### Dehn surgery, homology and hyperbolic volume

IAN AGOL MARC CULLER PETER B SHALEN

If a closed, orientable hyperbolic 3-manifold M has volume at most 1.22 then  $H_1(M;\mathbb{Z}_p)$  has dimension at most 2 for every prime  $p \neq 2,7$ , and  $H_1(M;\mathbb{Z}_2)$  and  $H_1(M;\mathbb{Z}_2)$  have dimension at most 3. The proof combines several deep results about hyperbolic 3-manifolds. The strategy is to compare the volume of a tube about a shortest closed geodesic  $C \subset M$  with the volumes of tubes about short closed geodesics in a sequence of hyperbolic manifolds obtained from M by Dehn surgeries on C.

57M50; 57M27

#### 1 Introduction

We shall prove:

**Theorem 1.1** Suppose that M is a closed, orientable hyperbolic 3-manifold with volume at most 1.22. Then  $H_1(M; \mathbb{Z}_p)$  has dimension at most 2 for every prime  $p \neq 2, 7$ , and  $H_1(M; \mathbb{Z}_2)$  and  $H_1(M; \mathbb{Z}_7)$  have dimension at most 3. Furthermore, if M has volume at most 1.182, then  $H_1(M; \mathbb{Z}_7)$  has dimension at most 2.

The bound of 2 for the dimension of  $H_1(M; \mathbb{Z}_p)$  is sharp when p is 3 or 5. Indeed, the manifolds m003(-3,1), and m007(3,1) from the list given in [10] have respective volumes 0.94... and 1.01..., and their integer homology groups are respectively isomorphic to  $\mathbb{Z}_5 \oplus \mathbb{Z}_5$  and  $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ .

Apart from these two examples, the only example known to us of a closed, orientable hyperbolic 3-manifold with volume at most 1.22 is the manifold m003(-2,3) from the list given in [10]. These three examples suggest that the bounds for the dimension of  $H_1(M; \mathbb{Z}_p)$  given by Theorem 1.1 may not be sharp for  $p \neq 3, 5$ .

The proof of Theorem 1.1 depends on several deep results, including a strong form of the "log 3 Theorem" of Anderson, Canary, Culler and Shalen [4; 8]; the Embedded Tube Theorem of Gabai, Meyerhoff and N Thurston [9]; the Marden Tameness Conjecture,

Published: 8 December 2006 DOI: 10.2140/agt.2006.6.2297

recently proved by Agol [1] and by Calegari and Gabai [7]; and an even more recent result due to Agol, Dunfield, Storm and W Thurston [3]. The strategy of our proof is to compare the volume of a tube about a shortest closed geodesic  $C \subset M$  with the volumes of tubes about short closed geodesics in a sequence of hyperbolic manifolds obtained from M by Dehn surgeries on C.

After establishing some basic conventions in Section 2, we carry out the strategy described above in Sections 3–6, for the case of manifolds which are "non-exceptional" in the sense that they contain shortest geodesics with tube radius greater than  $(\log 3)/2$ . In Section 5, for the case of non-exceptional manifolds with volume at most 1.22, we establish a bound of 3 for the dimension of  $H_1(M; \mathbb{Z}_p)$  for any prime p. In Section 6, again for the case of non-exceptional manifolds with volume at most 1.22, we establish a bound of 2 for the dimension of  $H_1(M; \mathbb{Z}_p)$  for any odd prime p. In Section 7 we use results from [9] to handle the case of exceptional manifolds, and complete the proof of Theorem 1.1.

The research described in this paper was partially supported by NSF grants DMS-0204142 and DMS-0504975.

#### 2 Definitions and conventions

- **2.1** If g is a loxodromic isometry of hyperbolic 3-space  $\mathbb{H}^3$  we shall let  $A_g$  denote the hyperbolic geodesic which is the axis of g. The *cylinder about*  $A_g$  of radius r is the open set  $Z_r(g) = \{x \in \mathbb{H}^3 \mid \operatorname{dist}(x, A_g) < r\}$ .
- **2.2** Suppose that M is a complete, orientable hyperbolic 3-manifold. Let us identify M with  $\mathbb{H}^3/\Gamma$ , where  $\Gamma \cong \pi_1(M)$  is a discrete, torsion-free subgroup of  $\mathrm{Isom}_+ \mathbb{H}^3$ . If C is a simple closed geodesic in M then there is a loxodromic isometry  $g \in \Gamma$  with  $A_g/\langle g \rangle = C$ . For any r > 0 the image  $Z_r(g)/\langle g \rangle$  of  $Z_r(g)$  under the covering projection is a neighborhood of C in M. For sufficiently small r > 0 we have

$$\{h \in \Gamma \mid h(Z_r(g)) \cap Z_r(g) \neq \emptyset\} = \langle g \rangle.$$

Let R denote the supremum of the set of r for which this condition holds. We define  $\mathrm{tube}(C) = Z_R(g)/\langle g \rangle$  to be the *maximal tube about* C. We shall refer to R as the *tube radius* of C, and denote it by  $\mathrm{tuberad}(C)$ .

**2.3** If C is a simple closed geodesic in a closed hyperbolic 3-manifold M, it follows from [13], [2] that M-C is homeomorphic to a hyperbolic manifold N of finite volume having one cusp. The manifold N, which by Mostow rigidity is unique up to isometry, will be denoted  $\operatorname{drill}_C(M)$ .

