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Infinity structure of Poincaré duality spaces

THOMAS TRADLER

MAHMOUD ZEINALIAN

APPENDIX A BY DENNIS SULLIVAN

We show that the complex C�X of rational simplicial chains on a compact and
triangulated Poincaré duality space X of dimension d is an A1 coalgebra with 1
duality. This is the structure required for an A1 version of the cyclic Deligne conjec-
ture. One corollary is that the shifted Hochschild cohomology HH �Cd .C �X;C�X /
of the cochain algebra C �X with values in C�X has a BV structure. This implies, if
X is moreover simply connected, that the shifted homology H�Cd LX of the free
loop space admits a BV structure. An appendix by Dennis Sullivan gives a general
local construction of 1 structures.

57P10; 57P05

1 Introduction

The Hochschild complex of an associative algebra with an invariant, symmetric, and
nondegenerate inner product has a natural action of the PROP of Sullivan chord diagrams
by work of the authors [25]. This was referred to as the cyclic Deligne conjecture.
Unfortunately, such a statement does not directly apply to the topology of Poincaré
duality spaces, since the associative algebra of simplicial cochains does not enjoy a
nondegenerate and symmetric inner product which is also invariant. As it turns out,
the right notion for this cyclic Deligne conjecture is that of an A1 coalgebra with 1
duality; that is, an A1 coalgebra C together with a duality map F enjoying appropriate
invariance, nondegeneracy, and symmetry properties; see Definition 2.3.2. This structure
was defined by the first author [22], where it was shown that the Hochschild cohomology
HH �Cd .C �;C / is a BV algebra. In fact, we later showed in [24] that the PROP DG2 ,
an enhancement of the PROP of Sullivan chord diagrams, acts on this Hochschild
complex CH �Cd .C �;C /. In this paper, we give an explicit construction of an 1
duality structure on C�X , the rational chains on a compact and triangulated Poincaré
duality space X of dimension d . This implies the shifted Hochschild cohomology
HH �Cd .C �X;C�X / of the cochains C �X with values in C�X has a natural BV
structure with a unit. A corollary of this, when X is in addition simply connected, is
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that the shifted homology H�CdLX of the free loop space admits a unital BV structure.
This should be viewed in light of Chas and Sullivan’s seminal work on the algebraic
topology of the free loop space LX , when X is a manifold [1].

Let us recall some of the history and motivations. Chas and Sullivan [1] defined a
BV structure on the shifted homology H�CdLX of the free loop space LX of an
orientable manifold X , with a unit only in the closed case; see Remark 1.0.3. More
precisely, they defined a multiplication

˘ W H�CdLX ˝H�CdLX !H�CdLX;

called the loop product, along with an operator

�W H�CdLX !H�C1CdLX;

and proved that the triple .H�CdLX; ˘ ; �/ forms a BV algebra. That is to say that
.H�CdLX; ˘ / is an associative and graded commutative algebra with a unit along
with a differential � whose deviation from being a derivation defines a structure of
a graded Lie algebra on H�CdC1LX . The multiplication ˘ arises from the fact that
two loops with common base points can be composed and that in a manifold cycles
can be made transversal and then intersected. They coined the term string topology
to describe the activity aimed towards understanding the algebraic structure of the
free loop space of a manifold. Since then, there have been several generalizations and
applications of their machinery in different directions; see, for instance, Sullivan [21],
Chas and Sullivan [2], Cohen, Klein and Sullivan [5], Cohen and Jones [4], Klein [10],
Felix, Thomas and Vigue-Poirrier [26], Merkulov [17] and Chataur [3].

Remark 1.0.1 Extension of string topology to more general spaces than manifolds
have been considered by others. For example, J Klein [10] defined a product on the
loop space homology H�LX for an orientable Poincaré duality space X . In the case
of a manifold, this product coincides with that of string topology.

Remark 1.0.2 The Chas–Sullivan BV structure is in fact a homotopy invariant of the
manifold [5]. This fits with the work of this paper as well as with the view that the
Chas–Sullivan BV structure is defined for a lager category of spaces than manifolds.
Nonetheless, Sullivan conjectures that the further string topology, involving operations
labelled by the rest of moduli space of Riemann surfaces, is not a homotopy invariant;
see Conjecture 3 in the Postscript of [21].
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A corollary of the result of this paper is that there is a unital BV structure on the
shifted cohomology of the larger class of simply connected, compact, triangulated
Poincaré duality spaces. By definition, a Poincaré duality space X of dimension d is a
topological space with an element ŒX � 2HdX , called the fundamental class, such that
the map ŒX �\ � W H �X ! Hd��X is an isomorphism. A subtle but very important
point is that although the above map is a map of H �X bimodules, when viewed at the
chain level as a map C �X ! Cd��X , it is not a map of C �X –bimodules. A closed,
oriented manifold is a good example of a Poincaré duality space and it is therefore
natural to ask if in this case our structure coincides with the Chas–Sullivan BV structure.
This question, however, has not been addressed in this paper.

Let us highlight some of the salient points of this paper. We have used an inductive
and combinatorial argument to construct a symmetric A1 co-inner product, and
subsequently used minimal models to obtain an 1 duality structure. As a result we
show the following:

(i) The chain complex C�X on a compact and triangulated Poincaré duality space
X is naturally an A1 coalgebra with 1 duality.

(ii) For X as in (i), the shifted Hochschild cohomology HH �Cd .C �X;C�X / is a
BV algebra with a unit; see Remark 1.0.3.

(iii) If X is in addition simply connected, then the shifted homology H�CdLX of
the free loop space is naturally a BV algebra with a unit.

Remark 1.0.3 Whether or not the Chas–Sullivan loop multiplication has a unit is
decided by whether or not the manifold in question is closed, ie compact and without
boundary. This suggests there should be a version of the construction of this paper
without a unit which works for the larger category of Lefschetz duality spaces.

A general and very useful scheme for the local construction of 1 structures is provided
by Dennis Sullivan in Appendix A. In Appendix B, an explicit calculation of the
A1 co-inner product for the case of the circle shows the necessity of having higher
homotopies even when the A1 coalgebra structure is in fact strictly coassociative.
Such an explicit calculation of the structure in higher dimensions, even for the case of
a two-dimensional compact and orientable surface, should be very interesting.

