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Knots with unknotting number 1
and essential Conway spheres

C MCA GORDON

JOHN LUECKE

For a knot K in S3 , let T.K/ be the characteristic toric sub-orbifold of the orbifold
.S3;K/ as defined by Bonahon–Siebenmann. If K has unknotting number one,
we show that an unknotting arc for K can always be found which is disjoint from
T.K/ , unless either K is an EM–knot (of Eudave-Muñoz) or .S3;K/ contains an
EM–tangle after cutting along T.K/ . As a consequence, we describe exactly which
large algebraic knots (ie, algebraic in the sense of Conway and containing an essential
Conway sphere) have unknotting number one and give a practical procedure for
deciding this (as well as determining an unknotting crossing). Among the knots up to
11 crossings in Conway’s table which are obviously large algebraic by virtue of their
description in the Conway notation, we determine which have unknotting number
one. Combined with the work of Ozsváth–Szabó, this determines the knots with 10 or
fewer crossings that have unknotting number one. We show that an alternating, large
algebraic knot with unknotting number one can always be unknotted in an alternating
diagram.

As part of the above work, we determine the hyperbolic knots in a solid torus which
admit a non-integral, toroidal Dehn surgery. Finally, we show that having unknotting
number one is invariant under mutation.

57N10; 57M25

1 Introduction

Montesinos showed [24] that if a knot K has unknotting number 1 then its double
branched cover M can be obtained by a half-integral Dehn surgery on some knot
K� in S3 . Consequently, theorems about Dehn surgery can sometimes be used to
give necessary conditions for a knot K to have unknotting number 1. For instance,
H1.M / must be cyclic, and the Q=Z–valued linking form on H1.M / must have a
particular form (Lickorish [19]). If K is a 2–bridge knot, then M is a lens space,
and hence, by the Cyclic Surgery Theorem (Culler, Gordon, Luecke and Shalen [5]),
K� must be a torus knot. In this way the 2–bridge knots with unknotting number 1
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have been completely determined (Kanenobu and Murakami [15]). Another example
is Scharlemann’s theorem that unknotting number 1 knots are prime [28]; this can be
deduced from the fact (proved later, however by Gordon and Luecke [9]) that only
integral Dehn surgeries can give reducible manifolds (see Zhang [38]). Finally, we
mention the recent work of Ozsváth and Szabó [27], in which the Heegaard Floer
homology of M is used to give strong restrictions on when K can have unknotting
number 1, especially if K is alternating.

The present paper explores another example of this connection. Here, the Dehn surgery
theorem is the result of Gordon and Luecke [11] that the hyperbolic knots with non-
integral toroidal Dehn surgeries are precisely the Eudave-Muñoz knots k.`;m; n;p/

[6]; this gives information about when a knot K whose double branched cover M is
toroidal can have unknotting number 1.

First we clarify the extension of the main result of [11] to knots in solid tori that is
described in the Appendix of [11]. In Section 3, we define a family of hyperbolic
knots J".`;m/ in a solid torus, " 2 f1; 2g and `;m integers, each of which admits
a half-integer surgery yielding a toroidal manifold. (The knots J".`;m/ in the solid
torus are the analogs of the knots k.`;m; n;p/ in the 3–sphere.) We then use [11] to
show that these are the only such:

Theorem 4.2 Let J be a knot in a solid torus whose exterior is irreducible and
atoroidal. Let � be the meridian of J and suppose that J. / contains an essential
torus for some  with �.; �/ � 2. Then �.; �/D 2 and J D J".`;m/ for some
"; `;m.

This theorem along with the main result of [11] then allows us to describe in Theorem
5.2 the relationship between the torus decomposition of the exterior of a knot K in S3

and the torus decompositon of any non-integral surgery on K . In particular, Theorem
5.2 says that the canonical tori of the exterior of K and of the Dehn surgery will be
the same unless K is a cable knot (in which case an essential torus of the knot exterior
can become compressible), or K is a k.`;m; n;p/, or K is a satellite with pattern
J".`;m/ (in the latter cases a new essential torus is created).

We apply these theorems about non-integral Dehn surgeries to address questions about
unknotting number. The knots k.`;m;n;p/ (J".`;m/) are strongly invertible. Their
quotients under the involutions give rise to EM–knots, K.`;m;n;p/ (EM–tangles,
A".`;m/ resp.) which have essential Conway spheres and yet can be unknotted
(trivialized, resp.) by a single crossing change. Theorem 6.2 descibes when a knot
with an essential Conway sphere or 2–torus can have unknotting number 1. This is
naturally stated in the context of the characteristic decomposition of a knot along
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toric 2–suborbifolds given by Bonahon and Siebenmann in [3]. The characteristic
torus decomposition of the double branched cover of a knot K corresponds to the
characteristic decomposition of the orbifold O.K/, where O.K/ refers to S3 thought
of as an orbifold with singular set K and cone angle � (see [3]). This decomposition of
O.K/ is along Conway spheres and along tori disjoint from K , the collection of which
is denoted T.K/. When O.K/ is cut along T.K/, Seif.K/ denotes the components
corresponding to Seifert-fibered components of the canonical torus decomposition
in the double branched cover. An unknotting arc, .a; @a/, for K is an arc such that
a\K D @a that guides a crossing move that unknots K . Under the correspondence
between crossing changes and Dehn surgeries in the double branched cover, Theorem
5.2 becomes

Theorem 6.2 Let K be a knot with unknotting number 1. Then one of the following
three possibilities holds.

(1) (a) Any unknotting arc .a; @a/ for K can be isotoped in .S3;K/ so that
a\T.K/D∅.

(b) If T.K/¤∅ and K has an unknotting arc .a; @a/ in Seif.K/ then .a; @a/
is isotopic to an .r; s/–cable of an exceptional fiber of Seif.K/, for some s � 1.

(2) (a) K is an EM–knot K.`;m; n;p/.

(b) O.K/ has a unique connected incompressible 2–sided toric 2–suborbifold
S , a Conway sphere, K has an unknotting arc .a; @a/ with ja\ S j D 1 (the
standard unknotting arc for K.`;m; n;p/) , and K has no unknotting arc disjoint
from S .

(3) K is the union of essential tangles P[P0 , where P0 is an EM–tangle A".`;m/
and @P0 is in T.K/. Any unknotting arc for K can be isotoped into P0 . The
standard unknotting arc for A".`;m/ is an unknotting arc for K .

Scharlemann and Thompson proved [30; 31] that if a satellite knot has unknotting
number one, then an unknotting arc can be isotoped off any companion 2–torus. (This
follows from Corollary 3.2 of [30] when the genus of K , g.K/, is � 2. When
g.K/D 1, it follows from the proof of Corollary 3.2 of [31], or from Corollary 1 of
Kobayashi [17], which say that a knot K has u.K/D g.K/D 1 if and only if it is a
Whitehead double.) The following corollary of Theorem 6.2 can be thought of as a
generalization of this result.

Corollary 6.3 Let K be a knot with unknotting number 1, that is neither an EM–
knot nor a knot with an EM–tangle summand with essential boundary. Let F be an
incompressible 2–sided toric 2–suborbifold of O.K/. Then any unknotting arc .a; @a/
for K can be isotoped in .S3;K/ so that a\F D∅.
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When a knot or link contains an essential Conway sphere, one can perform mutations
along that sphere. Boileau asked [16, Problem 1.69(c)] if the unknotting number of a
link is a mutation invariant. We prove that it is at least true for knots with unknotting
number one.

Theorem 7.1 Having unknotting number 1 is invariant under mutation.

We would like to thank Alan Reid for suggesting that we consider mutation.

We apply our results to the knots that are algebraic in the sense of Conway [4] (see
also Thistlethwaite [33]), and which have an essential Conway sphere. We call such
a knot K a large algebraic knot. Note that the double branched cover of K is a
graph manifold (ie, the union of Seifert fiber spaces identified along their boundaries).
Theorem 6.2 gives particularly strong constraints on unknotting arcs for knots in this
class.

Theorem 8.2 Let K be a large algebraic knot with unknotting number 1. Then either

(1) any unknotting arc for K can be isotoped into either

(a) one of the rational tangles R.p=q/ in an elementary tangle of type I; or

(b) the rational tangle R.p=q/ in an elementary tangle of type II.

In case (a), the crossing move transforms R.p=q/ to R.k=1/ for some k , and
p=q D 2s2

2rs˙1
C k , where s � 1 and .r; s/D 1.

In case (b), the crossing move transforms R.p=q/ to R.1=0/, and p=qD 2rs˙1
2s2 ,

where s � 1 and .r; s/D 1.

(2) (a) K is an EM–knot K.`;m; n;p/.

(b) O.K/ has a unique connected incompressible 2–sided toric 2–suborbifold
S , a Conway sphere, K has an unknotting arc a with ja\S j D 1 (the standard
unknotting arc for K.`;m; n;p/) , and K has no unknotting arc disjoint from
S .

(3) K is the union of essential tangles P[P0 , where P0 is an EM–tangle A".`;m/
and @P0 is in T .K/. Any unknotting arc for K can be isotoped into P0 . The
standard unknotting arc for A".`;m/ is an unknotting arc for K .

In Section 10 we apply Theorem 8.2 to the knots in Conway’s tables [4] of knots up
to 11 crossings that can be immediately seen to be large algebraic by virtue of their
description in terms of Conway’s notation. There are 174 such knots, and we show that
exactly 24 of them have unknotting number 1. In particular, combining our results with

Algebraic & Geometric Topology, Volume 6 (2006)



Knots with unknotting number 1 and essential Conway spheres 2055

those of Ozsváth and Szabó, the knots with 10 or fewer crossings that have unknotting
number 1 are now completely determined (see [27]).

It follows from Theorem 8.2 that the unknotting number 1 question is decidable for
large algebraic knots.

Theorem 11.2 There is an algorithm to decide whether or not a given large algebraic
knot K , described as a union of elementary marked tangles (Figure 8.1) and 4–braids
in S2 � Œ0; 1�, has unknotting number 1, and, if so, to identify an unknotting crossing
move.

We remark that the algorithm in Theorem 11.2 is straightforward to carry out in practice.

Finally, in Section 12, we consider large algebraic knots which are alternating and show

Theorem 12.5 Let K be an alternating large algebraic knot with unknotting number 1.
Then K can be unknotted by a crossing change in any alternating diagram of K .

The authors would like to thank Mario Eudave-Munõz for pointing out a gap in the
original proof of Lemma 2.2 in the case that the double branched cover of K is a
Seifert fiber space. Also, the first named author wishes to acknowledge partial support
for this work by the National Science Foundation (grant DMS-0305846).

2 Preliminaries

For us, a tangle will be a pair .B;A/ where B is S3 with the interiors of a finite
number .� 1/ of disjoint 3–balls removed, and A is a disjoint union of properly
embedded arcs in B such that A meets each component of @B in four points. Two
tangles .B1;A1/ and .B2;A2/ are homeomorphic if there is a homeomorphism of
pairs hW .B1;A1/! .B2;A2/.

A marking of a tangle .B;A/ is an identification of each pair .S;S\A/, where S is a
component of @B , with .S2;QDfNE;N W;SW;SEg/. A marked tangle is a tangle
together with a marking. Two marked tangles are equivalent if they are homeomorphic
by an orientation-preserving homeomorphism that preserves the markings.

A tangle .B3;A/ in the 3–ball is essential if S2�A is incompressible in B3�A.

Let T D .B;A/ be a knot in S3 or a tangle. A Conway sphere in T is a 2–sphere
S � int B such that S meets A transversely in four points. S is essential if S �A

is incompressible in B � A and .S;S \ A/ is not pairwise parallel in .B;A/ to
.S0;S0\A/ for any component S0 of @B .
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A rational tangle is a marked tangle that is homeomorphic to the trivial tangle in
the 3–ball, .D2; 2 points/� I . As marked tangles, rational tangles are parametrized
by Q[ f1=0g. We denote the rational tangle corresponding to p=q 2 Q[ f1=0g by
R.p=q/. We will adopt the convention of Eudave-Muñoz [7] for continued fractions.
Thus Œa1; a2; : : : ; an� will denote the rational number p

q
D anC

1

an�1C
1

���C 1
a1

. We will

sometimes write R.p=q/ as R.a1; : : : ; an/.

Let T D .B3;A/ be a tangle in the 3–ball. A slope of T is the isotopy class .rel @/
of an embedded arc � in @B3 such that @� � A\ @B3 . Given a marking on T , the
slopes of T are in 1–1 correspondence with Q[f1=0g (via the double branched cover,
S1 �S1 , of @B3 along A\ @B3 ). If T is rational, then A defines a slope on @B3 .
The rational number corresponding to this slope is that assigned to T in the preceding
paragraph, p=q . If p1

q1
, p2

q2
are slopes on some tangle T , then the distance between

these slopes, denoted �.p1

q1
; p2

q2
/, is jp1q2 � p2q1j, and is the minimal intersection

number between the corresponding isotopy classes in the double branched cover of
@B3 along A\ @B3 .

Definition An alternating diagram of a marked tangle in B3 is said to be positive
(negative, resp.) if the first crossings encountered from the boundary (with pictured
marking) are as shown in Figure 2.1. An alternating diagram of a marked tangle in
S2 � I is said to be positive (negative, resp.) if filling it with R.1=0/ gives a positive
(negative, resp.) diagram of a tangle in B3 .

+ -

Figure 2.1

By our conventions, then, R.p=q/ has a positive alternating diagram when p=q > 0.

Let M.�;�/ be the tangle in the thrice-punctured 3–sphere illustrated in Figure 2.2.
If ˛; ˇ 2 Q[ f1=0g, then M.˛; ˇ/ will denote the tangle in the 3–ball obtained by
inserting rational tangles R.˛/, R.ˇ/ into A, B respectively (with respect to the
markings of @A and @B given by Figure 2.2). Similarly, M.˛;�/ (resp. M.�; ˇ/)
will denote the tangle in S2�I obtained by inserting R.˛/ (resp. R.ˇ/) into A (resp.
B ).
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A B

Figure 2.2

If ˛; ˇ 2Q�Z then M.˛; ˇ/ is a Montesinos tangle of length 2. Note that transferring
horizontal twists between A and B shows that M.˛Cm; ˇ�m/DM.˛; ˇ/ for all
m 2 Z.

In general we will denote the double branched cover of a tangle T by eT . However,
we will denote fM.�;�/ by D2.�;�/; it is homeomorphic to P � S1 , where P

is a pair of pants. Similarly, denote the double branched cover of M.p=q;�/ by
D2.p=q;�/. If q > 1 this is a Seifert fiber space over the annulus with one exceptional
fiber of multiplicity q . Finally, the double branched cover of M.p1=q1;p2=q2/ is
D2.p1=q1;p2=q2/; if q1; q2 > 1 this is a Seifert fiber space over the disk with two
exceptional fibers of multiplicities q1 and q2 .

Let S.�;�I �;�/, the square tangle, be the marked tangle shown in Figure 2.3; it is
the union of two copies of M.�;�/. If ˛; ˇ; ; ı 2Q[f1g, then S.˛; ˇI ; ı/ is the
knot or link obtained by inserting the corresponding rational tangle into A;B;C;D

respectively.

A B

C D

Figure 2.3: S.�;�I �;�/

Lemma 2.1 S.˛; ˇI �;�/Š S.ˇ; ˛I �;�/ by a homeomorphism whose restriction to
@C .@D/ is rotation through 180ı about the horizontal axis.

Proof This follows by rotating Figure 2.4 through 180ı about the vertical axis shown,
using the fact that a rational tangle is unchanged by rotation through 180ı about the
vertical axis.

To state the next lemma, let D8 be the order 8 dihedral group of all permutations of
f˛; ˇ; ; ıg that preserve the partition ff˛; ˇg; f; ıgg.
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C
D

Figure 2.4: S.˛; ˇI �;�/

Lemma 2.2

(1) S.˛; ˇI ; ı/D S.˛Cm; ˇ�mI  C n; ı� n/ for all m; n 2 Z.

(2) S.˛; ˇI ; ı/D S.�.˛/; �.ˇ/I�. /; �.ı// for all � 2D8 .

(3) S.�˛;�ˇI �;�ı/D�S.˛; ˇI ; ı/.

If ˛; ˇ; ; ı; ˛0; ˇ0;  0; ı0 2Q�Z then

(4) S.˛; ˇI ; ı/ D S.˛0; ˇ0I  0; ı0/ (resp. ˙S.˛0; ˇ0I  0; ı0/) if and only if .˛; ˇ ;
; ı/ and .˛0; ˇ0I  0; ı0/ are related by a composition of the transformations in
(1) and (2) (resp. the transformations in (1), (2) and (3)).

Proof (1) follows from the property of M.˛; ˇ/ noted earlier.

To prove (2), observe that rotating Figure 2.3 through 180ı about an axis perpendicular
to the plane of the paper shows that S.˛; ˇI ; ı/D S.ı;  Iˇ; ˛/. (A rational tangle is
unchanged by rotation through 180ı about any of the three co-ordinate axes.) Also,
by Lemma 2.1, S.˛; ˇI ; ı/ D S.ˇ; ˛I ; ı/. The group generated by these two
permutations is the dihedral group D8 .

(3) follows by changing all the crossings in the diagrams of R.˛/, R.ˇ/, R. /, R.ı/.

To prove (4), let K D S.˛; ˇI ; ı/, K0 D S.˛0; ˇ0I  0; ı0/, and let M;M 0 be the
double branched covers of K and K0 respectively; thus M DD2.˛; ˇ/[D2.; ı/,
and similarly for M 0 . Parametrize slopes on the torus T , the double branched cover
of S D @M.˛; ˇ/, by the parametrization of slopes on S coming from the marking of
M.˛; ˇ/ in Figure 2.4. Thus 1=0 is the slope of the Seifert fiber � of D2.˛; ˇ/, 0=1

is the slope of the Seifert fiber  of D2.; ı/, and similarly for �0;  0 .

