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Exotic relation modules and homotopy types
for certain 1–relator groups

JENS HARLANDER

JACQUELINE A JENSEN

Using stably free non-free relation modules we construct an infinite collection of
2–dimensional homotopy types, each of Euler-characteristic one and with trefoil
fundamental group. This provides an affirmative answer to a question asked by
Berridge and Dunwoody [1]. We also give new examples of exotic relation modules.
We show that the relation module associated with the generating set fx;y4g for the
Baumslag–Solitar group hx;y j xy2x�1 D y3i is stably free non-free of rank one.

57M20; 57M05

1 Introduction

Given a group G and an integer n the homotopy classification program in dimension
two aims to determine all 2–complexes (up to homotopy) with fundamental group
G and Euler-characteristic n (see Dunwoody [6], Harlander and Jensen [9], Hog-
Angeloni, Metzler and Sieradski [10], Beyl and Waller [2; 3], Dyer and Sieradski [7; 8],
Jensen [13] and Johnson [14]). If K is a 2–complex then it is not difficult to see that
the Euler-characteristic �.K/ is bounded from below by

P2
iD0.�1/idimHi.G;Q/, a

constant that only depends on the homology of G . Thus we can define �min.G/ to be
the minimal Euler-characteristic that can occur for a finite 2–complex with fundamental
group G . If G is a group of finite geometric dimension 2, that is G is the fundamental
group of a finite aspherical 2–complex K , then �min.G/ D �.K/ and K is, up to
homotopy, the unique 2–complex on the minimal Euler-characteristic level. We show
that if G is of geometric dimension 2 and admits a stably free non-free relation module
of rank k , then there are at least two homotopically distinct 2–complexes with the
same Euler-characteristic, �min.G/C k (Corollary 4.3 and Theorem 4.4). We use
this to construct an infinite collection of homotopically distinct 2–complexes for the
trefoil group, all of Euler characteristic one (Theorem 4.5). This provides an affirmative
answer to a question raised by Berridge and Dunwoody [1] (see also Lustig [16] for
closely related results).
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These topological applications rely on the existence of non-free relation modules for
groups of geometric dimension 2. Let G be a group and x be a generating set for
G . Let F be the free group with basis in one-to-one correspondence to x. The
kernel of the canonical map F !G is denoted by R.G; x/ and is called the relation
subgroup associated with x. If we abelianize RDR.G; x/ we obtain a ZG –module
M.G; x/ D R=ŒR;R�,where the G–action is given by conjugation. This module is
called the relation module associated with x.

Consider the group G presented by hx;y j xy2x�1 D y3i. Observe that the elements
x and zD y4 also generate G . Indeed, since xzx�1D y6 , the element y2 is in hx; zi.
Since xy2x�1 D y3 , we see that y3 is in hx; zi and hence so is y .

Graham Higman observed (see Lyndon and Schupp [18, page 93]) that the generating
set consisting of x and z does not support a 1–relator presentation for G . We prove a
stronger result.

Theorem 1.1 Let G be the group defined by hx;y j xy2x�1 D y3i and let z D y4 .
Then the relation module M.G; fx; zg/ cannot be generated by a single element.

Corollary 1.2 The relation module M DM.G; fx; zg/ is stably free non-free of rank
one: M ˚ZG � ZG2 .

Proof Since y is a redundant generator we have that

M.G; fx;y; zg/�M.G; fx; zg/˚ZG:

Since the generating set fx;y; zg supports the aspherical presentation

hx;y; zjxy2x�1
D y3; z D y4

i

(see Lyndon [17]) it follows that M.G; fx;y; zg/� ZG2 .

In [6] Martin Dunwoody shows analogous results for the trefoil group. Later Berridge
and Dunwoody [1] show that there are infinitely many non-isomorphic stably free
non-free relation modules for the trefoil group, all of rank one. For related results see
also Lewin [15].

2 Some combinatorial group theory

Let G be the group presented by hx;y j xy2x�1 D y3i and let z D y4 .
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Lemma 2.1 The kernel K of the epimorphism

xG D hx; z j z D Œx; z�2i !G

that sends x to x and z to z is non-trivial and free.

