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Dehn surgery, homology and hyperbolic volume

IAN AGOL
MARC CULLER
PETER B SHALEN

If a closed, orientable hyperbolic 3—manifold M has volume at most 1.22 then
H, (M Z,) has dimension at most 2 for every prime p # 2,7, and H;(M;Z;) and
H;(M ;Z7) have dimension at most 3. The proof combines several deep results
about hyperbolic 3—manifolds. The strategy is to compare the volume of a tube about
a shortest closed geodesic C C M with the volumes of tubes about short closed
geodesics in a sequence of hyperbolic manifolds obtained from M by Dehn surgeries
on C.

57M50; 57TM27

1 Introduction

We shall prove:

Theorem 1.1 Suppose that M is a closed, orientable hyperbolic 3—manifold with
volume at most 1.22. Then H(M;Z,) has dimension at most 2 for every prime
p#2,7,and H(M;Z,) and H{(M ; Z7) have dimension at most 3. Furthermore, if
M has volume at most 1.182, then H{(M ;Z7) has dimension at most 2.

The bound of 2 for the dimension of H;(M;Z,) is sharp when p is 3 or 5. Indeed,
the manifolds m003(-3,1), and m007 (3, 1) from the list given in [10] have respective
volumes 0.94... and 1.01..., and their integer homology groups are respectively
isomorphic to Z5s & Zs and 73 b Zs.

Apart from these two examples, the only example known to us of a closed, orientable
hyperbolic 3—manifold with volume at most 1.22 is the manifold m003(-2,3) from
the list given in [10]. These three examples suggest that the bounds for the dimension
of H{(M:Zp) given by Theorem 1.1 may not be sharp for p # 3, 5.

The proof of Theorem 1.1 depends on several deep results, including a strong form of the
“log 3 Theorem” of Anderson, Canary, Culler and Shalen [4; 8]; the Embedded Tube
Theorem of Gabai, Meyerhoff and N Thurston [9]; the Marden Tameness Conjecture,
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recently proved by Agol [1] and by Calegari and Gabai [7]; and an even more recent
result due to Agol, Dunfield, Storm and W Thurston [3]. The strategy of our proof is
to compare the volume of a tube about a shortest closed geodesic C C M with the
volumes of tubes about short closed geodesics in a sequence of hyperbolic manifolds
obtained from M by Dehn surgeries on C.

After establishing some basic conventions in Section 2, we carry out the strategy
described above in Sections 3-6, for the case of manifolds which are “non-exceptional”
in the sense that they contain shortest geodesics with tube radius greater than (log 3)/2.
In Section 5, for the case of non-exceptional manifolds with volume at most 1.22, we
establish a bound of 3 for the dimension of H; (M ;Zp) for any prime p. In Section 6,
again for the case of non-exceptional manifolds with volume at most 1.22, we establish
a bound of 2 for the dimension of H;(M;Zp) for any odd prime p. In Section 7
we use results from [9] to handle the case of exceptional manifolds, and complete the
proof of Theorem 1.1.

The research described in this paper was partially supported by NSF grants DMS-
0204142 and DMS-0504975.

2 Definitions and conventions

2.1 If g is a loxodromic isometry of hyperbolic 3—space H* we shall let 4 ¢ denote
the hyperbolic geodesic which is the axis of g. The cylinder about Ag of radius r is
the open set Z,(g) = {x € H3 | dist(x, 4g) < r}.

2.2 Suppose that M is a complete, orientable hyperbolic 3—manifold. Let us identify
M with H3/ T, where T = 7, (M) is a discrete, torsion-free subgroup of Isom H?.
If C is a simple closed geodesic in M then there is a loxodromic isometry g € I’
with Ag/(g) = C. For any r > 0 the image Z,(g)/(g) of Z,(g) under the covering
projection is a neighborhood of C in M . For sufficiently small » > 0 we have

{hel' [(Z:(g)NZ(g) # T} = (g).

Let R denote the supremum of the set of r for which this condition holds. We define
tube(C) = Zg(g)/{g) to be the maximal tube about C. We shall refer to R as the
tube radius of C, and denote it by tuberad(C).

