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Growth series for vertex-regular CAT.0/ cube complexes

RICHARD SCOTT

We show that the known formula for the growth series of a right-angled Coxeter
group holds more generally for any CAT(0) cube complex whose vertex links all have
the same f –polynomial.

20F55, 20F67, 20F69; 05A15

1 Introduction

A cube complex is a regular cell complex X all of whose cells are cubes and such that
the intersection of any two cells is a face of both. An edge-path in a cube complex X

is a sequence e1; : : : ; en of oriented edges such that the head of ei coincides with the
tail of eiC1 for 1� i � n�1. The number of edges in an edge-path is called the length
of the path. Given two vertices x;x0 in a cube complex X , we define the distance
d.x;x0/ to be the minimum length (possibly infinite) of an edge-path connecting x

to x0 . For each vertex x0 in X , we let G.X;x0I t/ denote the corresponding growth
series for X . That is,

G.X;x0I t/D

1X
iD0

�.i/t i

where �.i/ is the number of vertices in X whose distance to x0 is i .

The link of any vertex in a cube complex X is a simplicial complex, and by a result of
Gromov, X is nonpositively curved with respect to the standard piecewise Euclidean
metric if and only if every link is a flag complex. If, in addition, X is simply-connected
then it is CAT(0) (see, for example, Bridson and Haefliger [1]). The main result of this
article is the following.

Theorem 1 Let X be a connected n–dimensional CAT(0) cube complex with the
property that the link of every vertex has the same number of i –simplices for each
i 2 f0; : : : ; n�1g. Let f .t/ be the polynomial f .t/Df�1Cf0tCf1t2C� � �Cfn�1tn

where f�1D1 and fi is the number of i –simplices in the link of a vertex (for 0� i<n).
Then the growth series of X is independent of the point x0 and given by the formula

1

G.X;x0I t/
D f

�
�t

1C t

�
:
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In the case where X is the cube complex associated to a right-angled Coxeter group
W this formula is well-known (it is a special case of the known formula for the growth
series of a Coxeter group relative to the standard generators, see Steinberg [7, Theorem
1.25 and Corollary 1.29]). More generally, Theorem 1 applies to any group acting
on a CAT(0) cube complex X whose action on the vertex set is simply-transitive.
Such groups were considered by Noskov [4] who proved that the geodesic words
corresponding to edge-paths in X form a regular language and that the corresponding
growth series is a rational function. Not only does Theorem 1 give an explicit formula
for that rational function, but it applies to even more general CAT(0) cube complexes.
In particular, X need not admit a group action, and the vertex links need not even be
isomorphic; the only requirement for the vertex links is that they all have the same
f –polynomial.

The organization of the paper is as follows. In Section 2 we describe examples
and applications of the formula. In Section 3 we summarize results of Sageev [5]
concerning the geometry of CAT(0) cube complexes. In particular, we describe the
notion of hyperplanes in a cube complex, and their manifestation in contracting disks as
a collection of embedded arcs. By using Reidemeister-type moves on these contracting
disks, we are then able to control the distance between certain minimal edge-paths. We
use this in Section 4 to establish the distance from a fixed vertex x0 to each vertex of
an arbitrary cube in X . In particular, we show that any such cube has a unique closest
vertex to x0 . In Section 5 we use these vertex distances to set up a recurrence relation
for the number of k –cubes starting at distance l from x0 . We then derive formulas for
growth series of k –cubes in X (one for each k ), the formula in Theorem 1 being the
k D 0 case.

2 Examples and consequences

The simplest example of a CAT(0) cube complex to which the formula applies is a
regular tree. In this case, the f –polynomial is of the form f .t/D 1C at where a is
the degree of a vertex. The formula for the growth series simplifies to the usual one:

G.t/D
1C t

1� .a� 1/t
D 1C at C a.a� 1/t2

C a.a� 1/2t3
C � � �

Other examples are provided by CAT(0) cube complexes X that have vertex-transitive
automorphism groups. Consider the special case where the automorphism group
Aut.X / has a subgroup G that acts simply-transitively on the vertex set. In this case
the group G can be identified with the vertex set of X , and if we let S denote the set
of group elements that are adjacent to the vertex 1, then the Cayley graph of G with
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respect to S can be identified with the 1–skeleton of X . It follows that the growth
series for the group G with respect to the word metric induced by S coincides with
the growth series G.X;x0I t/. We describe some examples of this situation.