Let us review the content of each chapter in more details. In Section 2, we present the
algebraic definitions necessary for the future chapters. An A1 coalgebra structure over
a graded module C is a differential on the free associative algebra BC over the shifted
vector space C ; see Tradler [19]. An A1 cobimodule over an A1 coalgebra is defined
in a similar fashion by having a differential satisfying certain properties in terms of
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its interaction with the differential of the A1 coalgebra over which it is defined; see
Markl [14]. An 1 duality is a map F between A1 cobimodule C and its dual C � ,
which satisfies a symmetry condition and induces an isomorphism at the homology
level; see Tradler [23]. We recall from [22] that an 1 duality structure on C yields a
BV structure on the Hochschild cohomology HH �.C �;C /. In Section 3, we show that
the chains C�X on a compact polyhedron X of dimension d , together with a choice
of a cycle � 2 C�X , is naturally furnished with a locally constructed A1 co-inner
product structure satisfying a symmetry condition; see Proposition 3.1.3. Moreover,
we show that when X is a Poincaré duality space and � is its fundamental class
ŒX �, this symmetric A1 co-inner product is an 1 duality structure; that is, the A1
co-inner product structure induces an isomorphism at the level of the homology; see
Theorem 3.1.4. This follows from Theorem 2.2.5 which is proved in two steps. First, we
argue that an A1 module over an A1 algebra has a minimal model; see Section 2.2.
Then, using methods similar to those employed by Sullivan [20] and Gómez-Tato,
Halperin and Tanré [7], we show that an A1 module map between two minimal models
which induces an isomorphism at the level of the homology is in fact an isomorphism.
Algebraically, this inverse map can be written down very explicitly. It is noteworthy
that even though the 1 duality map is local, there is no guarantee for the locality of the
algebraically constructed inverse map; see Remark 3.1.5. Nonetheless, such a structure
induces a quasi-isomorphism between the Hochschild complexes CH �.C �X;C �X /
and CH �.C �X;C�X /. According to [22] the transport of the algebraic structures from
one Hochschild cohomology onto the other, and putting everything together, after a
shift in degrees, yields a BV structure. A result of Jones [8] states that, for a simply
connected space X , the Hochschild cohomology HH �.C �X;C�X / calculates the
homology H�LX of the free loop space. Therefore, it follows that if the Poincaré
duality space X is in addition simply connected, the shifted homology H�CdLX of
the free loop space LX is naturally a BV algebra. There are two appendices to this
paper. Appendix A, written by Dennis Sullivan, provides a general local construction
for infinity structures. In a second appendix, we study the 1 duality structure on
C�S1 , the chains on the circle S1 . This structure, in terms of its component maps, is
explicitly calculated.
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to this paper and for his continuous support and suggestions. We would like to thank
Andrew Ranicki and Ralph Cohen for useful discussions and Scott Wilson for pointing
out a gap in an earlier version. We are also thankful for the referee’s comments which
have improved the presentation of the paper.

Algebraic & Geometric Topology, Volume 7 (2007)



Infinity structure of Poincaré duality spaces 237

2 Algebraic definitions

2.1 1 duality structure

In this section, we recall some of the pertinent algebraic and homotopy notions. The
Poincaré duality constitutes a H �X –bimodule isomorphism between cohomology
H �X and homology Hd��X of a Poincaré duality space X of dimension d . The
correct homotopy notion is obtained by resolving the operad of bimodule maps.

Remark 2.1.1 By Longoni and Tradler [13], given a cyclic quadratic operad O , there
exists a colored operad yO so that an algebra over yO is precisely an algebra over O
together with a symmetric and invariant inner product. Furthermore, the Koszulness
of O as an operad implies Koszulness of yO as a colored operad. More precisely, let
O! denote the quadratic dual operad of O and D.O!/ its cobar dual operad. Also, let
yO! be the quadratic dual colored operad of yO , whose cobar dual colored operad is

denoted by D. yO!/. The Koszulness of O means that the canonical map D.O!/!O
is a quasi-isomorphism of operads. This implies that the canonical map D. yO!/! yO is
also a quasi-isomorphism of colored operads; see [13, Theorem 2.8]. This statement
allows one to resolve yO to obtain a homotopy version yO1DD. yO!/ of both the algebra
and the inner product.

We now apply the result from [13] to the cyclic quadratic Koszul operad Assoc which
governs associative algebras. Let us describe the outcome of the construction 1Assoc1
more explicitly. Let C DLj2Z Cj be a graded module over fixed associative and
commutative ring R with a unit. Define the suspension sC of C as the graded module
sC DLj2Z.sC /j with .sC /j DCjC1 . The suspension map sW C ! sC , v 7! scD c

is a linear isomorphism of degree �1. We denote by BC D T .sC /DQi�0.sC /˝i

the (completed) free associative algebra on the suspended space sC .

An A1 coalgebra structure on C is a derivation D 2 Der.BC / of degree C1 with
D2 D 0. The space Der.BC / has a differential ıW Der.BC /! Der.BC / given by
ı.D0/ D ŒD;D0� D D ıD0 � .�1/jD0jD0 ıD with ı2 D 0. Given an A1 coalgebra
.BC;D/ and a graded R–module M , let

BM C D T sM .sC /DQi;j�0.sC /˝i ˝ .sM /˝ .sC /˝j :

An A1 cobimodule structure on M over C is a derivation DM 2 Der.BM C / over
D of degree C1 with .DM /2 D 0 [23].

For A1 cobimodules .BM C;DM / and .BN C;DN / over the A1 coalgebra BC ,
let Hom.BM C;BN C / denote the space of all module maps. Hom.BM C;BN C /
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has a natural differential given by ıM;N .F / D DN ı F � .�1/jF jF ı DM . An
A1 cobimodule map between BM C and BN C is by definition an element F in
Hom.BM C;BN C / of degree 0 with ıM;N .F /D 0; that is, DN ıF DF ıDM . Note
that since F is a map between completed free objects, it is uniquely determined by the
components F jM W M ! BN C .

Remark 2.1.2 The concepts of A1 coalgebras, A1 cobimodules, and A1 cobimod-
ule maps are generalizations of those of coassociative coalgebras, cobimodules, and
cobimodule maps [23].

Consider an A1 cobimodule map F W BM C ! BN C . We will argue that the in-
duced map F�W H�.BM C;DM /!H�.BN C;DN /, between the homologies, is an
isomorphism if and only if the lowest component F0;0W M ! N of F induces an
isomorphism .F0;0/�W H�.M;DM

0;0
/!H�.N;DN

0;0
/ between the homologies. Such

a map is called a quasi-isomorphism. We show this using by using a minimal model
decomposition for A1 modules.

2.2 Minimal models and invertibility

Every free connected differential graded algebra is isomorphic to the tensor product
of a unique minimal algebra and a unique contractible algebra [20]. Since, similar
decomposition theorems have been proved and utilized in different contexts; for in-
stance see Gómez-Tato, Halperin and Tanré [7, Section 8], Kajiura [9, Theorem 5.2],
and the Lemma in Kontsevich [11, Section 4.5.1]. In this section, we prove that
every A1 cobimodule .BM C;DM / over .BC;D/ can be decomposed into a direct
sum of a linear contractible and a minimal one. This will allow us to show that
an A1 cobimodule map F W BM A! BN A induces an isomorphism on homology
F�W H�.BM A;DM / ! H�.BN A;DN /, if the lowest component F0;0W M ! N

induces an isomorphism on homology .F0;0/�W H�.M;DM
0;0
/! H�.N;DN

0;0
/. For

similar a statement in a different context, see Kajiura [9, Theorem 5.4]. For a more
general operadic method see Markl [15, (M3)].

Definition 2.2.1 Let .BC;D/ be an A1 coalgebra and .BP C;DP / be an A1
cobimodule. .BP C;DP / is called minimal, if the lowest component DP

0;0
W P ! P

of the map DP W BP C ! BP C vanishes, ie DP
0;0
D 0.

Definition 2.2.2 Let .BC;D/ be an A1 coalgebra and .BN C;DN / be an A1
cobimodule. .BN C;DN / is called linear contractible, if the lowest component of
DN W BN C ! BN C is the only nonvanishing component, ie for i C j > 0 it is
DN

i;j D 0, and additionally the homology of .N;DN
0;0
/ vanishes.
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With this we can state the decomposition theorem.

