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Relationships between braid length and
the number of braid strands

CORNELIA A VAN COTT

For a knot K , let `.K; n/ be the minimum length of an n–stranded braid represen-
tative of K . Fixing a knot K , `.K; n/ can be viewed as a function of n , which
we denote by `K .n/ . Examples of knots exist for which `K .n/ is a nonincreasing
function. We investigate the behavior of `K .n/ , developing bounds on the function
in terms of the genus of K . The bounds lead to the conclusion that for any knot K

the function `K .n/ is eventually stable. We study the stable behavior of `K .n/ , with
stronger results for homogeneous knots. For knots of nine or fewer crossings, we
show that `K .n/ is stable on all of its domain and determine the function completely.

57M25; 20F36

1 Introduction

The first of many connections between knot theory and braid theory was discovered in
1923 when Alexander proved that every oriented knot or link is isotopic to a closed
braid [1]. The complicating twist is that this braid is not unique. In fact, every knot is
isotopic to infinitely many distinct closed braids.

Many efforts have been made to study knots using their braid representatives. In
particular, braid theory is used to define two interesting knot invariants:

Definition 1 The braid index of a knot K , br.K/, is the minimum number of strands
needed to express K as a closed braid.

Definition 2 The braid length of a knot K , `.K/, is the minimum number of crossings
needed to express K as a closed braid.

Consider the second knot invariant defined above: braid length. One might conjecture
that a braid with the minimum number of crossings also has the minimum number of
strands. Thomas Gittings computed braid lengths for a large number of knots, and in
the midst of these computations he encountered counterexamples to this conjecture [5].
The first counterexample is the knot 10136 . This knot has braid index br.10136/D 4.
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Gittings found that all 4–braids with closure 10136 have at least 11 crossings. However,
he found 5–braids with closure 10136 with only 10 crossings (see Figure 1). The
fact that adding strands might actually decrease the number of necessary crossings
is unexpected, and in this paper we will investigate how the number of braid strands
constrains or determines the length of braids associated to a knot K . To this end, we
make the following definition:

Definition 3 `.K; n/ D minimum number of crossings needed to express K as a
closed n–braid, where n� br.K/.

Observe that this newly defined class of invariants is related to the braid length `.K/
as follows:

`.K/D min
n�br.K /

f`.K; n/g:

Fixing a knot K , we can consider `.K; n/ to be a function from a subset of the integers
to the positive integers, which we denote by `K .n/:

`K W N�br.K / �! N:

From our previous discussion, we already know a few values of the function `10136
.n/:

`10136
.4/D 11

`10136
.5/D 10

Theorem 5 will show that `10136
.n/D nC 5 for n� 5, so the function drops one time

from `10136
.4/ to `10136

.5/ and then increases monotonically thereafter. Knots similar
to 10136 whose associated functions decrease in value at some point are interesting,
for these are precisely the knots for which increasing the number of strands actually
decreases the number of necessary crossings.

We begin in Section 2 of this paper by establishing some general results about the
behavior of `K .n/.

Theorem 4 Let K be a knot. The function `K .n/ has the following properties:

(1) `K .nC 1/� `K .n/C 1 for all n� br.K/.

(2) `K .n/� n� 1 .mod 2/.

(3) `K .n/� nC 2g.K/� 1, where g.K/ denotes the genus of K .

From parts 1 and 3 of this theorem, it follows that every function `K .n/ is eventually
stable. That is, for every knot K there exist positive integers a and n0 (depending on
K ) such that

`K .n/D nC a
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Figure 1: A 4–braid with closure 10136 and length 11 (left) and a 5–braid
with closure 10136 and length 10 (right)

for all n� n0 . Because of part 2 of the above theorem, a must be odd.

Section 3 investigates the stable behavior of functions `K .n/. First, we find a point
after which the function `K .n/ is stable, given any functional value.

Theorem 5 Let K be a prime knot. Suppose `K .m/D c for some m.

(1) If c � 2m, then `K .n/ is stable for all n�m.

(2) If c > 2m, then `K .n/ is stable for all n� c �m.