2.3 If C is asimple closed geodesic in a closed hyperbolic 3—manifold M , it follows
from [13], [2] that M — C is homeomorphic to a hyperbolic manifold N of finite
volume having one cusp. The manifold N, which by Mostow rigidity is unique up to
isometry, will be denoted drill¢ (M).
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2.4 If C is a shortest closed geodesic in a closed hyperbolic 3—manifold M , ie, one
such that length(C) <length(C") for every other closed geodesic C’, then in particular
C is simple, and the notions of 2.2 and 2.3 apply to C.

2.5 Suppose that N = H3/T is a non-compact orientable complete hyperbolic
manifold of finite volume. Let I1 =~ Z x Z be a maximal parabolic subgroup of I'
(so that IT corresponds to a peripheral subgroup under the isomorphism of I" with
1(N)). Let & denote the fixed point of IT on the sphere at infinity and let B be an
open horoball centered at £ such that {g e ' | gBN B # @} =1TII. Then H = B/II,
which we identify with the image of B in N, is called a cusp neighborhood in N .

If H is a cusp neighborhood in N = H3?/T then the inverse image of H under
the covering projection H* — N is a union of disjoint open horoballs. The cusp
neighborhood H is maximal if and only there exist two of these disjoint horoballs
whose closures have non-empty intersection.

2.6 If N isacomplete, orientable hyperbolic manifold of finite volume, N will denote
a compact core of N. Thus N is a compact 3—manifold whose boundary components
are all tori, and the number of these tori is equal to the number of cusps of N .

3 Drilling and packing

Lemma 3.1 Suppose that M is a closed, orientable hyperbolic 3—manifold, and that
C is a shortest geodesic in M . Set N = drillc(M). If tuberad(C) > (log 3)/2 then
vol N <3.0177 vol M .

Proof The proof is based on a result due to Agol, Dunfield, Storm and W Thurston
[3]. We let L denote the length of the geodesic C in the closed hyperbolic 3—manifold
M , and we set R = tuberad(C) and 7 = tube(C). Proposition 10.1 of [3] states that

vol N < (coth? 2R)(vol M + %L tanh R tanh 2R).

Note that vol T = 7L sinh? R = (%L tanh R) (2 sinh R cosh R)
- (%L tanh R) (sinh 2R).
3 tanh 2R
Thus vol N < (coth’ 2R) [ vol M + vol T —
sinh2R

vol T
= (coth® 2R M .
(co ) (VO + cosh ZR)
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In the language of [16], the quantity (vol 7')/(vol M) is the density of a tube packing
in H®. According to [16, Corollary 4.4], we have (vol T')/vol M < 0.91. Hence
vol N < f(x)vol(M), where f(x) is defined for x > 0 by

0.91
f(x) = (coth® 2x) [ 1 + )
cosh 2x
Since f(x) is decreasing for x > 0, and since a direct computation shows that
£(0.5495) =3.01762..., we have vol N < 3.0177 vol M whenever R > (.5495.

It remains to consider the case in which 0.5495 > R > (log3)/2 = 0.5493.... In
this case we use [16, Theorem 4.3], which asserts that the tube-packing density
(vol T)/ vol M is bounded above by (sinh R)g(R), where g(x) is defined for x > 0
by

. 1
arcsin 2 coshr

8 = b
arcsinh 222
V3

Since g(x) is clearly a decreasing function for x > 0, and since sinh R is increasing
for x > 0, we have

(vol T)/(vol M) < (sinh 0.5495)g((log 3)/2) = 0.90817 ... ..

Hence vol N < fi(x) vol(M), where fi(x) is defined for x > 0 by

0.90817
cosh2x /) °

f1(x) = (coth® 2x) (1 +

Again, f1(x) is decreasing for x > 0, and we see by direct computation that
f1((og3)/2) =3.017392.... Hence we have vol N < 3.0174 vol M in this case. O

Lemma 3.2 Suppose that M is a closed, orientable hyperbolic 3—manifold such
that vol M < 1.22, and that C is a shortest geodesic in M . Set N = drillc (M ). If
tuberad(C) > (log 3)/2 then the maximal cusp neighborhood in N has volume less
than .