Theorem 2.2.3 For .BC;D/ an A1 coalgebra, every A1 cobimodule .BM C;DM /

is isomorphic as an A1 cobimodule to the direct sum of a minimal one .BP C;DP /

and a linear contractible one .BN C;DN /. That is,

BM C Š BP C ˚BN C:

Proof Choose an arbitrary positive definite inner product on the vector space M .
Denote by d the lowest component of the differential on BM C , ie d DDM

0;0
. Define

d| to be the adjoint of d under the chosen inner product. Then, define X D Im.d/,
Y D Im.d|/, and the harmonic subspace P D Ker.d/\Ker.d|/. One knows that
M has a Hodge decomposition M D P ˚X ˚ Y . We will use the decomposition
M D P ˚N , where N D X ˚ Y . An elementary check shows that d W Y ! X is
an isomorphism of vector spaces and that every homology class Œm� of .M; d/ has a
unique harmonic representative.

We want to show that there exists a sequence f.BP˚N C;DP˚N .n//gn2N0
of A1

cobimodules structures on the space BP˚N C , whose components will be written as
DP˚N .n/jP˚N D dn

0
C dn

1
C dn

2
C � � � , where

dn
j W P ˚N ! .BP˚N C /j D

M
rCsDj

C˝r ˝ .P ˚N /˝C˝s:

These maps will satisfy

dn
0 .x/D 0 dn

0
.y/ 2X dn

0 .p/D 0;(2–1)

dn
k .x/D 0 dn

k
.y/D 0 dn

k .p/ 2 .BP C /k ;(2–2)

for x 2X , y 2 Y , p 2 P , and 1� k � n, together with the compatibility condition

dn
k D dm

k ; for k �min.m; n/:

Furthermore, there are A1 cobimodules isomorphisms

'.n/W .BM C;DM /! .BP˚N C;DP˚N .n//

satisfying the compatibility,

'n
k D 'm

k ; for k �min.m; n/;

where 'n
k

is the component of '.n/jM D 'n
0
C'n

1
C'n

2
C� � � that maps to B.P˚N /Ck .

After constructing these maps and structures, we obtain an A1 cobimodule structure
on B.P˚N /C by taking components .DP˚N /k D dn

k
for any n� k . Using equation

(2–1) and (2–2), it is clear that this splits into a minimal A1 cobimodule .BP C;DP /
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and a linear contractible one .BN C;DN /. Furthermore the maps '.n/ induce an A1
cobimodule isomorphism 'W BM C ! BP C ˚BN C D B.P˚N /C by 'k D 'n

k
, for

n� k .

Let us start with the case nD 0. We identify BP˚N C DBM C , and take DP˚N .0/D
DM together with '.0/D idW BM C ! BP˚N C . Then, condition (2–1) is satisfied,
because we have d0

0
D d , and with the definitions of X , Y and P it is clear that

d.X /D d.P /D f0g, while d.Y /�X .

Now, assume we have constructed DP˚N .k/ and '.k/ for k D 1; � � � ; n, satisfying
(2–1) and (2–2). Then, define a tensor-bimodule isomorphism F W BP˚N C!BP˚N C

to be given by F jP˚N D idCf . The map f W P ˚N ! .BP˚N C /nC1 is given by

f .x/D�dn
nC1..d

n
0 /
�1.x//; for x 2X

f .y/D 0; for y 2 Y

f .p/ satisfies �dn
0
.f .p//D .id��/ ı dn

nC1.p/; for p 2 P

where dn
0
D d W Y !X , and � is the projection � W BM C ! BP C . In order to see

that f .p/ can be defined, first notice that

0D .DP˚N .n//2.p/D �dn
0
ı dn

nC1.p/C
PnC1

jD1
�dn
j ı dn

nC1�j
.p/:

By the inductive hypotheses (2–1) and (2–2), we have �dn
0
ı dn

nC1
.p/ 2 BN C andPnC1

jD1
�dn
j ı dn

nC1�j
.p/ 2 BP C , so that �dn

0
ı dn

nC1
.p/D 0. Furthermore, it is also the

case that �dn
0
ı� ıdn

nC1
.p/D � ı �dn

0
ıdn

nC1
.p/D 0. Thus, .id��/ıdn

nC1
.p/ 2BN C

is a closed element. But H�.BN C; �dn
0
/D � � �˝H�.N; d jN /˝ � � � D f0g, so one can

find an element f .p/ 2 BN C such that �dn
0
.f .p//D .id��/ ı dn

nC1
.p/.

Thus, F defines a vector space isomorphism with inverse given by F�1jP˚N D
id�f Chigher order terms. With this, we define DP˚N .nC1/ to be the induced A1
cobimodule structure of F on BP˚N C , ie DP˚N .nC 1/D F ıDP˚N .n/ ıF�1 .
This defines an A1 cobimodule structure and we get an A1 cobimodule isomorphism
by taking '.nC1/D F ı'.n/. Notice that DP˚N .nC1/D F ıDP˚N .n/ıF�1 D
.idCf /ı .dn

0
Cdn

1
C� � � /ı .id�f C� � � /, so that dnC1

k
D dn

k
for k � n, and dnC1

nC1
D

dn
nC1
Cf ıdn

0
�dn

0
ıf . Similarly '.nC1/D F ı'.n/D .idCf /ı .'n

0
C'n

1
C� � � /

implies 'nC1
k
D 'n

k
for k � n. Since the differential DP˚N .n/ and the isomorphism

'.n/ are not altered up to the n–th level, only equation (2–2) with k D nC 1 requires
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a check. Recall that dn
0
D d0

0
D d , so that for x 2X D Im.d/, we have

dnC1
nC1

.x/D dn
nC1.x/Cf .dn

0 .x//� �dn
0
.f .x//

D dn
nC1.x/C �dn

0
.dn

nC1..d
n
0 /
�1.x///

D dn
nC1.x/� dn

nC1.d
n
0 ..d

n
0 /
�1.x///

D 0:

Note that we made use of the fact that
�
DP˚N .n/

�2
.y/ D 0, for y 2 Y , implies

0D dn
nC1
ıdn

0
.y/C �dn

n ıdn
1
.y/C� � �C �dn

0
ıdn

nC1
.y/D dn

nC1
ıdn

0
.y/C �dn

0
ıdn

nC1
.y/,

because dn
1
.y/D dn

2
.y/D � � � D dn

n .y/D 0 by condition (2–2).

Next, for any y 2 Y , we have

dnC1
nC1

.y/D dn
nC1.y/Cf .dn

0 .y//� �dn
0
.f .y//

D dn
nC1.y/� dn

nC1..d
n
0 /
�1.dn

0 .y///

D 0;

because dn
0
.y/ 2X .

Finally, if p 2 P , we have

dnC1
nC1

.p/D dn
nC1.p/Cf .dn

0 .p//� �dn
0
.f .p//

D dn
nC1.p/� .id��/ ı dn

nC1.p/

D � ı dn
nC1.p/ 2 BP C:

Definition 2.2.4 Let .BC;D/ be an A1 coalgebra. Given an A1 cobimodule
morphism F W .BM1C;DM1/! .BM2C;DM2/ between two A1 cobimodules, F

is called a quasi-isomorphism if the lowest component F0;0W M1!M2 induces an
isomorphism on homology:

.F0;0/�W H�.M1;D
M1

0;0
/
Š!H�.M2;D

M2

0;0
/:

Theorem 2.2.5 Let .BC;D/ be an A1 coalgebra. If F W .BMC;DM /!.BNC;DN /

is a map of A1 cobimodules which is a quasi-isomorphism, then there is an A1 cobi-
module morphism GW .BN C;DN /! .BM C;DM / so that G�ıF�D idH�.BM C;DM /

and F� ıG� D idH�.BN C;DN / .