Stronger results arise for specific families of knots. In the case of homogeneous knots
(defined below), a point n0 after which the function is stable can be determined without
computing an initial functional value, and the constant a is determined by the genus of
the knot.

Definition 6 A braid word ˇ 2Bn is homogeneous if each standard braid generator �i

appears at least once in ˇ and the exponent on �i has the same sign in each appearance
in the braid word ˇ (thus if �i appears, then ��1

i does not appear).

Definition 7 A knot K is a homogeneous knot if there exists a homogeneous braid
ˇ 2 Bm for some m with its closure y̌ isotopic to K .
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Theorem 8 Let K be a homogeneous knot with an m–strand homogeneous braid
representative ˇ 2 Bm . Then `K .n/D nC 2g.K/� 1 for all n�m.

Since every function `K .n/ is eventually stable, we can fix an (odd) integer a and find
all knots whose stable functions are `K .n/D nC a. For the special case aD 1, the
collection of knots is particularly limited.

Theorem 9 Let K be a knot. Then `K .n/D nC 1 for some n if and only if K is the
trefoil or the figure eight knot. Hence, `K .n/� nC 3 for all nontrivial knots K which
are not the trefoil or figure eight.

More generally, we have the following result.

Theorem 10 Let a be an odd integer. There are only finitely many prime knots K

with stable function `K .n/D nC a.

Next, we investigate conditions under which `K .n/ is stable on its entire domain.

Theorem 11 Let K be a knot. Let ˇ 2Bbr.K / be a braid of length `.K/ with closure
K , where br.K/ is the braid index of K .

(1) If `.K/ < 2 br.K/C 2, then `K .n/ is stable on its entire domain.

(2) If `.K/D br.K/C 2g.K/� 1, then `K .n/ is stable on its entire domain.

In Section 4, we use this theorem along with some further work to determine `K .n/
for all knots K with nine or fewer crossings.

Theorem 12 Let K be a knot with nine or fewer crossings. Then `K .n/ is stable on
its entire domain.

For background information about braids, see Birman [2], Birman and Brendle [3] and
Murasugi and Kurpita [9]. Except where otherwise noted, all knot enumeration and
information is taken from Cha and Livingston [4].

Acknowledgments I thank Chuck Livingston for his assistance. Thanks also to Mark
Kidwell and the referee for their valuable comments and suggestions. Jiho Kim wrote
the computer program mentioned in Section 4.
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2 Properties of `K .n/

A priori, there seem to be few restrictions on the behavior of the function `K .n/. In this
section we will establish some general properties of `K .n/ which show that we actually
are working in a rather structured environment. For example, the parity restriction of
part 2 of Theorem 4 rules out the possibility that `K .n/D `K .nC 1/ for some n.

Theorem 4 Let K be a knot. The function `K .n/ has the following properties:

(1) `K .nC 1/� `K .n/C 1 for all n� br.K/.

(2) `K .n/� n� 1 .mod 2/.

(3) `K .n/� nC 2g.K/� 1, where g.K/ denotes the genus of the knot K .

Proof Given a braid ˇ 2Bn with closure K , the stabilized braid ˇ�n 2BnC1 also
has closure K . Therefore,

`K .nC 1/� `K .n/C 1:

Any braid ˇ whose closure is K determines a Seifert surface Sˇ for the knot. This
surface has n disks and c bands, where n (respectively, c ) is the number of strands
(respectively, crossings) of ˇ . The genus of this surface is

g.Sˇ/D
1C c � n

2
:

Since the genus of a surface is an integer, it follows that c�n� 1 .mod 2/. Let ˇ 2Bn

be a length minimizing n–braid for K . Then cD `K .n/. It follows that `K .n/�n� 1

.mod 2/, proving part 2 of the theorem. Moreover, the Seifert surface Sˇ satisfies
g.K/� g.Sˇ/D .1C `K .n/� n/=2. Therefore, `K .n/� nC 2g.K/� 1.