- **2.4** If C is a shortest closed geodesic in a closed hyperbolic 3-manifold M, ie, one such that length(C)  $\leq$  length(C') for every other closed geodesic C', then in particular C is simple, and the notions of 2.2 and 2.3 apply to C.
- **2.5** Suppose that  $N=\mathbb{H}^3/\Gamma$  is a non-compact orientable complete hyperbolic manifold of finite volume. Let  $\Pi\cong\mathbb{Z}\times\mathbb{Z}$  be a maximal parabolic subgroup of  $\Gamma$  (so that  $\Pi$  corresponds to a peripheral subgroup under the isomorphism of  $\Gamma$  with  $\pi_1(N)$ ). Let  $\xi$  denote the fixed point of  $\Pi$  on the sphere at infinity and let B be an open horoball centered at  $\xi$  such that  $\{g\in\Gamma\mid gB\cap B\neq\varnothing\}=\Pi$ . Then  $\mathcal{H}=B/\Pi$ , which we identify with the image of B in N, is called a *cusp neighborhood* in N.
- If  $\mathcal{H}$  is a cusp neighborhood in  $N=\mathbb{H}^3/\Gamma$  then the inverse image of  $\mathcal{H}$  under the covering projection  $\mathbb{H}^3\to N$  is a union of disjoint open horoballs. The cusp neighborhood  $\mathcal{H}$  is maximal if and only there exist two of these disjoint horoballs whose closures have non-empty intersection.
- **2.6** If N is a complete, orientable hyperbolic manifold of finite volume,  $\hat{N}$  will denote a compact core of N. Thus  $\hat{N}$  is a compact 3-manifold whose boundary components are all tori, and the number of these tori is equal to the number of cusps of N.

### 3 Drilling and packing

**Lemma 3.1** Suppose that M is a closed, orientable hyperbolic 3-manifold, and that C is a shortest geodesic in M. Set  $N = \operatorname{drill}_C(M)$ . If  $\operatorname{tuberad}(C) \ge (\log 3)/2$  then  $\operatorname{vol} N < 3.0177 \operatorname{vol} M$ .

**Proof** The proof is based on a result due to Agol, Dunfield, Storm and W Thurston [3]. We let L denote the length of the geodesic C in the closed hyperbolic 3-manifold M, and we set  $R = \operatorname{tuberad}(C)$  and  $T = \operatorname{tube}(C)$ . Proposition 10.1 of [3] states that

$$\operatorname{vol} N \leq (\coth^3 2R)(\operatorname{vol} M + \frac{\pi}{2}L \tanh R \tanh 2R).$$
Note that
$$\operatorname{vol} T = \pi L \sinh^2 R = \left(\frac{\pi}{2}L \tanh R\right)(2\sinh R \cosh R)$$

$$= \left(\frac{\pi}{2}L \tanh R\right)(\sinh 2R).$$
Thus
$$\operatorname{vol} N \leq (\coth^3 2R) \left(\operatorname{vol} M + \operatorname{vol} T \frac{\tanh 2R}{\sinh 2R}\right)$$

$$= (\coth^3 2R) \left(\operatorname{vol} M + \frac{\operatorname{vol} T}{\cosh 2R}\right).$$

In the language of [16], the quantity  $(\operatorname{vol} T)/(\operatorname{vol} M)$  is the density of a tube packing in  $\mathbb{H}^3$ . According to [16, Corollary 4.4], we have  $(\operatorname{vol} T)/\operatorname{vol} M < 0.91$ . Hence  $\operatorname{vol} N < f(x)\operatorname{vol}(M)$ , where f(x) is defined for  $x \ge 0$  by

$$f(x) = (\coth^3 2x) \left( 1 + \frac{0.91}{\cosh 2x} \right).$$

Since f(x) is decreasing for  $x \ge 0$ , and since a direct computation shows that f(0.5495) = 3.01762..., we have vol N < 3.0177 vol M whenever  $R \ge 0.5495$ .

It remains to consider the case in which  $0.5495 > R \ge (\log 3)/2 = 0.5493...$  In this case we use [16, Theorem 4.3], which asserts that the tube-packing density  $(\operatorname{vol} T)/\operatorname{vol} M$  is bounded above by  $(\sinh R)g(R)$ , where g(x) is defined for x > 0 by

$$g(x) = \frac{\arcsin \frac{1}{2 \cosh r}}{\operatorname{arcsinh} \frac{\tanh r}{\sqrt{3}}}.$$

Since g(x) is clearly a decreasing function for x > 0, and since sinh R is increasing for x > 0, we have

$$(\text{vol } T)/(\text{vol } M) < (\sinh 0.5495)g((\log 3)/2) = 0.90817...$$

Hence vol  $N < f_1(x)$  vol(M), where  $f_1(x)$  is defined for  $x \ge 0$  by

$$f_1(x) = (\coth^3 2x) \left( 1 + \frac{0.90817}{\cosh 2x} \right).$$

Again,  $f_1(x)$  is decreasing for  $x \ge 0$ , and we see by direct computation that  $f_1((\log 3)/2) = 3.017392...$  Hence we have vol N < 3.0174 vol M in this case.  $\square$ 

**Lemma 3.2** Suppose that M is a closed, orientable hyperbolic 3-manifold such that vol  $M \le 1.22$ , and that C is a shortest geodesic in M. Set  $N = \operatorname{drill}_C(M)$ . If tuberad $(C) > (\log 3)/2$  then the maximal cusp neighborhood in N has volume less than  $\pi$ .

**Proof** We let  $d(\infty) = .853276...$  denote Böröczky's lower bound [6] for the density of a horoball packing in hyperbolic space. It follows from the definition of the density of a horoball packing that the volume of a maximal cusp neighborhood in N is at most  $d(\infty)$  vol N. Lemma 3.1 gives vol  $N < 3.0177 \cdot 1.22 < \pi/d(\infty)$ , and the conclusion follows.

## 4 Filling

As in [4], we shall say that a group is *semifree* if it is a free product of free abelian groups; and we shall say that a group  $\Gamma$  is k-semifree if every subgroup of  $\Gamma$  whose rank is at most k is semifree. Note that  $\Gamma$  is 2-semifree if and only if every rank-2 subgroup of  $\Gamma$  is either free or free abelian.

The following improved version of [4, Theorem 6.1] is made possible by more recent developments.

**Theorem 4.1** Let  $k \ge 2$  be an integer and let  $\Phi$  be a Kleinian group which is freely generated by elements  $\xi_1, \ldots, \xi_k$ . Let z be any point of  $\mathbb{H}^3$  and set  $d_i = \operatorname{dist}(z, \xi_i \cdot z)$  for  $i = 1, \ldots, k$ . Then we have

$$\sum_{i=1}^{k} \frac{1}{1 + e^{d_i}} \le \frac{1}{2}.$$

In particular there is some  $i \in \{1, ..., k\}$  such that  $d_i \ge \log(2k - 1)$ .