Proof Let xH be the normal closure of z in xG and let H be the normal closure of z

in G . The epimorphism in the statement of the lemma restricts to an epimorphism from
xH to H with kernel K . Indeed, since both G=H and and xG= xH are infinite cyclic

(generated by x ), it follows that the kernel K xH= xH of the epimorphism xG= xH!G=H

is trivial and so K is contained in xH . Let zi D xizx�i , i 2 Z. Then xH has a
presentation

xH D hzi j zi D .ziC1z�1
i /2i; i 2 Z:

If we define ui D ziC1z�1
i then we obtain a presentation

xH D hzi ;ui j ui D ziC1z�1
i ; zi D .ziC1z�1

i /2i; i 2 Z

and hence via Tietze transformations

xH D hui j u
2
iC1 D u3

i i; i 2 Z:

So we see that xH is an amalgamated product with infinite cyclic vertex groups huii and
infinite cyclic edge groups that give the relations u2

iC1
Du3

i . Note that the epimorphism
xH !H sends ui to y2

i D xiy2x�i . Since Œy2;xy2x�1�D 1 in G , we see that K

contains the element Œu0;u1�, which by the Normal Form Theorem for amalgamated
products is non-trivial. It remains to be shown that K is free. Since xH acts on a tree
with infinite cyclic vertex stabilizers conjugate to huii and huiiK=K is the infinite
cyclic subgroup hy2

i i of H , it follows that K intersects the conjugates of huii trivially.
Hence K acts freely on a tree and hence is free.

Lemma 2.2 Let s.z;xzx�1/ be a set of relations among z and xzx�1 that holds
among the generators x and z of G . Let L be the kernel of an epimorphism xG D
hx; z j s.z;xzx�1/i !G that sends x to x and z to z . Then L is not perfect (that is
L=ŒL;L�¤ 0).

Proof Let xH and H be the normal closures of z in xG and G , respectively. As in
the previous lemma L is also in the kernel of the restriction of the epimorphism to xH .
The group xH has a staggered presentation

xH D hzi j si.zi ; ziC1/i; i 2 Z

where si D si.zi ; ziC1/ is a set of relations that hold among the two elements zi ; ziC1

of H . Let F be the free group on the zi , i 2 Z, and let S be the normal closure
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of the
S

i2Z si , in F . Then xH D F=S and LD J=S for some normal subgroup J

of F . Notice that H D F=J and that J contains the elements ci D Œzi ; ziC1� and
di D z�3

i z2
iC1

, i 2 Z (because they present the trivial element in H ). We claim that
the normal closure of the set

S
i2Z si[fci ; di ; i 2 Zg in F is the same as the normal

closure of fei D z�1
i .ziC1z�1

i /2 , i 2 Zg in F . To see this it suffices to show that for
every fixed i 2 Z we have

F.zi ;ziC1/hhsi; ci ; diii D
F.zi ;ziC1/hheiii:

Clearly the right hand side is contained in the left hand side because ei is a product of
conjugates of ci and di (if we are allowed to commute zi and ziC1 then we can turn
ei into di ). In order to show the other inclusion consider the epimorphism

hzi ; ziC1 j eii ! hzi ; ziC1 j si; ci ; dii:

We will show that both groups are infinite cyclic. Hence this epimorphism is an
isomorphism, and that settles the claim. Note first that the group on the left is infinite
cyclic, generated by ziC1z�1

i . Let us consider the group on the right. Notice that
the relations si , ci and di hold in H (i.e. these elements are contained in J ), si by
hypothesis and ci , di by direct inspection. Thus we have an epimorphism

hzi ; ziC1 j si; ci ; dii ! hzi ; ziC1i DHi

onto the subgroup Hi of H generated by zi D y4
i D xiy4x�i , ziC1 D y4

iC1
D

xiC1y4x�.iC1/ . Since in H we have y4
iC1
D y6

i , we see that hzi ; ziC1iD hy
4
i ;y

6
i iD

hy2
i i, which is an infinite cyclic subgroup of H . Thus hzi ; ziC1 j si; ci ; dii is the image

of an infinite cyclic group and has an infinite cyclic image. Hence it is infinite cyclic.
This settles the claim.

