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Geodesic knots in cusped hyperbolic 3–manifolds

SALLY M KUHLMANN

We consider the existence of simple closed geodesics or “geodesic knots” in finite
volume orientable hyperbolic 3–manifolds. Previous results show that at least one
geodesic knot always exists [1], and that certain arithmetic manifolds contain infinitely
many geodesic knots [2], [5]. In this paper we show that all cusped orientable finite
volume hyperbolic 3–manifolds contain infinitely many geodesic knots. Our proof is
constructive, and the infinite family of geodesic knots produced approach a limiting
infinite simple geodesic in the manifold.

57N10, 53C22; 57M50, 30F40

1 Introduction

A geodesic in a Riemannian manifold is said to be simple if it has no self-intersections
and nonsimple otherwise. In this paper we study geodesics in hyperbolic manifolds,
that is, complete Riemannian manifolds of constant curvature �1. Properties of simple
closed geodesics in hyperbolic 3–manifolds were first studied by Sakai [6], who
introduced the terminology “geodesic knots” to describe them.

A Riemannian manifold may or may not contain simple closed geodesics, and the
question of which ones do is open in general. However, the answer is known for
hyperbolic manifolds of dimension two and three. In an orientable finite area hyperbolic
2–manifold, each non-contractible non-peripheral simple closed curve is homotopic to a
simple closed geodesic, hence the only example not containing a simple closed geodesic
is the thrice-punctured sphere. The case of orientable hyperbolic 3–manifolds was
solved by Adams, Hass and Scott [1]. They showed that every finite volume orientable
hyperbolic 3–manifold contains a geodesic knot, and that the only non-elementary
infinite volume exception is the quotient of H3 by a Fuchsian group corresponding to
the thrice-punctured sphere.

Since self-intersections of a 1–dimensional loop in a 3–dimensional manifold should be
rare, we might expect that most hyperbolic 3–manifolds in fact admit infinitely many
geodesic knots. This paper thus addresses the question:

Question 1 Which hyperbolic 3–manifolds contain infinitely many geodesic knots?
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Some partial answers to Question 1 are known. Chinburg and Reid [2] showed that
there exist infinitely many noncommensurable closed hyperbolic 3–manifolds all of
whose closed geodesics are simple, thus providing examples of arithmetic hyperbolic 3–
manifolds containing infinitely many geodesic knots. In [5] we showed using arithmetic
methods that if M D H3=� is a hyperbolic 3–orbifold such that � is a finite index
subgroup of the Bianchi group �d D PSL2.Od / for some square-free positive integer
d , then M contains infinitely many geodesic knots. In this paper we take a geometric
approach and prove a general result for cusped hyperbolic 3–manifolds, that is, non-
compact hyperbolic 3–manifolds of finite volume.

Theorem 1.1 Every cusped orientable hyperbolic 3–manifold contains infinitely many
geodesic knots.

The idea is to consider infinite families of closed geodesics which approach a limiting
infinite simple geodesic in the manifold, and to show that infinitely many of these closed
geodesics are embedded. This idea can be illustrated one dimension down. Consider an
infinite cusp-to-cusp geodesic in a cusped hyperbolic 2–manifold. This geodesic can
be perturbed slightly to form a closed geodesic which spirals some distance towards
the cusp before spiralling back and closing up, as in Figure 1. By varying the amount
of spiralling, we can obtain infinitely many such closed geodesics. Moreover, with the
extra dimension in three-dimensional cusped manifolds, these geodesics should also
typically avoid self-intersection.

Figure 1: A cusp-to-cusp geodesic can be perturbed slightly to form a closed
curve, spiralling some way out into the cusp.

The work in this paper was part of the PhD thesis [4], where an existence result for
geodesic knots in closed hyperbolic 3–manifolds is also proved. In particular it is
shown that if a closed hyperbolic 3–manifold satisfies certain geometric and arithmetic
conditions, then it contains infinitely many geodesic knots. The conditions on the
manifold are checkable, and have been verified for many manifolds in the Hodgson–
Weeks closed census. This result will appear in the subsequent paper [3].

This was partially supported by an Australian Postgraduate Award. I wish to thank
Craig Hodgson for his suggestions and help.
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2 An infinite family of closed geodesics

To prove Theorem 1.1, we start by defining a suitable class of spiralling closed geodesics
in dimension three. Let our cusped hyperbolic 3–manifold be M DH3=� for a discrete
torsion-free group of isometries � � IsomC.H3/. Choose a cusp C of M and expand
a horoball neighbourhood of it with torus boundary. The maximal embedded horoball
neighbourhood U has boundary T a torus with a finite number of self-tangencies.
Pick a point of self-tangency, a bumping point A; then let 
1 be the infinite geodesic
passing from C to itself through A, perpendicular to T , as shown schematically in
Figure 2.