Proof For i D 1; 2, decompose BMi C D BPi C ˚ BNi C into a direct sum of a
minimal and a linear contractible A1 cobimodules. Consider the projection

pri W �BMi C;DMi
�! �

BPi C;DPi
�
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and the inclusion
incli W �BPi C;DPi

�! �
BMi C;DMi

�
:

Since H�
�
BNi C;DNi

�D f0g, the maps pri and incli induce isomorphisms between
the homologies of .BMi C;DMi / and .BPi C;DPi /. Let ˆD pr2 ıF ı incl1 :

BM1C BM2C

BP1C BP2C

-F

?
pr2

-
ˆ

6
incl1

Note that ˆ0;0W .P1; 0/! .P2; 0/ induces an isomorphism, after passing to the ho-
mology. Therefore, since the complexes .P1; 0/ and .P2; 0/ have zero differentials,
ˆ0;0 is in fact an isomorphism. We claim that ˆ has a right inverse � , which can
be constructed inductively to satisfy ˆ ı � D id. Define �0;0 D .ˆ0;0/

�1 . Note
that the .k; l/–th level equation ˆ0;0 ı �k;l C .lower terms in �r;s/D id implies that
�k;l D .ˆ0;0/

�1 ı .id� � � � /. Therefore, �k;l ’s can be inductively solved. Thus, a right
inverse � is constructed. Similarly, one can construct the left inverse �. Thus, ˆ is
has the inverse �D �. Let G D incl1 ı� ı pr2 . By passing to the homology, we have

idH�.B
M1 C;DM1 / D .incl1/� ı .pr1/�

D .incl1/� ı �� ıˆ� ı .pr1/�
D .incl1/� ı �� ı .pr2/� ıF� ı .incl1/� ı .pr1/�
DG� ıF�:

Similarly, we have

idH�.B
M2 C;DM2 / D F� ıG�:

2.3 Complex of A1 co-inner products

We will now introduce a complex suitable for dealing with A1 co-inner products. By
construction, an A1 co-inner product will be a closed element in this complex.

Given graded modules V , W , X , and Y over a ring R, let

T X
Y V DQk;l�0 V ˝k ˝X ˝V ˝l ˝Y:

The components are written as the products T X
Y

Vk;l D V ˝k ˝X ˝ V ˝l ˝ Y and
T X

Y
Vn DLkClDn V ˝k ˝X ˝V ˝l ˝Y . For any map X W W ! T X

Y
V , denote the
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component of X mapping to T X
Y

Vn by Xn ; that is,

Xn D prT X
Y

Vn
ıX W W X! T X

Y V
pr! T X

Y Vn:

Let .BC;D/ be an A1 coalgebra. Notice that an A1 co-inner product is determined
by a map C �!BC C . Clearly, every element F 2T C

C
C gives such a map by dualizing

the last tensor factor. We work with the grading and differential D on T C
C

C making the
inclusion inclW .T C

C
C;D/ ,! .Hom.C �;BC C /; ıC�;C / a chain map of degree zero. To

be consistent with previous notation, we use BC
C

C for the space T C
C

C with this correct
grading. Therefore, the inclusion inclW .BC

C
C;D/ ,! .Hom.C �;BC C /; ıC�;C / is a

chain map of degree 0 with ıC�;C .Im.incl//� Im.incl/.

Notice that A1 co-inner products are exactly the closed elements of the complex
.Hom.C �;BC C /; ıC�;C / of degree zero. Thus, every closed element of .BC

C
C;D/

of degree zero determines an A1 co-inner product. More explicitly, the degree of an
element

F D .c1˝ � � �˝ cn/˝ c0˝ .c001 ˝ � � �˝ c00m/˝ c000 2 .C /˝n˝C ˝ .C /˝m˝C

with ci 2 Cki
, c0 2 Ck0 , c00i 2 Ck00

i
, and c000 2 Ck000 is given by

kFk D
nX

iD1

.ki � 1/C .k 0� 1/C
mX

iD1

.k 00i � 1/C .1� k 000/:

The differential DW BC
C

C ! BC
C

C is given by a sum obtained by applying D at all
possible places in BC

C
C in a cyclic way [23]:

D.c1; � � � ; cn; cnC1; cnC2; � � � ; cnCmC1; cnCmC2/

D
X

1�i�n

˙.� � � ; ci�1;D.ci/; ciC1; � � � /˙ .� � � ; cn;D
C .cnC1/; cnC2; � � � /

C
X

nC2�i�nCmC1

˙.� � � ; ci�1;D.ci/; ciC1; � � � /˙ �.� � � ; cnCmC1;D
C .cnCmC2//;

where

(2–3) � W C˝r ˝C ˝C˝s˝C ˝C˝t ! C˝tCr ˝C ˝C˝s˝C D BC
C CtCr;s

is a cyclic rotation of elements. As usual, the signs are determined by the Koszul sign
rule, which says whenever an element of degree p moves over an element of degree q ,
a sign of .�1/pq is introduced. Let us use a diagrammatic picture for D described in
[23]. If we draw the two special C components of BC

C
C on the horizontal axis, then

the differential can be pictured in the following way:
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˙ ˙ ˙ ˙

(The only difference between the above and [23] is that here we apply all of D D
D1CD2C � � � including the differential D1 , and not just the higher terms.) Let us
recall why D2 D 0 [23]. The diagrams for D2 are given by applying D at two places.
There are two cases. Either one of the two multiplications is placed on top of the
other, in which case D2 D 0 shows that the sum of those diagrams vanish. Or, the
multiplications are placed at different positions in which case each term appears twice
with opposite signs and therefore cancel out each other.

Given a map f W BC ! BC 0 between two A1 coalgebras .BC;D/ and .BC 0;D0/,
one can define yf W BC

C
C !BC 0

C 0
C 0 by taking a sum over all possibilities of applying

f at all possible places simultaneously. More precisely, yf on C˝n˝C ˝C˝m˝C

is given by

yf .c1; � � � ; cn; cnC1; cnC2; � � � ; cnCmC1; cnCmC2/DX
r;s;t;u

˙ �.f .c1/; � � � ; f .cn/; i
r;s.f .cnC1//; f .cnC2/; � � � ;

f .cnCmC1/; i
t;u.f .cnCmC2///;

where ir;sW C˝rCsC1 Š! C˝r ˝C ˝C˝s is the canonical isomorphism and � is the
cyclic rotation (2–3). In other words, we have to take the same cyclic rules for the
positions of the elements ci that were taken in the definition of D . After applying f
in all spots simultaneously, we need to determine the two special C components. This
is done by taking a sum of all possibilities of special components which come from the
two original special components

cnC1 7!
X
k�1

X
rCsC1Dk

ir;s.fk.cnC1//

cnCmC2 7!
X
k�1

X
tCuC1Dk

i t;u.fk.cnCmC2//:and
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In order to be an element of BC 0

C 0
C 0 , the last factor in the tensor product has to be

one of the special C components. Therefore, it might be necessary to apply a cyclic
rotation � . Diagrammatically, we have the following:

f

f

f

f

f

f

f

Proposition 2.3.1 yf W .BC
C

C;D/! .BC 0

C 0
C 0;D0/ is a chain map.

Proof D0 ı yf corresponds to applying f and having exactly one multiplication D0
outside the ring of f ’s; see above picture. yf ıD corresponds to applying f and
having exactly one multiplication D inside the ring of f ’s. But the fact that f is an
A1 algebra map (D0 ıf D f ıD ) means exactly that f commutes with inside and
outside multiplication of D0 and D .