2.1 Right-angled Coxeter groups

Let � be a graph with vertex set V and edge set E . The right-angled Coxeter group
with defining graph � is the group W given by the presentation

W D hV j v2 D 1 for all v 2 V and uv D vu for all fu; vg 2E i:

There is a natural CAT(0) cube complex X (called the Davis complex) on which
W acts. We give a rough description here, and refer the reader to Davis [3] for
details. The Cayley 2–complex of the presentation for W is a square complex with
the property that the link of every vertex can be naturally identified with the graph
� . The cube complex X is obtained by attaching higher dimensional cubes in such
a way that every clique (complete subgraph) in every link gets “filled in”. Thus all
vertex links in X are isomorphic to this “flag completion” of � , so the f –polynomial
is k�.t/D 1Ck1tCk2t2C� � � where ki denotes the number of i –cliques in � . The
formula for the growth series of X (hence for W ) in this case is a (well-known) special
case of our theorem:

1

G.t/
D k�

�
�t

1C t

�
:

Example 2 Let � be the graph with V D fa; b; c; dg shown in Figure 1 (on the left).
Then W is the group .Z2/

3 �Z2
.Z2/

2 , and the Cayley 2–complex of the presentation
is shown in Figure 1 (on the right). By filling in all of the 3–cubes, we obtain the Davis
complex. The f –polynomial for the link is f .t/D 1C 4t C 4t2C t3 , so the growth
series for X (and hence W ) is

G.t/D
.1C t/3

1� t � t2
D 1C 4t C 8t2

C 15t3
C 23t4

� � � :

2.2 Right-angled mock reflection groups

More generally, suppose � is a graph as above and for each vertex v 2V , one specifies
an involution jv defined on vertices adjacent to v . Let J denote the collection fjvg

of these “local involutions”. For any pair of adjacent vertices v0; v1 , one can then
define a sequence v0; v1; : : : inductively by the formula vkC1 D jvk

.vk�1/. We call
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a

b

c d

1

Figure 1: A graph � and the corresponding Davis complex

such a sequence a trajectory, and assume that all trajectories are 4–periodic (that is,
vk D vkC4 for all k ). We define the group W .J / by the presentation

W .J /D hV j v2
D 1 for v2V and v0v1v2v3D1 for all trajectories v0; v1; : : : in �i;

noting that if all of the involutions in J are trivial, this reduces to the (ordinary)
right-angled Coxeter group W described above.

With some additional assumptions on the local involutions, one can mimic the Davis
complex construction to get a CAT(0) cube complex X.J / with an action of W .J /

that is simply transitive on the vertex set. We refer the reader to [6] for details. For such
groups W .J / (the ones that act on CAT(0) cube complexes) we call the graph with
local involutions a mock reflection system, and we call the group W .J / a mock reflection
group. The link of every vertex in X.J /, as for the ordinary Davis complex, is again
obtained by filling in all cliques in the graph � . Thus, by Theorem 1, the growth series
for W .J / (with respect to the generators V ) depends only on the underlying graph � ,
not on the choice of local involutions J . This is not an obvious fact, considering that
the complexes X.J / definitely do depend on J .

Example 3 Let � be the same graph as in Example 2. For the vertices b , c , and d ,
we define the corresponding local involutions to be the identity, and for the vertex a,
we define ja to be the involution that swaps b and c . If an involution at a vertex v
interchanges two adjacent vertices u and w , then we indicate this in the diagram for �
by connecting the edges vu and vw by an arc at the vertex v (Figure 2). This collection
of local involutions determines a mock reflection system, and the corresponding mock
reflection group is

W .J /D ha; b; c; d j a2
D b2

D c2
D d2

D 1; abac D bcbc D cdcd D 1i:
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The cube complex X.J / which is shown in Figure 2 is clearly not isomorphic to the
Davis complex in the previous example, but by Theorem 1 it does have the same growth
series.

a

b

c d

1

Figure 2: A mock reflection system and the corresponding complex X.J /

2.3 Right-angled Artin groups

By removing the involution relations from the presentations for right-angled Coxeter
groups, one obtains the class of right-angled Artin groups. That is, given a graph �
with vertex set V and edge set E , the corresponding right-angled Artin group is the
group A given by

AD hV j uv D vu for all fu; vg 2E i:

The group A also acts on a CAT(0) cube complex Y (namely, the universal cover of the
“Salvetti complex” z† in Charney and Davis [2].) In this case the action on Y is free,
and the quotient Y=A is a finite K.A; 1/–space. The group A acts simply-transitively
on the vertices of Y , and if we let S be the subset V [V �1 , then the 1–skeleton of
Y coincides with the Cayley graph of A with respect to S . Thus, again, the growth
series for Y coincides with the growth series for the Artin group A with respect to its
standard generating set.