Proof We let d(co0) =.853276... denote Bordczky’s lower bound [6] for the density
of a horoball packing in hyperbolic space. It follows from the definition of the density
of a horoball packing that the volume of a maximal cusp neighborhood in N is at most
d(oco)vol N. Lemma 3.1 gives vol N < 3.0177-1.22 < /d(00), and the conclusion
follows. d
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4 Filling

As in [4], we shall say that a group is semifree if it is a free product of free abelian
groups; and we shall say that a group T is k —semifree if every subgroup of I' whose
rank is at most k is semifree. Note that T" is 2—semifree if and only if every rank-2
subgroup of I' is either free or free abelian.

The following improved version of [4, Theorem 6.1] is made possible by more recent
developments.

Theorem 4.1 Let k > 2 be an integer and let ® be a Kleinian group which is treely
generated by elements &;, ..., & . Let z be any point of H3 and set d; = dist(z, &; - z)
fori =1,...,k. Then we have

koo 1
| fedi T2
i=1

In particular there is some i € {1,...,k} such that d; > log(2k —1).

Proof If I' is geometrically finite this is included in [4, Theorem 6.1]. In the general
case, I' is topologically tame according to [1] and [7], and it then follows from [15,
Theorem 1.1], or from the corresponding result for the free case in [14], that I" is an
algebraic limit of geometrically finite groups; more precisely, there is a sequence of
geometrically finite Kleinian groups (I';);> such that each I'; is freely generated by
elements &;;,...,&;,and limj o &5 =&; fori =1,...,k. Givenany z € H3, we
set d;j = dist(z,&;j-z) foreach j > 1 andfori =1,..., k. According to [4, Theorem

6.1], we have
k

1 1
IRTIRE:
1+edii =2

i=1
for each j > 1. Taking limits as j — co we conclude that

2": o .
i=11+edi_2.

Let us also recall the following definition from [4, Section 8]. Let I be a discrete
torsion-free subgroup of Isom (H?). A positive number A is termed a strong Margulis
number for T, or for the orientable hyperbolic 3—manifold N = H3/ T, if whenever &
and 7 are non-commuting elements of I", we have

L S
1+ edlst($~z,z) 1+ ed1st(n~z,z) 14+ 6}‘
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The following improved version of [4, Proposition 8.4] is an immediate consequence
of Theorem 4.1.

Corollary 4.2 Let I' be a discrete subgroup of Isomy (H?). Suppose that T' is
2—semifree. Then log 3 is a strong Margulis number for T".

Lemma 4.3 Let N be a non-compact finite-volume hyperbolic 3—manifold. Suppose
that S is a boundary component of the compact core N, and H is the maximal cusp
neighborhood in N corresponding to S . If infinitely many of the manifolds obtained
by Dehn filling N along S have 2—semifree fundamental group then ‘H has volume at
least 7.

Proof Suppose that (V;) is an infinite sequence of distinct hyperbolic manifolds
obtained by Dehn filling N along S, and that 7;(%;) is 2—semifree for each i.

Thurston’s Dehn filling theorem [5, Appendix B], implies that for each sufficiently
large i, the manifold N; admits a hyperbolic metric; that the core curve of the Dehn
filling N; of N is isotopic to a geodesic C; in N;; that the length L; of C; tends
to 0 as i — oo; and that the sequence of maximal tubes (tube(C;));>; converges
geometrically to H. In particular

lim vol(tube(C;)) = vol H.
1—>00

According to Corollary 4.2, log 3 is a strong Margulis number for each of the hyperbolic
manifolds A;. It therefore follows from [4, Corollary 10.5] that vol tube(C;) > V(L;),
where V is an explicitly defined function such that lim,_,.¢ V(x) = 7. In particular,
this shows that

volH > lim V(L;) > 7. |
S Non-exceptional manifolds, arbitrary primes

5.1 A closed hyperbolic 3—manifold M will be termed exceptional if every shortest
geodesic in M has tube radius at most (log 3)/2.