Suppose K DK0 . Then there is an orientation-preserving homeomorphism hW M !

M 0 . Since T is, up to orientation-preserving homeomorphism, the unique separating,
incompressible torus in M , and similarly for T 0 , we may suppose that h.T / D
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T 0 . We may assume further, by interchanging f˛; ˇg and f; ıg if necessary, that
h.D2.˛; ˇ//DD2.˛0; ˇ0/, and, since the Seifert fiberings of D2.˛; ˇ/ etc. are unique,
that h.�/D �0 , h. /D  0 .

Recall that if N is a Seifert fiber space over D2 with two exceptional fibers, then to
describe N as D2.�; �/ .�; � 2 Q� Z/, we remove disjoint Seifert fibered neigh-
borhoods of the exceptional fibers, getting P �S1 , where P is a pair of pants, and
choose a section sW P ! P �S1 . In identifying fM.˛; ˇ/ with D2.˛; ˇ/ we use the
section that takes the boundary components of P to curves of slope 0=1 with respect
to the markings in Figure 2.4 of S and the boundaries of the rational tangles R.˛/
and R.ˇ/.
Since hW D2.˛; ˇ/!D2.˛0; ˇ0/ is an orientation-preserving homeomorphism which
preserves the slopes 1=0 and 0=1 on S , the descriptions D2.˛; ˇ/ and D2.˛0; ˇ0/

differ only in the possible re-ordering of the two exceptional fibers and the choice of
section s , subject to s.@0P / having slope 0=1, where @0P is the boundary component
of P that corresponds to the outer (unfilled) boundary component of M.�;�/ in
Figure 2.2. This choice corresponds to twisting a given section along an annulus
a�S1 � P �S1 , where a is an arc in P with one endpoint in each component of
@P � @0P . This in turn corresponds to replacing .˛; ˇ/ by .˛Cm; ˇ�m/ for some
m2Z. Applying the same considerations to D2.; ı/ and D2. 0; ı0/ gives the desired
conclusion.

The parenthetical statement in (4) now follows from (3).

By a crossing move on a knot K we mean the operation of passing one strand of K

through another. More precisely, we take a 3–ball B0 in S3 such that .B0;B0\K/DT0

is a trivial tangle, and replace it by the trivial tangle T 0
0

shown in Figure 2.5. This
determines an arc .a; @a/� .S3;K/ as shown in Figure 2.5. Note that T0 is a relative
regular neighborhood of .a; @a/ in .S3;K/. Conversely, the arc a, together with a
framing of a, determines the crossing move. If the resulting knot K0 is the unknot, we
say that a is an unknotting arc for K .

Note that we distinguish between a crossing move and a crossing change, reserving the
latter term for a change of crossing in a knot diagram.

If K is a knot in S3 , then u.K/ is its unknotting number. That is, u.K/ is the smallest
number of crossing moves required to unknot K .

Write T D .S3;K/� int T0 , and assume that K0 is the unknot. Then taking double
branched covers gives

M D B2.K/D B2.T /[B2.T0/DX [V0 ;

S3
D B2.K

0/D B2.T /[B2.T 00/DX [V 00 ;
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0 0
/

Figure 2.5

where V0;V
0

0
are solid tori with meridians ; �, say, on @X , such that �.; �/D 2.

Thus the core of V 0
0

is a knot K� in S3 , with exterior X and meridian �, and
K�. /DX. /ŠM .

This connection between crossing moves and Dehn surgery in the double branched
cover is due to Montesinos [24].

We now recall the characteristic toric orbifold decomposition of a knot, due to Bonahon
and Siebenmann [3].

Let K be a prime knot in S3 . Regard S3 as an orbifold O.K/ with singular set K ,
each point of K having isotropy group rotation of R3 about R1 through angle � .
Since K is prime, the Characteristic Toric Orbifold Splitting Theorem of [3] asserts the
existence of a collection T.O.K//D T.K/ of disjoint incompressible 2–sided toric
2–suborbifolds, unique up to orbifold isotopy, such that (i) each component of O.K/

cut along T.K/ is either atoroidal or S1 –fibered (as an orbifold), and (ii) T.K/ is
minimal with respect to this property. (See [3, Splitting Theorem 1].) Each component
of T.K/ is either a 2–torus disjoint from K or a Conway sphere.

T.K/ may be described as follows; see Boileau and Zimmermann [2]. Let M be the
double branched cover of .S3;K/, with covering involution hW M !M . Let T.M /

be the JSJ–decomposition of M . By Meeks and Scott [20], we may assume that T.M /

is h–invariant. For each component T of T.M / such that h.T /DT and h exchanges
the sides of T , replace T by two parallel copies that are interchanged by h. Denote
this new collection of tori by TC.M /. Then T.K/ is the quotient TC.M /=h in S3 .

3 EM–knots and EM–tangles

In [6] Eudave-Muñoz constructed an infinite family of knots K DK.`;m; n;p/ such
that (1) K has unknotting number 1, (2) K has a (unique) essential Conway sphere S ,
and (3) no unknotting arc for K is disjoint from S . Passing to double branched covers
these give rise (by [24]; see Section 2) to a family of hyperbolic knots k.`;m; n;p/ in
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S3 , called the Eudave-Muñoz knots in [11], each of which has a half-integral toroidal
surgery. To distinguish the K.`;m; n;p/’s from the k.`;m; n;p/’s we shall call the
former EM–knots.

Definition The crossing move described in [6] that unknots K.`;m; n;p/ will be
called the standard crossing move of K.`;m; n;p/.

Recall [6] that the parameters `;m; n;p are restricted as follows: one of n;p is always
0; j`j> 1; if p D 0 then m¤ 0, .`;m/¤ .2; 1/ or .�2;�1/, and .m; n/¤ .1; 0/ or
.�1; 1/; if nD 0 then m¤ 0 or 1, and .`;m;p/¤ .�2;�1; 0/ or .2; 2; 1/.

The EM–knots can be conveniently described in terms of the tangle S defined in
Section 2 (see Figure 2.3 to describe S as a marked tangle).

Lemma 3.1 The EM–knot K.`;m; n;p/D S.˛; ˇI ; ı/ where ˛; ˇ; ; ı are as fol-
lows:

p D 0 W ˛ D�
1

`
; ˇ D

m

`m� 1
;  D

2mnC 1�m� n

4mn� 2mC 1
; ı D�

1

2

nD 0 W ˛ D�
1

`
; ˇ D

2mp�m�p

`.2mp�m�p/� 2pC 1
;  D

m� 1

2m� 1
; ı D�

1

2
:

Proof This follows immediately from [7, Proposition 5.4] (after allowing for sign
errors).

Lemma 3.1, together with the restrictions on the parameters `;m; n;p , easily implies

Corollary 3.2 Any EM–knot is of the form S.˛; ˇI ; ı/ with ˛; ˇ; ; ı 2 Q � Z,
j˛j; jˇj; j j; jıj< 1, and ˛ˇ < 0,  ı < 0.

We will need to consider a collection of tangles in the 3–ball, the EM–tangles, closely
related to the EM–knots. We describe them as two families, corresponding to the
cases p D 0 and nD 0 of the EM–knots. More precisely, let A1.`;m/ be the tangle
obtained from the knot K.`;m; n; 0/ by removing the “C ”–tangle, and A2.`;m/ be
the tangle obtained from K.`;m; 0;p/ by removing the “B”–tangle. Here ` and m

are subject to the same restrictions as for K.`;m; n;p/, ie, j`j> 1 in both cases, and
for A1.`;m/, m¤ 0, .`;m/¤ .2; 1/ or .�2;�1/, while for A2.`;m/, m¤ 0 or 1.

We therefore have the following:
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Definition 3.3 The EM–tangle A".`;m/ is given by A1.`;m/ D S.˛; ˇI �; ı/,
A2.`;m/D S.˛;�I ; ı/, where ˛; ˇ; ; ı are as follows:

"D 1 W ˛ D�
1

`
; ˇ D

m

`m� 1
; ı D�

1

2
I j`j> 1; m¤ 0;

.`;m/ 62 f.2; 1/; .�2;�1/g

"D 2 W ˛ D�
1

`
;  D

m� 1

2m� 1
; ı D�

1

2
I j`j> 1; m 62 f0; 1g:

(The A".`;m/ are pictured in Figure 4.3 where the twist boxes represent vertical
twists.)

K.`;m; n;p/ contains an essential Conway sphere S , decomposing it into two Mon-
tesinos tangles: K.`;m; n;p/DM.˛; ˇ/[SM.; ı/. This gives rise to a decomposi-
tion of the double branched cover of K.`;m; n;p/ as N1[T N2 , where Ni is a Seifert
fiber space over the disk with two exceptional fibers, iD1; 2, and T D@N1D@N2D

eS
is the double branched cover of S . Similarly, the essential Conway sphere S in
A".`;m/ gives a decomposition of its double branched cover as N1[T N2 , where N2

is as above, and N1 is a Seifert fiber space over the annulus with one exceptional fiber.

The remainder of this section is devoted to proving the following theorem which says
that the EM–knots and the EM–tangles are determined by their double branched covers.

Theorem 3.4

(1) Let K be a knot in S3 whose double branched cover is homeomorphic to that of
K.`;m; n;p/. Then K D˙K.`;m; n;p/.

(2) Let T be a tangle in B3 whose double branched cover is homeomorphic to that
of A".`;m/. Then T and A".`;m/ are homeomorphic tangles.

In order to prove Theorem 3.4, we first study involutions on the manifolds D2.�;�/,
D2.p=q;�/ and D2.p1=q1;p2=q2/. The definition of equivalence that is appropriate
to our purposes is the following. Two homeomorphisms f;gW X ! X are strongly
conjugate if there is a homeomorphism hW X !X isotopic to the identity such that
f D h�1gh. If X0 � X , then f and g are strongly conjugate rel X0 if h can be
chosen to be isotopic to the identity by an isotopy fixed on X0 . The set of fixed points
of an involution � will be denoted by Fix.�/.

To define a standard model for a pair of pants P , let D2 be the unit disk in R2 , let
D1 and D2 be disjoint round disks in int D2 with their centers on the x–axis, and let
P DD2� int.D1[D2/. The map .x;y/ 7! .x;�y/ defines an orientation-reversing
involution �P of P , which we will call reflection.
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Lemma 3.5 Let � be a non-trivial involution on a pair of pants P . If each boundary
component of P is invariant under � then � is strongly conjugate to reflection.

Proof Let ˛ D P \ .x–axis/, a disjoint union of three arcs properly embedded in
P . Since the restriction of � to each boundary component of P is either the identity,
conjugate to rotation through � , or conjugate to reflection, we may assume that @˛ is
invariant under � . By analyzing the intersections of ˛ and �.˛/, one can show that
after conjugating � , ˛ can be taken to be invariant under � . This implies that ˛ is
fixed by � . The two disks of P �˛ are either exchanged or invariant. In the first case,
� is conjugate to reflection, and in the second � must be the identity. Finally, since any
homeomorphism of P is isotopic to one that commutes with �P , in the first case � is
strongly conjugate to �P .

Recall (Section 2) that D2.�;�/ (resp. D2.p=q;�/, resp. D2.p1=q1;p2=q2/) is the
double branched cover of the tangle M.�;�/ (resp. M.p=q;�/, resp. M.p1=q1;

p2=q2/). The standard involution on D2.�;�/, D2.p=q;�/ or D2.p1=q1;p2=q2/ is
the non-trivial covering transformation corresponding to this double branched cover.
Note that in particular, identifying D2.�;�/ with P �S1 , the standard involution on
D2.�;�/ is the map .x; �/ 7! .�P .x/;��/.

Lemma 3.6 Let � be a non-trivial orientation-preserving involution on P �S1 . If
each component of the boundary is invariant under � then � is strongly conjugate to
either the standard involution or a free involution that leaves each S1 –fiber invariant.

Proof By Tollefson [35], there is a Seifert fibration of P �S1 that is invariant under
� . As the Seifert fibration is unique up to isotopy, we may therefore assume, after
strongly conjugating � , that � preserves the product S1 –fibration of P �S1 . Thus �
induces an involution �P on P . By Lemma 3.5, �P is either the identity or strongly
conjugate to �P .

If �P is the identity, then � takes each S1 –fiber to itself by an orientation-preserving
involution, hence by either the identity or a map conjugate to rotation through � . By
continuity, the action is the same on each fiber. Therefore � is either the identity or
free.

We may suppose, then, that �P is strongly conjugate to �P , and hence, by strongly
conjugating � , that �P D �P .

Let C be a boundary component of P . Note that �P fixes two points in C . The
restriction of � to each of the two corresponding S1 –fibers is therefore conjugate to
reflection � 7! �� . It follows that the restriction of � to C �S1 is strongly conjugate
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to �I , given by .'; �/ 7! .�';��/ (see Hartley [13]). So we may assume that � D�I

on each boundary component of P � S1 . Since any two S1 –fibrations of P � S1

that agree on the boundary are isotopic rel @, we can still assume that � preserves the
product fibration and that �P D �P .

Let ˛1; ˛2 be the two arc components of Fix.�P / shown in Figure 3.1, and let C1;C2

be the two boundary components of P indicated in the same figure.

C1 C2

Figure 3.1

Let Ai be the vertical annulus ˛i � S1 , and let Ti be the boundary torus Ci � S1 ,
i D 1; 2. Note that Ai is invariant under � , i D 1; 2. Then � j.Ai D ˛i � S1/ is
conjugate to the involution .x; �/ 7! .x;��/, by a homeomorphism gi W Ai!Ai that
is isotopic rel @ to a power of a Dehn twist along the core of Ai . Hence, conjugating
� by the corresponding power of a vertical Dehn twist hi along a torus in a collar
neighborhood of Ti , we may assume that � jAi is .x; �/ 7! .x;��/. Since hi is
isotopic to the identity, the strong conjugacy class of � is unchanged.

By a further isotopy rel @, we may assume that Ai D Ai � f0g has a neighborhood
Ai�Œ�1; 1� on which � acts by .x; �; t/ 7! .x;��;�t/. Removing .A1[A2/�.�1; 1/

from P � S1 , � induces an involution �0 on D2 � S1 which is equal to �I on
the boundary. Hence �0 is strongly conjugate rel @ to the involution ..x;y/; �/ 7!
..x;�y/;��/ [13]. Reattaching .A1[A2/�Œ�1; 1� we get that � is strongly conjugate
to the standard involution.

Lemma 3.7 Let � be a non-trivial orientation-preserving involution on
D2.p1=q1;p2=q2/, where q1 ¤ q2 .

(1) If Fix.�/ has non-empty intersection with the boundary then � is strongly
conjugate to the standard involution.

(2) If � acts freely on the boundary then the Seifert fibration of D2.p1=q1;p2=q2/

may be isotoped so that � leaves each Seifert fiber on the boundary invariant.

Proof By [35], D2.p1=q1;p2=q2/ has a Seifert fibration for which � is fiber-pres-
erving. Since the Seifert fibration is unique up to isotopy, and since q1 ¤ q2 , the
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exceptional fibers must be invariant, and hence they have disjoint invariant fibered
neighborhoods V1 and V2 , say. Thus � restricts to an involution �0 on the complement
of these neighborhoods, D2.�;�/ D P � S1 . Note that �0 leaves each boundary
component of D2.�;�/ invariant.

(1) Here Fix.�0/ ¤ ∅, so by Lemma 3.6 �0 is strongly conjugate to the standard
involution. Extending over V1 and V2 , and using [13], we get that � is strongly
conjugate to the standard involution.

(2) Since �0 acts freely on at least one of the boundary components of D2.�;�/,
by Lemma 3.6 the (product) Seifert fibration of D2.�;�/ may be isotoped so that �
leaves each fiber invariant. Now � j@Vi can be extended to an involution �i of Vi that
leaves each Seifert fiber invariant. Since �i and � jVi agree on @Vi , they are strongly
conjugate rel @Vi [13]. The corresponding isotopy of Vi (rel @Vi ) takes the Seifert
fibration of Vi to one such that each fiber is invariant under � .

Lemma 3.8 Let � be a non-trivial orientation-preserving involution on D2.p=q;�/

such that Fix.�/ has non-empty intersection with the boundary. Then � is strongly
conjugate to the standard involution.

Proof This is the same as the proof of Part (1) of Lemma 3.7.

Proof of Theorem 3.4 Case (1) Write K0 D K.`;m; n;p/. Then .S3;K0/ D

.B1;A1/ [S .B2;A2/, where S is an essential Conway sphere and .Bi ;Ai/ is a
Montesinos tangle of length 2, i D 1; 2. The double branched cover of .S3;K0/ is
N DN1[eS N2 , where Ni , the double branched cover of .Bi ;Ai/, is a Seifert fiber

space over the disk with two exceptional fibers, i D 1; 2, and eS D @N1 D @N2 is the
double branched cover of .S;S\K0/. The Seifert fibers of N1 and N2 intersect once
on eS . The covering involution � W N !N restricts to the standard involution �i on
Ni , i D 1; 2.

Now suppose K is a knot in S3 whose double branched cover is homeomorphic to
N . Let � W N !N be the corresponding covering involution. Since eS is the unique
incompressible torus in N , up to isotopy, by [20, Theorem 8.6] we may assume thateS is invariant under � .

Claim 1 Each Ni is invariant under � .