M
T cusp C

A

geodesic 
1

Figure 2: The infinite cusp-to-cusp geodesic 
1

Consider a lift �A 2H3 of the bumping point A under the covering projection � W H3D�M !M . Then the preimage ��1.T / of T contains two horospheres say H and H 0

which intersect precisely at �A. See Figure 3. Since they both cover T , H and H 0 are

H
H 0

zA

Figure 3: Adjacent horospheres H and H 0 in the Poincaré ball model of H3

related by certain isometries in � . The closed geodesics that we consider in M are
those corresponding to all possible isometries in � mapping H to H 0 .
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Let g 2 � be an arbitrary such isometry taking H to H 0 , and choose generators
a; b 2 � for the cusp group of C which fix H 0 in H3 . Then the isometries in �
mapping H to H 0 are precisely those composed of

� an isometry fixing H , followed by

� any given isometry mapping H to H 0 , followed by

� an isometry fixing H 0 .

This yields an element of the form

ap1bq1 �g � .g�1ag/p2.g�1bg/q2 D ap1bq1ap2bq2g for pi ; qi 2 Z

D apbqg for p; q 2 Z

DW gp;q

Denote the geodesic axis in H3 corresponding to gp;q by �
p;q , and the closed geodesic
in M by 
p;q . So for any given g , a and b , the set of geodesics corresponding to all
possible isometries mapping H to H 0 can be parametrised by Z�Z. Later we will
make a canonical choice for g , given elements a and b generating the cusp group,
and will see that as j.p; q/j !1, the geodesic axes �
p;q approach a lift of the infinite
geodesic 
1 . This limiting behaviour is in fact independent of the choice of g , a and
b .

3 A normalised preimage in H3

To study the limiting behaviour of the geodesics 
p;q and hence show that infinitely
many are simple, we normalise the position of the preimage of T in H3 . To do this
we must first make more precise our notation for the generators a; b of the cusp group,
and their corresponding loops in M .

Let �Tr denote the embedded horospherical torus around C which is hyperbolic distance
r further into the cusp than T . Then a and b correspond to elements of �1.�Tr /. Pick
an r > 0. Then there is a projection map y� W �Tr ! T mapping points radially from
the cusp, so that two points �A and �B on the nonsingular torus �Tr are mapped to
the singular point A of T , as shown in Figure 4. Let �̨; �̌2 �1.�Tr / be loops on �Tr

representing a and b respectively. Since a and b generate the cusp group, �̨ and �̌
are dual oriented non-contractible simple closed curves on �Tr which after isotopy we
may assume are Euclidean geodesics with common basepoint �A. We will generally
identify these curves with their image curves ˛ WD y�.�̨/ and ˇ WD y�.�̌/ on T , pulling
back to �Tr to avoid complications arising from the self-tangencies of T .
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r

�B�A
�Tr

y� A
T

Figure 4: The projection map y� W �Tr ! T maps two points �A and �B to A .

We now work in the upper half-space model of H3 , and regard � Š �1.M / as a
subgroup of PSL2.C/. Let C1 D C[f1g denote the sphere at infinity of the upper
half-space model of H3 , and let the horosphere centred at z 2 C1 be Hz . The
preimage ��1.T / of T is a union of horospheres meeting tangentially at the preimage
of the singular point(s) of T . By an isometry, normalise so that H 0 is the horizontal
horosphere H1 at height 1, and H is the horosphere H0 , tangent to H 0 . Parametrise
H1 by C to match with C1 under vertical translation.

The preimages of the curves ˛; ˇ � T determine a tiling of each horosphere Hz �

��1.T / by parallelograms. Each parallelogram contains two points covering the
bumping point A 2M , corresponding to �A (at the vertex of the parallelogram) and�B in �Tr . On H1 we see this as a tiling of the complex plane. Let t˛ and tˇ be the
complex numbers corresponding to translation along lifts of the curves ˛ and ˇ on
H1 . Thus the parabolic elements a; b 2 � have representations

aD

�
1 t˛
0 1

�
and b D

�
1 tˇ
0 1

�
:

Let the lift of A at complex coordinate 0 on H1 be A0;0 , and let the other lift of
A in the parallelogram fr t˛ C stˇ W r; s 2 Œ0; 1/g � H1 be B0;0 . For .p; q/ 2 Z2

let Ap;q be the lift of A on H1 obtained from A0;0 by translation by the complex
number ap;q WD pt˛ C qtˇ , and define Bp;q and bp;q similarly. So the horosphere
Hap;q

� ��1.T / is tangent to H1 at the point Ap;q and Hbp;q
� ��1.T / is tangent

at Bp;q . See Figure 5.