**Proof** If  $\Gamma$  is geometrically finite this is included in [4, Theorem 6.1]. In the general case,  $\Gamma$  is topologically tame according to [1] and [7], and it then follows from [15, Theorem 1.1], or from the corresponding result for the free case in [14], that  $\Gamma$  is an algebraic limit of geometrically finite groups; more precisely, there is a sequence of geometrically finite Kleinian groups  $(\Gamma_j)_{j\geq 1}$  such that each  $\Gamma_j$  is freely generated by elements  $\xi_{1j},\ldots,\xi_{kj}$ , and  $\lim_{j\to\infty}\xi_{ij}=\xi_i$  for  $i=1,\ldots,k$ . Given any  $z\in\mathbb{H}^3$ , we set  $d_{ij}=\operatorname{dist}(z,\xi_{ij}\cdot z)$  for each  $j\geq 1$  and for  $i=1,\ldots,k$ . According to [4, Theorem 6.1], we have

$$\sum_{i=1}^{k} \frac{1}{1 + e^{d_{ij}}} \le \frac{1}{2}$$

for each  $j \ge 1$ . Taking limits as  $j \to \infty$  we conclude that

$$\sum_{i=1}^k \frac{1}{1+e^{d_i}} \le \frac{1}{2}.$$

Let us also recall the following definition from [4, Section 8]. Let  $\Gamma$  be a discrete torsion-free subgroup of  $\mathrm{Isom}_+(\mathbb{H}^3)$ . A positive number  $\lambda$  is termed a *strong Margulis number* for  $\Gamma$ , or for the orientable hyperbolic 3–manifold  $N = \mathbb{H}^3/\Gamma$ , if whenever  $\xi$  and  $\eta$  are non-commuting elements of  $\Gamma$ , we have

$$\frac{1}{1 + e^{\operatorname{dist}(\xi \cdot z, z)}} + \frac{1}{1 + e^{\operatorname{dist}(\eta \cdot z, z)}} \le \frac{2}{1 + e^{\lambda}}.$$

The following improved version of [4, Proposition 8.4] is an immediate consequence of Theorem 4.1.

**Corollary 4.2** Let  $\Gamma$  be a discrete subgroup of  $\mathrm{Isom}_+(\mathbb{H}^3)$ . Suppose that  $\Gamma$  is 2–semifree. Then  $\log 3$  is a strong Margulis number for  $\Gamma$ .

**Lemma 4.3** Let N be a non-compact finite-volume hyperbolic 3-manifold. Suppose that S is a boundary component of the compact core  $\hat{N}$ , and  $\mathcal{H}$  is the maximal cusp neighborhood in N corresponding to S. If infinitely many of the manifolds obtained by Dehn filling  $\hat{N}$  along S have 2-semifree fundamental group then  $\mathcal{H}$  has volume at least  $\pi$ .

**Proof** Suppose that  $(N_i)$  is an infinite sequence of distinct hyperbolic manifolds obtained by Dehn filling  $\hat{N}$  along S, and that  $\pi_1(N_i)$  is 2-semifree for each i.

Thurston's Dehn filling theorem [5, Appendix B], implies that for each sufficiently large i, the manifold  $N_i$  admits a hyperbolic metric; that the core curve of the Dehn filling  $N_i$  of  $\hat{N}$  is isotopic to a geodesic  $C_i$  in  $N_i$ ; that the length  $L_i$  of  $C_i$  tends to 0 as  $i \to \infty$ ; and that the sequence of maximal tubes  $(\text{tube}(C_i))_{i \ge 1}$  converges geometrically to  $\mathcal{H}$ . In particular

$$\lim_{i\to\infty}\operatorname{vol}(\operatorname{tube}(C_i))=\operatorname{vol}\mathcal{H}.$$

According to Corollary 4.2,  $\log 3$  is a strong Margulis number for each of the hyperbolic manifolds  $N_i$ . It therefore follows from [4, Corollary 10.5] that vol tube $(C_i) > V(L_i)$ , where V is an explicitly defined function such that  $\lim_{x\to 0} V(x) = \pi$ . In particular, this shows that

$$\operatorname{vol} \mathcal{H} \ge \lim_{i \to \infty} V(L_i) \ge \pi.$$

# 5 Non-exceptional manifolds, arbitrary primes

**5.1** A closed hyperbolic 3-manifold M will be termed *exceptional* if every shortest geodesic in M has tube radius at most  $(\log 3)/2$ .

In this section we shall prove a result, Proposition 5.3, which gives a bound of 3 for the dimension of  $H_1(M; \mathbb{Z}_p)$  for any prime p when M is a non-exceptional manifold with volume at most 1.22.

**Lemma 5.2** Suppose that M is a compact, irreducible, orientable 3-manifold, such that every non-cyclic abelian subgroup of  $\pi_1(M)$  is carried by a torus component of  $\partial M$ . Suppose that either

- (i) dim  $H_1(M; \mathbb{Q}) \ge 3$ , or
- (ii) M is closed and dim  $H_1(M; \mathbb{Z}_p) \ge 4$  for some prime p.

Then  $\pi_1(M)$  is 2–semifree.

**Proof** Let X be any subgroup of  $\pi_1(M)$  having rank at most 2. According to [11, Theorem VI.4.1], X is free, or free abelian, or of finite index in  $\pi_1(M)$ . If dim  $H_1(M; \mathbb{Q}) \geq 3$ , it is clear that X has infinite index in  $\pi_1(M)$ . If M is closed and  $H_1(M; \mathbb{Z}_p) \geq 4$  for some prime p, then Proposition 1.1 of [17] implies that every 2–generator subgroup of  $\pi_1(M)$  has infinite index. Thus in either case X is either free or free abelian. This shows that  $\pi_1(M)$  is 2–semifree.