We remark here that the lower bound found in part 3 of Theorem 4 is sharp for an infinite
collection of knots. Specifically, Theorem 8 will show that for any homogeneous knot
K ,

`K .n/D nC 2g.K/� 1

for all large n. On the other hand, an infinite collection of knots also exists for which
`K .n/ does not reach the lower bound of the above theorem. This follows from
Theorem 10.

Combining the upper and lower bounds of Theorem 4,

nC 2g.K/� 1� `K .n/� `K .n� 1/C 1;
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it follows that the function `K .n/� n is eventually constant. Therefore, for every knot
K there exist positive integers a and n0 (depending on K ) such that

`K .n/D nC a

for all n � n0 . We say that `K .n/ is stable after the point n0 and call the function
nC a the stable function of K . Observe that by part 2 of the above theorem, a must
be an odd number.

3 Stability of `K .n/

Our next step in studying `K .n/ is understanding the stable behavior of the function.
Several questions arise: At what point does the function become stable? What is the
value of the function once it is stable? How many knots have the same stable function?

We begin with the first question of finding a point n0 after which a function is stable.
Theorem 5 gives such a point, given that one can compute any single value of the
function.

Theorem 5 Let K be a prime knot. Suppose `K .m/D c for some m.

(1) If c � 2m, then `K .n/ is stable for all n�m. In particular,

`K .n/D cC n�m for all n�m:

(2) If c > 2m, then `K .n/ is stable for all n� c �m. In particular,

`K .n/D `K .c �m/C n� .c �m/ for all n� c �m:

Proof of (1) Suppose for contradiction that `K .n/ ¤ c C n�m for some n > m.
From the upper bound in Theorem 4, the value of `K .n/ is certainly bounded above
by cC n�m (simply take the braid which realizes `K .m/D c and stabilize it n�m

times). Furthermore, by the parity condition in Theorem 4, the value of `K .n/ has
the same parity as c C n�m. Therefore, `K .n/ D c C n�m� 2p where p > 0.
Geometrically, this means there is a braid ˇ 2Bn with closure K and cCn�m� 2p

crossings.

We claim that ˇ can be destabilized n �m times. To see this, count the number
of occurrences of �˙1

i in the braid word ˇ for each i 2 f1; 2; : : : ; n � 1g. This
gives us an array of n� 1 integers which sum to cC n�m� 2p . For example, the
braid �

3
�

2
�

1
��1

3
�

4
�

2
��1

5
2 B6 corresponds to the array .1; 2; 2; 1; 1/. None of the

integers in the array associated to ˇ are zero (for otherwise K would be a split link).
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Moreover, a careful arithmetic calculation using the pigeonhole principle shows that at
least n� cCmC 2p� 2 of the entries equal 1.

The existence of a “1” in the array implies that ˇ is the connected sum of two knots.
Since we assumed that K is prime, it must be that one summand is the unknot. So the
braid is split by the single crossing into two sides: one side of the braid corresponds to
the unknot, and the other corresponds to K . Since ˇ has a minimal number of crossings,
it follows that the part of the braid corresponding to the unknot also has a minimal
number of crossings. The unknot can be expressed as a k –braid via �1�2 � � � �k�1 .
The integer array corresponding to this braid is .1; 1; : : : ; 1/, which implies that the
braid has minimal length (a smaller length would force one of the integers to be 0).
Thus the integer array for ˇ must be of the form .1; : : : ; 1;x1;x2; : : : ;xr ; 1; : : : ; 1/,
where none of the xi ’s are 1.

It follows that ˇ can be destabilized n� cCmC 2p� 2 times. In particular, we can
destabilize ˇ n�m times to obtain an m–braid, since

n� cCmC 2p� 2 � n� 2mCmC 2p� 2

D n�mC 2p� 2

� n�m:

The resulting m–braid has c � 2p crossings and closure K . This contradicts the
assumption that `K .m/D c . So we conclude that `K .n/D cCn�m for all n�m.