Let E be the normal closure of fei , i 2 Zg in F and let K D J=E . We have just
shown that S � E , so K is a homomorphic image of L D J=S . So if we assume
that L is perfect, we conclude that K is perfect as well. But according to the previous
Lemma 2.1 the group K is non-trivial and free. So L can not be perfect.

3 Some module theory

Proposition 3.1 Suppose G is a group and M.G; x/ is the relation module associated
with some generating set x. Suppose furthermore that s is a subset of RD R.G; x/
that gives a set of generators for the ZG –module M.G; x/. Let zG be the group defined
by the presentation hx j si. Then the kernel P of the natural surjection from zG onto G

is perfect.
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Proof Let F be the free group on x and let S be the normal closure of s in F .
Since sŒR;R�, s 2 s, generates the relation module we have R D S ŒR;R�. Since
zG D F=S and G D F=R, the kernel of the map zG ! G is P D R=S . Thus
P=ŒP;P �DR=S ŒR;R�D 0.

Let G be a group, F D F.a [ b/ be a free group on the union of sets a and b
and let � W F.a [ b/ ! G be a group epimorphism. Let R D R.G; a [ b/ be the
kernel of � . Assume that QD �.F.b// is a free group on basis b and let H be the
normal closure of �.F.a// in G . Note that G is a semi-direct product H Ì Q. Let
xaD ffaf �1 j f 2F; a 2 ag. Then F.xa/, the free group on xa, is the normal closure of
a in F . Let � 0W F.xa/!H be the restriction of � and let S DS.H;xa/ be the kernel of
� 0 . Note that since R�F.xa/ we have S DR. In particular M.H;xa/DM.G; a[b/
as ZG–modules, where the G–action on M.H;xa/ is conjugation: fR � sŒS;S � D

f sf �1ŒS;S �, f 2 F , s 2 S .

Let x be a generating set for the group G . The Cayley-graph �.G; x/ is a graph with
vertex set G and edge set G�x. The initial vertex of the edge .g;x/ is g , the terminal
vertex is the product gx . The group G acts on this graph via left multiplication and
induces ZG –module structures on the homology groups. Every element of RDR.G; x/
can be lifted to a closed edge path in the Cayley-graph and this construction is the basis
for the Fox-derivative F W M.G; x/!H1.�.G; x//, F.r ŒR;R�/D

P
x2x

@r
@x

ex , where
ex denotes the edge .1;x/. The Fox-derivative can be shown to be a ZG–module
isomorphism between the relation module and the first homology of the Cayley-graph
(see [18, Chapter II, Section 3]).

Let us now specialize to the situation where G D hx;y j xy2x�1 D y3i. Let z D y4 ,
aDfzg, bDfxg. Then xaDfzi j i 2Zg, where ziDxizx�i . We have M.G; fx; zg/D

M.H; fzigi2Z/ as ZG –modules. Now

H1.�.H; fzigi2Z//D ker.
M
i2Z

ZHei
@
! ZH /;

where ei is the edge .1; zi/ and hence @.ei/D zi � 1. Since G DH Ì hxi, the group
ring ZG is a skewed Laurent-polynomial ring ZH Œx˙1�. Furthermore

L
i2Z ZHei

is isomorphic to ZG D ZH Œx˙1�, the isomorphism sending ei to xi and the map
@W

L
i2Z ZHei!ZH , @.xi/D zi�1, is a ZG –module homomorphism (the G –action

on ZH is hxi � h0 D hxih0x�i ). In particular H1.�.H; fzigi2Z// is a ZG–module
and the Fox-derivative F W M.H; fzigi2Z/ ! H1.�.H; fzigi2Z// is a ZG–module
isomorphism.

If ˛ D j̨ xj C : : :C j̨CnxjCn 2ZH Œx˙1�, j̨ , j̨Cn both not zero, then we call n

the length of ˛ , nD l.˛/. Note that if ˛ D ˇ then l.˛/D l.ˇ/C l. /. This uses
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the fact that, because G is a torsion-free 1–relator group, the group ring ZG has no
zero divisors (see Brodskii [4], Howie [11; 12]).