Proof If � interchanges N1 and N2 then Fix.�/ is contained in eS . With respect to
some parametrization of eS as S1 � S1 , Fix.�/ is a (2,1)–curve and � leaves each
(0,1)–curve  invariant, taking it to itself by reflection in the pair of points Fix.�/\ 
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(thus the quotient eS =� is a Möbius band). Then S3 DN1=.� jeS / is homeomorphic to
N1 with a solid torus V attached so that  bounds a meridian disk of V . Hence N1

is a knot exterior with meridian  . Applying the same argument to N2 , we see that in
N DN1[N2 the meridians of N1 and N2 are identified. But this is not true: when
each side of N is the exterior of a knot in S3 , the argument in Lemma 1.3 of [6] (or
Lemmas 3.1 and 9.5) shows that the meridian of one side is identified with the Seifert
fiber of the other.

Let �i be the restriction of � to Ni , i D 1; 2.

Claim 2 �i is strongly conjugate to the standard involution �i on Ni , i D 1; 2.

Proof If Fix.�/ meets eS then the result follows from Lemma 3.7(1) and Lemma 3.9
below.

If Fix.�/ is disjoint from eS , then by Lemma 3.7(2) and Lemma 3.9 the Seifert fibrations
of N1 and N2 can be isotoped so that, on eS , each S1 –fiber of each fibration is invariant
under � . But since the fibers of the two fibrations intersect once on eS , this is clearly
impossible.

Write Si D @Bi , i D 1; 2, and let f W .S1;S1 \A1/! .S2;S2 \A2/ be the gluing
homeomorphism that defines .S3;K0/D .B1;A1/[f .B2;A2/. To compare K0 and
K , we need the notion of a mutation involution, which is defined at the beginning of
Section 7.

Claim 3 .S3;K/ is homeomorphic to .B1;A1/ [�f .B2;A2/ for some mutation
involution � of .S2;S2\A2/.

Proof Let zf W @N1!@N2 be a lift of f , giving N DN1[ zf
N2 . Note that zf �1D�2

zf

and zf �1D�2
zf . Also, N=�D .N1=�1/[g.N2=�2/ for some gW @.N1=�1/!@.N2=�2/

such that zf is a lift of g .

By Claim 2, there is a homeomorphism zhi W Ni!Ni , isotopic to the identity, such that
�i D

zh�1
i �i
zhi , i D 1; 2. Then zhi induces a homeomorphism hi W Ni=�i ! Ni=�i D

.Bi ;Ai/, i D 1; 2. Let @hi be the restriction of hi to @.Ni=�i/. Then h1[h2 induces
a homeomorphism hW N=� D .N1=�1/[g .N2=�2/! .B1;A1/[e .B2;A2/, where
e D .@h2/

�1g.@h1/. Then e lifts to ze D .@zh2/
�1 zf .@zh1/, which is isotopic to zf .

Let � be the mutation involution of .S2;S2 \ A2/ such that the composition �f
agrees with e on some point of S1\A1 . Since ze is isotopic to zf , e and f induce the
same function from the set of (unoriented) isotopy classes of essential simple closed
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curves in S1� .S1\A1/ to the set of those in S2� .S2\A2/. Hence e and �f do
also. Since e and �f agree on a point of S1\A1 , they must be isotopic as maps of
pairs. Therefore .S3;K/Š .B1;A1/[e .B2;A2/Š .B1;A1/[�f .B2;A2/.

By Claim 3, K is a mutation of K0 along S . By [6] such mutations yield K0 again.

This completes the proof of the theorem in Case (1).

Case (2) We have A".`;m/D .B1;A1/[S .B2;A2/, where B1 is S2�I , .B1;A1/D

M.p=q;�/, and .B2;A2/ is a Montesinos tangle of length 2 as in Case (1); see
Definition 3.3. The double branched cover of A".`;m/ is then N D N1 [eS N2 ,
where N1 is now a Seifert fiber space over the annulus with one exceptional fiber. The
covering involution � restricts to the standard involution �i on Ni , i D 1; 2.

Suppose T is a tangle in B3 whose double branched cover is homeomorphic to N ,
and let � be the corresponding covering involution. Since eS is the unique essential
torus in N , we may assume �.eS /D eS . Let �i be the restriction of � to Ni , i D 1; 2.
By Lemma 3.8, �1 is strongly conjugate to the standard involution on N1 . In particular
Fix.�/\ eS ¤∅, and so, by Lemmas 3.7(1) and 3.9, �2 is strongly conjugate to the
standard involution on N2 . Now Claim 3 holds, exactly as in Case (1). Since A".`;m/
is unchanged by mutation along S , (by Lemma 2.1 and the fact that rotating a rational
tangle through � about a co-ordinate axis does not change it), T is homeomorphic to
A".`;m/.

Lemma 3.9 Let N DN1[N2 be the double branched cover of S3 over K.`;m; n;p/

or A".`;m/, as in the discussion before the statement of Theorem 3.4. Let q1; q2 be
the orders of the two exceptional fibers of Ni for some i . Then q1 ¤ q2 .

Proof When N is the cover of an EM–tangle, the lemma applies to N2 . By Definition
3.3 the exceptional fibers are of orders .j`j; j1�`mj/ with j`j> 1, m¤ 0 or of orders
.2; j2m� 1j/ where m¤ 0; 1. In either case, the lemma easily follows.

So assume N is the double branched cover of K. ;̀m; n;p/, and recall Lemma 3.1.

If pD 0, the orders of the exceptional fibers are .j`j; j1�`mj/ for N1 and .2; j4mn�

2mC 1j/ for N2 . In this case the lemma is clear.

So we assume nD 0. In this case the exceptional fibers have orders .2; j2m� 1j/ in
N1 and .j`j; j2`mp�`m�`p�2pC1j/ in N2 . We need to consider the solutions to

˙l D 2`mp� `m� `p� 2pC 1

” 2p� 1D `.2mp�m�p˙ 1/(1)

” 2.2p� 1/D `.4mp� 2m� 2p˙ 2/

” 2.2p� 1/D `..2m� 1/.2p� 1/C a/(2)
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where a is �3 or 1. When nD 0, we assume that m¤ 0; 1. Thus j2m�1j � 3. Then

j.2m� 1/.2p� 1/C aj � j.2m� 1/.2p� 1/j � 3� 2j2p� 1jC j2p� 1j � 3 :

Since j`j � 2, (1) implies that j2p� 1j � 3. Thus (2) becomes

j2.2p� 1/j � j`jj2.2p� 1/j ;

a contradiction.

4 Knots in solid tori

In this section we describe the hyperbolic knots in a solid torus that have a non-integral
toroidal Dehn surgery. We gave a description of such knots in [11, Corollary A.2]; here
we sharpen this to a complete characterization.

The exteriors of the knots are the double branched covers of certain tangles in S2 � I ,
which we now describe. Let C.A;B;C;D/ be the tangle shown in Figure 4.1. (To

A

B

CD

Figure 4.1: C.A;B;C;D/

be consistent with the notation of [7], we here regard A;B;C;D as denoting rational
tangles; a puncture that is not filled in will as usual be indicated by a �.) Note that in
the terminology of [11], C.A;B;C;D/D B.A;B;C /CR.D/D P.A;B;C; 1

2
;D/.

Define tangles T1.`;m/ and T2.`;m/ in S2 � I as follows.

T1.`;m/ D C.A;B;�;�/, where A D R.`/, B D R.m;�`/, and `;m are
integers such that j`j> 1, m¤ 0, and .`;m/¤ .2; 1/ or .�2;�1/.

T2.`;m/D C.A;�;C;�/, where ADR.`/, C DR.m�1; 2; 0/, and `;m are
integers such that j`j> 1, m¤ 0; 1.

See Figure 4.2 (the boxes correspond to vertical twists).

Note that T1.`;m/ is obtained by removing the “C –tangle” from B.`;m; n; 0/ of [6],
and similarly T2.`;m/ is obtained by removing the “B –tangle” from B.`;m; 0;p/.
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m

-

(   ,m)1

-

(   ,m)
2

=x

x right-handed
        vertical twists

1-m
<

Figure 4.2

Filling the “D”–puncture of T1.`;m/ or T2.`;m/ with the 1
0

–tangle, ie, C.A;B ,
�; 1

0
/ or C.A;�;C; 1

0
/ with A;B;C as indicated above, gives a rational tangle. So,

the corresponding 1
0

–Dehn filling of the double branched cover of T".`;m/, "2 f1; 2g,
is a solid torus. Let J".`;m/ denote the core of this Dehn filling, seen as a knot in this
solid torus.

Note that the EM–tangle A".`;m/, "D 1; 2, defined in Section 3, is the tangle in B3

obtained by filling the “D”–puncture of T".`;m/ with the 1
2

–tangle. That is

A1.`;m/D C
�
A;B;�; 1

2

�
A2.`;m/D C

�
A;�;C; 1

2

�
(with A;B as for T1.`;m/, T2.`;m/). See Figure 4.3, which gives a marking to
A".`;m/.

Definition Denote by T".`;m/.p
q
/ the tangle in the 3–ball gotten by filling the

D–puncture of T`.`;m/ with the rational tangle R.p=q/. The change in filling
T".`;m/.1

2
/ to T .`;m/.1

0
/ corresponds to a crossing move taking the toroidal tangle

A".`;m/ to a rational tangle. We will refer to this as the standard crossing move on
A".`;m/. The arc guiding this crossing change is the standard unknotting arc for
A".`;m/.

A".`;m/ ." D 1 or 2) contains an essential Conway sphere S , which induces a
decomposition of the double branched covering eA".`;m/D N1 [T M2 , where N1
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is a Seifert fiber space over A2 with one exceptional fiber, and M2 is a Seifert fiber
space over D2 with two exceptional fibers. See Figure 4.3. Thus if J D J".`;m/

for some "; `;m, then J is a knot in S1 �D2 , with meridian �, say, and J. / DeA".`;m/DN1[T M2 contains an essential separating torus T , for some  such that
�.; �/D 2.

-

-

m 1-m

=x

A1.`;m/ A2.`;m/

Figure 4.3

Theorem 4.1 J".`;m/ is a hyperbolic knot in the solid torus.

We give the proof of Theorem 4.1 at the end of this section.

The following theorem says the J".`;m/ are exactly the hyperbolic knots in solid tori
which admit non-integral toroidal surgeries.

Theorem 4.2 Let J be a knot in a solid torus whose exterior is irreducible and
atoroidal. Let � be the meridian of J and suppose that J. / contains an essential
torus for some  with �.; �/ � 2. Then �.; �/D 2 and J D J".`;m/ for some
"; `;m.

Remark J D J".`;m/ means there is a homeomorphism of the solid torus (possibly
orientation-reversing) taking J to J".`;m/.

The following is the corresponding statement about tangles. Theorem 3.4(2) says that
A".`;m/ is determined by its double branched cover. At this point, it is not known if
the same is true for T".`;m/. This complicates the statement of Theorem 4.3.
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Theorem 4.3 Let T .�;�/ be a tangle in S2 � I which is irreducible and atoroidal
as a Z2 –orbifold. If T .�; ˛/ is rational, and T .�; ˇ/ is orbifold-toroidal, where
�.˛; ˇ/ � 2, then the double branched cover of T .�;�/ is homeomorphic to the
double branched cover of T".`;m/ for some "; `;m. Under this homeomorphism, the
slopes ˛; ˇ on T correspond to slopes 1=0, 1=2 respectively on D of C .

Furthermore, there are tangle homeomorphisms h1W T .�; ˇ/ ! A".`;m/ D
T".`;m/.1

2
/ and h2W T .�; ˛/! T".`;m/.1

0
/ such that .h2j@/.h1j@/

�1 is the identity
(where @T .�; ˇ/D @T .�; ˛/� @T .�;�/, and T".`;m/.1

0
/, T".`;m/.1

2
/ are marked

from Figure 4.2).

Addendum T .�; ˛/ is rational and thus determines a slope, p1

q1
, on its boundary.

T .�; ˇ/ is the tangle T".`;m/ whose double branched cover contains a unique es-
sential annulus. The boundary of this annulus determines a slope on the boundary of
the cover, which determines a tangle slope, p2

q2
, on the boundary of T .�; ˇ/. Then

�.p1=q1;p2=q2/D jp1q2�p2q1j> 1.

Proof of Theorem 4.3 Let T .�;�/ be as in the theorem. Let X be its double
branched cover. Let X.˛/;X.ˇ/ be the Dehn fillings of X corresponding to the
double branched covers of T .�; ˛/, T .�; ˇ/ (resp.). Then by assumption, X is
irreducible and atoroidal, X.˛/ is a solid torus and X.ˇ/ is toroidal. Since �.˛; ˇ/>1,
Corollary A.2 of [11] proves that X is the double branched cover of C.A;B;C;�/
where one of A;B;C is the empty tangle and the others are rational (using the fact
proven there that 1

2
2f˛0; ˇ0;  0g). Furthermore, under this identification, ˛D 1

0
, ˇD 1

2
.

That is, C.A;B;C; 1
0
/ is a rational tangle, and C.A;B;C; 1

2
/ is orbifold-toroidal. By

symmetry we may assume that either B or C is the empty tangle above. Lemma 4.4
and Lemma 4.5 below show that A;B;C are as in the definition of T".`;m/. Now
the double branched cover of T .�; ˇ/ is the same as the double branched cover of
C.A;B;C; 1

2
/DA".`;m/. By Theorem 3.4, T .�; ˇ/ and A".`;m/ are homeomorphic

tangles. Such a homeomorphism h1 determines a framing on @X.ˇ/ (A".`;m/ is a
marked tangle), hence on @X.˛/. The meridian disk of X.˛/ determines a rational
number in this framing which corresponds to the rational tangle T".`;m/.1

0
/. This

implies that T .�; ˛/ is the same as the rational tangle T".`;m/.1
0
/ under the marking

determined by h1 . This is the second paragraph of Theorem 4.3.

Proof of Addendum to Theorem 4.3 In the context of the proof of Theorem 4.3,
X.˛/, X.ˇ/ are the double branched covers of C.A;B;C; 1

0
/, C.A;B , C; 1

2
/ with

A;B;C as in the definition of T".`;m/. The slope of the essential annulus of X.ˇ/

corresponds to the tangle slope 1
0

in Figure 4.2 (see Figure 4.3). The slope corresponding
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to the rational tangle T .�; ˛/ corresponds to the slope of the meridian disk in X.˛/.
This in turn corresponds in Figure 4.2 to the p

q
of the rational tangle C.A;B;C; 1

0
/.

We need to show then that jqj > 1. For T1.`;m/, we see this by simply noting
that C.A;B;C; 1

0
/ capped off by strands of slope 1

0
is the unlink only when mD 0.

For T2.`;m/, C.A;�;C; 1
0
/ corresponds to the rational number 2m�1

`.2m�1/�2
. That is,

q D `.2m� 1/� 2. The conditions that j`j> 1, m¤ 0; 1 imply that jqj> 1.

Proof of Theorem 4.2 This is the proof of Theorem 4.3 using the definition of
J".`;m/, and without Theorem 3.4.

Lemma 4.4 If C.A;�;C; 1
0
/ is a rational tangle and C.A;�;C; 1

2
/ is orbifold-toroidal,

then ADR.s/, C DR.t; 2; 0/ for s; t 2 Z with jsj; j2t C 1j> 1.

Proof We follow the argument of Lemma 5.1 of [7]. Rewrite C.A;�;C; 1
0
/ as in

Figure 4.4. From this we deduce that C 0 DR. 1
t 0
/, t 0 2 Z. Thus C.A;�;C; 1

0
/ is as in

Figure 4.5. (Note that our convention in this paper is that twist boxes represent vertical
twists).

C

A

CC =

Figure 4.4

t

A

Figure 4.5

The tangle encapsulated in the Conway sphere in Figure 4.5 is R.2; t 0; 0/DR. 2
2t 0C1

/.
Thus either t 0D 0;�1 or ADR.s/ for some s 2Z. In either case, C DR.t 0; 1; 1; 0/D
R.t; 2; 0/ where t D�.t 0C 1/.

Figure 4.6 shows C.A;�;C; 1
2
/, where C D R.t; 2; 0/ corresponds to the rational

number t
2tC1

. Thus C.A;�;C; 1
2
/ orbifold-toroidal implies that �.1

0
; t

2tC1
/ > 1.

Thus j2t C 1j> 1. Consequently, t 0 D�.t C 1/¤�1; 0 and ADR.s/. Again, that
C.A;�;C; 1

2
/ is orbifold-toroidal guarantees that jsj> 1.
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A

-t

Figure 4.6

Lemma 4.5 If C.A;B;�; 1
0
/ is a rational tangle then, up to symmetry exchanging A

and B , ADR.s/ and B DR.t;�s/ for s; t 2 Z. If C.A;B;�; 1
2
/ is orbifold-toroidal

then jsj> 1, t ¤ 0 and .s; t/¤ .2; 1/; .�2;�1/.

Proof Isotoping C.A;B;�; 1
0
/ to Figure 4.7 we see that one of A or B must be

an integral tangle. By symmetry we assume it is A, A D R.s/. Thus we are as in
Figure 4.8, from which we see that B0 DR.1=t/. Thus B DR.t;�s/. Now assume
C.A;B;�; 1

2
/ is orbifold-toroidal. See Figure 4.9. Then jsj > 1, and B DR.t;�s/

corresponds to tangle slope 1�st
t

. Thus �.0
1
; 1�st

t
/ > 1. That is, j1� st j > 1. Thus

t ¤ 0 and .s; t/¤ .2; 1/; .�2;�1/.