Proof of (2) To begin, we show `K .c �m/ D 2.c �m/� 2t for some t � 0. This
follows (as in part 1) from the fact that the braid realizing `K .m/D c can be stabilized
c � 2m times, yielding a .c �m/–braid with 2.c �m/ crossings. Thus `K .c �m/�

2.c �m/. In addition, `K .c �m/ must have the same parity as 2.c �m/. Therefore,
`K .c �m/D 2.c �m/� 2t for some t � 0.

Now we compute `K .n/ where n� c �m. Again, we know that

`K .n/ � `K .c �m/C n� .c �m/

D c �mC n� 2t

by the upper bound of Theorem 4. And, taking into account the parity conditions, we
know that `K .n/D c �mC n� 2p; for some p � t � 0. To prove the theorem, we
need to show p D t . Suppose (for contradiction) that p > t . Then there exists a braid
 2 Bn with closure isotopic to K and c �mC n� 2p crossings, where p > t � 0.

As in part 1, consider the array of integers associated to the braid  that counts the
number of times each braid generator appears. The sum of the n� 1 numbers in the
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array is c�mCn�2p , and none of the numbers are 0 (for otherwise K would be a split
link). The pigeonhole principle implies that the array has at least n� cCm� 2C 2p

entries equal to 1.

As before, the braid  can be destabilized n� cCm� 2C 2p times. In particular, we
can destabilize the braid n�cCm times, since p > 0. The resulting braid,  0 2Bc�m

has length 2.c �m/ � 2p . This is a contradiction to `K .c �m/ D 2.c �m/ � 2t ,
established earlier. So we conclude

`K .n/D c �mC n� 2t

D `K .c �m/C n� .c �m/:

The following example emphasizes how quickly Theorem 5 can resolve the computation
of a function.

Example 13 The trefoil T is represented by the 2–braid ˛ D �3
1

. This implies that
`T .2/� 3. However, since T is a 3–crossing knot, strict inequality is impossible, so
`T .2/ D 3. Now that we have computed a function value of `T .n/, we can apply
Theorem 5 part 1. It follows that

`T .n/D `T .2/C n� 2D nC 1

for all n� 2. Thus the function `T .n/ is stable on all of its domain.

One weakness of Theorem 5 is that the hypotheses of the theorem require that a
functional value be computed. This may not be an easy task in some cases. In addition,
part 2 of the theorem defines the stable function in terms of `K .c �m/, which may
not be known. These difficulties can be avoided if we restrict our attention to a specific
family of knots: homogeneous knots (see Definition 7). In this special case, the stable
function is determined by the genus of the knot, and the point after which the function
is stable no longer depends on a function computation.

Theorem 8 Let K be a homogeneous knot with an m–strand homogeneous braid
representative ˇ 2 Bm . Then `K .n/D nC 2g.K/� 1 for all n�m.

The proof of this theorem relies on a particular result of Stallings.

Theorem 14 [10] Let ˇ be a homogeneous braid. Then y̌ is a fibered link with fiber
surface Sˇ .
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Since Sˇ is a fiber surface for y̌, it is a minimal genus Seifert surface:

(3–1) g.Sˇ/D g. y̌/:

With this information in hand, we proceed to the proof of Theorem 8.

Proof of Theorem 8 Suppose ˇ has c crossings. Let Sˇ denote the Seifert surface
(with m disks and c bands attached) corresponding to the closed homogeneous braid
y̌. Applying Theorem 14 and Equation (3–1), we have

g.K/D g.Sˇ/D
1C c �m

2
:

Rearranging terms, we have c DmC 2g.K/� 1. This is the lower bound for `K .m/
found in part 3 of Theorem 4 . Therefore `K .m/DmC 2g.K/� 1. Now by parts 1
and 3 of Theorem 4 , it follows that `K .n/D nC 2g.K/� 1 for all n�m.

Note that given a homogeneous knot K of braid index n, we cannot necessarily find a
homogeneous braid in Bn whose closure is K . In fact, Stoimenow found an infinite
set of examples where no such braid exists [11, Theorem 1]. By definition, we are only
guaranteed that for some integer m� n, there is a homogeneous braid in Bm whose
closure is K .