The link of a vertex in Y is well-understood (see, for example, [2]). In particular, if
y� denotes the simplicial complex obtained by filling in all of the cliques in � , and
L denotes the link of a vertex in Y , then each i –simplex in y� corresponds to 2iC1

simplices in L of the same dimension. It follows that the f –polynomial for L is
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f .t/D k�.2t/D 1C 2k1t C 4k2t2C � � � and, by Theorem 1, that the growth series
for Y (and hence A) is determined by

1

G.t/
D k�

�
�2t

1C t

�
:

Remark There is also a notion of a right-angled mock Artin group. Again one starts
with a graph � with local involutions J , and removes the involution relations from the
presentation for the mock reflection group W .J /. There is a corresponding complex
Y .J / in this case, and the link of a vertex coincides with the link of a vertex in the
(ordinary) Artin group associated to the underlying graph � . (See [6] for the details.)
In particular, the growth series for a mock Artin group A.J / does not depend on the
involutions J and coincides with the growth series for the corresponding Artin group
for �

3 Hyperplanes, contracting disks and pictures

Given an n–dimensional cube Q and an edge e � Q, let Q.e/ denote the .n�1/–
dimensional subcube obtained by intersecting Q with the hyperplane orthogonal to e

passing through the midpoint of e . Following Sageev [5], we call Q.e/ a dual block
in Q. The dual blocks in Q determines an equivalence relation on edges of Q by
e � e0,Q.e/DQ.e0/. More generally, given a cube complex X , we consider the
equivalence relation on edges generated by this relation on each cell. That is, e and e0

are equivalent if and only if there exists a sequence of edges e D e0; e1; : : : ; en D e0

and a sequence of cubes Q1; : : : ;Qn in X such that for 0� i < n, ei � eiC1 in Qi .
Given an equivalence class � of edges, we then define its dual hyperplane to be the
union of dual blocks H.�/D

S
Q.e/ where the union is taken over all e 2 � and all

cells Q in X (we adopt the obvious convention that Q.e/D∅ if e is not an edge of
Q). We let H denote the collection of all hyperplanes in X .

Figure 3 shows a cube complex and the hyperplane dual to the equivalence class
consisting of vertical edges. (The collection H in this case consists of this hyperplane
together with three other hyperplanes that are not shown.)

Now suppose X is a CAT(0) cube complex, and suppose  D e1; : : : ; en is an edge-
path that starts and ends at the same vertex x0 (that is,  is an edge-loop). Since X is
simply-connected, there exists a 2–disk D and a map f W D! X that restricts to a
map f W @D!  . Given such a contracting map f , let Df denote the union of the
preimages f �1.H / as H runs over all hyperplanes in H .
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x0 x1

x2

x3

x4

x5x6

x7

Figure 3: A hyperplane in a cube complex

Proposition 4 (Sageev [5, Theorem 4.4]) Let X be a CAT(0) cube complex and let
 be an edge-loop. Then there exists a contracting map f W D!X for  satisfying

(1) f .D/ is contained in the 2–skeleton X .2/

(2) The subset Df � D is the union of a collection A of embedded arcs with
endpoints on @D and such that any two arcs intersect at most once.

(3) Any point on the boundary of D is an endpoint of at most one arc in A, and any
point in the interior of D is contained in at most two arcs of A.

An example of such a contracting map is shown in Figure 4. Here the edge-loop is the
one passing through the vertices x0;x1; : : : ;x7 , and the map f W D!X maps the disk
homeomorphically onto the front three faces of the 3–cube and the adjoining 2–cube.
The four hyperplanes in X meet the image of this disk in the four arcs indicated (the
arc corresponding to the shaded hyperplane is in bold).

x0

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5
x6 x6

x7

x7

f

Figure 4: A contracting map f W D!X for an edge-loop
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To prove the proposition, one first uses transversality results to make the hyperplane
preimages Df a collection of immersed closed curves and arcs meeting in general
position. Using the fact that links of vertices in X are all flag simplicial complexes,
one then uses certain Reidemeister-type moves to simplify this collection of curves.
The complete argument can be found in Sageev [5].