Lemma 3.2 Suppose ˛ D ˛0e0C : : :C˛nen is an element of H1.�.H; fzigi2Z//�L
i2Z ZHei . Then there exist elements s1; : : : ; sm 2 R D R.H; fzigi2Z/ and

f1; : : : ; fm 2 F.fzigi2Z/ such that each sj , j D 1; : : : ;m, is a word in the letters
z0; : : : ; zn and F.

Qm
kD0 fkskf

�1
k
ŒR;R�/D ˛ .

Proof The cycle ˛ is a sum of edges in �.H; fzigi2Z/ with edge labels involving
only letters from fz0; : : : ; zng. These edges can be arranged to form closed edge paths
P1; : : : ;Pm . Choose paths Q1; : : : ;Qm such that Qi connects the vertex 1 to a vertex
occurring in Pi . Reading off the edge labels on the path QiPiQ

�1
i , iD1; : : : ;m, gives

a word of the form fisif
�1

i , where si 2 R involves only letters from fz0; : : : ; zng,
and F.

Qm
kD0 fkskf

�1
k
ŒR;R�/D ˛ .

Proof of Theorem 1.1 Suppose M.G; fx; zg/ is generated (as ZG–module) by a
single element. Then so is M.H; fzigi2Z/. Hence H1.�.H; fzigi2Z// is also singly
generated, say by ˛ . Note that z2

1
z�3

0
2R.H; fzigi2Z/, so ˇDF.z2

1
z�3

0
ŒR;R�/ is an

element of length one in H1.�.H; fzigi2Z// and ˇD˛ for some  2ZGDZH Œx˙1�.
Since l.ˇ/ D l. /C l.˛/, we conclude that the length of ˛ is less or equal to one,
so we may assume ˛ D ˛0e0 C ˛1e1 . It follows from Lemma 3.2 that there are
elements s1.z0; z1/,. . . ,sm.z0; z1/ in F.z0; z1/ that give rise to ZG –module generators
for M.H; fzigi2Z/. Thus the set s.z;xzx�1/ D fs0.z;xzx�1/; : : : ; sm.z;xzx�1/g

generates the ZG–module M.G; fx; zg/. Proposition 3.1 implies that the kernel of
the map

xG D hx; z j s.z;xzx�1/i !G

that sends x to x and z to z is perfect. This contradicts Lemma 2.2.

4 Topological applications

In the last section we have seen that the relation module M D M.G; fx;y4g/ for
the group G D hx;y j xy2x�1 D y3i is not generated by a single element, hence
is certainly not isomorphic to ZG . In this section we will use this fact to exhibit
2–complexes with fundamental group G and the same Euler-characteristic that are not
homotopically equivalent.

Let X be a CW–complex which is the union of a family of non-empty subcomplexes
X˛ , where ˛ ranges over some index set J . Let N be the nerve associated with
this covering of X . The nerve N is a simplicial complex with vertex set J . The
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n–simplices are subsets f˛1; :::; ˛ng, ˛i 2 J , i D 1; :::; n, such that the intersection
X˛1
\ :::\X˛n

is not empty.

The following result is an immediate consequence of the Mayer–Vietoris spectral
sequence (see Brown [5, page 166]).

Lemma 4.1 If N is a tree we have a long exact sequence

:::!HpC1.X /!
M

f˛;˛0g2N .1/

Hp.X˛ \X˛0/!
M
˛2N .0/

Hp.X˛/!Hp.X /! :::

Consider the amalgamated product of groups GDG1�H G2 . Let Ki be an Eilenberg–
MacLane complex for Gi , i D 1; 2, and L be an Eilenberg–MacLane complex for H .
For convenience we assume that each of these complexes have a single vertex. Let u,
v , w be the vertices of K1 , K2 , L, respectively. An Eilenberg–MacLane complex
K DK1[ .L� Œ0; 1�/[K2 for G is obtained from K1 , L� Œ0; 1�, and K2 by gluing
L� f0g to K1 via a map induced by the inclusion H ,! G1 and gluing L� f1g to
K2 via a map induced by the inclusion H ,!G2 .