**Proposition 5.3** Suppose that M is a closed, orientable, non-exceptional hyperbolic 3-manifold such that vol  $M \leq 1.22$ . Then  $H_1(M; \mathbb{Z}_p)$  has dimension at most 3 for every prime p.

**Proof** Since M is non-exceptional, there is a shortest geodesic C in M with  $R = \operatorname{tuberad}(C) > (\log 3)/2$ . We set  $N = \operatorname{drill}_C(M)$ . Let  $\mathcal H$  denote the maximal cusp neighborhood in N. Since  $R > (\log 3)/2$ , Lemma 3.2 implies that  $\operatorname{vol} \mathcal H < \pi$ .

Now assume that dim  $H_1(M; \mathbb{Z}_p) \geq 4$  for some prime p. There is an infinite sequence  $(M_i)$  of manifolds obtained by distinct Dehn fillings of  $\hat{N}$  such that  $H_1(M_i; \mathbb{Z}_p)$  has dimension at least 4 for each i. (For example, if  $(\lambda, \mu)$  is a basis for  $H_1(\partial \hat{N}, \mathbb{Z}_p)$  such that  $\lambda$  belongs to the kernel of the inclusion homomorphism  $H_1(\partial \hat{N}, \mathbb{Z}_p) \rightarrow H_1(\hat{N}, \mathbb{Z}_p)$ , we may take  $M_i$  to be obtained by the Dehn surgery corresponding to a simple closed curve in  $\partial \hat{N}$  representing the homology class  $\lambda + i p \mu$ .) It follows from Thurston's Dehn filling theorem [5, Appendix B] that for sufficiently large i the manifold  $M_i$  is hyperbolic. Hence by case (ii) of Lemma 5.2, the fundamental group of  $M_i$  is 2-semifree for sufficiently large i. Thus Lemma 4.3 implies that vol  $\mathcal{H} \geq \pi$ , a contradiction.

## 6 Non-exceptional manifolds, odd primes

Proposition 6.3, which is proved in this section, gives a bound of 2 for the dimension of  $H_1(M; \mathbb{Z}_p)$  for any odd prime p when M is a non-exceptional manifold with volume at most 1.22.

**Definition 6.1** Let N be a connected manifold,  $\star \in N$  a base point, and Q a subgroup of  $\pi_1(N, \star)$ . We shall say that a connected based covering space  $r:(N', \star') \to (N, \star)$  carries the subgroup Q if  $Q \le r_{\sharp}(\pi_1(N', \star')) \le \pi_1(N, \star)$ 

- **Lemma 6.2** Suppose that  $\mathcal{H}$  is a maximal cusp neighborhood in a finite-volume hyperbolic 3-manifold N. Let  $\star$  be a base point in  $\mathcal{H}$ , and let  $P \leq \pi_1(N, \star)$  denote the image of  $\pi_1(\mathcal{H}, \star)$  under inclusion. Then there is an element  $\beta$  of  $\pi_1(N, \star)$  with the following property:
  - (†) For every based covering space  $r:(N',\star')\to (N,\star)$  which carries the subgroup  $\langle P,\beta\rangle$  of  $\pi_1(N,\star)$ , there is a maximal cusp neighborhood  $\mathcal{H}'$  in N' which is isometric to  $\mathcal{H}$ .

**Proof** . We write  $N = \mathbb{H}^3/\Gamma$ , where  $\Gamma$  is a discrete, torsion-free subgroup of Isom( $\mathbb{H}^3$ ). Let  $q: \mathbb{H}^3 \to N$  denote the quotient map and fix a base point  $\star'$  which is mapped to  $\star$  by q. The components of  $q^{-1}(\mathcal{H})$  are horoballs. Let  $B_0$  denote the component of  $q^{-1}(\mathcal{H})$  containing  $\star'$ . The stabilizer  $\Gamma_0$  of  $B_0$  is mapped onto the subgroup P of  $\pi_1(N,\star)$  by the natural isomorphism  $\iota: \Gamma \to \pi_1(N,\star)$ .

Since  $\underline{\mathcal{H}}$  is a maximal cusp, there is a component  $B_1 \neq B_0$  of  $q^{-1}(\mathcal{H})$  such that  $\overline{B_1} \cap \overline{B_0} \neq \emptyset$ . We fix an element g of  $\Gamma$  such that  $g(B_0) = B_1$ , and we set  $\beta = \iota(g) \in \pi_1(N, \star)$ .

To show that  $\beta$  has property (†), we consider an arbitrary based covering space  $r:(N',\star')\to (N,\star)$  which carries the subgroup  $\langle P,\beta\rangle$  of  $\pi_1(N,\star)$ . We may identify N' with  $\mathbb{H}^3/\Gamma'$ , where  $\Gamma'$  is some subgroup of  $\Gamma$  containing  $\langle \Gamma_0,g\rangle$ .

Since  $\Gamma_0 \subset \Gamma'$ , the cusp neighborhood  $\mathcal{H}$  lifts to a cusp neighborhood  $\mathcal{H}'$  in N'. In particular  $\mathcal{H}'$  is isometric to  $\mathcal{H}$ . The horoballs  $B_0$  and  $B_1 = g(B_0)$  are distinct components of  $(q')^{-1}(\mathcal{H}')$ , where  $q' : \mathbb{H}^3 \to N'$  denotes the quotient map. Since  $g \in \Gamma'$  and  $\overline{B_1} \cap \overline{B_0} \neq \emptyset$ , the cusp neighborhood  $\mathcal{H}'$  is maximal.

**Proposition 6.3** Suppose that M is a closed, orientable, non-exceptional hyperbolic 3-manifold such that vol  $M \leq 1.22$ . Then  $H_1(M; \mathbb{Z}_p)$  has dimension at most 2 for every odd prime p.

**Proof** Since M is non-exceptional, we may fix a shortest geodesic C in M with  $R = \text{tuberad}(C) > (\log 3)/2$ . We set  $N = \text{drill}_C(M)$ . Let  $\mathcal{H}$  denote the maximal cusp neighborhood in N. Since  $R > (\log 3)/2$ , Lemma 3.2 implies that  $\text{vol } \mathcal{H} < \pi$ .