AA B

Figure 4.7

B = s

B

Bwhere

Figure 4.8
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B

-s

Figure 4.9

Proof of Theorem 4.1 We prove this for J1.`;m/. The proof for J2.`;m/ is similar.
Recall that by attaching the appropriate “C ”–tangle to T1.`;m/ we get the tangle
B.`;m; n; 0/ of [6]. There are infinitely many such fillings corresponding to different
values of n. Looking at double branched covers, this says that the corresponding
Dehn fillings of X , the exterior of J1.`;m/, are the exteriors of the hyperbolic knots
k.`;m; n; 0/. Denote the two components of @X as @1X , @2X , where @1X is the
component along which these fillings are made (corresponding to the boundary of the
ambient solid torus of J1.`;m/). Because infinitely many fillings of X are hyperbolic,
either X is hyperbolic or there is a cable space along @1X (Theorem 2.4.4 of [5]). We
assume the latter for contradiction. Then the slope of each of these Dehn fillings is
distance 1 from a unique slope  , and furthermore, Dehn filling X along  has a lens
space summand. The Z2 –orbifold quotient of the  –Dehn filling of X is pictured in
Figure 4.10 (the C –tangle for this picture corresponds to replacing the n twist box
of B.`;m; n; 0/ with R.1=0/). But inserting R.1=0/ into the “D”–tangle of Figure
4.10 gives the unlink of two components. That is, there is a filling of @2X such that,
along with the filling of @1X along  , gives S2 �S1 . But this contradicts the fact
that first filling X along  yields a lens space summand.

m m

Figure 4.10
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5 Non-integral surgery and the JSJ–decomposition

In this section we consider a non-integral Dehn filling X. / on the exterior X of a
knot in S3 , and analyze the relation between the JSJ–decompositions of X and X. /.

If M is an irreducible 3–manifold we shall denote by Seif.M / the disjoint union of
the Seifert fibered pieces of the JSJ–decomposition of M . In the case of a knot exterior
X , the possible components of Seif.X / have been described by Jaco and Shalen.

Lemma 5.1 [14, Lemma VI.3.4] Let X be the exterior of a knot in S3 , and let W

be a component of Seif.X /. Then W is either a torus knot space, a cable space, or a
composing space.

The relation between T.X / and T.X. // is described in the following theorem and
its addendum.

Theorem 5.2 Let X be the exterior of a knot k in S3 , and suppose �.; �/ � 2

where � is the meridian of k . Let W be the component of X cut along T.X / that
contains @X . Then exactly one of the following four possibilities holds.

(1) T.X. //D T.X /;

(2) T.X / D ∅, X is hyperbolic, k is an Eudave-Muñoz knot k.`;m; n;p/,
�.; �/ D 2, X. / D M1 [T M2 , where Mi is a Seifert fiber space over
D2 with two exceptional fibers, i D 1; 2, and T.X. //D T ;

(3) k is contained in a tubular neighborhood N.k0/ of a non-trivial knot k0 as a
J".`;m/–satellite of k0 , @W D T0 [ @X , where T0 D @N.k0/, �.; �/D 2,
W . / D N1 [T M2 , where N1 is a Seifert fiber space over A2 with one
exceptional fiber and M2 is a Seifert fiber space over D2 with two exceptional
fibers, and T.X. //D T.X /[T ;

(4) k is a .p; q/–cable of a non-trivial knot k0 with exterior X0 , q � 2, @W D

T0[ @X as in (3),  D npq˙1
n

, n� 2, and T.X. //D T.X /�T0 .

We spell out more details about cases (1) and (4) of Theorem 5.2 in the following
addendum, where k denotes the core of the Dehn filling solid torus in X. /.

Addendum 5.3 In case (1) of Theorem 5.2 we have

(a) if W DX then X. / is atoroidal;

(b) if W ¤X then W . / is hyperbolic if and only if W is hyperbolic;
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(c) if W ¤X then W . / is Seifert fibered if and only if W is Seifert fibered. If W

is a cable space then W . / is a Seifert fiber space over D2 with two exceptional
fibers, and if W is a composing space with .n C 1/ boundary components
then W . / is a Seifert fiber space over an n–punctured sphere with a single
exceptional fiber of multiplicity �.; �/. In both cases k is isotopic to an
exceptional fiber of W . /.

In case (4) of Theorem 5.2 we have

(a) W is a cable space and W . / is a solid torus, with meridian 0 , say, on T0 ;

(b) conclusion (1) holds for X0.0/;

(c) k is isotopic to an .r; s/–cable of the core of W . /, for some s > 1.

Proof of Theorem 5.2

Case I j@W j D 1

Here T.X / D ∅ and W D X , so X is either hyperbolic or Seifert fibered. In the
first case, either (1) or (2) holds by [11]. In the second case, k is a torus knot,
X. / is a Seifert fiber space over S2 with at most three exceptional fibers, and
T.X. //D T.X /D∅.

Case II j@W j D 2

There are two subcases.

(A) W hyperbolic

W .�/ is a solid torus; therefore W . / is irreducible and @–irreducible, by [29] and
[5] respectively. If W . / is hyperbolic then T.X. // D T.X /, and (1) holds. By
[23, Proposition 9], W . / is not Seifert fibered. Hence we may assume that W . / is
toroidal. Then by Theorem 4.2 k is a J".`;m/–satellite in W .�/Š S1 �D2 . Then
W . /DN1[T M2 as in conclusion (3). Let ' be the fiber of N1 on T0 D @W . /.

Consider the component Z ¤ W of the JSJ–decomposition of X with T0 � @Z .
Assume that Z is a Seifert fiber space, with fiber  on T0 . We will show that  ¤ ' ;
hence T.X. //D T.X /[T and (3) holds.

Let �0 be the meridian of W .�/Š S1 �D2 . Since �.�0; '/� 2 by the Addendum
to Theorem 4.3, it suffices to prove that �.�0;  /� 1.

By Lemma 5.1, Z is either (i) a torus knot exterior, or (ii) a cable space, or (iii) a
composing space. Let X0 D X �W ; so @X0 D T0 . Since X0.�0/ Š S3 , we must
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have �.�0;  /D 1 in case (i), �.�0;  /D 1 in case (ii) (since Z [W .�/ is a solid
torus), and, �0 D  in case (iii) (since @.Z [W .�// must be compressible).

(B) W Seifert fibered.

Then W is a cable space. Thus k is a .p; q/–cable, q � 2, of a non-trivial knot k0 .
Let ' be the slope on @X of the Seifert fiber of W ; thus ' D pq=1 with respect to
the usual meridian-longitude basis.

If �.; '/� 2 then W . / is a Seifert fiber space over D2 with two exceptional fibers,
which is atoroidal. Therefore T.X. //D T.X /.

Since �.; �/ � 2 (� D 1=0 D meridian of k ),  ¤ ' . So assume �.; '/ D 1;
ie,  D npq˙1

n
, n � 2. Then W . / is a solid torus, with meridian 0 , say, on

T0 . Let �0 be the slope on T0 of the meridian of the solid torus W .�/. Then
�.0; �0/D q2�.; �/� 8. Let X0 DX �W , the exterior of k0 . By induction on
the number of components of T.X /, we may assume that the theorem holds for X0 .
(The start of the induction is Case (1) above.) Since �.0; �0/ > 2, conclusions (2)
and (3) of the theorem do not hold for X0 . If (1) holds for X0 , then we get T.X. //D
T.X0.0// D T.X0/ D T.X /� T0 , which is conclusion (4) for X . Finally, assume
that (4) holds for X0 . So k0 is a .p1; q1/–cable, q1 � 2, of a non-trivial knot k1 ,
and 0 D

n1p1q1˙1
n1

, n1 � 2, with respect to the usual basis for k0 . But we also have

0 D
npq˙1

nq2 , n� 2, and this is a contradiction (see [8, page 704]).

Case III j@W j � 3

Let the components of @W �@X be T1; : : : ;Tn , n�2. Then the components of X �W

are Y1; : : : ;Yn , say, where @Yi D Ti and Ti is incompressible in Yi , 1� i � n. Since
Ti compresses in S3 DX.�/, it compresses in W .�/. Hence W .�/ is reducible. (In
fact it is easy to show that W .�/ is a connected sum of n solid tori.)

Again we distinguish two subcases.

(A) W hyperbolic

Since �.; �/ � 2, W . / is irreducible by [10]. Also, since j@W j � 3, W . / is
atoroidal and anannular by [37]. Therefore W . / is hyperbolic, and T.X. //DT.X /.
This is conclusion (1).

(B) W Seifert fibered

Since j@W j D nC 1, n � 2, W is a composing space by Lemma 5.1. Also, the
meridian � is the Seifert fiber of W , since W .�/ is reducible. Hence W . / is a
Seifert fiber space over an n–punctured sphere with one exceptional fiber, of multiplicity
�.; �/. Since the Seifert fibers of W and W . / are the same on each Ti , we have
T.X. //D T.X /, and (1) holds.
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Proof ofAddendum 5.3 This follows by examining the proof of Theorem 5.2.

6 Main theorem

Recall from Section 2 the definition of the characteristic 2–sided toric 2–suborbifold
T.K/ of a prime knot K in S3 . Let Seif.K/D Seif.O.K// be the disjoint union of
the S1 –fibered components of O.K/ cut along T.K/.

Let .a; @a/ be an unknotting arc for K . As described in Section 2, a relative regular
neighborhood of .a; @a/ in .S3;K/ determines a marked tangle T0 which is replaced
with a tangle T 0

0
under the crossing move. Let M be the double branched cover of

S3 along K , V0 be the solid torus preimage of T0 under the branched covering, and
X DM �V0 . Then M D X. / and S3 D X.�/ where �.�;  /D 2. Let k D k�
be the knot in S3 of which X is the exterior, and let k be the core of V0 in M .

Definition The unknotting arc .a; @a/ is said to be an .r; s/–cable of an exceptional
fiber of Seif.K/ iff k is an .r; s/–cable of an exceptional fiber in Seif.M /.

Remark If .a; @a/ is an .r; s/–cable of an exceptional fiber of Seif.K/, then the
corresponding T0 lies in a rational tangle R.p=q/ in Seif.K/ which is the quotient
of a neighborhood of this exceptional fiber. The tangle R.p=q/� T0 in S2 � I , has
a double branched cover which is a cable space. By Lemma 3.8, R.p=q/ � T0 is
homeomorphic to M. v

w
;�/ for some v;w 2 Z. The results of applying the crossing

move associated to such an .a; @a/ are further discussed in Lemmas 8.1, 12.3, 12.4,
and Theorem 8.2.

Lemma 6.1 Let .a; @a/ be an unknotting arc for K . One of the following holds:

(1) .a; @a/ can be isotoped in .S3;K/ to be disjoint from T.K/. Furthermore, if
T.K/ ¤ ∅ and .a; @a/ can be isotoped into Seif.K/, then a is isotopic to an
.r; s/–cable of an exceptional fiber in Seif.K/, for some s � 1.

(2) (a) K is an EM–knot K.`;m; n;p/.

(b) O.K/ has a unique connected, incompressible, 2–sided, toric 2–suborbifold
S , a Conway sphere, K has an unknotting arc .b; @b/ with jb\S j D 1 (the
standard unknotting arc for K.`;m; n;p/), and no unknotting arc is disjoint
from S .

(3) K is the union of essential tangles P[P0 , where P0 is the EM–tangle A".`;m/,
@P0 � T.K/, and .a; @a/ can be isotoped into P0 . If T .�;�/ is the exterior in
P0 of the crossing ball corresponding to .a; @a/, then T .�;�/ is as described in
Theorem 4.3.
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Proof of Lemma 6.1 Let M , k D k�; k be as described above. We are now in the
context of Theorem 5.2. Possibilities (1), (2), and (3) in the conclusion of Theorem 5.2
will lead to conclusions (1), (2), and (3), respectively of Lemma 6.1, and possibility (4)
will lead to conclusion (1).

Let hW M !M be the covering involution, with quotient orbifold cM DO.K/. Write
V0 D V , with quotient bV  the 3–suborbifold T0 of O.K/.

(1) Here T.M /DT.X /. The covering involution hW M !M restricts to hW X!X ,
and we can isotop T.X / in X to be h–invariant [20]. Let T be a component of T.X /.
Then T separates X into two components, one of which contains @X . It follows that if
h.T /D T then h preserves the sides of T , and hence TC.M /D TC.X /D T.X /D
T.M /.

By (1)(a) of Addendum 5.3, if T.X / D ∅ then M D X. / is atoroidal, and hence
T.K/D∅. Thus conclusion (1) holds trivially.

If T.X / ¤ ∅, then X D X0 [W , say, X0 ¤ ∅. Hence M D X0 [W . /, and,
taking quotients, O.K/ D yX0 [

cW . /, where bV  D T0 �
cW . /. By (1)(b) of

Addendum 5.3, if W is hyperbolic then W . / is hyperbolic, and so cW . / is atoroidal
and is a component of O.K/ cut along T.K/. Hence T.K/ can be orbifold-isotoped
off cW . /, in particular, off T0 . If W is Seifert fibered, then by (1)(c) of Addendum 5.3
the Seifert fibering of W extends to a Seifert fibering of W . /. Thus cW . / is S1 –
fibered, and bV  D T0 is a neighborhood of an exceptional (orbifold) fiber. Also, since
T.M /D T.X /, W . / is a component of Seif.M /, and hence cW . / is a component
of Seif.K/.

(2) Here k� is an Eudave-Muñoz knot k.`;m; n;p/. By Theorem 3.4(1), K D

K.`;m; n;p/, M DM1[T M2 , T.M /D T , and we may isotop T so that h.Mi/D

Mi , i D 1; 2. Hence T.K/D S D bT . The facts that K has an unknotting arc b with
jb\S j D 1, and no unknotting arc disjoint from S , are proved in [6].

(3) Here k� is a J".`;m/–satellite of k0 . Thus X D X0 [T0
W , where X0 is the

exterior of k0 , T0 D @X0 , and W is the exterior of J".`;m/ in S1 �D2 . Also,
M DX0[T0

W . /, W . /ŠN1[T M2 as in Theorem 5.2, and T.M /D T.X /[T .
Since W is hyperbolic, T0 � T.X /.

Now hW M ! M leaves X invariant. Hence we can isotop T.X / in X to be h–
invariant [20]. In particular, we must clearly have h.T0/ D T0 . Hence h leaves
W . / invariant. Fix.h/ cannot be disjoint from T0 or completely lie in T0 , otherwise
h would give rise to an involution on S3 whose fixed set was k0 or a satellite of
k0 —contradicting the Z2 –Smith Conjecture [36]. In particular the quotient of W
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under h, the exterior of the crossing ball corresponding to .a; @a/, is a tangle T .�;�/
in S2 � I satisfying the hypotheses of Theorem 4.3; hence T .�;�/ is as described
there. This implies P0 Š

cW . / D T .�; ˇ/ Š A".`;m/ for some "; `;m. Since
T.M /D T.X /[T , N1 and M2 of W . / are components of Seif.M /. Furthermore,
TC.M /D T.M / since h preserves the sides of T and since TC.X /D T.X / by the
argument for (1). Thus @P0 2 T.K/ and bN 1; cM 2 are components of Seif.K/.

(4) Here W is a cable space and W . / is a solid torus. Let X0 D X �W , and
@X0 D T0 . Then M D X0 [T0

W . /, and T.M / D T.X /� T0 D T.X0/. Since h

leaves X invariant, we can isotop T.X / in X to be h–invariant. Then h.T0/D T0 ,
T.X0/ is h–invariant, and TC.M /D TC.X0/D T.X0/D T.M /. Therefore T.K/
is the quotient bT.X0/.

Let �0 be the meridian of K0 on T0 , and let 0 be the meridian of the solid torus
W . /. Then �.0; �0/ > 2, and M DX. /DX0.0/. Let W0 be the component of
X0 cut along T.X0/ that contains @X0 . By case (4)(b) of Addendum 5.3, (1) holds for
X0.0/; thus (1)(a), (1)(b) and (1)(c) of Addendum 5.3 hold for X0;W0 . Conclusions
1(a) and 1(b) now follow from the argument in case (1) above applied to X0;W0; 0 .

Theorem 6.2 Let K be a knot with unknotting number 1. Then one of the following
three possibilities holds.

(1) (a) Any unknotting arc .a; @a/ for K can be isotoped in .S3;K/ so that
a\T.K/D∅.

(b) If T.K/¤∅ and K has an unknotting arc a in Seif.K/ then a is isotopic
to an .r; s/–cable of an exceptional fiber of Seif.K/, for some s � 1.

(2) (a) K is an EM–knot K.`;m; n;p/.

(b) O.K/ has a unique connected incompressible 2–sided toric 2–suborbifold
S , a Conway sphere, K has an unknotting arc a with ja\S j D 1 (the standard
unknotting arc for K.`;m; n;p/) , and K has no unknotting arc disjoint from
S .

(3) K is the union of essential tangles P[P0 , where P0 is an EM–tangle A".`;m/
and @P0 is in T.K/. Any unknotting arc for K can be isotoped into P0 . The
standard unknotting arc for A".`;m/ is an unknotting arc for K .

Remarks (A) If K D K.`;m; n;p/, then (2) must hold. If K D P [ P0 where
P0 is an EM–tangle then (1) or (3) may hold. If (1) holds then, still, by Lemma 9.6
(and Definition 3.3), any unknotting arc of K can be isotoped into P0 (hence into an
exceptional fiber of P0 ).
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(B) In conclusion (3), to say that K is unknotted by the standard unknotting arc for
A".`;m/ (as described in Section 4) we mean that there is a tangle homeomorphism
from P0 to A".`;m/ which makes this identification. Any two such will differ by an
isotopy of the tangle ball fixed on the boundary, which will isotop the two unknotting
arcs. Indeed, any homeomorphism of tangles, hW A".`;m/!A".`;m/, preserves the
markings, hence is isotopic to the identity.