Theorem 4.2 (a) For n> 2 there is a short exact sequence

0!ZG˝G1
�n.K

.n/
1
/˚ZG˝G2

�n.K
.n/
2
/!�n.K

.n//!ZG˝H �n�1.L
.n�1//!0:

(b) For nD 2 there is a short exact sequence

0! ZG˝G1
�2.K

.2/
1
/˚ZG˝G2

�2.K
.2/
2
/! �2.K

.2//! ZG˝H M.H; x/! 0;

where x is the generating set for H coming from the 1–skeleton of L.

Proof Let X be the n–skeleton of the universal covering zK and let pW zK!K be
the covering projection. Let Ku be the n–skeleton of K1[ .L� Œ0;

1
2
�/ and Kv be the

n–skeleton of the other half, K2[ .L� Œ
1
2
; 1�/. Note that Ku\Kv DL.n�1/ � f

1
2
g.

Let zw be a fixed lift of the point fwg�f1
2
g. Let Xu be the component of p�1.Ku/ that

contains zw and Xv be the component of p�1.Kv/ that contains zw . The intersection
Y D Xu \Xv is a component of p�1.Ku \Kv/ D p�1.L.n�1/ � f

1
2
g/ and hence

is homeomorphic to the .n� 1/–skeleton of the universal covering of L. Note that
p�1.Ku/ is the disjoint union of the translates gXu , where g is taken from T .G=G1/,
a transversal for G=G1 . Analogously, p�1.Kv/ is the disjoint union of the translates
g0Xu , where g0 is taken from T .G=G2/. Let N be the nerve associated with the
covering of X by the components of p�1.Ku/ and p�1.Kv/. This nerve is a simplicial
tree, isomorphic to the Bass–Serre tree associated with the amalgamated product

Algebraic & Geometric Topology, Volume 6 (2006)



2170 Jens Harlander and Jacqueline A Jensen

G1�H G2 . The vertices of this tree are the translates gXu for g 2T .G=G1/ and g0Xv
for g0 2T .G=G2/. The intersection gXu\g0Xv¤∅ if and only if there is a g00 2G so
that gXuDg00Xu and g0XvDg00Xv . In this case gXu\g0XvDg00.Xv\Xv/Dg00Y .
Hence the edges of N are the translates g00Y , g00 2 T .G=H /. We apply the previous
lemma and obtain a long exact sequence

� � � !HnC1.X /!
M

g002T .G=H /

Hn.g
00Y /!

!

M
g2T .G=G1/

Hn.gXu/
M

g02T .G=G2/

Hn.g
0Xv/!Hn.X /! � � �

Since Y is .n� 1/–dimensional and both Xu , Xv are n–dimensional and .n� 1/–
connected, this yields the short exact sequence

0!
M

g2T .G=G1/

Hn.gXu/˚
M

g02T .G=G2/

Hn.g
0Xv/!Hn.X /!

M
g002T .G=H /

Hn�1.g
00Y /! 0:

Let us first assume that n> 2. Since Xu is the n–skeleton of the universal covering of
the Eilenberg–MacLane complex Ku (which is homotopically equivalent to K1 ) we
have Hn.Xu/� �n.Xu/� �n.K

.n/
1
/ by the Hurewicz Theorem. SoM

g2T .G=G1/

Hn.gXu/� ZG˝G1
�n.K

.n/
1
/

as ZG –modules. By analogous arguments we haveM
g02T .G=G2/

Hn.g
0Xv/� ZG˝G2

�n.K
.n/
2
/

M
g002T .G=H /

Hn�1.g
00Y /� ZG˝H �n�1.L

.n�1//:and

So the above short exact sequence, after making the isomorphic replacements, yields
the short exact sequence exhibited in statement (a).