Let us recall the concept of symmetry from [22] and [13], and its application to the
Hochschild complex as stated in [22].

Let � W BC
C

C ! BC
C

C denote the map which rotates the tensor factors cyclically by
180ı ; that is,

� W C˝n˝C ˝C˝m˝C ! C˝m˝C ˝C˝n˝C;(2–4)

.c1˝ � � �˝ cn/˝ c0˝ .c001 ˝ � � �˝ c00m/˝ c000 7!
.�1/�.c001 ˝ � � �˝ c00m/˝ c000˝ .c1˝ � � �˝ cn/˝ c0;

where � D .jc1j C � � � C jcnj C jc0j C nC 1/ � .jc00
1
j C � � � C jc00mj C jc000j CmC 1/, and

jcj denotes the degree of c 2 C . Diagrammatically, � is described by:

c0

cn � � � � � � c1

c000

c00
1

� � � � � � � � � c00
m

‘ .�1/� � c000

c00
m

� � � � � � � � � c00
1

c0

c1 � � � � � � cn
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Let .BC;D/ be an A1 coalgebra. An A1 co-inner product

F 2 BC
C C � Hom.BC�C;BC C /

is said to be symmetric, if F is invariant under � ; that is,

(2–5) �.F /D F:

Definition 2.3.2 An A1 coalgebra with 1 duality consists of an A1 coalgebra
.BC;D/ together with A1 co-inner product

F W .BC�C;DC�/! .BC C;DC /

which is symmetric and induces an isomorphism

F�W H�.BC�C;DC�/
Š!H�.BC C;DC /

at the level of the homology.

Let .BC;D/ be an A1 coalgebra endowed with an 1 duality structure F and
strict counit 1 2 C . Denote by A D C � D Hom.C;R/ the dual space of C and let
CH �.A;M /DQn�0 Hom.A˝n;M / be the Hochschild cochains of the A1 algebra
A with values in an A1 bimodule M . The following theorem is from [22].

Theorem 2.3.3 Let F W BC�C ! BC C denote an 1 duality structure so that F0;0

maps C k into Cd�k . Then, F induces an isomorphism between HH �.C �;C �/ and
HH ��d .C �;C /. Moreover, transporting the cup product from HH �.C �;C �/ onto
HH �.C �;C / and putting it together with the Connes � operator yields a BV algebra
structure.

3 Topological constructions

3.1 Construction of an 1 duality

We now show the relevance of the above algebraic concepts to topology. Let X be a
triangulated space in which the closure of every simplex is contractible. Let C D C�X
denote the complex of simplicial chains on X . We show that any closed element
� 2 C�X gives rise to a symmetric A1 co-inner product F . Moreover, if X is
a Poincaré duality space and � D ŒX � is its fundamental class, then F is in fact
an 1 duality structure. We will then use this to show the Hochschild cohomology
HH �Cd .C �X;C�X / is a BV algebra. We construct F in a manner similar to that
described by Dennis Sullivan in Appendix A, where a C1 structure on the rational
simplicial chains is constructed.
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Definition 3.1.1 Let ˛W C ! C˝i be a chain map. The map ˛ is called local, if it
maps a simplex � 2 C into C.x�/˝i � C˝i , where C.x�/� C is the subcomplex of
C generated by the cells in the closure of � .

Proposition 3.1.2 Let .BC;D D �D1C �D2C � � � / be an A1 coalgebra structure on
C such that the components Di W C ! C˝i of D are local. Then, there exists a chain
map X W .C;D1/! .BC

C
C;D/ of degree 0, whose lowest component X0 is given by

D2W C ! C ˝C .

Proof This is a proof by a double induction on the tensor degree, n, and the dimension
of the skeleton, r . Thus, we will define local maps Xj W C ! BC

C
Cj of degree zero,

j D 0; 1; 2; � � � , such that

(3–1)
� X

0�i�n

Xi

�
ıD1�D ı

� X
0�i�n

Xi

�
D �nC1C higher order terms,

where �nC1W C ! BC
C

CnC1 is a map vanishing on 0–simplices and the higher order
terms are maps C !L

i>nC1 BC
C

Ci . Locality means that a simplex � 2 C gets
mapped to BC.x�/

C.x�/C.x�/� BC
C

C .

nD 0 Let X0 DD2 . This map is local by assumption and satisfies

X0 ıD1�D ıX0 DD2 ıD1

� �D1 ıD2C .terms in D higher than D1/ ıD2

D higher order terms.

This is because D2 is a chain map (compare the conditions for D2 D 0).

n� 1 Assume we have constructed local maps Xj , j D 0; � � � ; n satisfying (3–1).
We now start the induction on r , the dimension of the skeleton. Thus, we will construct
a local X r

nC1
, such that

(3–2)
� X

0�i�n

Xi CX r
nC1

�
ıD1�D ı

� X
0�i�n

Xi CX r
nC1

�
D �r

nC1C higher order terms,

where �r
nC1
W C ! BC

C
CnC1 is a map vanishing on simplices of dimension less than

or equal to r . We may let X 0
nC1
D 0, because by assumption �nC1 vanishes on

0–simplices.

Now, assume that a local X r
nC1

has been constructed. Notice that the difference
. � ıD1/�.Dı � /W Hom.C;BC

C
C /!Hom.C;BC

C
C / satisfies .. � ıD1/�.Dı � //2D0
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and therefore,

0D .. � ıD1/� .D ı � //2
� X

0�i�n

Xi CX r
nC1

�
D .. � ıD1/� .D ı � // ı .. � ıD1/� .D ı � //

� X
0�i�n

Xi CX r
nC1

�
D .. � ıD1/� .D ı � //.�r

nC1C higher order terms/

D ŒD1; �
r
nC1�C higher order terms.

Therefore, 0D ŒD1; �
r
nC1

�D �D1 ı �r
nC1
� �r

nC1
ıD1 . Now, pick any .rC1/–simplex

� . In order to construct X rC1
nC1

.�/, first notice, that �r
nC1

is a local map because,

.�r
nC1C higher order terms/D .. � ıD1/� .D ı � //

� X
0�i�n

Xi CX r
nC1

�
;

which is local by the locality assumptions for the Di ’s and Xi ’s, as well as the fact
that the composition of two local maps is also local. Thus, for the chosen .rC1/–
simplex � , the map �r

nC1
restricts to a map .�r

nC1
/x� W C.x�/! B

C.x�/
C.x�/C.x�/, which

vanishes on simplices of dimension less than r C1. As .�r
nC1

/x� is a closed element in
Hom

�
C.x�/;BC.x�/

C.x�/C.x�/
�

and x� is by assumption contractible, we have

H�
�

Hom
�
C.x�/;BC.x�/

C.x�/C.x�/
��D Hom

�
H0.x�/;H�

�
B

C.x�/
C.x�/C.x�/

��
:

Since .�r
nC1

/x� vanishes on 0–simplices, it is not only closed, but in fact also exact.