Question Is any unknotting arc for K.`;m; n;p/ or for A".`;m/ isotopic to its
standard unknotting arc?

One approach to the above question would be to prove an analog of Theorem 3.4 for
the exteriors of k.`;m; n;p/, J".`;m/ (resp.). That is, show that there is a unique
tangle quotient arising from involutions on any such knot exterior.

Proof of Theorem 6.2 Theorem 6.2(2) is the same as Lemma 6.1(2). So we assume
K is not an EM–knot. Furthermore we may assume that K can be written as the union
of essential tangles P [P0 with P0 homeomorphic to A".`;m/ and @P0 � T.K/
(otherwise (1) holds for K by Lemma 6.1).

If .a; @a/ is an unknotting arc for K which cannot be isotoped into P0 , then Lemma
6.1(1) applies. But this says the unknot can be written as T [A".`;m/ for some
tangle T and some "; `;m. This contradicts Lemma 9.6 and Definition 3.3. Thus any
unknotting arc for K can be isotoped into P0 .

If conclusion (1) of Theorem 6.2 does not hold then there is an unknotting arc .a; @a/
satisfying Lemma 6.1(3). Let T .�;�/ be the exterior of the crossing ball corresponding
to .a; @a/ and h1W T .�; ˇ/! T".`;m/.1

2
/, h2W T .�; ˛/! T".`;m/.1

0
/ be the tangle

homeomorphisms provided by Theorem 4.3. The standard unknotting arc for A".`;m/
corresponds to the crossing move T".`;m/.1

2
/! T".`;m/.1

0
/. Thus h1 identifies

the standard unknotting arc of P0 Š A".`;m/ for which we are looking. That is,
performing the crossing move on K dictated by the standard unknotting arc gives
the knot gotten by gluing T".`;m/.1

0
/ to P via h�1

1
j@. Since .h2j@/.h1j@/

�1 is the
identity, this is the same as gluing T".`;m/.1

0
/ to P via h�1

2
j@, which is the unknot

by assumption.

The following is a generalization of the result of [30; 31] (see also [17]) that an
unknotting arc for a satellite knot can always be taken to be disjoint from the companion
2–torus.

Corollary 6.3 Let K be a knot with unknotting number 1, that is neither an EM–
knot nor a knot containing an EM–tangle with essential boundary. Let F be an
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incompressible 2–sided toric 2–suborbifold of O.K/. Then any unknotting arc .a; @a/
for K can be isotoped in .S3;K/ so that a\F D∅.

This is an immediate consequence of Theorem 6.2 and the following lemma.

Lemma 6.4 Let F be an incompressible 2–sided toric 2–suborbifold of O.K/. Then
F is orbifold isotopic to a vertical suborbifold of Seif.K/.

Proof The fact that F is isotopic into Seif.K/ follows from the discussion in [3]
beginning at the paragraph immediately preceding Lemma 7 on page 456, and ending
at the statement “and therefore that F \F 0 D∅” near the bottom of page 457.

So assume F � Seif.K/. Any component of F that is boundary parallel in Seif.K/
can be isotoped to be vertical, so by [3, Verticalization Theorem 4] it is enough to
show that F cannot be isotoped to be horizontal. Let pW M !O.K/ be the double
branched covering projection. If F were a horizontal 2–suborbifold of O.K/, then
p�1.F / would be a horizontal surface in M . But H2.M IQ/D 0, so M contains no
horizontal surface.

7 Mutation

Let T D .B;A/ be a knot in S3 or a tangle. Let T0 D .B0;A0/ be a subtangle of
T such that B0 is a 3–ball. Let S0 D @B0 . Let hW B0! B3 be a homeomorphism
such that h.S0 \A/DQ � S2 . Let �0 Š Z2 �Z2 be the group of automorphisms
of .S2;Q/ consisting of rotations through � about any one of the three co-ordinate
axes in R3 together with the identity. Let T1 D T � int T0 and regard T as T0[ T1 ,
where T0 is glued to T1 by the identity map on S0 . Now for g 2 �0 � f1g, let
�D h�1ghW S0! S0 and define T 0 D T0[� T1 . We say T 0 is a mutant of T . The
operation of replacing T by T 0 is mutation of T along S0 , by the mutation involution
�.

Boileau has asked [16, Problem 1.69(c)] if the unknotting number of a link is a mutation
invariant. We prove that this is at least true for knots with unknotting number 1.

Theorem 7.1 Having unknotting number 1 is invariant under mutation.

Proof Let K be a knot with unknotting number 1, and let K0 be a mutant of K . Then
there is a Conway sphere S which decomposes K into two tangles T1 and T2 , such
that K0 D T1 [ �.T2/, where � is rotation of the ball B2 containing T2 through �
about one of the co-ordinate axes. Note that we also have K0 D �.T1/[ T2 . If either
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T1 or T2 is trivial then K DK0 . Also, since u.K/D 1, K is prime [28]. Hence we
may assume that the tangles Ti are prime, and therefore that S is essential.

First suppose that K is not an EM–knot nor the union of two essential tangles, one
of which is an EM–tangle. Then, taking F D S in Corollary 6.3 we get that there is
an unknotting arc a for K disjoint from S , and therefore, without loss of generality,
contained in B2 . As marked tangles, the crossing move determined by a transforms T2

to a rational tangle R. Then the crossing move on K0 determined by �.a/ transforms
�.T2/ to the rational tangle �.R/DR, and hence transforms K0 to T1[RD unknot.

If K is an EM–knot, then K0 DK [6].

Finally, suppose K is the union of essential tangles P[P0 , where P0 is an EM–tangle.
Then P0 is of the form S.˛; ˇI ;�/. If S is not isotopic in O.K/ to S0D @M.˛; ˇ/,
then the argument above shows that K0 has unknotting number 1. So assume that
S D S0 . Since rotating M.˛; ˇ/ about the horizontal axis leaves it invariant, we may
assume that � is rotation about the axis perpendicular to the plane of the paper. Thus
K0 D P [P 0

0
, where P 0

0
D S.ˇ; ˛I ;�/.

By part (3) of Theorem 6.2, K has an unknotting arc a that lies in the 3–ball B0

containing the tangle P0 . By Lemma 2.1, there is a homeomorphism hW S.˛; ˇI ;�/!
S.ˇ; ˛I ;�/ such that hj@D is rotation through � about the horizontal axis. Note
that h is isotopic to the corresponding rotation of the ball S3�D . Hence there is a
rotation g of the ball B0 which takes P0 to P 0

0
. The crossing change of K determined

by a converts P0 to a rational tangle R, where P [R is the unknot. Therefore the
crossing change of K0 determined by g.a/ converts K0 D P [P 0

0
D P [ g.P0/ to

P [g.R/D P [RD unknot.

8 Algebraic knots

For the definition of an algebraic knot or link (in the sense of Conway) see Section 2
of [33]. We briefly summarize this in a form suitable for our present purposes.

An elementary (algebraic) tangle is a tangle of the form M.˛; ˇ/, M.;�/, or
M.�;�/, where ˛; ˇ;  2 Q� Z. We shall refer to these as elementary tangles of
type I, II, or III respectively. See Figure 8.1.

A Montesinos tangle of length 3, M.˛; ˇ;  /, ˛; ˇ;  2Q�Z, is defined in the obvious
way; see Figure 8.2.

Recall [4] that if T is a marked tangle in B3 then 1�T is the knot or link obtained by
capping off T with the rational tangle R.0/ (ie, 1�T is the numerator closure of T ).

Then an algebraic knot is a knot of one of the following forms:
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I II III

Figure 8.1

Figure 8.2

(a) 1�R.˛/;
(b) 1�M.˛; ˇ;  /;

(c) a union along boundary components of elementary tangles.

The knots of type (a) are the 2–bridge or rational knots. (Any knot 1�M.˛; ˇ/ can
also be expressed as 1�R. /.) Those of type (b) are the Montesinos knots of length 3.
We will call a knot of type (c) a large algebraic knot. Thus an algebraic knot is large if
and only if it has an essential Conway sphere. If K is an algebraic knot, of type (a),
(b), or (c), then the double branched cover of K is a lens space, a Seifert fiber space
over S2 with three exceptional fibers, or a toroidal graph-manifold, respectively.

An elementary tangle comes equipped with a marking, given by Figure 8.1. In con-
structing a large algebraic knot K , the gluing homeomorphisms between the boundary
components of the elementary tangles will not in general preserve the markings. To
describe K as a marking-preserving union of marked tangles we need to interpolate
marked tangles of 4–string braids in S2 � I between the boundary components.

This can also be described in terms of diagrams. Figure 8.1 III is a diagram in a pair of
pants of an elementary tangle of type III. A diagram of an elementary tangle of type I
or II, in a disk or annulus respectively, may be obtained by inserting diagrams of the
appropriate rational tangles into the diagrams in Figure 8.1, I or II. Also, a 4–string
braid in S2� I has a diagram in an annulus. Then a knot is large algebraic if and only
if it has a diagram in S3 that is a union along boundary components of such elementary
tangle diagrams and 4–string braid diagrams.
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Lemma 8.1 R.p=q/ can be transformed to R.1=0/ by a crossing move if and only if
there exist coprime integers r; s such that p=q D 2rs˙1

2s2 .

Proof If p=q D 2rs˙1
2s2 , q ¤ 0, then p=q has a continued fraction expansion of the

form Œa1; a2; : : : ; ak ;˙2;�ak ; : : : ; ;�a2;�a1; a�, (see [15] or [18]), and hence can
be transformed to R.1=0/ by a crossing move.

Conversely, suppose R.p=q/ can be transformed to R.1=0/ by a crossing move. Let
the double branched covers of R.1=0/ and R.p=q/ be V and V 0 respectively. Then
there is a knot K in V such that (with respect to some framing of K ), m=2–Dehn
surgery on K gives V 0 . Note that, with respect to the basis of H1.@V / corresponding
to the standard marking, the meridian of V 0 has slope p=q .

If K is unknotted in V , then p=qD 1=0, while if K is a core of V , then p=qDm=2;
in both cases p=q is of the stated form.

Otherwise, it follows from [5, Theorem 2.4.4] that K is an .r; s/–cable of the core
of V . With respect to the usual framing on K , the Seifert fiber of the cable space
V � int N.K/ has slope rs on @N.K/. Hence, K.m=2/ will be a solid torus V 0 if
and only if �.m=2; rs=1/D 1, ie mD 2rs˙ 1. The meridian of V 0 then has slope
m=2s2 D

2rs˙1
2s2 .

Theorem 8.2 Let K be a large algebraic knot with unknotting number 1. Then either

(1) any unknotting arc for K can be isotoped into either

(a) one of the rational tangles R.p=q/ in an elementary tangle of type I; or

(b) the rational tangle R.p=q/ in an elementary tangle of type II.

In case (a), the crossing move transforms R.p=q/ to R.k=1/ for some integer k , and
p=q D 2s2

2rs˙1
C k , where s � 1 and .r; s/D 1.

In case (b), the crossing move transforms R.p=q/ to R.1=0/, and p=q D 2rs˙1
2s2 ,

where s � 1 and .r; s/D 1.

(2) (a) K is an EM–knot K.`;m; n;p/.

(b) O.K/ has a unique connected incompressible 2–sided toric 2–suborbifold
S , a Conway sphere, K has an unknotting arc a with ja\S j D 1 (the standard
unknotting arc for K.`;m; n;p/) , and K has no unknotting arc disjoint from
S .

(3) K is the union of essential tangles P[P0 , where P0 is an EM–tangle A".`;m/
and @P0 is in T.K/. Any unknotting arc for K can be isotoped into P0 . The
standard unknotting arc for A".`;m/ is an unknotting arc for K .
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Remark The remarks (A), (B) following Theorem 6.2 also apply here.

Proof Note that the characteristic orbifold decomposition of O.K/ is gotten by
amalgamating subcollections of the constituent elementary tangles. Applying Theorem
6.2, we are left to check that Theorem 6.2(1) implies Theorem 8.2(1). Theorem 6.2(1)
implies that the unknotting move replaces R.p=q/ in some elementary tangle of type I
or II with another tangle T . T must be an integer tangle, R.k=1/, if the elementary
tangle is of type I, and R.1=0/ if it is of type II. Lemma 8.1 gives the desired result
(using R.1=.p

q
� k// for R.p=q/ in type I).

9 Some algebraic tangle calculations

In this section we do some calculations concerning crossing moves on certain algebraic
tangles. These will be used in Sections 10 and 11.

Lemma 9.1 Suppose q > 1, and that M.p=q; �/ is a rational tangle, where � 2
Q[f1g. Then

(1) �D k 2 Z;

(2) M.p=q; k/DR
�

kqCp
q

�
(3) if M.p=q; k/ D R.1=x/, x 2 Z, then there exists " D ˙1 such that x D "q

and kqCp D ".

Proof (1) Since M.p=q; �/ is a disk sum of R.p=q/ and R.�/, and q > 1, we
must have �D k 2 Z.

(2) Incorporating the k horizontal twists into R.p=q/, we see that M.p=q; �/ D

R
�

kqCp
q

�
.

(3) This follows immediately from (2).

Lemma 9.2 Suppose q1; q2 > 1, and that M.p1=q1; p2=q2/ can be transformed to
a rational tangle R by a crossing move. Then

(1) the crossing arc is isotopic to an .r; s/–cable, s� 1, of one of the two exceptional
fibers of M.p1=q1; p2=q2/;

(2) the crossing move transforms the corresponding rational tangle, R.p1

q1
/, say, of

M, to an integral tangle R.k/;

(3) RDR
�

kq2Cp2

q2

�
;
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(4) p1=q1 D kC 2s2

2rs˙1
.

Proof (1) The argument is very similar to the proofs of Lemma 6.1 and Theorem
5.2. Let M be the double branched cover of B3 along M.p1

q1
; p2

q2
/. M is a Seifert

fiber space over the disk with two exceptional fibers. The crossing move corresponds
to replacing a marked tangle T0 in M.p1

q1
; p2

q2
/ with a marked tangle T 0

0
, resulting in a

rational tangle. Let V0 be the solid torus preimage of T0 in M and X DM � int.V0/

be its exterior. Let  be the meridian of V0 . Then M D X. / and X.�/ is a solid
torus for some � with �.; �/D 2. By [23, Proposition 9], X must be either Seifert
fibered or toroidal. In the first case, X is the exterior of an exceptional fiber in M and
we are done. So X is toroidal and we let W be the component of X cut along T.X /
(canonical torus decomposition) that contains @X . Then @W � @X is compressible
in W . /;W .�/. Furthermore W . /;W .�/ are irreducible. Then W . /;W .�/ are
solid tori. By [5, Theorem 2.4.4], W is a cable space. In particular, say that W is the
exterior of the .p; q/ curve in the solid torus W .�), q � 2. If 0; �0 are the slopes of
the meridian disks on @W . /, @W .�/ respectively, then �.0; �/D q2.�; �/� 8.
Thus, if X0 DX �W , we may argue as above to conclude that X0 is the exterior of a
.p; q/–cable on some knot k0 in X.�/. But then a coordinate calculation, as in the
proof of Theorem 5.2 (Case IIB), says that 0 D

n1p1q1˙1
n1

, n1 � 2 and 0 D
npq˙1

nq2

for n� 2. This contradiction finishes the proof of Lemma 9.2(1).

Lemma 9.2(2) and (3) now follow from Lemma 9.1, (1) and (2). Finally, (4) follows
from Lemma 8.1 applied to R.1=.p1

q1
� k//.

Corollary 9.3 Suppose q1; q2 > 1 and that M.p1=q1; p2=q2/ can be transformed to
a vertical twist tangle R.1=x/ by a crossing move. Then there exist "D˙1 and k 2 Z

such that, after possibly interchanging p1=q1 and p2=q2 ,

(1) x D "q2 ;

(2) kq2Cp2 D ";

(3) p1=q1 D kC 2s2

2rs˙1
, for some s � 1, .r; s/D 1.

Proof This follows from Lemmas 9.1 and 9.2.

Lemma 9.4 1�M.˛; ˇ/ is the unknot if and only if �.˛;�ˇ/D 1.

Proof 1�M.˛; ˇ/ is the unknot if and only if its double branched cover M is S3 .
But M is the union of the two solid tori zR.˛/ and zR.ˇ/, whose meridians have slopes
˛ and �ˇ respectively on the torus T D @ zR.˛/ with respect to the basis of H1.T /

corresponding to the lifts of the slopes 1=0 and 0=1 on @R.˛/. Hence M is S3 if
and only if �.˛;�ˇ/D 1.
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Lemma 9.5 Let K be the knot shown in Figure 9.1, where q1; q2 > 1 and T is some
marked tangle. Then

(1) K is the unknot if and only if T DR.x/, where x 2 Z satisfies

xq1q2Cp1q2Cp2q1 D˙1 I

(2) if jp1=q1j; jp2=q2j< 1, and x is as in (1), then jxj � 1.

�
p1
q1
;

p2
q2

�

Figure 9.1

Proof Suppose K is the unknot. Passing to double branched covers, we see that zT
must be a solid torus, implying that T is a rational tangle. Moreover, the meridian
of zT must be distance 1 from the Seifert fiber of zM.p1=q1; p2=q2/. Since the latter
projects to the slope 1=0 on @M.p1=q1; p2=q2/, this implies that T D R.x/ for
some x 2 Z. Incorporating this twist tangle R.x/ with R.p1=q1/, we see that the
unknot is the union of the rational tangles R.xC p1

q1
/DR

�
xq1Cp1

q1

�
and R.p2=q2/.