As in the statement of Lemma 6.2, we fix a base point  $\star \in \mathcal{H}$ , and we denote by  $P \leq \pi_1(N, \star)$  the image of  $\pi_1(\mathcal{H}, \star)$  under inclusion. We fix an element  $\beta$  of  $\pi_1(N, \star)$  having property  $(\dagger)$  of Lemma 6.2. We set  $Q = \langle P, \beta \rangle \leq \pi_1(N, \star)$ .

Suppose that dim  $H_1(M; \mathbb{Z}_p) \ge 3$  for some prime p. We shall prove the proposition by showing that this assumption leads to a contradiction if p is odd.

It follows from Poincaré duality that the image of the inclusion homomorphism  $\alpha$ :  $H_1(\partial \hat{N}; \mathbb{Z}_p) \to H_1(\hat{N}; \mathbb{Z}_p)$  has rank 1. Hence the image of P under the natural homomorphism  $\pi_1(N, \star) \to H_1(N; \mathbb{Z}_p)$  has dimension 1. It follows that the image  $\bar{Q}$  of Q under this homomorphism has dimension either 1 or 2. In the case dim  $\bar{Q}=1$  we shall obtain a contradiction for any prime p. In the case dim  $\bar{Q}=2$  we shall obtain a contradiction for any odd prime p.

First consider the case dim  $\overline{Q}=1$ . We have assumed dim  $H_1(M;\mathbb{Z}_p)\geq 3$ . Thus there is a  $\mathbb{Z}_p\times\mathbb{Z}_p$ -regular based covering space  $(N',\star')$  of  $(N,\star)$  which carries Q. By property  $(\dagger)$ , there is a maximal cusp neighborhood  $\mathcal{H}'$  in N' which is isometric to  $\mathcal{H}$ . In particular vol  $\mathcal{H}'<\pi$ .

Since in particular  $(N', \star')$  carries P, the boundary of the compact core  $\widehat{N}$  lifts to  $\widehat{N}'$ . As N' is a  $p^2$ -fold regular covering, it follows that  $\widehat{N}'$  has  $p^2 \geq 4$  boundary components.

It follows from Thurston's Dehn filling theorem [5, Appendix B] that there are infinitely many hyperbolic manifolds obtained by Dehn filling one boundary component of  $\hat{N}'$ . If Z is any hyperbolic manifold obtained by such a filling, then Z has at least three boundary components, and it follows from case (i) of Lemma 5.2 that  $\pi_1(Z)$  is 2–semifree. It therefore follows from Lemma 4.3 that each maximal cusp neighborhood in N' has volume at least  $\pi$ . Since we have seen that  $\operatorname{vol} \mathcal{H}' < \pi$ , this gives the desired contradiction in the case  $\dim \overline{Q} = 1$ .

It remains to consider the case in which dim  $\bar{Q}=2$  and the prime p is odd. Since we have assumed that dim  $H_1(M;\mathbb{Z}_p)\geq 3$ , there is a p-fold cyclic based covering space  $(N',\star')$  of  $(N,\star)$  which carries Q. Since N' carries P, the boundary of the compact core  $\hat{N}$  lifts to  $\hat{N}'$ , and as N' is a p-fold regular covering, it follows that  $\hat{N}'$  has p boundary components.

We claim that the inclusion homomorphism  $\alpha': H_1(\partial \hat{N}', \mathbb{Z}_p) \to H_1(\hat{N}', \mathbb{Z}_p)$  is not surjective. To establish this, we consider the commutative diagram

$$H_{1}(\partial \hat{N}'; \mathbb{Z}_{p}) \xrightarrow{\alpha'} H_{1}(N'; \mathbb{Z}_{p})$$

$$\downarrow \qquad \qquad \downarrow r_{*}$$

$$H_{1}(\partial \hat{N}; \mathbb{Z}_{p}) \xrightarrow{\alpha} H_{1}(N; \mathbb{Z}_{p})$$

where  $r:N'\to N$  is the covering projection. Since  $(N',\star')$  carries Q we have  $\bar{Q}\subset\operatorname{Im} r_*$ . Hence surjectivity of  $\alpha'$  would imply  $\bar{Q}\subset\operatorname{Im}\alpha$ . This is impossible: we

observed above that  $\operatorname{Im} \alpha$  has rank 1, and we are in the case  $\dim \overline{Q}=2$ . Thus  $\alpha'$  cannot be surjective.

Since  $\hat{N}'$  has p boundary components, it follows from Poincaré duality that  $\dim \operatorname{Im} \alpha' = p \geq 3$ . Since  $\alpha'$  is not surjective and p is an odd prime, it follows that  $\dim H_1(N'; \mathbb{Z}_p) \geq p+1 \geq 4$ .

Since  $(N', \star')$  carries Q, some subgroup Q' of  $\pi_1(N', \star')$  is mapped isomorphically to Q by  $r_{\sharp}$ . In particular Q' has rank at most 3. Since dim  $H_1(N'; \mathbb{Z}_p) \geq 4$ , there is a p-fold cyclic based covering space  $(N'', \star'')$  of  $(N', \star')$  which carries Q'. Hence  $(N'', \star'')$  is a  $p^2$ -fold (possibly irregular) based covering space of  $(N, \star)$  which carries Q. By property  $(\dagger)$ , there is a maximal cusp neighborhood  $\mathcal{H}''$  in N'' which is isometric to  $\mathcal{H}$ . In particular vol  $\mathcal{H}'' < \pi$ .

Since  $P \leq Q$ , there is a component T of  $\partial \hat{N}'$  such that Q' contains a conjugate of the image of  $\pi_1(T)$  under the inclusion homomorphism  $\pi_1(T) \to \pi_1(N')$ . Hence T lifts to the p-fold cyclic covering space N'' of N'. It follows that the covering projection  $r': N'' \to N'$  maps  $p \geq 3$  components of  $(r')^{-1}(\partial \hat{N}')$  to T. As  $\hat{N}'$  has at least three boundary components,  $\hat{N}''$  must have at least five boundary components.