Figure 2: Braid positive knot 16472381

Example 15 Consider the 16 crossing homogeneous knot K D 16472381 [6] in
Figure 2. This knot has braid index 4. No 4–braids with closure K are homogeneous,
and moreover all have length at least 17, which implies `K .4/D 17. Computations of
Stoimenow [11, Example 7] show that there is a homogeneous 5–braid representing K

with length 16. So, `K .5/D 16. Now applying Theorem 8, it follows that `K .n/D
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nC11 for all n� 5. Therefore the function drops once from `K .4/ to `K .5/ and then
remains stable thereafter.

Example 16 Let Tp;q denote the .p; q/–torus knot, where p < q . Torus knots are
homogeneous knots, since they have a braid representative with p strands and q

positive half twists (in fact, torus knots are braid positive knots). Recall that Tp;q has
the following invariants [7; 8]:

br.Tp;q/D p

g.Tp;q/D
.p� 1/.q� 1/

2

Applying Theorem 8,

`Tp;q
.n/D nC .p� 1/.q� 1/� 1

for all n� p . This completes the computation of `Tp;q
.n/ for any .p; q/–torus knot.

Example 17 Let K denote the figure eight knot. K can be represented by the
homogeneous 3–braid ˇ D �

1
��1

2
�

1
��1

2
(Figure 3). By Theorem 8,

`K .n/D nC 2g.K/� 1D nC 1

for all n� 3, since g.K/D 1. As the figure eight knot has braid index 3, the function
`K .n/ is therefore stable on all of its domain.

Notice that in both Example 13 and Example 17, `K .n/D nC 1. Theorem 9 shows
that these two knots, the trefoil and the figure eight, are the only knots for which this is
the case.

Theorem 9 Let K be a knot. Then `K .n/D nC 1 for some n if and only if K is the
trefoil or the figure eight knot. Hence, `K .n/� nC 3 for all nontrivial knots K which
are not the trefoil or figure eight.

Proof From Example 13 and Example 17, the “if” direction of the argument is clear.

Conversely, let K be a knot such that `K .n/ D nC 1 for some n. Observe that K

must be nontrivial since `unknot.n/D n� 1 for all n� 1.

Since `K .n/D nC 1, there is an n-braid ˇ with nC 1 crossings and closure y̌ DK .
As in the proof of Theorem 5, consider the array of n� 1 integers associated to ˇ .
Again, observe that none of the numbers in this array associated to ˇ are 0, for then
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y̌ would be a split link. By the pigeonhole principle, the array must be in one of the
following forms:

.1; : : : ; 1; 3; 1 : : : ; 1/ or .1; : : : ; 1; 2; 1; : : : ; 1„ ƒ‚ …
r

; 2; 1; : : : ; 1/:

If the array of integers associated to ˇ is .1; : : : ; 1; 3; 1; : : : ; 1/, then by conjugating
and destabilizing the braid, we get a Markov equivalent 2–braid ˇ0 with 3 crossings,
which implies that K is isotopic to the trefoil.

On the other hand, suppose the array is the latter of the two. If r > 0, then K must be
a three component link, contradicting the assumption that K is a knot. So the array
must be of the form .1; : : : ; 1; 2; 2; 1; : : : ; 1/. By conjugating and destabilizing, we
get a Markov equivalent braid with associated array .2; 2/. So K can be expressed as
a 3–braid with 4 crossings. The only nontrivial knots which have diagrams with four
crossings are the trefoil and the figure eight. Therefore, K must be either the trefoil or
the figure eight.

Thus `K .n/ > nC 1 for all n, where K is a nontrivial knot which is not the trefoil or
figure eight. By part 2 of Theorem 4 , `K .n/� n is odd, so `K .n/� nC 3.

Figure 3: A homogeneous braid with closure the figure eight knot

More generally, we have the following result.

Theorem 10 Let a be an odd integer. There are only finitely many prime knots K

with stable function `K .n/D nC a.

Proof To prove this result, it suffices to show that if K has stable function `K .n/D
nC a, then K has a braid representative ˇ 2BaC2 with 2.aC 1/ crossings (because
only finitely many such braids exist).