Thus, .�r
nC1

/x� can be written as .�r
nC1

/x� D�ŒD1; �
rC1
nC1

�, where �rC1
nC1
W C!BC

C
CnC1

can be assumed to be nonvanishing only on the .rC1/–simplex � . We set X rC1
nC1
D

X r
nC1
C �rC1

nC1
on C.x�/, because with this, equation (3–2) will be satisfied, because

.. � ıD1/� .D ı � //
� M

0�i�nC1

Xi CX rC1
nC1

�
D .. � ıD1/� .D ı � //

� M
0�i�n

Xi CX r
nC1

�
C .. � ıD1/� .D ı � //.X rC1

nC1
/

D .�r
nC1/

x� C higher order termsC ŒD1;X rC1
nC1

�C higher order terms

D�ŒD1; �
rC1
nC1

�C ŒD1; �
rC1
nC1

�C higher order terms

D higher order terms,

where the higher order terms now have components

C.x�/!
M

i>nC1

B
C.x�/
C.x�/C.x�/i :
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By the construction, it follows that X rC1
nC1

coincides on the boundary of two .rC1/–
simplices, and therefore gives rise a local map X rC1

nC1
.

Finally, notice, that �nC2 vanishes on 0–simplices, since the left-hand side of (3–2)
vanishes on 0–simplices for any r . This completes the induction and the proof of the
proposition.

Proposition 3.1.3 Let X be a compact and triangulated space in which the clo-
sure of every simplex is contractible. Let .BC;D/ be a local A1 coalgebra struc-
ture, where D1 and D2 are the boundary operator and comultiplication on the on
C D C�X , respectively. For every closed cycle � 2 C; there exists a symmetric
A1 co-inner product F 2 BC

C
C such that the lowest component of F is given

by 1
2
.D2.�/C �.D2.�/// 2 C ˝ C D BC

C
C0 , where � is the rotation map from

equation (2–4).

Proof Using Proposition 3.1.2, we obtain a chain map X W .C;D1/! .BC
C

C;D/. Let
us define an A1 co-inner product by setting F0 D X .�/ 2 BC

C
C . F0 is in fact an

A1 co-inner product, since it is closed under D , D.F0/DD.X .�//DX .D1.�//D
X .0/D 0. Now, let F D .F0C �.F0//=2. It is clear that �.F /D F , since �2 D id,
and that D.F /D 0, since �DD˙D� .

Theorem 3.1.4 Let X be a compact and triangulated Poincaré duality space in which
the closure of every simplex is contractible and let � 2 CdX denote its fundamental
class. Then, the resulting F 2BC

C
C � Hom.BC�C;BC C / is an 1 duality structure.

That is to say F is a co-inner product which is symmetric and induces an isomorphism

F�W H�.BC�C;DC�/
Š!H�.BC C;DC /;

at the level of the homology.

Proof Choose a strictly cocommutative simplicial chain model C D C�X for X .
This can always be achieved by symmetrization of a given coproduct. Complete this
model to a local A1 coalgebra structure on C as described in Appendix A by Dennis
Sullivan.

Recall that in Proposition 3.1.3 the lowest component F0;0W C � ! C of the A1
co-inner product is given by capping a cochain with the fundamental cycle �, because
for a; b 2 C � , it is .a ˝ b/.D2.�// D .a \ �/.b/, where D2 was chosen to be
cocommutative. Since X satisfies Poincaré duality, it follows that F0;0W C � ! C

induces an isomorphism on homology. Thus, Theorem 2.2.5 implies the claim.
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Remark 3.1.5 Let us say a few words about a related and important issue. Although
our construction of the A1 co-inner product gives rise to a locally defined structure,
the quasi-inverse, which we show to exist using minimal models, is not necessarily
local. This is simply on account of the fact that the lowest level part of the inverse
map is given by a representative for the Thom class of the diagonal X ,!X �X and
that a result of Mc Crory [16] states the existence of such a local Thom class implies
the Poincaré duality space is a homology manifold (In fact, if the dimension of X is
greater than 4, a result of Galewski and Stern [6] implies that X has the homotopy type
of a topological manifold.) So, as Sullivan pointed out to us, an 1 duality structure
with a local quasi-inverse should give rise to an X –controlled Poincaré complex a la
Ranicki as well as to an L-theory orientation ŒX �L 2Hn.X; L/ for X . Here, L denotes
the L-theory spectrum. For an account of algebraic L-theory and how to obtain rational
Pontrjagin classes, see Ranicki [18].

3.2 BV structure on HH�Cd.C�X; C�X/

In this section, X is a compact and triangulated space Poincaré duality space of
dimension d , and � 2 C D CdX represents its fundamental class. We use the 1
duality structure of Proposition 3.1.3 to obtain a BV algebra on the Hochschild complex
HH �Cd .C �X;C�X /. For this, we use a result from [22], namely, that the Hochschild
cohomology of an A1 coalgebra with 1 duality is a BV algebra with a unit.

Corollary 3.2.1 Let X be a compact and triangulated Poincaré duality space in which
the closure of every simplex is contractible. Then, the shifted Hochschild cohomology
HH �Cd .C �X;C�X / is a BV structure with a unit.

Proof This follows immediately by applying the 1 duality structure obtained in
Theorem 3.1.4 to Theorem 2.3.3.

Jones proved in [8] that for a simply connected space X the homology of the free loop
space H�LX is identified with the Hochschild cohomology HH �.C �X;C�X /. One
implication is as follows,

Corollary 3.2.2 Let X be a compact, triangulated, and simply connected Poincaré
duality space. Then, the shifted homology of the free loop space, H�CdLX , is a BV
algebra with a unit.

This corollary should be viewed in light of the seminal work of Chas and Sullivan.
They showed that there exists a natural BV structure on H�CdLX , when X is a
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closed manifold [1]. It is therefore natural to ask whether, for a simply connected
and closed smooth manifold, the BV structure in Corollary 3.2.2 coincides with that
defined in [1]. In fact, developing an algebraic model for the Chas–Sullivan string
topology [1] was one of the original motivations for this work. The identification
H�LX Š HH �.C �X;C�X /, due to Jones [8], is explicit. One can see that the �
operator used in string topology coincides with the � operator on HH �.C �X;C�X /,
used in Corollary 3.2.1. One can ask whether the product presented here also coincides
with the Chas–Sullivan product. Although there is some evidence that this is indeed
the case, the question remains open. Also, there are identification of the products
in the literature (see Cohen and Jones [4], Merkulov [17] and Felix, Thomas and
Vigue-Poirrier [26]), but it is not a priori clear that they are the same as the one coming
from the A1 Poincaré duality structure.

Appendix A Local construction of 1 structures
DENNIS SULLIVAN

Let X be a cell complex with cells e˛ so that the closure xe˛ (= e˛ union faces of
e˛ ) have the homology of a point (Q–coefficients). Let L.X /D L denote the free
Lie algebra with generators e˛ placed in degrees (dimension e˛/� 1. Consider L as
a direct sum L0˚L1˚L2˚ � � � , where L0 is the ground field Q, L1 is the linear
span of the generators e˛ , L2 is spanned by brackets of pairs of elements in L1 , etc.
Consider derivations ı of L expanded into components ı D ı0C ı1C ı2C � � � where
ık is determined by a linear mapping L1!Lk of degree �1. Here we discuss only
the special case where ı0 D 0.

Orient the cells of X and let ı1 be the boundary operator (shifted down by 1) L1!L1 .
Note ı1 still has degree �1. Choose a local canonical cellular approximation to the
diagonal mapping (as in the proof below) to obtain L1! L2 . Extend ı1 and ı2 to
derivations of L and also call them ı1 and ı2 .

Theorem A.1 There is a canonical local inductive construction of

L1

ı3!L3; L1

ı4!L4; � � �
so the total derivation ı D ı1C ı2C � � � satisfies ı ı ı D 0.