It is natural to express points on H1 by their coordinates with respect to ˛ and ˇ . Let
the point B0;0 be given by b0;0Dx0t˛Cy0tˇ , where x0;y0 2 Œ0; 1/ and x0;y0 are not
both 0, since B0;0¤A0;0 . Then ap;qDpt˛Cqtˇ and bp;qD .pCx0/t˛C.qCy0/tˇ .

Definition Let z 2 H1 be at complex position z D xt˛ C ytˇ . We call x the
t˛ -coordinate of z and y the tˇ -coordinate of z .
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H 0

H

0D a0;0

b0;0

a1;0

b1;0

a2;0

C1

t˛

tˇ
A0;0 A1;0 A2;0

B0;0 B1;0

A0;1 A1;1 A2;1

B0;1 B1;1

H1

Figure 5: The normalised preimage of T in the upper half-space model of H3

The element g2� was chosen as an arbitrary isometry mapping H DH0 to H 0DH1 .
Thus g maps

(i) 0 to 1 on the sphere at infinity C1 , and

(ii) bumping point A0;0 to some Bp;q on H1 .

Given basis curves ˛ and ˇ , there is a canonical choice for Bp;q in (ii), namely B0;0 .
Then, since the Möbius transformation corresponding to g must map 0 D a0;0 7!

1 7! b0;0 , we find that g is of the form

(1) g D

�
cb0;0 �

1
c

c 0

�
for some c 2 C .

Therefore, with this normalisation the geodesics 
p;q are determined by the axes of
the isometries

gp;q D apbqg

D

�
1 pt˛C qtˇ
0 1

��
cb0;0 �

1
c

c 0

�
D

�
cbp;q �

1
c

c 0

�
(2)

which map horospheres H0 DHa0;0
!H1!Hbp;q

, taking the point A0;0 to Bp;q .
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Let �
p;q � ��1.
p;q/ be the axis of this isometry gp;q . Then �
p;q has endpoints
z D z˙ 2 C1 satisfying

cbp;qz� 1
c

cz
D z;

so that

z˙ D
cbp;q˙

q
c2b2

p;q � 4

2c

D
bp;q

2
˙

s�
bp;q

2

�2

�
1

c2
(3)

Since jbp;qj D jb0;0Cpt˛C qtˇj !1 as j.p; q/j !1, we observe thatˇ̌̌̌
ˇ
s�

bp;q

2

�2

�
1

c2
�

bp;q

2

ˇ̌̌̌
ˇ! 0

as j.p; q/j !1, and hence:

(i) the endpoints z˙ satisfy z�! 0 and zC� bp;q! 0, and

(ii) the radius ˇ̌̌̌
ˇ
s�

bp;q

2

�2

�
1

c2

ˇ̌̌̌
ˇ

of the Euclidean semicircle giving the geodesic axis �
p;q approaches 1,

as j.p; q/j !1.

By (ii), for large enough j.p; q/j, �
p;q intersects H1 in two points, say Cp;q closer to
z� and Dp;q closer to zC , with complex coordinates cp;q and dp;q respectively. Due
to (i) and (ii), cp;q! a0;0 and dp;q�bp;q! 0, so the points Cp;q approach A0;0 and
the points g�1

p;q.Dp;q/ approach g�1
p;q.Bp;q/DA0;0 . See Figure 6.

Therefore,

(4) the arc .g�1
p;q.Dp;q/;Cp;q/ approaches the bumping point A0;0 ,

decreasing in length towards 0 as j.p; q/j ! 1. So for large enough j.p; q/j this
arc does not intersect the preimage ��1.U / of the maximal horoball neighbourhood
U of the cusp. Henceforth we work only with geodesics 
p;q for which j.p; q/j is
sufficiently large that this occurs. So projecting to M , 
p;q consists of two distinct
arcs—the arc �.Œg�1

p;q.Dp;q/;Cp;q �/ outside the maximal cusp neighbourhood U , and
the arc �..Cp;q;Dp;q// inside the maximal cusp neighbourhood U . The arc outside
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�
1 �
p;q

g�1
p;q.Dp;q/

A0;0

a0;0 D 0 cp;q

tˇ
Cp;q

B0;0

t˛

b0;0

Dp;q Bp;q

Ap;q

dp;q bp;q

ap;q

H1

C1

Figure 6: The geodesic axis �
p;q � �
�1.
p;q/ corresponding to the isometry

gp;q . �
p;q can be viewed as approaching the vertical axis �
1 � ��1.
1/ as
j.p; q/j !1 .

U approaches the bumping point A, so we call it the short arc sp;q , while the arc
inside U increases in length towards infinity as j.p; q/j !1, so is called the long
arc lp;q . See Figure 7 for a schematic picture.

M

T

A

short arc
long arcsp;q

lp;q

Figure 7: A schematic view of the short and long arcs of a geodesic 
p;q
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So 
p;q is simple precisely when its two arcs sp;q and lp;q are embedded in M . We
show that this holds for an infinite subfamily of these geodesics.