Suppose that `K .n/D nCa for all n� n0 . Let N � n0 . Then `K .N /DN Ca. We
can then find a braid ˇ0 2BN with closure K and N Ca crossings. As before, by the
pigeonhole principle ˇ0 can be destabilized N �a�2 times, yielding an .aC2/–braid
ˇ with 2aC 2 crossings and closure K , as desired.
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The last question about stability we investigate here is: For which knots is the function
`K .n/ stable on all of its domain? Observe that functions which are stable on their
entire domain are determined by the braid index and braid length of K :

`K .n/D `.K/C n� br.K/

for all n� br.K/. Certainly, if there exists a braid ˇ 2Bn with `.K/ crossings and
closure K where n> br.K/ then `K .n/ is not stable on its domain. The knot 10136 is
the first example of this. On the other hand, we can find many conditions under which
the function is stable everywhere. The following theorem assimilates some sufficient
conditions, primarily by applying the results of this section.

Theorem 11 Let K be a knot. Let ˇ 2Bbr.K / be a braid of length `.K/ with closure
K , where br.K/ is the braid index of K .

(1) If `.K/ < 2 br.K/C 2, then `K .n/ is stable on its entire domain.

(2) If `.K/D br.K/C 2g.K/� 1, then `K .n/ is stable on its entire domain.

Proof of (1) To simplify notation, let mDbr.K/. Notice that by hypothesis, `K .m/D
`.K/. We consider two cases.

If `.K/D 2mC1, part 2 of Theorem 5 implies that `K .n/D `K .mC1/Cn�.mC1/

for all n�mC 1. But since `K .m/D `.K/, we can conclude by part 2 of Theorem 4
that `K .mC 1/D `K .m/C 1D `.K/C 1. Therefore `K .n/D `.K/C n�m for all
n�m. So `K .n/ is stable on its entire domain.

If `.K/� 2m, Theorem 5 part 1 implies that `K .n/D `K .m/Cn�m for all n�m,
so the function is stable on its entire domain.

Proof of (2) Letting m D br.K/, we have `K .m/ D `.K/ D mC 2g.K/ � 1. It
follows from parts 1 and 3 of Theorem 4 that `K .n/D nC 2g.K/� 1 for all n�m.
Therefore the function is stable on its entire domain.

4 Evaluating `K .n/ for knots with low crossing number

The results of Theorem 11 suffice to show that the function `K .n/ is stable on its entire
domain for all except four knots with eight or fewer crossings. The only outstanding
knots are 73; 75; 820; and 821 . We can show that these four knots also have functions
that are stable everywhere by doing a little more work as follows.

First, we observe that these four knots have several identical knot invariants. For
K 2 f73; 75; 820; 821g, we have br.K/ D 3, `.K/ D 8, g.K/ D 2, `K .3/ D 8, and
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`K .4/D 9. By Theorem 5, `K .5/ determines `K .n/ for all n � 5. So it remains to
compute `K .5/. We know `K .5/ is an even integer and has the following bounds:
8� `K .5/� 10. Therefore, it suffices to show that `K .5/¤ 8.

Suppose that `K .5/D 8. Then there exists a braid ˇ 2B5 of length 8 with closure K .
Using an analysis similar to the proof of Theorem 5, it follows that the array of four
integers associated to ˇ is .2; 2; 2; 2/.

For a moment, consider the “shadow” of the braid ˇ (that is, disregard whether crossings
are over or under, writing the corresponding braid generators without exponents ˙1).
Then each �i occurs exactly two times for all i 2 f1; 2; 3; 4g: Scanning through the
braid word ˇ , consider the cyclic order in which consecutive generators �i and �iC1

occur in the word. Up to cyclic permutation, the elements appear as

�i � � � �iC1 � � � �i � � � �iC1 � � � or �i � � � �i � � � �iC1 � � � �iC1 � � � :

If any two consecutive generators occur in this second configuration listed above, the
braid shadow must (up to conjugation) look like Figure 4. The figure pictures the
case where i D 2. The boxes in the figure may be filled in with any braid so that the
condition `K .5/D 8 is satisfied. The case where i D 1 has a similar figure, with the
leftmost strand missing and another strand added on the right hand side (similarly for
i D 3).