Hence if Z is any hyperbolic manifold obtained by Dehn filling one boundary component of  $\widehat{N}''$ , we have dim  $H_1(Z;\mathbb{Q}) \geq 4 > 3$ , and it follows from case (i) of Lemma 5.2 that  $\pi_1(Z)$  is 2-semifree. It therefore follows from Lemma 4.3 and Thurston's Dehn filling theorem that each maximal cusp neighborhood in N'' has volume at least  $\pi$ . Since we have seen that  $\operatorname{vol} \mathcal{H}'' < \pi$ , we have the desired contradiction in this case as well.

## 7 Exceptional manifolds

Our treatment of exceptional manifolds begins with Proposition 7.1 below, the proof of which will largely consist of citing material from [9]. In order to state it we must first introduce some notation.

For k = 0, ..., 6 we define constants  $\tau_k$  as follows:

 $\tau_0 = 0.4779$   $\tau_1 = 1.0756$   $\tau_2 = 1.0527$   $\tau_3 = 1.2599$   $\tau_4 = 1.2521$ 

 $\tau_5 = 1.0239$ 

 $\tau_6 = 1.0239$ 

For k = 0, ..., 6 let  $\mathcal{E}_k$  be the 2-generator group with presentation

$$\mathcal{E}_k = \langle x, y; r_{1,k}, r_{2,k} \rangle,$$

where the relators  $r_{1,k} = r_{1,k}(x, y)$  and  $r_{2,k} = r_{2,k}(x, y)$  are the words listed below (in which we have set  $X = x^{-1}$  and  $Y = y^{-1}$ ):

The group  $\mathcal{E}_0$  is the fundamental group of an arithmetic hyperbolic 3-manifold which is known as Vol3. This manifold, which was studied in [12], is described as m007(3,1) in the list given in [10], and can also be described as the manifold obtained by a (-1,2) Dehn filling of the once-punctured torus bundle with monodromy  $-R^2L$ .

**Proposition 7.1** Suppose that M is an exceptional closed, orientable hyperbolic 3-manifold which is not isometric to Vol3. Then there exists an integer k with  $1 \le k \le 6$  such that the following conditions hold:

- (1) M has a finite-sheeted cover  $\widetilde{M}$  such that  $\pi_1(\widetilde{M})$  is isomorphic to a quotient of  $\mathcal{E}_k$ ; and
- (2) there is a shortest closed geodesic C in M such that  $vol(tube(C)) \ge \tau_k$ .

**Proof** This is in large part an application of results from [9], and we begin by reviewing some material from that paper.

We begin by considering an arbitrary simple closed geodesic C in a closed, orientable hyperbolic 3-manifold  $M = \mathbb{H}^3/\Gamma$ . As we pointed out in 2.2, there is a loxodromic

isometry  $f \in \Gamma$  with  $A_f/\langle f \rangle = C$ . If we set R = tuberad(C) and  $Z = Z_R(f)$ , it follows from the definitions that  $\text{tube}(C) = Z/\langle f \rangle$ , that  $h(Z) \cap Z = \emptyset$  for every  $h \in \Gamma - \langle f \rangle$ , and that there is an element  $w \in \Gamma - \langle f \rangle$  such that  $w(\bar{Z}) \cap \bar{Z} \neq \emptyset$ .

Let us define an ordered pair (f, w) of elements of  $\Gamma$  to be a *GMT pair* for the simple geodesic C if we have (i)  $A_f/\langle f \rangle = C$ , (ii)  $w \notin \langle f \rangle$ , and (iii)  $w(\bar{Z}) \cap \bar{Z} \neq \varnothing$ . Note that since  $\langle f \rangle$  must be a maximal cyclic subgroup of  $\Gamma$ , condition (ii) implies that the group  $\langle f, w \rangle$  is non-elementary.

Set  $Q = \{(L, D, R) \in \mathbb{C}^3 : \text{Re } L, \text{Re } D > 0\}$ . For any point  $P = (L, D, R) \in \mathcal{Q}$  we will denote by  $(f_P, w_P)$  the pair  $(f, w) \in \text{Isom}_+(\mathbb{H}^3) \times \text{Isom}_+(\mathbb{H}^3)$ , where  $f, w \in PGL_2(\mathbb{C}) = \text{Isom}_+(\mathbb{H}^3)$  are defined by

$$f = \begin{bmatrix} e^{L/2} & 0 \\ 0 & e^{-L/2} \end{bmatrix}$$

$$w = \begin{bmatrix} e^{R/2} & 0 \\ 0 & e^{-R/2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{D/2} & 0 \\ 0 & e^{-D/2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

and

With this definition,  $f_P$  has (real) translation length Re L, and the (minimum) distance between  $A_f$  and  $w(A_f)$  is (Re D)/2.

In [9, Section 1], it is shown that if (f, w) is a GMT pair for a shortest geodesic C in a closed, orientable hyperbolic 3-manifold and tuberad $(C) \le (\log 3)/2$ , then (f, w) is conjugate by some element of  $\mathrm{Isom}^+(\mathbb{H}^3)$  to a pair of the form  $(f_P, w_P)$  where  $P \in \mathcal{Q}$  is a point such that  $\exp(P) \doteq (e^L, e^D, e^R)$  lies in the union  $X_0 \cup \cdots \cup X_6$  of seven disjoint open subsets of  $\mathbb{C}^3$  that are explicitly defined in [9, Proposition 1.28].

For every k with  $0 \le k \le 6$  and every point P = (L, D, R) such that  $\exp(P) \in X_k$ , it follows from [9, Definition 1.27 and Proposition 1.28] that

(I) the isometries  $r_{1,k}(f_P, w_P)$  and  $r_{2,k}(f_P, w_P)$  have translation length less than Re L;

and it follows from [9, Table 1.1] that

(II)  $\pi \operatorname{Re}(L) \sinh^2(\operatorname{Re}(D)/2) > \tau_k$ .

According to [9, Proposition 3.1], if C is a shortest geodesic in a closed, orientable hyperbolic 3-manifold, and if some GMT pair for C has the form  $(f_P, w_P)$  for some P with  $\exp(P) \in X_0$ , then M is isometric to Vol3.