Then �
�

xq1Cp1

q1
; �p2

q2

�
D 1 by Lemma 9.4, giving the equation in (1).

Conversely, if T DR.x/ where x satisfies the given equation then �.xq1Cp1

q1
;�p2

q2
/D

1 and K is the unknot by Lemma 9.4.

To prove (2), suppose jp1=q1j; jp2=q2j< 1. Then from (1) we have

xC
p1

q1

C
p2

q2

D˙
1

q1q2

;

giving jxj � .q1�1/
q1
C
.q2�1/

q2
C

1
q1q2

< 2.

Lemma 9.6 Suppose ˛; ˇ;  2Q�Z, and j˛j; jˇj< 1. Then S.˛; ˇI ; T / is not the
unknot, for any tangle T .
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Proof Suppose S.˛; ˇI ; T / is the unknot. Then passing to double branched cover-
ings as usual we see that T must be a rational tangle R.�/. Furthermore, by Lemma
9.5, M.; �/ must be a vertical twist tangle R.�1=x/, where jxj�1 since j˛j; jˇj<1.
But by Lemma 9.1(3), jxj � 2.

Corollary 9.7 Let KDS.˛; ˇI ; ı/, where ˛; ˇ; ; ı 2Q�Z, and j˛j; jˇj< 1. Then
K cannot be unknotted by a crossing move in M.; ı/.

Proof By Lemma 9.2(2), the crossing move has the effect of replacing one of the
rational tangles R. / or R.ı/ in M.; ı/ with some other (rational) tangle. But this
contradicts Lemmas 9.6 and 2.2(2).

Recall (Corollary 3.2) that the EM–knots are all of the form S.˛; ˇI ; ı/ with ˛; ˇ; ; ı
2Q�Z and j˛j; jˇj; j j; jıj< 1.

Theorem 9.8 Let KDS.˛; ˇI ; ı/ where ˛; ˇ; ; ı 2Q�Z and j˛j; jˇj; j j; jıj< 1.
Then K has unknotting number 1 if and only if K is an EM–knot K.`;m; n;p/.

Proof K has a unique essential Conway sphere S D @M.˛; ˇ/D @M.; ı/. There-
fore, by Corollary 6.3, if K has unknotting number 1 then either K is an EM–knot or
K can be unknotted by a crossing move disjoint from S . But the latter is impossible
by Corollary 9.7.

10 Examples

In this section we apply our results to certain families of knots defined in terms of
the notation of Conway [4]; since that notation naturally encodes the characteristic
toric orbifold decomposition of a knot it is eminently suited to our techniques. In
particular, we consider all the knots up to 11 crossings in Conway’s tables [4] with the
property that their description in the tables makes it clear that they contain an essential
Conway sphere. It turns our that these are all large algebraic knots. Specifically, they
are the knots that are listed in [4] as either :a:b , :a:b:c , :a:b:c:d , :a:.b; c/, :.a; b/:c ,
.a; b/.c; d/, .a; b/1.c; d/, or a; b; c; d . We determine exactly which of them have
unknotting number 1. Note that the knots a; b; c; d are Montesinos knots of length 4,
so they have unknotting number greater than 1 by [25].

Throughout this section, a; b; c and d will denote rational numbers.

We start with the knots :a:b:c:d . Recall [4, page 335] that in Conway’s tables the form
:a:b:c:d is used only when a; b; c and d are > 0. It turns out that all the EM–knots
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K.`;m; n;p/ are of this form (up to mirror image), and that a knot :a:b:c:d with
a; b; c; d > 0 has unknotting number 1 if and only if it is an EM–knot. Recall also that
in [4] :a:b:c:1 is abbreviated to :a:b:c , and a:b:1 to :a:b .

First we describe some symmetries of Conway’s :x:y:z:w notation. Recall that if
x;y; z and w are arbitrary marked tangles, then :x:y:z:w is the knot shown in Figure
10.1 (where the leftmost and rightmost horizontal arcs are understood to meet at the
point at infinity in the projection S2 ).

x y z w

Figure 10.1

Let D8 be the dihedral group of order 8, the group of symmetries of the square. By
cyclically numbering the vertices of the square 1,2,3,4, we regard D8 as a subgroup of
S4 . Then D8 acts on the set of expressions of the form :x:y:z:w by permuting the
substituent tangles; thus, by a slight abuse of notation, we write �.:x1:x2:x3:x4/D

:x�.1/:x�.2/:x�.3/:x�.4/ , for � 2D8 .

Recall also [4, pages 330–331] that Z2�Z2 acts on the set of marked tangles as follows.
If x is a marked tangle, then xh;xv and xr are the marked tangles obtained by rotating
x through 180ı about the horizontal axis, the vertical axis, and the axis perpendicular
to the plane of the paper, respectively. Let MutŠ Z2 �Z2 be the group fh; v; r; idg.
(Then mutation is the equivalence relation on knots generated by replacing a tangle
x in (some diagram of) K by xf for some f 2 Mut.) Again by a slight abuse of
notation, we write .:x:y:z:w/f D :xf :yf :zf :wf , for f 2Mut.

Let �W D8!Mut be the epimorphism defined by �..1 2 3 4//Dh, and �..14/.23//D

v . Finally, let "W Mut!Z2Df˙1g be the homomorphism defined by ".h/D".v/D�1,
and recall that – denotes mirror-image.

Theorem 10.1 If � 2D8 then:

�.:x:y:z:w/D ".�.�//.:x:y:z:w/�.�/

Corollary 10.2 Up to mutation and mirror-image, :x:y:z:w is invariant under the
action of D8 .
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Since tf D t for rational tangles t , for all f 2Mut, we have

Corollary 10.3 If � 2D8 then:

�.:a:b:c:d/D ".�.�//:a:b:c:d

Proof of Theorem 10.1 Consider :x:y:z:w , as shown in Figure 10.1. By sliding the
tangle x around the point at infinity we get Figure 10.2. Changing all crossings, we see
that :x:y:z:w D�:yh:zh:wh:xh . This shows that the theorem holds for � D .1 2 3 4/.

xwzy

Figure 10.2

Rotating Figure 10.1 through 180ı about the central axis perpendicular to the plane
of the paper, we get Figure 10.3. Changing all crossings shows that :x:y:z:w D
�:wv:zv:yv:xv , in other words, the theorem holds for � D .14/.23/.

xyzw

Figure 10.3

Since .1 2 3 4/ and .14/.23/ generate D8 , the result follows.

We consider a further symmetry. Recall [4, page 331] that t0 denotes the reflection of
the tangle t in a plane perpendicular to the paper through the NW/SE–diagonal. Note
that .t0/r is then the reflection of t in a plane through the NE/SW–diagonal.

Theorem 10.4 :x:y:z:w D�:x0:.y0/r :z0:.w0/r

In particular, for rational tangles we have

Corollary 10.5 :a0:b0:c0:d0D�:a:b:c:d
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Proof t00D t and ar D a when a is rational.

Corollary 10.6

(1) :a:b:c0D�.:a0:b0:c/

(2) :a:b D�.:a0:b0/

(3) :a0:b D�.:a:b0/

Proof These follow immediately from Corollary 10.5, along with the facts that 10D 1

and t00D t .

x y z w

Figure 10.4

Proof of Theorem 10.4 Rotating Figure 10.1 through 180ı about the horizontal axis
gives Figure 10.4. Changing all crossings, we now get :x0:.y0/r :z0: .w0/r .

The following lemma describes :a:b:c:d in terms of the square tangle S .

Lemma 10.7 :a:b:c:d D S. �1
cC1

; a
aC1
I

1
bC1

; �d
dC1

/

Proof This follows from the second deformation shown in [4, Figure 10], possibly
together with Lemma 2.2.

Recall that if K is an EM–knot K.`;m; n;p/, then, by taking the mirror image of K

if necessary, we may assume that ` > 1.

Lemma 10.8 Assume ` > 1. Then K.`;m; n;p/D :a:b:c , where a; b; c are > 0 and
are given by:

p D 0 W aD
m

.`� 1/m� 1
; b D

2mn�mC n

2mn�m� nC 1
; c D `� 1

nD 0 W aD
2mp�m�p

.`� 1/.2mp�m�p/� 2pC 1
; b D

m

m� 1
; c D `� 1
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Proof This follows from Lemmas 3.1 and 10.7.

Theorem 10.9 Let KD :a:b:c:d , with a; b; c; d > 0. Then K has unknotting number
1 if and only if it is an EM–knot K.`;m; n;p/.

Proof By Lemma 10.7, :a:b:c:d D S.˛; ˇI ; ı/ where ˛; ˇ; ; ı 2 Q � Z and
j˛j; jˇj; j j; jıj< 1. The result is now an immediate consequence of Theorem 9.8.

We now determine the EM–knots up to 11 crossings.

Theorem 10.10 The EM–knots K.`;m; n;p/ with at most 11 crossings are listed in
Table EM 11, up to mirror image.

Rolfsen Conway K.`;m; n;p/

817 :2:2 K.3; 2; 0; 1/

933 :21:2 �K.2; 3; 0; 1/

1082 :4:2 K.2; 2; 0; 2/

1084 :22:2 K.2; 2; 0;�1/

1088 :21:21 K.2; 3; 0; 0/

1091 :3:2:20 �K.4; 1; 1; 0/

1095 :210:2:2 K.3; 2; 0; 0/

:311:2 �K.2; 2;�1; 0/

:23:2 K.2; 2; 0; 3/

:212:2 K.2; 2; 0;�2/

:2111:2 �K.2; 2; 2; 0/

:31:21 �K.2;�3; 1; 0/

:22:2:20 �K.3;�2; 1; 0/

:210:21:2 K.3; 2; 1; 0/

K.`;m; n;p/ with at most 11 crossings
Table EM 11

Remark The third column of Table EM 11 represents the knot in K.`;m; n;p/ form.
These representations are not unique.

Proof of Theorem 10.10 By possibly taking mirror images, Proposition 1.4 of [6]
allows us to assume that ` > 1. By Lemma 10.8, K.`;m; n;p/D :a:b:c with a; b; c

positive rational numbers. Inserting alternating diagrams of the corresponding rational
tangles R.a/, R.b/, R.c/ into Conway’s 6�� polyhedron gives an alternating diagram
of :a:b:c . This alternating diagram will be a minimal crossing diagram from which we
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can compute the crossing number of :a:b:c . To get alternating diagrams of the rational
tangles we can use the positive continued fraction expansions of a; b , and c . That is,
if r is a positive rational number and r D Œa1; a2; : : : ; an� (see Section 2) with ai > 0

if i ¤ n and an � 0, then there is an alternating diagram of the rational tangle R.r/
that has exactly

Pn
iD1 ai crossings. If r ¤ 1, we will take a1 > 1.

In Tables E1–E3 below, we list nonnegative continued fraction expansions of a; b; c .

m;p a b c

m> 0; p > 0 Œp� 1; 2;m� 2; 1; `� 2; 0� Œm� 1; 1� `� 1

m> 0; p < 0 Œjpj; 1; 1;m� 2; 1; `� 2; 0� Œm� 1; 1� `� 1

m< 0; p > 0 Œp� 1; 1; 1; jmj; `� 1; 0� Œjmj; 1; 0� `� 1

m< 0; p < 0 Œjpj; 2; jmj; `� 1; 0� Œjmj; 1; 0� `� 1

nD 0 Œ` > 1; m¤ 0; 1; .`;m;p/¤ .2; 2; 1/�

Table E1

m; n a b c

m> 0; n> 0 Œm� 1; 1; `� 2; 0� Œn� 1; 1; 1;m� 1; 1� `� 1

m> 0; n< 0 Œm� 1; 1; `� 2; 0� Œjnj; 2;m� 1; 1� `� 1

m< 0; n> 0 Œjmj; `� 1; 0� Œn� 1; 2; jmj � 1; 1; 0� `� 1

m< 0; n< 0 Œjmj; `� 1; 0� Œjnj; 1; 1; jmj � 1; 1; 0� `� 1

p D 0 Œ` > 1; m¤ 0; .`;m/¤ .2; 1/I .m; n/¤ .1; 0/; .�1; 1/�

Table E2

m a b c

m> 0 Œm� 1; 1; `� 2; 0� Œm� 1; 1� `� 1

m< 0 Œjmj; `� 1; 0� Œjmj; 1; 0� `� 1

nD 0D p .` > 1I m¤ 0; 1/

Table E3

If 0 appears in any but the last entry of one of these expansions (for certain `;m; n;p ),
we may use one of the following rules to eliminate it:

(1) Œ0; a; b; c; � � � � �! Œb; c; � � � �

(2) Œ� � � a; b; 0; c; d; � � � � �! Œ� � � a; bC c; d; � � � �

Note that the sum of the entries is changed by (1) only and that amounts to deleting
the second entry from the sum. In this way we enumerate those K.`;m; n;p/ with
crossing number at most 11.
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As an example, consider the case when nD0, m>0, p>0. Assuming p>1, Table E1
gives the crossing number of K.`;m; 0;p/ as 2mC2`Cp (the crossings from R.a/,
R.b/, R.c/ plus 3 from the Conway polyhedron 6�� ). Thus if K.`;m; n;p/ has at
most 11 crossings, .`;m;p/ 2 f.2; 2; 2/; .2; 2; 3/g (noting that m¤ 1 when nD 0).
If p D 1 and m> 2, then the crossing number of K.`;m; 0; 1/ is 2mC 2`� 1. Thus
.`;m/ 2 f.2; 3/; .2; 4/; .3; 3/g. Finally, if p D 1 and m D 2, then ` > 2 and the
crossing number is 2`C 2. That is, ` 2 f3; 4g.

Once having enumerated the K.`;m; n;p/ with at most 11 crossings and written
them in the form :a:b:c , we can now locate them in the tables. To do this we use the
symmetries given by Corollaries 10.3 and 10.6 (note that if t D Œa1; : : : ; an� is rational
then t0D Œa1; a2; : : : ; an; 0�).

This completes the proof of Theorem 10.10.

Of the knots listed in Conway’s tables in the form :a:b:c:d (or :a:b , or :a:b:c ) that are
not EM–knots, there are: 1 with 8 crossings, 3 with 9 crossings, 13 with 10 crossings,
and 45 with 11 crossings. By Theorem 10.9 these all have unknotting number greater
than 1.

Next we consider the knots of the form .a; b/.c; d/ in Conway’s notation. For these
we first have the following result.

Theorem 10.11 Let K D .a; b/.c; d/, where jaj; jbj; jcj and jd j are > 1 and either
ab > 0 or cd > 0. Then K does not have unknotting number 1.

Proof It is easy to see (possibly using Lemma 2.2) that .a; b/.c; d/DS.�1
a
;�1

b
I

1
c
; 1

d
/. It follows from Theorem 9.8 that K has unknotting number 1 if and only if K

is an EM–knot. Now by Corollary 3.2, the EM–knots are all of the form S.˛; ˇI ; ı/
with j˛j; jˇj; j j; jıj < 1 and ˛ˇ < 0,  ı < 0. Moreover, it is easy to verify, using
Lemma 2.2, that if S.˛; ˇI ; ı/D˙S.˛0; ˇ0I  0; ı0/, where j˛j; j˛0j, etc. are all < 1,
and ˛ˇ < 0 and  ı < 0, then ˛0ˇ0 < 0 and  0ı0 < 0. It follows that a knot K of the
form described in the theorem is never an EM–knot.

In Conway’s tables, there are 48 knots listed in the form .a; b/.c; d/: 3 10–crossing
alternating knots, 7 10–crossing non-alternating knots, 10 11–crossing alternating knots,
and 28 11–crossing non-alternating knots.

Theorem 10.12 Up to 11 crossings, of the 48 knots listed in Conway’s tables as
.a; b/.c; d/, the only ones with unknotting number 1 are the four non-alternating 11–
crossing knots .3; 2C/.21; 2�/, .21; 2C/.21; 2�/, .3; 2C/�.21; 2/, and .21; 2C/�

.21; 2/.
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Proof All the knots in question satisfy the hypotheses of Theorem 10.11 except those
with .a; b/D .3; 2C/ or .21; 2C/. Of these, the four listed in the theorem are easily
seen to have unknotting number 1. The others have .c; d/D .3; 2/, .21; 2/, .3; 2�/
or �.3; 2/. From now on, let K be a knot of the form .a; b/.c; d/ where .a; b/ (resp.
.c; d/) is one of the two (resp. four) possibilities listed. Recall (see proof of Theorem
10.11) that K D S.�1

a
;�1

b
I

1
c
; 1

d
/.

First note that K is not an EM–knot. For f1
a
; 1

b
g D f

1
3
; 3

2
g or f2

3
; 3

2
g, and it follows

easily from Lemma 2.2 that K is not of the form S.˛; ˇI ; ı/ with j˛j; jˇj; j j; jıj< 1,
and hence not an EM–knot by Corollary 3.2.

By Theorem 6.2, if K has unknotting number 1 then it can be unknotted by a crossing
move in M.�1

a
;�1

b
/ or M.1

c
; 1

d
/. Since jcj; jd j > 1, the former is impossible,

by Corollary 9.7. So the unknotting move is contained in M.1
c
; 1

d
/, transforming

M.1
c
; 1

d
/ to a tangle T that unknots M.�1

a
;�1

b
/ DM.�1

3
;�3

2
/ or M.�2

3
;�3

2
/.

By Lemma 9.5, we see that in both cases T DR.�1=2/.