In this section we shall prove a result, Proposition 5.3, which gives a bound of 3 for
the dimension of H;(M;Zp) for any prime p when M is a non-exceptional manifold
with volume at most 1.22.
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Lemma 5.2 Suppose that M is a compact, irreducible, orientable 3—manifold, such
that every non-cyclic abelian subgroup of (M) is carried by a torus component of
dM . Suppose that either

(1) dim H{(M;Q) >3, o0r
(i) M isclosed and dim Hy(M ;Zp) > 4 for some prime p.

Then 7r1(M) is 2—semifree.

Proof Let X be any subgroup of m;(M) having rank at most 2. According to
[11, Theorem VI.4.1], X is free, or free abelian, or of finite index in ;(M). If
dim H{ (M ;Q) > 3, it is clear that X has infinite index in 7{(M). If M is closed
and H(M;Z,) > 4 for some prime p, then Proposition 1.1 of [17] implies that every
2—generator subgroup of 71 (M) has infinite index. Thus in either case X is either
free or free abelian. This shows that 71 (M) is 2—semifree. a

Proposition 5.3 Suppose that M is a closed, orientable, non-exceptional hyperbolic
3—manifold such that vol M =< 1.22. Then H(M;Z,) has dimension at most 3 for
every prime p.

Proof Since M is non-exceptional, there is a shortest geodesic C in M with R =
tuberad(C) > (log3)/2. We set N = drillc(M). Let H denote the maximal cusp
neighborhood in N . Since R > (log3)/2, Lemma 3.2 implies that vol H < 7.

Now assume that dim H; (M ; Zp,) > 4 for some prime p. There is an infinite sequence
(M;) of manifolds obtained by distinct Dehn fillings of N such that H 1(M;;Zp) has
dimension at least 4 for each i. (For example, if (A, u) is a basis for H; (aﬁ A p)
such that A belongs to the kernel of the inclusion homomorphism H; (3]V p) —
H, (]V .Zp), we may take M; to be obtained by the Dehn surgery corresponding to
a simple closed curve in IN representing the homology class A 4+ ipu.) It follows
from Thurston’s Dehn filling theorem [5, Appendix B] that for sufficiently large i the
manifold M; is hyperbolic. Hence by case (ii) of Lemma 5.2, the fundamental group
of M; is 2—semifree for sufficiently large i . Thus Lemma 4.3 implies that vol’H > 7,
a contradiction. d

6 Non-exceptional manifolds, odd primes
Proposition 6.3, which is proved in this section, gives a bound of 2 for the dimension of

H\(M;Zp) for any odd prime p when M is a non-exceptional manifold with volume
at most 1.22.
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Definition 6.1 Let N be a connected manifold, x € N a base point, and Q a subgroup
of 1 (N, *). We shall say that a connected based covering space r : (N, ") — (N, x)
carries the subgroup Q if Q <ry(m(N', x")) <71 (N, %)

Lemma 6.2 Suppose that ‘H is a maximal cusp neighborhood in a finite-volume
hyperbolic 3—manifold N . Let x be a base point in H, and let P < w{(N, ) denote
the image of 7 (H, ) under inclusion. Then there is an element B of 71 (N, x) with
the following property:

(1) Forevery based covering space r : (N, ") — (N, =) which carries the subgroup
(P, B) of w1 (N, ), there is a maximal cusp neighborhood H' in N’ which is
isometric to 'H.

Proof . We writte N = H3/T", where I' is a discrete, torsion-free subgroup of
Isom(H?). Let ¢ : H> — N denote the quotient map and fix a base point *’ which
is mapped to » by ¢. The components of ¢! () are horoballs. Let B, denote the
component of ¢~ (H) containing +’. The stabilizer I’y of By is mapped onto the
subgroup P of m (N, x) by the natural isomorphism ¢ : I' — 71 (N, ).

Since H is a maximal cusp, there is a component B; # By of ¢~!(H) such that
By N By # @. We fix an element g of T" such that g(By) = Bj, and we set =

t(g) em(N,x).

To show that § has property (1), we consider an arbitrary based covering space
r:(N’, ") — (N, ) which carries the subgroup (P, 8) of 1 (N, x). We may identify
N’ with H3/ T, where I'/ is some subgroup of I" containing (T, g).

