d;j ’s, is a composition
of coverings realizing data of the form

(S.S.2n—2,d/2, (dvj/2)j=1,....m\+ (d2j/2)j=1,...ms~
(d3j)j=1,...h3 (d3j) j=hsy+1,.omz> -+ - »
(dnj)j=1,...00s ([Anj)j=hp+1,....mn )

with 1 < h; <m; fori =3,...,n, and

(S.5,n.2,(2).(2).(1,1),....(1,1)).

The proof requires a definition and an easy lemma. We call checkerboard graph a finite
1 —subcomplex of a surface whose complement consists of open discs each bearing a
color black or white, so that each edge separates black from white.

Lemma 5.5 A connected graph in S with all vertices of even valence is a checkerboard
graph.

Proof By induction on the number v of vertices of the graph D. If v =1 then D is
a wedge of circles, and the conclusion follows from the fact that embedded circles are
separating on S. If v > 1 choose an edge of D having distinct ends, and let D’ be
obtained from D by contracting this edge to a vertex. Then the hypothesis applies to
D’, so there is a checkerboard coloring of S\ D’. Now the regions of S\ D can be
naturally identified to those of S\ D’, and it is easy to see that the coloring of S\ D’
also works for S\ D. |
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Proof of Proposition 5.4 Let q,...,1,—1 € &4 correspond as in Corollary 4.3 to
a realization of the given branch datum, with indices arranged so that 7; and 7,4
correspond to the first two partitions of d. We will prove that (zq, ..., t,—1) has a block
decomposition of order d/2 and then apply Corollary 5.3. Let D = D(zy, ..., Ty—1)
be the dessin d’enfant associated to 7y, ..., 7,—; as in Proposition 4.5. Then D is a
connected graph with all vertices of even valence, hence by Lemma 5.5 the components
of S\ D have a checkerboard coloring.

We will now choose black and white colors also for the edges of D. We begin with the
edges in £ and color them so that each V' —corner of a black component of S\ D has
first a black and then a white edge in the positive order around the vertex. Recalling
that S\ D is checkerboard colored and that around each v € V, the edges in £, and
in E, alternate with each other, it is easy to see that all the edges in £ incident to v
have the same color. We then color the edges in E, incident to v with the other color.
Repeating this for all v we color E,, and we can proceed similarly to color all the
edges of D.

Notice that by construction around any vertex of D the colors of edges alternate,
(k) (k)

therefore for i = 2 the edges e; | and ¢;

define

always have opposite colors. Thus, if we

B ={k: efk) is black}, W =1{k: elgk) is white}
then we have By = W, = B3 = ... and W; = B, = W3 = .... We denote the former
set by B and the latter set by W . The construction of D given to prove Proposition
4.5 shows that 5, ..., 1,— leave B and W invariant, while t; and t,—; switch them.
Therefore we have a block decomposition of (7, ..., t,—1) of order d/2. Lemma 5.2
and Corollary 5.3 now imply that the covering S realizing the given branch datum
factors through coverings Y ¥ and ¥/ — ¥, with the latter having branch datum
of the form (S, S,n,2,(2),2),(1,1),...,(1,1), *) But the only such covering is as
in the statement and the conclusion easily follows. O

Proof of Corollary 1.6 By Proposition 5.4 any covering realizing a datum as in the
statement is a composition of the appropriate covering of degree 2 and a covering given
by the datum

(S,§,2n—2,d/2, (dir-- - din)s Wigh +1)s - - dimy),
(d21/2, ..., damy/2),(d31/2, ..., d3my/2),
(daj)j=1,..hs>(daj)j=hy+1,.omys - - - >
(dnj)j=1...hy+ ([Anj)j=hp+1,..mp)-
So by Theorem 1.4 we have d;; /2<d/2k fori =2,3 and d;j <d/2k fori =4,... . n,
whence the conclusion. O
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We conclude the paper by establishing our only existence result.

Proof of Theorem 1.7 Let ¥’ be the orientable surface with x(X’) =3 — p. Then the
branch datum (Z/ .S, 3, p,(p), (p), ( p)) is compatible, whence realizable by Theorem
2.7. It is now easy to see that the datum (g X, 3,d/p, (dij/ p)) is also compatible.
Now x(X') <0, so the datum is realizable by Theorem 2.1, and the desired covering
E — S can then be constructed as the composition of the coverings > - ¥ and

'—S. |
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