To simplify our exposition, we shall call the pair .D;Df / a picture if it satisfies all of
the conditions in Proposition 4. We will need to be able to modify our pictures using
one of the Reidemeister moves mentioned above: the so-called “triangle move”. In a
picture, the disk D gets broken up into a collection of contractible regions, each of
which is bounded by a finite number of sub-arcs. We call such a region a triangle if it
is bounded by precisely 3 sub-arcs.

Proposition 5 Let f W D ! X define a picture for the closed edge-loop  , and
suppose this picture has a triangle region with bounding arcs ˛1 , ˛2 , and ˛3 . Then
there exists another contracting map gW D!X for  such that .D;Dg/ is a picture
identical to .D;Df / except that the arc ˛1 is on the other side of the intersection point
˛2\˛3 .

Proof The triangle in .D;Df / corresponds to a vertex v in the 2–skeleton X .2/

where 3 squares meet like the corner of a 3–cube. The flag condition on the link of
this vertex in X ensures that there is, in fact, a 3–cube in X that is attached to these
three squares. Replacing these three squares with the opposite three squares in this
cube yields a homotopic contracting map g with the desired picture. For example, the
contracting map in Figure 4 can be modified so that the disk maps onto the back three
faces of the 3–cube. The resulting picture is shown on the right in Figure 5.

4 Cube positions in a CAT(0) cube complex

In this section we now fix a vertex x0 in X . We shall say that a vertex x is at level l

if d.x;x0/D l . An immediate consequence of the existence of pictures for edge-loops
in X is that any edge-loop has even length (twice the number of embedded arcs). This
means that the vertices of any 1–cube in X must be at different levels. In fact they
must be at levels l and l C 1 for some l � 0. In general we have the following.

Lemma 6 Let Q be a k –dimensional cube in X and let l be the minimum level
attained by vertices of Q. Then for each j 2 f0; : : : kg, there are precisely

�
k
j

�
vertices

of Q at level l C j (Figure 6). In particular, Q has a unique (closest) vertex at level l

and a unique (farthest) vertex at level l C k .
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x0

x1

x2

x3

x4

x5

x6

x7

Figure 5: A triangle move on a picture

x0

l

lC1

lC2

lC3

Figure 6: Level sets in a CAT(0) cube complex

Proof First we show that there exists a unique vertex of Q at level l . For suppose
x and x0 are two different vertices of Q at level l . Let ˛ be a minimal edge-path
connecting x0 to x , let ˛0 be a minimal edge-path connecting x0 to x0 , and let ˇ
be an edge-path in Q connecting x to x0 that has minimal length (in Q). Then the
composition of ˛ , ˇ , and ˛0 is an edge-loop  , so by Proposition 4, there exists a
contracting map f W D!X such that .D;Df / is a picture for  . We can assume this
picture is minimal in the sense that it has the minimum number of interior crossings
among all pictures for  . We claim that such a picture has the following properties:

(1) If two arcs each have an endpoint on ˛ (respectively, ˛0 ), then they do not
intersect.

(2) If two arcs each have an endpoint on ˇ , then they do not intersect.

(3) No arc has both endpoints on ˛ , ˛0 , or ˇ .
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(4) If p is the last arc endpoint along ˛ and q is the first arc endpoint along ˇ (that
is, p and q are the closest arc endpoints to x ) then p and q do not belong to
the same arc. Similarly for the two arc endpoints that are closest to x0 .

Assuming the claim, it is not hard to see that no such picture can exist. For consider
the arc A with endpoint closest to x along ˛ and the arc B with endpoint closest
to x along ˇ (Figure 7). By (4), A and B are different. By (3) A cannot have both
endpoints on ˛ and B cannot have both endpoints along ˇ . It follows that B must
have second endpoint along ˛0 (if it were along ˛ , A and B would be forced to cross
and each would have an endpoint on ˛ , contradicting (1)). By symmetry, the arc B0

that has endpoint closest to x0 along ˇ must have second endpoint along ˛ . But then
B and B0 must intersect, violating (2).

x x0

x0

˛ ˛0

ˇ

A

B

B0

Figure 7

To establish (1) of the claim, it suffices to show that no two arcs with consecutive
endpoints along ˛ can intersect. For suppose A and B are two such arcs that intersect
in the point p . By applying repeated triangle moves one can first ensure that all arcs
crossing A and B to the left of the intersection point are parallel (Figure 8). Then one
can use repeated triangle moves to move all of these arcs to the right of p . We now
have a triangular region in the picture with one edge along ˛ . The intersection point
p is dual to a square R in X .2/ having two consecutive edges along ˛ . Replacing
these edges with the opposite two edges of R would result in fewer interior crossings
(Figure 9), contradicting our choice of a picture that minimizes these crossings.