Since Ty C I'/, the cusp neighborhood H lifts to a cusp neighborhood H’ in N’.
In particular H’ is isometric to . The horoballs By and B; = g(By) are distinct
components of (¢’)~'(H’), where ¢’ : H> — N’ denotes the quotient map. Since
g €T and By N By # @, the cusp neighborhood H’ is maximal. O

Proposition 6.3 Suppose that M is a closed, orientable, non-exceptional hyperbolic
3—manifold such that vol M < 1.22. Then H,(M;Z,) has dimension at most 2 for
every odd prime p.

Proof Since M is non-exceptional, we may fix a shortest geodesic C in M with
R = tuberad(C) > (log3)/2. We set N = drillc(M). Let H denote the maximal
cusp neighborhood in V. Since R > (log 3)/2, Lemma 3.2 implies that vol H < 7.

As in the statement of Lemma 6.2, we fix a base point » € H, and we denote by
P < m1(N, ) the image of m;(H, ) under inclusion. We fix an element  of
71 (N, %) having property (1) of Lemma 6.2. We set Q = (P, 8) < (N, %).
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Suppose that dim H;(M ;Z,) > 3 for some prime p. We shall prove the proposition
by showing that this assumption leads to a contradiction if p is odd.

It follows from Poincaré duality that the image of the inclusion homomorphism « :
H, (Bﬁ;Zp) — H; (ZV;ZP) has rank 1. Hence the image of P under the natural
homomorphism 71 (N, ) — H{(N; Zp) has dimension 1. It follows that the image 0
of @ under this homomorphism has dimension either 1 or 2. In the case dim 0=1
we shall obtain a contradiction for any prime p. In the case dim Q = 2 we shall obtain
a contradiction for any odd prime p.

First consider the case dim Q = 1. We have assumed dim H; (M ;Z,) > 3. Thus there
is a Z, x Z,-regular based covering space (N', x") of (N, x) which carries Q. By
property (1), there is a maximal cusp neighborhood H’ in N’ which is isometric to
H. In particular vol H' < 7.

Since in particular (N', ') carries P, the boundary of the compact core N lifts to
N’. As N’ is a p%>—fold regular covering, it follows that N’ has p? > 4 boundary
components.

It follows from Thurston’s Dehn filling theorem [5, Appendix B] that there are infinitely
many hyperbolic manifolds obtained by Dehn filling one boundary component of N'.
If Z is any hyperbolic manifold obtained by such a filling, then Z has at least three
boundary components, and it follows from case (i) of Lemma 5.2 that 7{(Z) is 2—
semifree. It therefore follows from Lemma 4.3 that each maximal cusp neighborhood
in N’ has volume at least 7. Since we have seen that vol H’ < 7, this gives the desired
contradiction in the case dim Q = 1.

It remains to consider the case in which dim Q = 2 and the prime p is odd. Since
we have assumed that dim H; (M ;Z,) > 3, there is a p—fold cyclic based covering
space (N', ") of (N, ) which carries Q. Since N’ carries P, the boundary of the
compact core N liftsto N/, and as N’ isa p—fold regular covering, it follows that
N’ has p boundary components.

We claim that the inclusion homomorphism o’ : Hy (JN’, Z,) — H; (N’ Zp) is not
surjective. To establish this, we consider the commutative diagram

H{(ON';7 ) = H\(N':Z))

l |-

Hy(ON;Zp) —— Hi(N;Z,)

where r : N’ — N is the covering projection. Since (N’,«’) carries Q we have
O C Imr,. Hence surjectivity of o’ would imply Q C Im«. This is impossible: we
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observed above that Im« has rank 1, and we are in the case dim O = 2. Thus o
cannot be surjective.

Since N’ has p boundary components, it follows from Poincaré duality that
dimImo’ = p > 3. Since «’ is not surjective and p is an odd prime, it follows
that dim Hy(N'";Zp) > p+ 1> 4.

Since (N’, *’) carries Q, some subgroup Q' of 7 (N’, *") is mapped isomorphically
to Q by ry. In particular Q’ has rank at most 3. Since dim H;(N';Z,) > 4, there is
a p—fold cyclic based covering space (N”, ") of (N’, «") which carries Q’. Hence
(N, %") is a p?—fold (possibly irregular) based covering space of (N, *) which
carries Q. By property (1), there is a maximal cusp neighborhood H” in N” which
is isometric to . In particular vol H” < 7.