Now suppose that M is an exceptional closed, orientable hyperbolic 3-manifold. Let us choose a shortest closed geodesic C in M. By the definition of an exceptional manifold, C has tube radius  $\leq (\log 3)/2$ . Hence the facts recalled above imply that C has a GMT pair of the form  $(f_P, w_P)$  for some P such that  $\exp(P) \in X_k$  for some k

with  $0 \le k \le 6$ ; and furthermore, that if M is not isometric to Vol3, then  $1 \le k \le 6$ . We shall show that conclusions (1) and (2) hold with this choice of k.

For i=1,2 it follows from property (I) above that the element  $r_{i,k}(f,\omega)$  has real translation length less than the real translation length Re L of f. Since C is a shortest geodesic in M, it follows that the conjugacy class of  $r_{i,k}(f,\omega)$  is not represented by a closed geodesic in M. As M is closed it follows that  $r_{i,k}(f,\omega)$  is the identity for i=1,2. Hence the subgroup of  $\Gamma$  generated by f and  $\omega$  is isomorphic to a quotient of  $\mathcal{E}_k$ . Since we observed above that  $\langle f,\omega\rangle$  is non-elementary, there is a non-abelian subgroup f of f of f of f is isomorphic to a quotient of f in particular f has rank 2, and it cannot be a free group of rank 2 since the relators f and f in f are non-trivial. Hence by [11, Theorem VI.4.1] we must have f in f is proves (1).

Finally, we recall that

vol tube(
$$C$$
) =  $\pi$ (length( $C$ )) sinh<sup>2</sup>(tuberad( $C$ )) =  $\pi$ (Re  $L$ ) sinh<sup>2</sup>((Re  $D$ )/2). Hence (2) follows from (II).

We shall also need the following slight refinement of [17, Proposition 1.1].

**Proposition 7.2** Let p be a prime and let M be a closed 3-manifold. If p is odd assume that M is orientable. Let X be a finitely generated subgroup of  $\pi_1(M)$ , and set  $n = \dim H_1(X; \mathbb{Z}_p)$ . If  $\dim H_1(M; \mathbb{Z}_p) \ge \max(3, n+2)$ , then X has infinite index in  $\pi_1(M)$ . In fact, X is contained in infinitely many distinct finite-index subgroups of  $\pi_1(M)$ .

**Proof** In this proof, as in [17, Section 1], for any group G we shall denote by  $G_1$  the subgroup of G generated by all commutators and p-th powers, where p is the prime given in the hypothesis. Since dim  $H_1(X; \mathbb{Z}_p) = n$  we may write  $X = EX_1$  for some rank-n subgroup E of X.

We first assume that  $n \ge 1$ . Set  $\Gamma = \pi_1(M)$ . Let  $\mathcal{S}$  denote the set of all finite-index subgroups  $\Delta$  of  $\Gamma$  such that  $\Delta \ge X$  and dim  $H_1(\Delta; \mathbb{Z}_p) \ge n+2$ . The hypothesis gives  $\Gamma \in \mathcal{S}$ , so that  $\mathcal{S} \ne \emptyset$ . Hence it suffices to show that every subgroup  $\Delta \in \mathcal{S}$  has a proper subgroup D such that  $D \in \mathcal{S}$ .

Any group  $\Delta \in \mathcal{S}$  may be identified with  $\pi_1(\widetilde{M})$  for some finite-sheeted covering space  $\widetilde{M}$  of M. In particular,  $\widetilde{M}$  is a closed 3-manifold, and is orientable if p is odd. Since  $\Delta \in \mathcal{S}$  we have  $X \leq \Delta = \pi_1(\widetilde{M})$  and dim  $H_1(\widetilde{M}; \mathbb{Z}_p) = \dim H_1(\Delta; \mathbb{Z}_p) \geq n+2$ . Now set  $D = E \Delta_1 \leq \Delta$ . Applying [17, Lemma 1.5], with  $\widetilde{M}$  in place of M, we deduce that

D is a proper, finite-index subgroup of  $\Delta$ , and that dim  $H_1(D; \mathbb{Z}_p) \ge 2n + 1 \ge n + 2$ . On the other hand, since  $\Delta \in \mathcal{S}$ , we have  $X \le \Delta$ , and hence  $X = EX_1 \le E\Delta_1 = D$ . It now follows that  $D \in \mathcal{S}$ , and the proof is complete in the case  $n \ge 1$ .

If n=0 then, since dim  $H_1(M; \mathbb{Z}_p) \geq 3$ , there exists a finitely generated subgroup  $X' \geq X$  such that  $H_1(X'; \mathbb{Z}_p)$  has dimension 1. The case of the Lemma which we have already proved shows that X' has infinite index. Thus X has infinite index as well.

**Corollary 7.3** Let p be a prime and let M be a closed, orientable 3-manifold. Let X be a finite-index subgroup of  $\pi_1(M)$ , and set  $n = \dim H_1(X; \mathbb{Z}_p)$ . Then  $\dim H_1(M; \mathbb{Z}_p) \leq \max(2, n+1)$ .

**Lemma 7.4** Suppose that M is an exceptional hyperbolic 3-manifold with volume at most 1.22. Then  $H_1(M; \mathbb{Z}_p)$  has dimension at most 2 for every prime  $p \neq 2, 7$ , and  $H_1(M; \mathbb{Z}_2)$  and  $H_1(M; \mathbb{Z}_7)$  have dimension at most 3. Furthermore, if M has volume at most 1.182, then  $H_1(M; \mathbb{Z}_7)$  has dimension at most 2.

**Proof** If M is isometric to Vol3 then  $\pi_1(M)$  is generated by two elements, and the conclusions follow. For the rest of the proof we assume that M is not isometric to Vol3, and we fix an integer k with  $1 \le k \le 6$  such that conditions (1) and (2) of Proposition 7.1 hold.