Remark A.2 By local we mean ıe˛ belongs in the sub Lie algebra generated by the
cells in the closure of e˛ .
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Proof We interpret ı ı ı D 0 as the equation Œı; ı� D 0, where Œ � ; � � is the graded
commutator. For any ı the Jacobi identity is Œı; Œı; ı��D 0. Suppose ık D ı1C� � �Cık
has been defined so that Œık ; ık � has the first nonzero term in monomial degree kC 1.
Jacobi implies this error commutes with ı1 ; that is, it is a closed element in the
complex Der.L/ of derivations of L. If we work in the closure of a cell, the homology
hypothesis implies that Der.L/ has homology only in degrees 0 and �1. Therefore,
the error, which lives in degree �2, can be written as a commutator with ı1 . Using
the cells to generate a linear basis of each Lk by bracketing, we choose this solution
to lie in the image of the adjoint of ı1 to make it canonical. This canonical solution is
ıkC1 and this completes the induction, since one knows at the beginning ı1 ı ı1 D 0

and ı2 is chain mapping; that is, Œı2; ı1�D 0.

Remark A.3 (1) The canonical ı respects any cellular symmetry of the cell.

(2) For the zero cell a, then ıaC 1=2Œa; a�D 0, if we choose the diagonal approxi-
mation to send a vertex a to �a˝ a.

(3) For the one cell e with vertices a, b , choose an orientation so that ı1e D b� a

and let ade D Œe; � �. On the one hand, the procedure of this appendix gives a differential
of the form

ıe D
1X

iD0

˛i.ade/
i.a/Cˇi.ade/

i.b/;

and on the other hand, we gave the following specific infinity structure for the interval
in [12]:

ıe D .ade/bC
1X

iD0

Bi

i !
.ade/

i.b� a/;

where Bi denotes the i –th Bernoulli number. These two formulae are conjecturally
the same.

(4) The higher terms ı4; ı5; � � � have the interpretation of the rest of the higher
homotopies in the structure of an infinity homotopy cocommutative and coassociative
coalgebra structure on the chains of X ; that is, a C1 structure.

(5) The argument used here can be employed in a variety of contexts to construct
local 1–structures. For instance, let C�X denote the complex of chains on X and
T C�X the tensor algebra generated by C�X . Similarly, for a cell e˛ , C�xe˛ denotes
the chain complex of the closure of e˛ and T C�xe˛ its tensor algebra. Working in the
closure of a cell, T C�xe˛ has homology Q in degrees �1;�2;�3; � � � and therefore
Der.T C�xe˛/ has homology Q in degrees 0;�1;�2; � � � . The error is a class in the
homology group H�.Der.T C�xe˛// D Hom.H0.xe˛/;H�.T C�xe˛//. Let us call an
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element � 2 Hom.C�X;T C�X / local, if for any cell xe˛ � X , �.C�xe˛/ � T C�.xe˛/.
We perform a double induction for both the tensor degree k and the cell degree n.
Assume ık�1 D ı1C � � � C ık�1 is defined as a local map on the n–skeleton, such
that Œık�1; ık�1�D 0 up to tensor degree k . Furthermore, assume that ık�1 is already
extended on the .n� 1/–skeleton to a local map ık D ı1C � � �C ık�1C ık , such that
Œık ; ık �D 0 up to tensor degree kC 1. We will show that ık can be extended to the
n–skeleton, such that ık coincides with the previous map on the faces (ie locality),
and Œık ; ık � D 0 up to tensor degree k C 1. To this end, look at � D Œık ; ık � on an
n–cell e˛ . � has a lowest tensor degree of k , and vanishes on the faces of e˛ . Jacobi
identity shows, that � is closed under the differential given by the commutator with
ı1 . The complex Hom.C�xe˛;T C�xe˛// has homology H�.Hom.C�xe˛;T C�xe˛// D
Hom.H0.xe˛/;H�.T C�xe˛//. Now, � is closed and vanishes on 0–cells, so it represents
the zero homology class; that is, it must be exact. Let � D Œı1; ��. Since � vanishes on
all faces of e˛ , we may set � equal to zero on all m–cells, for all m� n� 1, and still
have the relation �D Œı1; ��. Define ık to be the old ık plus � . Then, Œık ; ık �D0 up to
tensor degree kC1 on all of e˛ , and ık is local. To start the induction, choose ı1 to be
the boundary operator and ı2 be a local comultiplication, which is both cocommutative
and coassociative on zero cells. Define ı on a 0–cell by

ık D
�
ık , for k D 1; 2

0, for k � 3:

Thus, one extends, by induction on both n and k , a local map ı to the all cells in the
n–skeleton, such that Œı; ı�D 0.

Appendix B The one-dimensional case

In this section we treat the one-dimensional case of the circle. To this end, we calculate
the X map from Proposition 3.1.2 for a point, the unit interval, and then for the circle.
We will see that even in this simplest of cases, the higher homotopies can not be
avoided.

B.1 Compatibility relations for X

Let us start by describing the compatibility relation for extending the X map to the
n–skeleton once it has been defined on the .n� 1/–skeleton of a closed, triangulated
topological space X . Using Proposition 3.1.2, one can construct a map X W .C;D1/!
.BC

C
C;D/, where C D C�X is a simplicial model of X in which the closure of

simplices are contractible. We will write A for the cochain model A D C �X . The
goal is to build an explicit map X inductively over the n–skeletons of C . We will

Algebraic & Geometric Topology, Volume 7 (2007)



254 Thomas Tradler and Mahmoud Zeinalian

sometimes ignore the grading and simply write A instead of the shifted sA, keeping
in mind that the correct grading is always given after shifting.

In detail, X W C ! BC
C

C being a chain map means that for all � 2 C , one has
X .D1.�// D D.X .�// 2 BC

C
C � Hom.T A

A
A;R/. Since X .�/ 2 Hom.T A

A
A;R/

denotes a sequence of inner products, we will use the shorthand

h� � � i� D X .�/W T A
A A!R;

written in components as h� � � i�
k;l
W A˝k ˝A˝A˝l ˝A!R. (The arguments from

A are being applied into the dots.) Then, X .D1.�//DD.X .�// reads

h� � � iD1.�/ D hD�.� � � /i� :
Below, we will use the Alexander–Whitney comultiplication �W C ! C ˝C ,

�.v0; � � � ; vn/DPn
iD1.v0; � � � ; vi/˝ .vi ; � � � ; vn/;

which makes C into a strictly coassociative differential graded coalgebra. In the strictly
coassociative case, the differential D only has two components, namely the differential
D1 and the comultiplication D2 , because with this D D �D1C �D2 satisfies D2 D 0.
Thus, the chain map condition for X becomes

(B–1) h� � � iD1.�/ D h �D�
1
.� � � /i� Ch �D�

2
.� � � /i� :

We will use the notation ı.a/DD�
1
.a/ and a �bDD�

2
.a; b/. The symbol �D�

1
denotes

the extension of D�
1

to a derivation on T A
A

A, and similarly �D�
2

denotes the extension
of D�

2
to a derivation on T A

A
A. It is important to note that two special elements never

combine [23]. For example, if we underline the two special elements, then we have the
maps�D�

1
.a; b; c; d/D .ı.a/; b; c; d/C .�1/kak.a; ı.b/; c; d/

C.�1/kakCkbk.a; b; ı.c/; d/C .�1/kakCkbkCkck.a; b; c; ı.d//�D�
2
.a; b; c; d/D .a � b; c; d/C .�1/kak.a; b � c; d/