Since P < Q, there is a component 7" of 9N’ such that Q’ contains a conjugate of
the image of 71 (7") under the inclusion homomorphism 7{(7) — 7;(N’). Hence
T lifts to the p—fold cyclic covering space N” of N’. It follows that the covering
projection r’ : N” — N’ maps p > 3 components of (+)"'(3N’) to T. As N’ has
at least three boundary components, N” must have at least five boundary components.

Hence if Z is any hyperbolic manifold obtained by Dehn filling one boundary compo-
nent of N/ , we have dim H;(Z;Q) > 4 > 3, and it follows from case (i) of Lemma
5.2 that 1(Z) is 2—-semifree. It therefore follows from Lemma 4.3 and Thurston’s
Dehn filling theorem that each maximal cusp neighborhood in N’ has volume at least
7. Since we have seen that vol H” < 7, we have the desired contradiction in this case
as well. O

7 Exceptional manifolds

Our treatment of exceptional manifolds begins with Proposition 7.1 below, the proof of
which will largely consist of citing material from [9]. In order to state it we must first
introduce some notation.

For k =0,...,6 we define constants t; as follows:
79 = 0.4779
71 = 1.0756
5 = 1.0527
73 = 1.2599
T4 = 1.2521
5 = 1.0239
16 = 1.0239
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For k =0,...,6 let & be the 2—generator group with presentation

Ee = (X, yir k. ra k)

where the relators ry g = ry x(x,y) and ry =1, i (x, y) are the words listed below
(in which we have set X =x~! and ¥ = y_l ):

r0 =xyXyyXyxyy,

10 =Xyxyx¥Yxyxy,

= XXy XYXYxYXYXyXXyy,

1 =XXyyXyxyxYxyxyXyy,

ri2=Xyxyx¥Yxx¥YxyxyXyy,

12 =XXyXXyyXyxyxyXyy,

3= XXyxyXXyyXYXyXYxYXYxxYXYxYXyXYXyy,

123 =XXyxyXyxYxyxYYxyxYxyXyxyXXyyXYXyy,

r,4=XXyxyXyxYxyxY¥xyXyxyXXyyXYXyXYXyy,

12,4 =XXyxyXyxyXXyyXYXyXYxYXYxYXyXYXyy,

r,5 =XyXYXyXyxyxYxyxy,

12,5 = XyxyxYxYXYxYxyxy,

r,6 = XYXyXYxYXyXYXyxy,

126 = XYXyxyXyxYxyXyxy.
The group & is the fundamental group of an arithmetic hyperbolic 3—manifold which
is known as Vol3. This manifold, which was studied in [12], is described as m007 (3,1)

in the list given in [10], and can also be described as the manifold obtained by a (—1, 2)
Dehn filling of the once-punctured torus bundle with monodromy —R?L .

Proposition 7.1 Suppose that M is an exceptional closed, orientable hyperbolic 3—
manifold which is not isometric to Vol3. Then there exists an integer k with 1 <k <6
such that the following conditions hold:

(1) M has a finite-sheeted cover M such that T (]\7 ) is isomorphic to a quotient
of &, ; and

(2) there is a shortest closed geodesic C in M such that vol(tube(C)) > 1.

Proof This is in large part an application of results from [9], and we begin by reviewing
some material from that paper.

We begin by considering an arbitrary simple closed geodesic C in a closed, orientable
hyperbolic 3—manifold M = H?*/T". As we pointed out in 2.2, there is a loxodromic
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isometry f €I with Ay/(f) = C.If we set R = tuberad(C) and Z = Zg(f), it
follows from the definitions that tube(C) = Z/(f), that h(Z) N Z = @ for every
h el —(f), and that there is an element w € I' — (/') such that w(Z) N Z # &.

Let us define an ordered pair ( f, w) of elements of I to be a GMT pair for the simple
geodesic C if we have (i) A ¢/(f)=C, (ii) w € (f), and (iii) w(Z)NZ # @. Note
that since ( /) must be a maximal cyclic subgroup of I', condition (ii) implies that the
group (f,w) is non-elementary.