By condition (2) of Proposition 7.1, we may fix a shortest closed geodesic C in M such that  $vol(T) \ge \tau_k$ , where T = tube(C). It follows from a result of Przeworski's [16, Corollary 4.4] on the density of cylinder packings that  $vol\ T < 0.91\ vol\ M$ , and so  $vol\ M > \tau_k/0.91$ . If k = 3 we have  $\tau_k/0.91 > 1.22$ , and we get a contradiction to the hypothesis. Hence  $k \in \{1, 2, 4, 5, 6\}$ .

Furthermore, we have  $\tau_1/0.91 > 1.182$ . Hence if vol  $M \le 1.182$  then  $k \in \{2, 4, 5, 6\}$ .

By condition (1) of Proposition 7.1,  $\pi_1(M)$  has a finite-index subgroup X which is isomorphic to a quotient of  $\mathcal{E}_k$ . From the defining presentations of the groups  $\mathcal{E}_1$ ,  $\mathcal{E}_2$ ,  $\mathcal{E}_4$   $\mathcal{E}_5$  and  $\mathcal{E}_6$ , we find that  $H_1(\mathcal{E}_1;\mathbb{Z})$  is isomorphic to  $\mathbb{Z}_7 \oplus \mathbb{Z}_7$ , that  $H_1(\mathcal{E}_2;\mathbb{Z})$  and  $H_1(\mathcal{E}_4;\mathbb{Z})$  are isomorphic to  $\mathbb{Z}_4 \oplus \mathbb{Z}_{12}$ , while  $H_1(\mathcal{E}_5;\mathbb{Z})$  and  $H_1(\mathcal{E}_6;\mathbb{Z})$  are isomorphic to  $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ . (One can check that the two groups  $\mathcal{E}_5$  and  $\mathcal{E}_6$  are isomorphic to each other.) In particular, since  $k \in \{1, 2, 4, 5, 6\}$  we have dim  $H_1(\mathcal{E}_k; \mathbb{Z}_p) \leq 1$  for any prime  $p \neq 2, 7$ , and dim  $H_1(\mathcal{E}_k; \mathbb{Z}_p) \leq 2$  for p = 2 or 7. As X is isomorphic to a quotient of  $\mathcal{E}_k$ , it follows that dim  $H_1(X; \mathbb{Z}_p) \leq 1$  for any prime  $p \neq 2, 7$ , and dim  $H_1(X; \mathbb{Z}_p) \leq 2$  for p = 2 or 7. Hence by Corollary 7.3, we have dim  $H_1(M; \mathbb{Z}_p) \leq 2$  for  $p \neq 2, 7$ , and dim  $H_1(M; \mathbb{Z}_p) \leq 3$  for p = 2, 7.

It remains to prove that if vol  $M \le 1.182$  then dim  $H_1(M; \mathbb{Z}_7) \le 2$ . We have observed that in this case  $k \in \{2, 4, 5, 6\}$ . By the list of isomorphism types of the  $H_1(\mathcal{E}_k; \mathbb{Z})$  given above, it follows that dim  $H_1(\mathcal{E}_k; \mathbb{Z}_7) = 0 < 1$ . Hence in this case the argument given above for  $p \ne 2, 7$  goes through in exactly the same way to show that dim  $H_1(M; \mathbb{Z}_7) \le 2$ .

**Proof of Theorem 1.1** For the case in which M is non-exceptional, the theorem is an immediate consequence of Propositions 5.3 and 6.3. For the case in which M is exceptional, the assertions of the theorem are equivalent to those of Lemma 7.4.  $\Box$ 

#### References

- [1] I Agol, Tameness of hyperbolic 3-manifolds arXiv:math.GT/0405568
- [2] I Agol, Volume change under drilling, Geom. Topol. 6 (2002) 905–916 MR1943385
- [3] I Agol, NM Dunfield, PA Storm, WP Thurston, Lower bounds on volumes of hyperbolic Haken 3-manifolds arXiv:math.DG/0506338
- [4] JW Anderson, RD Canary, M Culler, PB Shalen, Free Kleinian groups and volumes of hyperbolic 3-manifolds, J. Differential Geom. 43 (1996) 738–782 MR1412683
- [5] **M Boileau**, **J Porti**, *Geometrization of 3-orbifolds of cyclic type*, Appendix A by M Heusener and J Porti, Astérisque 272 (2001) MR1844891
- [6] K Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978) 243–261 MR512399
- [7] **D Calegari**, **D Gabai**, *Shrinkwrapping and the taming of hyperbolic 3-manifolds*, J. Amer. Math. Soc. 19 (2006) 385–446 MR2188131
- [8] M Culler, PB Shalen, Paradoxical decompositions, 2-generator Kleinian groups, and volumes of hyperbolic 3-manifolds, J. Amer. Math. Soc. 5 (1992) 231–288 MR1135928
- [9] D Gabai, G R Meyerhoff, N Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic, Ann. of Math. (2) 157 (2003) 335–431 MR1973051
- [10] C Hodgson, J Weeks, Downloadable text file Available at http://www.geometrygames.org/SnapPea/
- [11] **W H Jaco**, **P B Shalen**, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979) viii+192 MR539411
- [12] KN Jones, AW Reid, Vol3 and other exceptional hyperbolic 3-manifolds, Proc. Amer. Math. Soc. 129 (2001) 2175–2185 MR1825931
- [13] **S Kojima**, *Deformations of hyperbolic* 3-cone-manifolds, J. Differential Geom. 49 (1998) 469–516 MR1669649

- [14] **H Namazi**, **J Souto**, *Nonrealizability in handlebodies and ending laminations* in preparation
- [15] **K Ohshika**, Realizing end invariants by limits of minimally parabolic, geometrically finite groups arXiv:math.GT/0504546
- [16] **A Przeworski**, A universal upper bound on density of tube packings in hyperbolic space, J. Differential Geom. 72 (2006) 113–127 MR2215457
- [17] **PB Shalen**, **P Wagreich**, Growth rates,  $Z_p$ -homology, and volumes of hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 331 (1992) 895–917 MR1156298

Department of Mathematics, Statistics, and Computer Science (M/C 249) University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607-7045, USA agol@math.uic.edu, culler@math.uic.edu, shalen@math.uic.edu

Received: 14 July 2006