The proof of (2) is identical to the proof of (1) except that one needs to observe that
the square R is in fact a face of Q (thus replacing the two edges along ˇ with the
opposite edges of the square, still gives an edge-path in Q). But this is clear since the
intersection of Q and R must be a face of both, hence it must be the entire square R.

Algebraic & Geometric Topology, Volume 7 (2007)



Growth series for vertex-regular CAT.0/ cube complexes 295
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Figure 8

�
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�
�

x x0

x0

x x0

x0

Figure 9

To prove (3), suppose without loss of generality that there exists an arc with both
endpoints along ˛ . No other arc can cross this one since it would either have to cross
it twice (which is not allowed) or it would result in two crossing arcs that both meet ˛
(violating (1)). It follows that we can choose such an arc A so that no other arcs touch
˛ between the endpoints of A. In this case, the endpoints of A must map (under f )
to the midpoint of the same 1–cell in X . If we let y denote the endpoint of this 1–cell
that is not enclosed by A, then we see (in the left-hand picture in Figure 10) that the
edge-path ˛ can be shortened, contradicting its minimality.

For (4), we simply note that the existence of such an arc connecting p to q would imply
that the last edge in the edge-path ˛ coincides with the first edge of ˇ . In particular, if
y is the endpoint of this edge that is opposite x , then y would be a point in Q closer
to x0 than x (the right-hand picture in Figure 10).

Finally, to see that there are
�
k
j

�
vertices of Q at level lCj , let x be the closest vertex

(at level l ). Index the vertices of Q using subsets of f1; 2 : : : ; kg so that v∅ D x

and vI is adjacent to vJ if and only if the symmetric difference of I and J has
one element. It suffices to show then that the vertex vI is at level l C jI j for each
subset I � f1; : : : ; kg. We proceed by induction on jI j, the case jI j D 0 being trivial.
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x x0

x0

y

y

x x0

x0

y

y

p

q

Figure 10

Consider the vertex vI where jI j> 0. For every proper subset J � I , the vertex vJ

is at level l C jJ j (by induction). The level of vI is at most l C jI j since removing
an element from I gives an adjacent vertex at level l CjI j � 1. Suppose the level of
vI were less than l CjI j, say l C j . Pick a subset J � I with jJ j D j and consider
the face QJ �Q consisting of vertices vK with J �K � I . Then both vI and vJ

would attain the minimum level for vertices of QJ , contradicting the uniqueness of a
closest vertex. Hence vI must be at level l CjI j.

Lemma 7 Let x be a vertex at level l , and let S be any set of vertices at level l � 1

that are adjacent to x . Then there exists a unique cube of dimension jS j that contains
all of the vertices S [fxg. (By the previous lemma, this cube starts at level l � jS j.)

Proof If S is empty or consists of a single vertex, the statement is trivial. Suppose S

is a two-element set fy;y0g. Let ˛ be a minimal edge-path from x0 to y , and let ˛0

be a minimal edge-path from y0 to x0 . Let e be the oriented edge from y to x , and
let e0 be the oriented edge from x to y0 . Then composing the paths ˛ , e , e0 , and ˛0 ,
we obtain an edge-loop  , and we let .D;Df / be a picture for  . As in the previous
proof, we assume that ˛ , and ˛0 are chosen so that the number of interior crossings in
this picture is minimized. Let A denote the arc that meets the midpoint of the edge e

and let A0 denote the arc that meets the midpoint of e0 (Figure 11). Since y ¤ y0 , we
know e ¤ e0 , so the arcs A and A0 cannot coincide. By an argument similar to the
previous proof we know that the arc A must connect to the boundary segment ˛0 , and
the arc A0 must connect to ˛ , hence A and A0 must cross. By using triangle moves,
we can assume this crossing is “at the top” (that is, the crossing point of A and A0

is the closest crossing point to e along A and the closest crossing point to e0 along
A0 ). This new crossing point then has a dual square R having e and e0 as consecutive
edges. This R is the desired 2–cube; it is unique since the intersection of two cubes
must be a (single) face of each.
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x

y y0

x0

e e0

A A0

Figure 11

Now suppose S has more than two elements. These elements correspond to vertices in
the link of x . By the previous paragraph, any two-element subset determines a square
and hence an edge connecting the corresponding vertices in the link of x . Since the link
of x is a flag complex, the vertices in the link that correspond to S must span a simplex;
hence, there exists a cube of dimension jS j containing S [fxg. Uniqueness follows
(again) from the fact that the intersection of two cubes must be a face of both.