Set @ ={(L,D,R) € C3:ReL,Re D > 0}. For any point P = (L, D, R) € Q we

will denote by ( fp, wp) the pair (f, w) € Isomy (H?) x Isom (H?), where f,w €
PGL,(C) =Isomy (H?) are defined by

eL/2 0
f:|: 0 e_L/2:|

o _TeR2 0 1 17[eP2 0 11
a W= o e=R2| 1 —1|| o e-22||1 —1|"

With this definition, fp has (real) translation length Re L, and the (minimum) distance
between Ay and w(Ay) is (Re D)/2.

In [9, Section 1], it is shown that if (f, w) is a GMT pair for a shortest geodesic C in
a closed, orientable hyperbolic 3—-manifold and tuberad(C) < (log 3)/2, then (f, w)
is conjugate by some element of Isom™ (H?3) to a pair of the form (fp,wp) where
P € Q is a point such that exp(P) = (eL, e?, e®) lies in the union Xy U---U Xg of
seven disjoint open subsets of C3 that are explicitly defined in [9, Proposition 1.28].

For every k with 0 <k <6 and every point P = (L, D, R) such that exp(P) € Xy,
it follows from [9, Definition 1.27 and Proposition 1.28] that

(I) the isometries ry 4 (fp, wp) and r, x (fp, wp) have translation length less than
Re L;
and it follows from [9, Table 1.1] that
(Il) 7 Re(L)sinh?(Re(D)/2) > 1.

According to [9, Proposition 3.1], if C is a shortest geodesic in a closed, orientable
hyperbolic 3—manifold, and if some GMT pair for C has the form ( fp, wp) for some
P with exp(P) € Xy, then M is isometric to Vol3.

Now suppose that M is an exceptional closed, orientable hyperbolic 3—manifold. Let
us choose a shortest closed geodesic C in M . By the definition of an exceptional
manifold, C has tube radius < (log 3)/2. Hence the facts recalled above imply that C
has a GMT pair of the form ( fp, wp) for some P such that exp(P) € X} for some k
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with 0 < k < 6; and furthermore, that if M 1is not isometric to Vol3, then 1 <k <6.
We shall show that conclusions (1) and (2) hold with this choice of k.

For i = 1,2 it follows from property (I) above that the element r; x ( f, @) has real
translation length less than the real translation length Re L of f. Since C is a shortest
geodesic in M , it follows that the conjugacy class of r; x (f, ®) is not represented by
a closed geodesic in M . As M is closed it follows that r; x (f, w) is the identity for
i = 1,2. Hence the subgroup of T" generated by f and w is isomorphic to a quotient
of & . Since we observed above that { f, ) is non-elementary, there is a non-abelian
subgroup Y of sy (M) which is isomorphic to a quotient of & . In particular Y has
rank 2, and it cannot be a free group of rank 2 since the relators ry x and r, ;. are
non-trivial. Hence by [11, Theorem VI.4.1] we must have |71 (M) : Y| < co. This
proves (1).

Finally, we recall that
vol tube(C) = m(length(C)) sinh?(tuberad(C)) = 7 (Re L) sinh?((Re D)/2).
Hence (2) follows from (II). O

We shall also need the following slight refinement of [17, Proposition 1.1].

Proposition 7.2 Let p be a prime and let M be a closed 3—manifold. If p is odd
assume that M is orientable. Let X be a finitely generated subgroup of w{(M), and
setn =dim H;(X;Zp). If dim H,(M ; Z,) > max(3,n+2), then X has infinite index
in w1 (M). In fact, X is contained in infinitely many distinct finite-index subgroups of
T (M) .

Proof In this proof, as in [17, Section 1], for any group G we shall denote by G the
subgroup of G generated by all commutators and p-th powers, where p is the prime
given in the hypothesis. Since dim H;(X;Z,) =n we may write X = EX; for some
rank-n subgroup E of X .

We first assume that n > 1. Set I' = 1;(M). Let S denote the set of all finite-index
subgroups A of I" such that A > X and dim H;(A;Z,) > n + 2. The hypothesis
gives I' € S, so that S # &. Hence it suffices to show that every subgroup A € S has
a proper subgroup D such that D € S.