C.�1/kakCkbk.a; b; c � d/C .�1/�.b; c; d � a/�D�
2
.a; b; c; d/D .a � b; c; d/C .�1/kak.a; b � c; d/

C.�1/�.b; c; d � a/�D�
2
.a; b; c; d/D .a � b; c; d/C .�1/kak.a; b � c; d/

C.�1/kakCkbk.a; b; c � d/;
where � D kbkCkckCkak � .kbkCkckCkdk/, and kxk denotes the degree in sA.
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Equation (B–1) shows that it is possible to define h� � � i� inductively on the skeleton,
because one only needs to know the lower components h� � � iD1.�/ . Let nX denote the
X map for the standard n–simplex �n . We will define nX W C��n! B

C��
n

C��n C��n

inductively by extending the map n�1X of the standard .n�1/–simplex �n�1 . If one
identifies �n�1 with a face of �n , then nX is defined on this face of �n by requiring
the commutativity of the following diagram:

C��n�1 B
C��

n�1

C��n�1 C��n�1

C��n B
C��

n

C��n C��n
?

incl

-
n�1X

?

incl

-
nX

It follows, that for a given triangulated topological space X with simplicial chain model
C D C�X , one can use the nX to define X W C !BC

C
C . Namely, for an n–simplex �

of X , which is identified with the standard n–simplex �n , one requires the following
diagram to commute:

C��n B
C��

n

C��n C��n

C BC
C C

?

incl

-
nX

?
incl

-
X

B.2 The 0–simplex

In this section, we calculate the map X for the trivial case �0 D fag. Let C D C�fag
be of the 0–simplex, and sAD sC �fag be the shifted cochain model, generated by
one element a in degree 1.

Proposition B.1 If the differential graded algebra structure is given by ı.a/D 0 and
a � aD a, then X .a/D a˝ a 2 C ˝C defines an A1 inner product. More precisely,
X .a/ is given by the inner products

ha; aia0;0 D 1;

ha; � � � ; aiai;j D 0; for i C j > 0:

Proof We show that the inner products satisfy equation (B–1). The first two terms
h� � � iD1.a/ and h �D�

1
.� � � /ia always vanish, because D1.a/D 0 2 C and ı.a/D 0 2A.
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We need to show that h �D�
2
.� � � /ia D 0. In order to check this, we examine h �D�

2
.� � � /ia

by inserting elements from T A
A

A. Notice that the multiplication takes exactly two
inputs and �D�

2
decreases the monomial degree of an element in T A

A
A by one, and that

the inner product X .a/D h� � � ia is nonzero only in the component A˝AD T A
A

A0D
A˝0˝A˝A˝0˝A. Therefore, we need to test equation (B–1) only for elements of
T A

A
A1 D

�
A˝1˝A˝A˝0˝A

�˚ �A˝0˝A˝A˝1˝A
�
:

h �D�
2
.a; a; a/ia1;0 D ha � a; aia0;0� ha; a � aia0;0 D 1� 1D 0

h �D�
2
.a; a; a/ia0;1 D ha � a; aia0;0� ha; a � aia0;0 D 1� 1D 0

B.3 The 1–simplex

Next, we calculate X for the case of the interval. Let �1 D I D Œa; b� be an interval,
oriented from a to b .

a b
�b b

Denote by C D C�I the chain model for the interval given by the generators a, b and
� . Furthermore, let sAD sC �I be the shifted cochain model, which, by slight abuse
of notation, has generators a and b in degree 1, and � in degree 0. The differential
graded algebra structure of sA is given by

ı.a/D �; ı.b/D��; ı.�/D 0;

and
a � a D a; b � b D b;

� � a D��; b � � D �;
and all other multiplications vanish. Note that after the shift the associativity implies
D�

2
.D�

2
.x;y/; z/ D .�1/kxkD�

2
.x;D�

2
.y; z//, where kxk denotes the degree in sA.

Notice that sA is highly noncommutative, eg � � aD�� , but a � � D 0.)

Proposition B.2 Let X .a/D a˝ a and X .b/D b˝ b ; that is,

ha; aia0;0 D 1;

hb; bib0;0 D 1;

and define X .�/ by the following sequence of inner products on sA:

h�; � � � ; �; ai�
k;0
D 1 k � 0

h�; � � � ; �; b; �i�
k;0
D�1 k � 0;
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and X is zero otherwise. Then, X W C ! BC
C

C is a chain map, where C D C�I .

The proof of the above proposition is a case by case calculation which, in spite of its
length, is straightforward and therefore omitted.

The inner products of X .�/ can be expressed diagrammatically [23]. For example for
k D 5, we have:

bc

� �

� ��

� a D 1
bc

� �

� ��

b � D �1

Remark B.3 The lowest component of X is given by D2 . Therefore, the inner
products hb; �i� and h�; ai� are clearly nonzero; see Proposition 3.1.2. Let us exam-
ine some of the higher inner products, for example .b; b; �/, with special elements
underlined. Equation (B–1) says:

hb; b; �iD1.�/
1;0

D hb; b; �ia1;0� hb; b; �ib1;0 D 0

h �D�
1
.b; b; �/i�1;0 D h�; b; �i�1;0� hb; �; �i�1;0

h �D�
2
.b; b; �/i�1;0 D hb � b; �i�0;0 D hb; �i�0;0 ¤ 0

This shows that at least one of the two inner products h�; b; �i� or hb; �; �i� have to
be nonzero in order for equation (B–1) to be satisfied. This example also shows that
there is a choice, which inner products to put nonzero. We chose h�; b; �i� ¤ 0, but
one could also choose hb; �; �i� ¤ 0. This choice would result in another possible
A1 co-inner product. It turns out that the choice from Proposition B.2 gives the A1
co-inner product which has the least amount of nonzero components.

After having calculated the map X for the two lowest dimensional simplices �0 and
�1 , it is desirable to extend it to higher-dimensional simplices. Unfortunately, an
explicit calculation of X for higher simplices becomes considerably more complicated
than the cases considered above.

B.4 The circle

We can now use Proposition B.2 to find an A1 co-inner product on a model for the
circle given by the following simplicial complex:
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b ba

�

b

�

Let C D C�S1 , and sA D sC �S1 be the shifted cochain model of the circle with
generators a, b , � and � , as indicated above. The differential is given by

ı.a/ D � � �; ı.b/ D � � �;
ı.�/ D 0; ı.�/ D 0;

and the multiplication is nonzero only on the generators

a � a D a; � � a D��; a � � D �;
b � b D b; b � � D �; � � b D��:

Again we abuse notation by using the same notation for an element in C and its dual
A. The fundamental cycle of C is �D � C � 2 C . Then, by Proposition 3.1.3, we
know that an A1 co-inner product is given by X .�/D X .�/CX .�/. Namely, the
only nonzero components of the A1 co-inner product are as follows. For all k � 0,
we have

h�; � � � ; �; aik;0 D 1;

h�; � � � ; �; a; �ik;0 D�1;

h�; � � � ; �; b; �ik;0 D�1;

h�; � � � ; �; bik;0 D 1:

The following diagrams exhibit the case for k D 5:

bc

� �

� ��

� a D 1
bc

� �

� ��

a � D �1

bc

� �

� ��

b � D �1
bc

� �

� ��

� b D 1
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