Consider the case .c; d/D .3; 2/. Then M.; ı/DM.1
3
; 1

2
/. By Corollary 9.3, this

can be transformed to R.�1=2/ by a crossing move if and only if there is an integer
k such that k � 2C 1 D �1, and 1=3 D k C 2s2

2rs˙1
for some s � 1, .r; s/ D 1. The

first equation gives k D�1, and the second now gives ˙2s2 D 1� 3k D 4, which is
impossible.

The other three cases .c; d/D .21; 2/, .3; 2�/ and �.3; 2/ are similar. We omit the
details.

We now consider the knots of the form :a:.b; c/ or :.b; c/:a. First we have the following,
which is an immediate consequence of Theorem 10.1.

Lemma 10.13 :a:.b; c/ and �:.b; c/:a are mutants.

Lemma 10.13 and Theorem 7.1 imply that :a:.b; c/ has unknotting number 1 if and
only if :.b; c/:a does, so we restrict attention to knots of the first type.

Theorem 10.14 Suppose that a > 0 and jbj; jcj > 1. Then :a:.b; c/ has unknotting
number 1 if and only if �. a

aC1
; 1

2
/D�.�1

b
; cC1

c
/D 1.

Proof The knot :x:y has the form shown in Figure 10.5. Therefore K D :a:.b; c/

is of the form M.˛; ˇ/[M.; ı/[M.�1=2;�/, where ˛ D a=.aC 1/, ˇ D�1=2,
 D�1=b , and ıD�.cC1/=c ; see Figure 10.6. Note that the conditions on a; b and
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x

-yh

Figure 10.5

Figure 10.6

c guarantee that ˛; ˇ; ; ı 2 Q� Z. This is a decomposition of K into elementary
tangles.

Since K does not have a unique essential Conway sphere, K is not an EM–knot.
Hence, if u.K/D 1, then either conclusion (1) or (3) of Theorem 8.2 holds.

First, suppose (1)(a) of Theorem 8.2 holds for M.˛; ˇ/. By Lemma 9.2(3), M.˛; ˇ/

is transformed to a rational tangle R.p0=q/ with q � 2. If this unknots K , then
R.p0=q/[M.�1=2;�/ must be an integral tangle; see Figure 10.7. Hence p0 D˙1,
and R.p0=q/[M.�1=2;�/ D R. 2

1˙2q
/. Therefore q D 0 or ˙1, a contradiction.

Exactly the same argument shows that (1)(a) of Theorem 8.2 does not hold for M.; ı/.

Next suppose that we have conclusion (3) of Theorem 8.2 and that (1) of that theorem
does not hold. By the remark after Theorem 8.2, for M DM.˛; ˇ/ or M.; ı/,
and M0 DM.; ı/ or M.˛; ˇ/, respectively, we have M[M.�1=2;�/D A, an
EM–tangle, and the rational tangle R resulting from the standard unknotting move in A
must unknot M0 . Hence R must be an integral tangle, R.r=1/. Here r D˙�.˛; ˇ/

where ˛ is the tangle slope corresponding to R and ˇ is the tangle slope of the Conway
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(p/q)

Figure 10.7

disk of A. From Figure 4.3, we determine that r D˙4m when ADA1.`;m/ (the
rational tangle is R.1�2m

4m
/) and that r D ˙.`.1� 2m/C 2/ (the rational tangle is

R. 2m�1
`.1�2m/C2

/) when ADA1.`;m/.

Since j˛j; jˇj< 1, it follows from Lemma 9.5(2) that MDM.˛; ˇ/, M0DM.; ı/.
Let �1

b
D

r1

t1
, �1

c
D

r2

t2
where ri ; ti 2 Z and ti > 1. Applying Lemma 9.5(1) with

x D r we get that r�1
b
�

1
c
� 1 D ˙1

t1t2
. As jbj; jcj; t1; t2 > 1, jr j < 4. From the

preceding paragraph, this implies that when A D A1.`;m/, j4mj < 4. But m ¤ 0,
a contradiction. When A D A2.`;m/, j`.1� 2m/C 2j < 4. Thus j`j j1� 2mj < 6.
Since j`j � 2 and m 62 f0; 1g, this is again a contradiction. Thus conclusion (3) of
Theorem 8.2 cannot hold.

We conclude that (1)(b) of Theorem 8.2 must hold. The crossing move transforms
M.�1

2
;�/ to M.1

0
;�/, which transforms K to the connected sum of 1�M.˛; ˇ/ and

1�M.; ı/. The result now follows from Lemma 9.4.

In Conway’s tables, there are 22 knots listed in the form :a:.b; c/ or :.b; c/:a: 8 11–
crossing alternating knots and 14 11–crossing non-alternating knots. (They come in
mutant pairs :a:.b; c/ and :.b; c/:a.) They all have aD 2 or 20D 1=2, the alternating
knots have .b; c/ D .3; 2/ or .21; 2/, while the non-alternating knots have .b; c/ D
.3; 2�/, .21; 2�/, �.3; 2/ or �.21; 2/.

Theorem 10.15 Of the knots listed in Conway’s tables of the form :a:.b; c/ or
:.b; c/:a, those with unknotting number 1 are precisely the 6 11–crossing non-alternating
knots with .b; c/D�.3; 2/ or �.21; 2/.

Proof This follows easily from Theorem 10.14.

Finally, we consider the three knots in Conway’s tables of the form .a; b/1.c; d/. First
we have the following lemma.

Lemma 10.16 If a; b; c; d > 1 then .a; b/1.c; d/ is not an EM–knot.
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Proof The knot .a; b/1.c; d/ has the form shown in Figure 10.8. Consider the arc
that joins the SE–corners of the two Montesinos tangles. By swinging this arc over
the right-hand tangle, one sees that .a; b/1.c; d/ D S.1=a; 1=bC 1I 1=c; 1=d C 1/.
By Lemma 2.2, it is easy to see that this is never of the form S.˛; ˇI ; ı/ with
j˛j; jˇj; j j; jıj< 1. But the EM–knots are all of this form, by Lemma 3.1.

Theorem 10.17 The 11–crossing alternating knots .3; 2/1.3; 2/, .3; 2/1.21; 2/ and
.21; 2/1.21; 2/ do not have unknotting number 1.

Proof Let KD .a; b/1.c; d/. Note that for the knots under consideration, 1
a
; 1

b
; 1

c
; 1

d
2

Q� Z. Clearly K does not contain an EM–tangle. Also, it is not an EM–knot by
Lemma 10.16.

(1/c,1/d)(1/a,1/b)

Figure 10.8

Hence, by Theorem 8.2, if u.K/ D 1 then the unknotting move takes place in a
rational substituent of M.1

a
; 1

b
/ or M.1

c
; 1

d
/, transforming it to a rational tangle R.r/.

By symmetry we may assume that the unknotting move takes place in M.1
a
; 1

b
/.

By Lemma 9.5(1), the tangle R.r/ must be an integral tangle R.m/. It follows that
r D Œm;�1; 0�D m

1�m
. By Lemma 9.5(2), since j1

c
j; j 1

d
j<1, we must have jmj�1. On

the other hand, by Lemma 9.2(3), there exists an integer k such that kqCp
q
D r D m

1�m
,

where p=q D 1=a or 1=b . Since q � 2 and .p; q/ D 1, m D 0 or 1 is impossible.
Hence m D �1 and q D 2. Therefore p=q D 1=2 D 1=a (since .a; b/ D .3; 2/ or
.21; 2/), and 2k C 1DmD �1, giving k D �1. Also, by Lemma 9.2(4), the other
rational substituent of M.1

a
; 1

b
/, namely 1=b , must satisfy 1

b
D�1C 2s2

2rs˙1
, s � 1,

.r; s/ D 1. But in both cases, b D 3 and b D 21 D 3=2, this is easily seen to be
impossible.

Remark For knots of up to 10 crossings, until the work described here and the work
of Ozsváth and Szabó [27], there were 41 knots for which it was not known whether
or not they had unknotting number 1. We ruled out 14 of them (see above): the two
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9–crossing knots 929 D :2:20:2 and 932 D :21:20, and the twelve 10–crossing knots
1079D .3; 2/.3; 2/, 1081D .21; 2/.21; 2/, 1083D :31:2, 1086D :31:20, 1087D :22:20,
1090D :3:2:2, 1093D :3:20:2, 1094D :30:2:2, 1096D :2:21:2, 10148D .3; 2/.3; 2�/,
10151 D .21; 2/.21; 2�/, and 10153 D .3; 2/�.21; 2/. Meanwhile, Ozsváth and Szabó
[27], using their remarkable Heegaard Floer homology theory, ruled out all 41 knots
except 10153 . So the knots with 10 or fewer crossings and unknotting number 1 are
completely determined.

11 Deciding if a large algebraic knot has unknotting num-
ber 1

It is unknown if the unknotting number of a knot is a computable invariant. Even the
following special case is open:

Question 11.1 Is there an algorithm to decide whether or not a given knot has unknot-
ting number 1?

Note that by Haken [12] there is an algorithm to decide if a knot has unknotting
number 0.

Theorem 8.2 allows us to answer Question 11.1 affirmatively for large algebraic knots.

Theorem 11.2 There is an algorithm to decide whether or not a given large algebraic
knot K , described as a union of elementary marked tangles (Figure 8.1) and 4–braids
in S2 � Œ0; 1�, has unknotting number 1, and, if so, to identify an unknotting crossing
move.

Proof Note that none of the rational tangles in a constituent elementary tangle of K

is integral or R.1=0/ (that is, the distance between the slope of such a rational tangle
and the orbifold S1 –fiber of the elementary tangle is at least two).

Definition Let T be a marked tangle in the 3–ball. The number p=q 2 Q[ f1g

is called an unknotting slope for T if T [R.�p=q/ (ie 1�.T CR.�p=q//) is the
unknot.

Remark As long as T is not rational, an unknotting slope for T , if there is one, is
unique. This follows, for example, from the fact that knots are determined by their
complements and the Z2 –Smith Conjecture (applied to the double branched covers).
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Lemma 11.3 There is an algorithm to decide whether or not a given algebraic tangle
(ie a union of elementary tangles and 4–braids) has an unknotting slope, and, if so, to
find it.

Proof Again we assume the tangle is given as a union of elementary marked tangles
and 4–braids in S2 � Œ0; 1�. Begin with the innermost, constituent, elementary tangles,
necessarily of type I, and compute their unknotting slopes (if they exist) via Lemma
9.5(1). Then work outward along elementary tangles of type II determining unknotting
slopes at each step. This is equivalent to solving equations of the following form: given
r1

s1
; r2

s2
find a rational x

y
such that x

y
C

r1

s1
D

r2

s2
. In working outward, if one comes to a

constituent tangle of type III, the corresponding unknotting slope (if it exists) must be
the slope of the orbifold S1 –fiber.

Working outward in this way, either one finds at some point that there is no unknotting
slope, in which case there is none for the algebraic tangle, T , or one determines the
unknotting slope for T .

By Theorem 8.2, K has unknotting number 1 if and only if one of the following options
holds: (A) K is an EM–knot; (B) K contains an EM–tangle for which the standard
crossing change unknots K ; or (C) K unknots by replacing a rational tangle in a
constituent elementary tangle of type I or II with another rational tangle as described
in Theorem 8.2(1).

We show that these options can be checked algorithmically.

(A) To see if K is an EM–knot, first check that there are two elementary tangles
of type I whose union is K . If so, compute the orders of the exceptional orbifold
S1 –fibers of each elementary tangle and list the finite number of EM–knots having
exceptional fibers of the same order. Check if K is equivalent to one of these (eg,
check that the orbifold S1 –fibers of the two elementary tangles intersect twice at the
unique Conway sphere [ie, that the distance between the slopes of these fibers is 1 on
the Conway sphere]. If so then K can be written in the form S.˛; ˇI ; ı/ and Lemma
2.2 may be applied).

(B) To check the unknotting of K by a standard crossing change in an EM–tangle,
we list all pairs fX1;X2g of a type I and type II elementary tangle of K that share a
common Conway sphere. The union X1[X2 is a candidate for an EM–tangle. Let �p

q

be the unknotting slope of the complementary tangle .S3;K/� .X1[X2/. List the
finitely many EM–tangles that have exceptional orbifold S1 –fibers of the same order as
X1[X2 . Then check if there is a homeomorphism from the candidate X1[X2 to one
of these EM–tangles taking the slope p

q
to the slope of the rational tangle that results
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from the standard crossing change. (For example, check that the orbifold S1 –fibers of
X1 and X2 intersect twice along the common Conway sphere. If so, X1[X2 may be
rewritten in the form S.�; p1

q1
I

p2

q2
; p3

q3
/. Then check that

p1

q1

C n1 D
v1

w1

;
p2

q2

C n2 D
v2

w2

;
p3

q3

� n2 D
v3

w3

for some n1; n2 2 Z, where A".`;m/ D S.�; v1

w1
I
v2

w2
; v3

w3
/. If so, there is a unique

homeomorphism up to isotopy taking X1[X2 to A".`;m/. One then checks that p
q

is identified with the slope of the rational tangle gotten by the standard crossing move
on A".`;m/.)

(C) To check the condition of Theorem 8.2(1), we check each constituent elementary
tangle of type I or II as follows. For any elementary tangle of type II, we replace
the rational tangle R.p=q/ with R.1=0/. If this yields the unknot (which can be
checked algorithmically), then we check that p

q
D

2rs˙1
2s2 for some .r; s/D 1. If so

one identifies the unknotting crossing move of K as described, for example, in Lemma
8.1 (or Lemma 12.3).

Consider a constituent elementary tangle, X , of type I, and let � v
w

be the unknotting
slope for the complementary tangle .S3 �K/ �X (if there is none, K cannot be
unknotted in this way). Decide if replacing some rational tangle, R.p=q/, of X by
an integer tangle, R.k/, changes X to the rational tangle R.v=w/. If so, determine
if p

q
D

2s2

2rs˙1
C k for some .r; s/ D 1. If so, then a variation of Lemma 8.1 will

determine an unknotting crossing move for K (see also Lemma 12.4).

12 Unknotting in a minimal diagram

In [18], Kohn made the following conjecture, which he showed was true for 2–bridge
knots and links.

Conjecture (Kohn) Let K be a knot or link with u.K/D 1. There is a crossing in a
minimal diagram of K which, when changed, unknots K .

Note that the analog for knots with u.K/ > 1 is false [1], [26].

We shall show that the conjecture is true for alternating large algebraic knots.

From [32], we take the following

Definition A tangle diagram D in a disk � is prime iff

(i) the underlying projection of D is a connected subset of the disk �
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(ii) if C is a circle in � meeting D transversely in two points, then these points
belong to the same edge of D (ie, diagrammatic connected sums are not allowed).

Proposition 12.1 (Flyping conjecture for alternating tangles in a 3–ball) If D;D0

are prime, alternating diagrams of the same marked tangle in a 3–ball, then D and D0

differ by a sequence of flypes.

Proof As outlined in [32, page 333] or [34, page 998], this follows from the rigid
vertex version of the Flyping Conjecture proved in [22].

Definition A tangle .B;T / in a 3–ball B is prime iff

(i) .B;T / is not rational;

(ii) if S is a 2–sphere in B �T , then the 3–ball bounded by S does not meet T ;

(iii) if a 2–sphere S in B meets T transversely in two points, then the 3–ball in B

bounded by S meets T in an unknotted arc.

Corollary 12.2 If D;D0 are alternating diagrams of the same marked tangle in a
3–ball which is either prime or rational but not R.1=0/, R.0=1/, then any (marked)
tangle obtained by changing a crossing in D can be gotten by changing a crossing in
D0 .

Proof of Corollary 12.2 The hypotheses guarantee that if D is not a prime diagram,
then it has a nugatory crossing. (A circle violating (ii) of primeness of the diagram
must encircle an alternating diagram of the unknot. This must have a nugatory crossing
by the minimality of crossing number for reduced, alternating diagrams of links.)
Thus by reducing all nugatory crossings in D , we leave a prime, alternating diagram.
Similarly for D0 . Thus D;D0 are related by a sequence of flypes and nugatory crossing
reductions or creations. One checks that changing a crossing commutes with these
operations.

Recall (Lemma 8.1) that R.p=q/ can be transformed to R.1=0/ by a crossing move
if and only if there are coprime integers r; s such that p=q D 2rs˙1

2s2 .

Lemma 12.3 If p=q D 2rs˙1
2s2 , where .r; s/ D 1 and s ¤ 0, then R.p=q/ can be

transformed to R.1=0/ by a crossing change in any alternating diagram for R.p=q/.
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m - k

D

Figure 12.1

Proof By [18] the condition on p=q is equivalent to the condition that ˙p=q D

Œc1; : : : ; c`�1; c`; 1; 1; c` � 1; c`�1; : : : ; c1; c0� or

Œc1; : : : ; c`�1; c` � 1; 1; 1; c`; c`�1; : : : ; c1; c0�

where ci � 1, 0 � i � ` � 1, c` � 2. The corresponding diagram of R.p=q/ is
alternating, and the crossing change is visible in that diagram. By Corollary 12.2,
the transformation R.p=q/ 7! R.1=0/ can be effected by a crossing change in any
alternating diagram.

Lemma 12.4 If p=q 2Q�Z, and R.p=q/ can be transformed to R.k/ by a crossing
move, then it can be transformed to R.k/ by a crossing change in any alternating
diagram of R.p=q/, unless p=q D˙Œ`; 2;m�, where ` > 0, m� 0, and k D˙.`C

mC 2/.

Proof By Corollary 12.2, we only need exhibit a crossing change in some alternating
diagram of R.p=q/. If kD 0 then the result holds by rotating and applying Lemms 8.1
and 12.3. So assume k ¤ 0. We may also suppose, without loss of generality, that
p=q > 0. Write p=q D p0=q Cm, 0 < p0=q < 1, m � 0. Then R.p=q � k/ D

R.p0=qC .m� k// can be transformed to R.0/ by a crossing move.