Any group A € S may be identified with 7y (M ) for some finite-sheeted covering space
M of M. In particular, M isaclosed 3-manifold, and is orientable if p is odd. Since
AeS wehave X <A —nl(M) and dlmHl(M,Zp) =dim H;(A;Zp) =n+2. Now
set D=EA; <A. Applying [17, Lemma 1.5], with M in place of M , we deduce that
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D is a proper, finite-index subgroup of A, and that dim H(D;Z,) >2n+1>n+2.
On the other hand, since A € S, we have X < A, and hence X = EX; < EA; = D.
It now follows that D € &, and the proof is complete in the case n > 1.

If n = 0 then, since dim H,(M ;Z,) > 3, there exists a finitely generated subgroup
X’ > X such that Hy(X’;Zp) has dimension 1. The case of the Lemma which we
have already proved shows that X’ has infinite index. Thus X has infinite index as
well. |

Corollary 7.3 Let p be a prime and let M be a closed, orientable 3—manifold.
Let X be a finite-index subgroup of m{(M), and set n = dim H,(X;Z,). Then
dim H{(M;Zp) <max(2,n+1).

Lemma 7.4 Suppose that M is an exceptional hyperbolic 3—manifold with volume
at most 1.22. Then H{(M ;Zp) has dimension at most 2 for every prime p # 2,7,
and H{(M ;Z,) and Hy(M ;Z7) have dimension at most 3. Furthermore, if M has
volume at most 1.182, then H{(M ;Z7) has dimension at most 2.

Proof If M is isometric to Vol3 then m (M) is generated by two elements, and
the conclusions follow. For the rest of the proof we assume that M is not isometric
to Vol3, and we fix an integer k& with 1 < k < 6 such that conditions (1) and (2) of
Proposition 7.1 hold.

By condition (2) of Proposition 7.1, we may fix a shortest closed geodesic C in M
such that vol(T") > tj., where T = tube(C). It follows from a result of Przeworski’s
[16, Corollary 4.4] on the density of cylinder packings that vol 7" < 0.91 vol M, and
so vol M > 1;,/0.91. If k = 3 we have 1;/0.91 > 1.22, and we get a contradiction to
the hypothesis. Hence k € {1,2,4, 5, 6}.

Furthermore, we have 71/0.91 > 1.182. Hence if vol M < 1.182 then k € {2,4, 5, 6}.

By condition (1) of Proposition 7.1, 71 (M) has a finite-index subgroup X which is
isomorphic to a quotient of £ . From the defining presentations of the groups &1, &,
&4 &5 and &g, we find that Hq(&E1; Z) is isomorphic to Z; @ Z7, that H{(E,; Z) and
H{(E4; Z) are isomorphic to Z4@7Z4,, while H{(Es; Z) and H,(Eg; Z) are isomorphic
to Z4 ® Z4. (One can check that the two groups &5 and &g are isomorphic to each
other.) In particular, since k €{1,2,4, 5,6} we have dim H,(Ex; Z,) <1 for any prime
p#2,7,and dim H;(Ex; Zp) <2 for p=2or 7. As X is isomorphic to a quotient of
Ek , it follows that dim H;(X;Z,) <1 for any prime p #2,7, and dim H;(X;Z,) <2
for p =2 or 7. Hence by Corollary 7.3, we have dim H;(M;Z,) <2 for p #2,7,
and dim Hy(M;Z,) <3 for p =2,7.

Algebraic € Geometric Topology, Volume 6 (2006)



Dehn surgery, homology and hyperbolic volume 2311

It remains to prove that if vol M < 1.182 then dim H{(M ; Z7) < 2. We have observed
that in this case k € {2,4,5, 6}. By the list of isomorphism types of the H;(E;Z)
given above, it follows that dim H;(&;;Z7) = 0 < 1. Hence in this case the argu-
ment given above for p # 2,7 goes through in exactly the same way to show that
dim H, (M ;Z7) <2. ]

Proof of Theorem 1.1 For the case in which M is non-exceptional, the theorem is
an immediate consequence of Propositions 5.3 and 6.3. For the case in which M is
exceptional, the assertions of the theorem are equivalent to those of Lemma 7.4. O
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