Let us assume now that nD 2. In that case Y is the 1–skeleton of the universal covering
of L and hence is the Cayley-graph of the group H , associated with the generating set
x that arises from the 1–skeleton of L (recall that we assumed L to have a single vertex,
so the 1–skeleton is a wedge of circles). Thus H1.Y /�H1.�.H; x//�M.H; x/ andM

g002T .G=H /

H1.g
00Y /� ZG˝H M.H; x/:

The above short exact sequence, after making the isomorphic replacements, yields the
short exact sequence exhibited in statement (b).
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A 2–complex K is aspherical if �2.K/D0. A group is aspherical if it is the fundamental
group of an aspherical 2–complex. A consequence of the above theorem is that for
aspherical groups every relation module is also a second homotopy module. Indeed,
assume J is an aspherical 2–complex with fundamental group G (in particular J is
an Eilenberg–MacLane complex). Suppose M DM.G; x/ is a relation module for
G associated with some generating set. Let L be an Eilenberg–MacLane complex
for G with 1–skeleton a bouquet of circles in one-to-one correspondence with the
elements of x. Writing G as an amalgamated product GDG�G G we apply the above
construction and build an Eilenberg–MacLane complex K DK1[ .L� Œ0; 1�/[K2

with K1 D J , K2 D J . The ends L� f0g and L� f1g are attached to the two copies
of J via a map induced by the identity map from G to G . Theorem 4.2(b) implies the
following result.

Corollary 4.3 Let J be an aspherical 2–complex with fundamental group G . Let
M.G; x/ be a relation module associated with some generating set x and let L be
an Eilenberg–MacLane complex with 1–skeleton a bouquet of circles in one-to-one
correspondence with x. Then the 2–complex K.2/ D .J [ .L � Œ0; 1�/[ J /.2/ has
Euler-characteristic �.K.2//D 2�min.G/� 1Cjxj and the second homotopy module
�2.K

.2// is isomorphic to the relation module M.G; x/.

Consider the group G presented by hx;y j xy2x�1 D y3i. Let J be the 2–complex
built from this presentation. Since J is aspherical (see Lyndon [17]) we have �min.G/

D�.J /D 0 and J is the only 2–complex (up to homotopy equivalence) on the minimal
Euler-characteristic level. The next result shows that the situation is different on the
next level, �min.G/C 1.

Theorem 4.4 Let J be the 2–complex built on the presentation

hx;y j xy2x�1
D y3

i

for G . Let K be the 2–complex built on the presentation

hx;y;x0;y0 j xy2x�1
D y3;x0y0

2
x0
�1
D y0

3
;x D x0;y4

D y0
4
i

for G . Then J _S2 and K are homotopically distinct 2–complexes with fundamental
group G and Euler-characteristic �min.G/C 1.

Proof We write G as an amalgamated product G DG �G G and build an Eilenberg–
MacLane complex K0 D J [ .L � Œ0; 1�/[ J , where we take for L an Eilenberg–
MacLane complex with 1–skeleton a bouquet of two circles corresponding to the
generating set fx;y4g. By Corollary 4.3, �2.K

0.2// is isomorphic to M.G; fx;y4g/
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and hence is different from ZG . Note that K0 can be built so that, after collapsing a
maximal tree in the 1–skeleton of K0.2/ (which consists of a single edge) we obtain
the complex K . Since �2.J _S2/D ZG the desired result follows.

In [1] P H Berridge and M Dunwoody give an infinite sequence of pairwise distinct stably
free non-free relation modules for the trefoil group G and ask the question whether this
can be used to construct infinitely many pairwise non-homotopic 2–complexes with
identical Euler-characteristic and fundamental group G . The above theorem answers
this question affirmatively. Consider the trefoil group presented by hx;y j x2 D y3i.
Let xi D fx

2iC1;y3iC1g, i 2 N. The set of relation modules fM.G; xi/ j i 2 Ng

contains infinitely many non-isomorphic stably free non-free modules of rank one [1].

Theorem 4.5 Let G be the trefoil group presented by hx;y j x2 D y3i. Let Ki be
the 2–complex built on the presentation

hx;y;x0;y0 j x2
D y3;x0

2
D y0

3
;x2iC1

D x0
2iC1

;y3iC1
D y0

3iC1
i

for G . The set fKi j i 2 Ng contains infinitely many homotopically distinct 2–
complexes with fundamental group G and Euler-characteristic equal to one.

In [16] M Lustig constructs an infinite collection of 2–dimensional homotopy types
with the same fundamental group and Euler characteristic. However the fundamental
group in these examples is distinct from the trefoil group. Theorem 4.5 answers the
precise question raised by Berridge and Dunwoody [1] in the affirmative.
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