4 An infinite subfamily is simple

Let �sp;q denote the lift Œg�1
p;q.Dp;q/;Cp;q � of the short arc sp;q , and �lp;q the lift

.Cp;q;Dp;q/ of the long arc lp;q , shown in Figure 6.

Definition Let R be the region in H3 consisting of those points which are closer to
the point A0;0 than to any other lift of the bumping point A. Say that the short arc
sp;q is R–close to A if its lift �sp;q in H3 is contained in R.

By its definition, the projection of R to M is injective, and so sp;q is embedded in
M if it is R–close to A.

Lemma 4.1 In any cusped hyperbolic 3–manifold M all but at most finitely many
geodesics 
p;q have short arcs which are R–close to A and hence embedded.

Proof By its definition, the region R contains a ball B�.A0;0/ of radius � around
A0;0 for some � > 0. By (4),�sp;q approaches A0;0 as j.p; q/j !1, so there is some
N0 2N such that if j.p; q/j>N0 ,�sp;q �B�.A0;0/�R. Then sp;q is R–close to A

and hence embedded.

Consider now the long arcs. Isotoping lp;q radially from the cusp to a curve Lp;q � T

corresponds to projecting the lift�lp;q vertically downwards to a line segment, say �Lp;q

on the horosphere H1 , as in Figure 8.

Lemma 4.2 The long arc lp;q of a geodesic 
p;q is nonsimple if and only if the
projected line segment �Lp;q contains two distinct points which differ by a translation
by an integer linear combination of t˛ and tˇ .

Proof Clearly if lp;q has self-intersection the two points on �Lp;q giving this self-
intersection must project to the same point on T , and so differ by an integer linear
combination of t˛ and tˇ . Conversely, if any two distinct points on �Lp;q differ by an
integer linear combination of t˛ and tˇ , then so do two points equidistant from the
midpoint of �Lp;q , by translation along the line segment. Such equidistant points are
images of points at the same vertical height on the arc �lp;q and thus the same distance
from T on lp;q . These points therefore coincide in M , producing a self-intersection
of lp;q .
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A0;0

tˇ

t˛

Cp;q

�Lp;q

H1

Dp;q

Bp;q

Figure 8: A lift �Lp;q of the radial projection of lp;q to T

We are now ready to prove Theorem 1.1 which we recall here:

Theorem 1.1 Every cusped orientable hyperbolic 3–manifold contains infinitely many
simple closed geodesics.

Proof By Lemma 4.1 it suffices to show that infinitely many geodesics 
p;q have
embedded long arcs.

Recall that b0;0 D x0t˛Cy0tˇ , where x0;y0 2 Œ0; 1/ and at least one of x0 and y0 is
nonzero. Assume without loss of generality that y0 > 0—that is, the tˇ –coordinate of
b0;0 is positive.

Consider then the subfamily of geodesics given by q D 0, ie those given by el-
ements of the form gp;0 D apg . We know that jcp;0j D distH1

.A0;0;Cp;0/ D

distH1
.Bp;0;Dp;0/! 0 as jpj ! 1. Let ı D minf1

2
y0;

1
2
.1 � y0/g. Then there

exists P 2N such that for all p with jpj>P , jcp;0j< ı . So for jpj>P , the complex
number dp;0� cp;0 giving the translation along �Lp;0 has tˇ –coordinate in the interval
.y0�2ı;y0C2ı/� .0; 1/. Hence when jpj>P , �Lp;0 cannot contain points differing
by an integer linear combination of t˛ and tˇ , and so by Lemma 4.2 the long arc lp;0
is simple and we are done.

Note that the above result cannot be strengthened to show that all but finitely many 
p;q
are embedded. For example, it is shown in [4] that in the figure-eight knot complement
infinite families of nonsimple 
p;q occur.

We conclude by remarking that our proof also gives a description of the isotopy classes
of the simple geodesics 
p;q , for j.p; q/j sufficiently large. They are the union of a
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long arc lp;q spiralling inside the maximal cusp neighbourhood U , and a short arc
sp;q outside this cusp neighbourhood. The long arc can be isotoped to a Euclidean
line segment Lp;q on T , the (singular) torus boundary of U , while sp;q is a short
connecting arc between the endpoints of Lp;q , close to the singular point A of T . See
Figure 9 for a schematic view of this description.

T

A

Lp;q

sp;q

cusp

Figure 9: The isotopy class of a geodesic 
p;q can be described as the union
of a long arc isotoped to lie on the singular torus T and a short connecting
arc outside the maximal cusp neighbourhood.

In [4] we investigate this further and obtain precise topological descriptions for the
isotopy classes of infinite subfamilies of the geodesics 
p;q in any cusped hyperbolic
3–manifold. We also draw explicit projection diagrams for these geodesics in the case
of the figure-eight knot complement.
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