Let D0 be a positive alternating diagram of R.p0=q/ (see Figure 12.1). There is such
a diagram since p0

q
> 0.

Case (1) m � k � 0

In this case R.p=q� k/ has the alternating diagram shown in Figure 12.1

By the case k D 0 above, R.p=q � k/ can be transformed to R.0/ by changing a
crossing c in this diagram. Clearly c must be a crossing of the diagram D0 (eg, by
computing the associated rational number after the crossing change). Let D be the
alternating diagram of R.p=q/ D R.p0=q Cm/ obtained by putting m horizontal
1
2

–twists on the right of D0 . Then changing the crossing c in D transforms R.p=q/
to R.k/.
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Case (2) m � k < 0

Since 0< p0=q < 1, the diagram D0 ends up with r � 1 vertical 1
2

–twists; see Figure
12.2. Hence R.p=q� k/DR.p0=qC .m� k// has the diagram D0 shown in Figure
12.3.

r

Figure 12.2

c2

c1

m-k<0 

a
D

Figure 12.3

Let a be the arc indicated by the bold line in Figure 12.3. Swinging a underneath D0

gives the diagram D1 shown in Figure 12.4. Note that this is a (negative) alternating
diagram. Therefore, by the case k D 0 above, R.p=q � k/ can be transformed to
R.0/ by changing some crossing c in D1 . Clearly c is either a crossing of D0 (other
than c1 ) or the new crossing c0 .

In the first case, R.p0=qCm/ D R.p=q/ is transformed to R.k/ by changing the
same crossing c in the alternating diagram D of R.p0=qCm/ defined in Case (1).

In the second case, changing the crossing c0 in D1 and swinging the arc a over D0

clearly gives the same tangle as changing the crossings c1 and c2 in the diagram D0 .
By hypothesis, this is R.0/. Hence changing only c1 in D0 gives R.�2/. Therefore
r � 2 (else the crossing change would not yield an integral tangle).
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c0

Figure 12.4

Claim If r D 1, then p
q
D Œ`� 1; 1; 1;m� where `� 2, k DmC 2� `.

If r D 2, then p
q
D Œ`; 2;m� where ` > 0, k DmC 2C `.

Proof of Claim Assume r D 1. The positive continued fraction expansion for the
rational tangle of Figure 12.3 with crossing c1 changed gives

�2D .m� k/C
1

�1C s
`

D .m� k/C
`

s� `

where 0< s
`
< 1, .s; `/D 1. Integrality gives s D `� 1 and

p

q
DmC

1

1C s
`

DmC
1

1C 1

1C 1
`�1

where `� 1> 0. Thus p
q
D Œ`� 1; 1; 1;m�. Furthermore

�2D .m� k/C
1

�1C 1

1C 1
`�1

Dm� k � `

as required.

Similarly, if r D 2 we have

�2D .m� k/C
1

0C s
`

This implies that s D 1, ` > 0. Then �2D .m�k/C `. Finally p
q
D Œ`; 2;m�.

By the Claim, if r D 1 then we are in Case (1). When r D 2, we obtain the list of
tangles stated in the Lemma.

Theorem 12.5 Let K be an alternating large algebraic knot with unknotting number 1.
Then K can be unknotted by a crossing change in any alternating diagram of K .
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Proof By [22], any two reduced alternating diagrams of K are related by flype moves.
It follows easily that if K can be unknotted by a crossing change in some alternating
diagram then it can be unknotted by a crossing change in any alternating diagram.

In what follows we use the notion of the “visibility” of a Conway sphere or disk
in an alternating diagram as discussed in [33]. In particular, [21] shows that in an
alternating diagram a Conway sphere is either visible, or hidden in a very specific way
(see Figures 3(i), (ii) of [33]). In the latter case, there is a standard move on the diagram
to make the sphere visible (see Figure 3(iii) of [33]). For a reduced alternating diagram
of an elementary tangle, [33, page 326] shows that the arguments of [21] can also be
used to say that the Conway disk must be visible.

First suppose that we are in Case (1) of Theorem 8.2.

Let D be a reduced alternating diagram of K . Suppose we are in subcase (a), so
that the unknotting crossing move takes place in a rational subtangle of an elementary
tangle T of type I. Let S be the boundary of T , and suppose that S is visible in D .
Then after flyping if necessary (see [33, page 326] for the visibility of the Conway
disk), we may assume that D contains a subdiagram of the form shown in Figure 8.1(I).
By Theorem 8.2, the crossing move transforms R.p=q/ to R.k/. Since p=q 62 Z,
it follows from Lemma 12.4 that this can be achieved by a crossing change in the
diagram D1 , unless (without loss of generality) p=q D Œ`; 2;m�, ` > 0, m � 0, and
k D `CmC 2. Since k > 0 and D is alternating, we see that replacing D1 with the
standard diagram of R.k/ gives an alternating diagram D0 . Also, since D is reduced
and S is essential, it is easy to see that D0 is reduced. Hence D0 is a diagram of a
non-trivial knot, a contradiction.

Next suppose that we are in subcase (b) of Theorem 8.2, Case (1), and that the boundary
components of the corresponding elementary tangle of type II are both visible in D

(Figure 8.1(II)). The crossing move transforms R.p=q/ to R.1=0/, and, by Proposition
12.1 and (the proof of) Lemma 8.1, this can be achieved by a crossing change in the
diagram D3 (q ¤ 0).

It remains to consider (a) and (b) when the relevant Conway spheres are hidden in D .
So suppose we are in subcase (a), and the boundary S of the corresponding elementary
tangle T of type I is hidden in D . Making S visible as described in [33], we get
a diagram in which the tangle T appears as in Figure 12.5. Note that the diagrams
D1;D2 of R.r=s/, R.p=q/ in Figure 12.5 will be alternating. Suppose, without loss
of generality, that the unknotting crossing move takes place in the right-hand rational
tangle R.p=q/, transforming it to R.k/ for some integer k .

We first argue that k D 0 or 1. Assume not. Let R.c=d/ be the subtangle of R.r=s/
encapsulated in the circle of D1 of Figure 12.5. We then have the equation d

c
D 1C s

r
.
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D1
D2

c

Figure 12.5: T DR.r=s/CR.p=q/

Note that since the diagram of R.r=s/ is alternating, c=d < 0. Now the crossing move
we are considering turns T into R. r

s
Ck/. This has to be of the form R.1=x/, x 2 Z,

or R.0=1/. (Write K D T [ T 0 , as in Figure 3(iii) of [33], where T 0 is also of the
form of Figure 12.5. Since the corresponding subdiagrams, D0i , of T 0 are alternating,
if either D0i is a diagram of a rational tangle R.p=q/, then q > 0. Arguing on the
level of double branched covers, as in Lemma 9.5(1), we see that �. r

s
C k; 0

1
/ � 1.

Hence r
s
C k D 1

x
or 0

1
.) Since D1 in Figure 12.5 for T is alternating, j r

s
j< 1. Thus

r
s
C k ¤ 0

1
. We assume r

s
C k D 1

x
, x 2 Z. Then r

s
D

1�kx
x

, hence s
r
D

x
1�kx

.
Therefore 0> d

c
D 1C x

1�kx
D .1� .k � 1/x/=.1� kx/, implying that k D 0; 1.

By Lemma 12.4, since p
q
62Z and k D 0; 1, we see that R.p=q/ can be transformed to

R.k/ by a crossing change in the minimal diagram D2 . Now D2 can be obtained by
adding a vertical right-handed twist, given by the crossing marked c , to the diagram of
the tangle R.a=b/ which was visible in the original alternating diagram of K . If the
crossing changed in D2 is not c , then this is a crossing change in the original diagram.
So suppose the crossing changed is c . Since this gives R.k/, we see that R.p=q/
(R.a=b/, resp.) is gotten by adding two (one, resp.) right-handed vertical twists to
R.k/. Since p

q
¤

0
1

, we see that k ¤ 0. Thus k D 1 and a
b
D

1
2

, p
q
D

1
3

. But then
one sees that the crossing change at c can be accomplished by a crossing change in
the diagram of R.a=b/ by Corollary 12.2. Thus K can be unknotted by a crossing
change in D .

To finish the proof of Theorem 12.5 in Case I, we consider the case when the crossing
move is in an elementary tangle of type II where one of the boundary components, S1 ,
is hidden in D . Making S1 visible gives a diagram containing a subdiagram as shown
in Figure 12.6.

Lemma 12.6 Let F1 be the disk pictured in Figure 12.6. Then F1 is a Conway disk
for S1 . Furthermore, any Conway disk for S1 is parallel to F1 .
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F1

Figure 12.6

Proof By Corollary 3.3 of [33], F1 is a Conway disk for the prime tangle bounded
by S1 in Figure 12.6. We assume for contradiction that there is a Conway disk, F2 ,
of S1 that is not parallel to F1 . Then we may take F2 to be disjoint from F1 . In
particular, the slope of F2 on S1 is 1

0
(in the diagram coordinates). Let T be the

tangle containing F2 after cutting Figure 12.6 along F1 . Without loss of generality
assume this is the right-hand side of F1 . Then T is an alternating tangle for which F2

is an essential Conway disk with slope 1
0

(F2 is not parallel to F1 ). After possibly
flyping, we can write T as the union of a positive braid in S2 � I , with at least one
vertical twist, and a reduced alternating tangle T 0 . See Figure 12.7.

Figure 12.7

After an isotopy we may assume that F2 intersects the boundary of T 0 in a single circle,
thereby writing F2 as the union of an annulus in S2 � I and an essential Conway
disk, F 0

2
, in T 0 . By [33, page 326], F 0

2
can be taken to be visible, or hidden in a very

special way. If visible, then its slope on @T 0 (with coordinates from the diagram) is
either 0

1
or 1

0
. Since the braiding in S2 � I is positive with at least one vertical twist,

this means the slope of F2 on T cannot be 1
0

, a contradiction (note that the flyping
did not change the slope of F2 ).

So we assume F 0
2

is hidden in T 0 . But then [33] shows that T 0 has a subdiagram as
in Figure 12.8 and shows that the slope of F 0

2
on @T 0 is either 0

1
; 1

0
; 1

1
(�1

1
does not
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Figure 12.8

occur since the braiding is positive). Again, the fact that the braiding in S2 � I is
positive with at least one vertical twist guarantees that the slope of F2 on @T is not 1

0

as we have assumed.

( )

S1

S2

c

a
b

Figure 12.9

Lemma 12.6 allows us to say that, after isotoping to make S1 visible, the elementary
tangle of type II becomes visible as in Figure 12.9. In particular, we may assume the
unknotting arc lies to the left of F1 in this figure. By Theorem 8.2 and Lemma 12.3,
this can be achieved by a crossing change in the (alternating) diagram on the left of
Figure 12.9. If the crossing changed is not c , then this crossing change corresponds
to a crossing change in the original diagram D . If the crossing changed is c , then
a=b D �1. As argued above, changing the crossing c is equivalent to changing the
single crossing in R.�1/, which corresponds to a crossing in D .

This finishes the proof of Theorem 12.5 in Case (1). Cases (2) and (3) of the theorem
are proved in Theorems 12.7 and 12.8.

Theorem 12.7 Let K be an EM–knot. Then K can be unknotted by a crossing change
in any alternating diagram of K .

Proof Again by the Flyping Conjecture [22], we need only show that K can be
unknotted in some alternating diagram. Let KDK.`;m; n;p/. By [6, Proposition 1.4],
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we may assume, by taking the mirror-image of K if necessary, that `> 1. Lemmas 10.7
and 10.8 imply that KD:a:b:c D S. �1

cC1
; a

aC1
I

1
bC1

; �1
2
/, where a; b; c > 0. Thus K

has a diagram of the form shown in Figure 12.10. The unknotting arc a0 as well as the

u

a
v0

Figure 12.10

corresponding crossing move that unknots K are shown. Let u and v be the arcs of
the diagram indicated by the bold lines. Swinging u “under” and v “over” gives the
diagram shown in Figure 12.11. This diagram is alternating since a; b; c > 0. Also,

c0

Figure 12.11

changing the crossing c0 shown in Figure 12.11 has the same effect as performing the
crossing move shown in Figure 12.10.

Theorem 12.8 Let K be an alternating algebraic knot containing an EM–tangle whose
boundary is an essential Conway sphere. If u.K/D 1, then K can be unknotted by a
crossing change in any alternating diagram of K .

Proof Again, by [22] we need only verify this for some alternating diagram. Let K be
the union of essential tangles P [P0 where P0 is an EM–tangle A".`;m/. Applying

Algebraic & Geometric Topology, Volume 6 (2006)



2112 C McA Gordon and John Luecke

Theorem 6.2, we are either in Case (1) or (3). In Case (1), the proof of Theorem 12.5
guarantees the existence of an unknotting crossing change in an alternating diagram.
Thus we assume we are in Case (3).

Lemma 12.9 In an alternating diagram of K , @P0 must be visible.

Proof Assume not. Then there is a diagram of P0 as in Figure 12.9. By [33], the
disk F1 in that figure is a Conway disk for P0 . Thus it is the unique Conway disk for
P0 . Each side of F1 is an alternating tangle. But this contradicts the fact that capping
A".`;m/ along slope 1

0
(ie, taking the denominator closure) gives either the unknot or

Hopf link (by inspection of Figure 4.3).

Thus @P0 is visible and let D0 be the corresponding subdiagram. This allows us to
regard P0 as a marked tangle. By Corollary 12.2 we need to find some alternating
diagram of this marked tangle that exhibits a crossing change which unknots K .

Theorem 6.2(3) gives an (unmarked) tangle homeomorphism hW P0 ! A".`;m/
D T".`;m/.1=2/ which identifies the standard crossing move on A".`;m/ as an
unknotting, crossing move for K . After possibly rotating, reflecting, or applying a
mutation involution to A".`;m/, there is an alternating braided tangle C in S2 � I

such that extending A".`;m/ by adjoining C gives a marked tangle A".`;m/ [ C
which is equivalent to P0 as a marked tangle — via an extension of h.

Definition Let E be the diagram in a disk � of a tangle in a 3–ball. A crossing c

of E is said to be inessential iff there is a properly embedded arc in � that intersects
E only in c , dividing the four arcs of E at c into pairs. A diagram is reduced iff it
contains no inessential crossings.

Figure 12.12 displays a reduced, prime, alternating diagram, E , for A".`;m/ which ex-
hibits a crossing change sending A`.`;m/ to the rational tangle
T".`;m/.1

0
/. Letting C denote an alternating braided diagram of the braided tangle

C , we have that E[C is a prime diagram for the marked tangle P0 , which also has
the diagram D0 . If E and C have the same sign (defined in Section 2) as alternating
tangles, then E [ C is the desired alternating representative of P0 , exhibiting the
appropriate crossing change. If C and D0 have opposite sign, then adjoining to D0

the diagram xC of the reverse braiding of C gives an alternating diagram D0[
xC for

the marked tangle A".`;m/, which also has the diagram E . Since E is reduced, so
is D0[

xC . (For, we may assume D0 has no nugatory crossings, hence neither does
D0[

xC . Then E and D0[
xC have the same crossing number. But then a reducing arc

for D0[
xC suggests a capping of D0[

xC and of E giving two alternating diagrams of
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the same link with the same number of crossings — one of which contains a nugatory
crossing, the other does not). That is, C is empty and E , D0 represent the same
marked tangle. Thus E is the sought after diagram for P0 .

 1- c

R

 1-

c
R

-

` > 0 ` < 0

RDR
�
.1�`/mC1

m

�
RDR

�
.�1�`/mC1

m

�
crossing change at c!R

�
1�2m
1C2m

�
crossing change at c!R

�
1�2m
1C2m

�
A1.`;m/

 1-

c

R
 1-

c

R
-

` > 0 ` < 0

RDR
�

m�1
m

�
RDR

�
m�1

m

�
crossing change at crossing change at

c!R
�
.`�1/.1�2m/C2

1�2m

�
c!R

�
2m�1

.�1�`/.2m�1/C2

�
A2.`;m/

Figure 12.12: Reduced, alternating diagrams of A".`;m/

Thus we assume E and C have opposite sign, and C and D0 have the same sign. Let
F be the diagram outside of D0 in the alternating diagram of K . Figure 12.12 shows
that after the crossing change in E the sign of the rational number corresponding to
T".`;m/.1

0
/ is opposite to the sign of E . That is, the result of the crossing change has

an alternating diagram R such that R[C is an alternating diagram with the same
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sign as D0 . Then the diagram R[C [F is an alternating diagram of the unknot.
Hence it must have a nugatory crossing. Since we may assume neither F , C or R

contain nugatory crossings, this means that either F or R is a split diagram (ie, there
is a properly embedded arc that separates the arcs of the tangle). Since K cannot be
a connected sum (by [28]), and since F is not rational, R must represent R.0=1/ or
R.1=0/. But Figure 12.12 shows this is not true.

Remarks about Figure 12.12

(1) The markings have been changed between Figure 4.3 and Figure 12.12. In
particular, to get from the markings in Figure 12.12 to those in Figure 4.3 add the
following braiding outside of Figure 12.12:

A1.`;m/; ` > 0 W � 1 vertical twist below

A1.`;m/; ` < 0 W � 1 vertical twist above

A2.`;m/; ` > 0 W C 1 vertical twist below, then

� 1 horizontal twist to left

A2.`;m/; ` < 0 W C 1 vertical twist below

(2) The diagrams for A1.`;m/ were obtained by the moves in Figures 12.10 and
12.11 as well as twistings that change the markings.
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