Figure 4: Possible braid shadow for a braid satisfying b5.K/D 8 . The dotted
line points out that the closed braid will be a connected sum.
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Notice that if two consecutive generators appear in this order, the closed braid splits as
a connected sum. This is due to the existence of the dotted line in Figure 4 which meets
the braid in only two points. Since K is a prime knot of 7 or 8 crossings, this implies
a contradiction. Therefore, the braid generators must occur in the cyclic ordering
�i � � � �iC1 � � � �i � � � �iC1 � � � for i 2 f1; 2; 3g: It then follows that the only possible
braid shadow (up to braid relations) for ˇ is �1�2�3�4�1�2�3�4 (or equivalently,
�1�2�1�3�2�4�3�4 ) as in Figure 5.

A priori, the braid ˇ could still be one of 28 different braids since there are eight
crossings in the braid shadow, each of which must be assigned to be either an over-
crossing or an undercrossing. However, several choices of crossings can be ruled out.
First of all, the �1 ’s must have the same exponent signs, for otherwise a braid relation
would allow a sequence of destabilizations and conjugations resulting in a braid ˇ0

with 4 strands and 7 crossings, contradicting `K .4/D 9. In addition, the first �2 in
the braid word must have a different exponent sign than the �1 ’s for the same reasons.
By symmetry, these arguments also apply to the �3 ’s and the �4 ’s. In summary, the
braid ˇ must be of the form:

�1�
�1
2 �1�

˙1
3 �˙1

2 �4�
�1
3 �4 or �1�

�1
2 �1�

˙1
3 �˙1

2 ��1
4 �3�

�1
4 :

(Mirror images of braids yield the same knot.) Thus there are only 8 different pos-
sibilities for ˇ . The closures of these eight braids are: the unknot, 31; 61; 77; and
812 .

So none of the four knots 73; 75; 820; 821 can be formed by closing a braid whose
associated array of integers is .2; 2; 2; 2/. This implies `K .5/ ¤ 8, and therefore
`K .5/D 10, where K 2 f73; 75; 820; 821g. Now applying Theorem 5, it follows that
`K .n/D nC 5 for all n� 3, where K 2 f73; 75; 820; 821g. So the function `K .n/ is
stable on its entire domain for all knots K with eight or fewer crossings.

Nine crossing knots present a bigger challenge in terms of computing `K .n/. The
results of Theorem 11 are sufficient for showing `K .n/ is stable on its entire domain
for all except nineteen of the nine crossing knots.

For these nineteen knots, we can show that the functions are again stable everywhere,
but as with the four knots mentioned earlier, a bit more work is required.

For all nine crossing knots K except 935 we need only rule out the possibility that
there is a 7–braid with 12 crossings and closure K to show that `K .n/ is stable on
its entire domain. Using a computer program to check all 12–crossing braids, this
possibility was eliminated, forcing us to conclude that all of these nine crossing knots
have stable `K .n/ functions. Similarly, `935

.n/ can be shown to be stable everywhere
using computation.
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Figure 5: Braid shadow for a braid satisfying b5.K/D 8

Hence for any knot K with nine or fewer crossings, braid length cannot be decreased
by increasing the number of braid strands. In view of this discussion, we have the
following theorem:

Theorem 12 Let K be a knot with nine or fewer crossings. Then `K .n/ is stable on
its entire domain.

The first example of a knot whose function is not stable everywhere is 10136 , which
was analyzed in the introduction. Other knots without stable functions include: 11n8 ,
11n121 , 11n131 , 12n20 , 12n24 , 12n65 , 12n119 , 12n358 , 12n362 , 12n403 , 16472381 ,
and 161223549 [4; 11]. In each of these examples, the function drops one time, and
then is stable thereafter. There are no known examples of a function that drops more
than once.
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