5 Generating functions

Let X and x0 be as above, and let sk;l denote the number of k cells in X that start
at level l . In particular, the numbers sk;0 for k D 0; : : : ; n are the coefficients of the
f –polynomial for the link of the vertex x0 , and s0;l is the number of vertices in X at
level l .

Lemma 8 We have the following identities for the sk;l :

(1) sk;l D 0 if k < 0 or l < 0.

(2)
Pl

kD0.�1/ksk;l�k is 1 if l D 0 and 0 if l > 0.

(3) sk;0s0;l D
Pk

jD0

�
k
j

�
sk;l�j if k > 0.

Proof The first statement is obvious. For the second, note that by Lemma 6, the sum
in question can be interpreted as X

.�1/dim Q
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where the sum is taken over all cubes Q that end at level l . By Lemma 7, any such
cube is contained in a unique maximal cube (ending at level l ). If we restrict the sum
to one of these maximal cubes Q0 we get a sum of the formX

I�J

.�1/jI j

where J is the set of vertices of Q0 at level l � 1. Since this sum is zero for each
maximal cube (it’s the binomial expansion of .1� 1/jJ j ), the result follows. The third
identity corresponds to two different ways of counting the number of .k�1/–simplices
in the links of all of the vertices at level l . Since s0;l is the number of vertices at level
l and sk;0 is the number of .k�1/–simplices in the link of each vertex, the left hand
side sk;0s0;l certainly gives this number. On the other hand, since sk;l�j is the number
of k –cells starting at level l�j , and (by Lemma 6) each such k –cell contributes a
.k�1/–simplex to the links of its

�
k
j

�
vertices at level l , the right-hand sum also yields

this number.

For k D 0; : : : ; n we let gk.t/ be the generating function

gk.t/D

1X
lD0

sk;l t
l :

That is, gk.t/ is the growth series for k –cells in X . In particular, g0.t/ is the growth
series G.X;x0I t/.

Lemma 9 These generating functions satisfy the following identities:

(1) .1C t/kgk.t/D sk;0g0.t/ for all k � 0.

(2)
P1

kD0.�t/kgk.t/D 1.

Proof These are just generating function versions of the identities (2) and (3) in
Lemma 8. For the first identity, the case k D 0 is trivial, and for k � 1 we have

sk;0g0.t/D

1X
lD0

s0;lsk;0t l
D

1X
lD0

kX
jD0

�
k
j

�
sk;l�j t l

by (3) in Lemma 8. Interchanging the sums and noting that sk;l�j D 0 for l < j gives

kX
jD0

1X
lDj

sk;l�j t l�j
�
k
j

�
tj
D

kX
jD0

gk.t/
�
k
j

�
tj
D gk.t/.1C t/k ;

as desired.
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For the second identity, we have

1X
kD0

.�t/kgk.t/D

1X
kD0

.�t/k
1X

iD0

sk;i t
i :

Substituting l � k for i , this becomes

1X
kD0

1X
lDk

.�1/ksk;l�k t l :

Interchanging the sums then gives

1X
lD0

� lX
kD0

.�1/ksk;l�k

�
t l

which, by (2) in Lemma 8, reduces to 1.

The formula for the growth series G.X;x0I t/ given in the introduction is the special
case k D 0 of the following theorem.

Theorem 10 The generating functions gk.t/ are given by

1

gk.t/
D
.1C t/k

fk�1

f

�
�t

1C t

�
:

Proof Since f .t/D
P

sk;0tk where the sum is taken over all k � 0, we have

f

�
�t

1C t

�
D

1X
kD0

sk;0

�
�t

1C t

�k

D

1X
kD0

 
gk.t/.1C t/k

g0.t/

!�
�t

1C t

�k

D
1

g0.t/

1X
kD0

.�t/kgk.t/

D
1

g0.t/

where the second line follows from (1) of Lemma 9, and the last line follows from (2).
This gives the desired formula in the case k D 0. The general formula then follows
again from (1) in Lemma 9.
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