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String homology of spheres and projective spaces

CRAIG WESTERLAND

We study a spectral sequence that computes the S1 –equivariant homology of the
free loop space LM of a manifold M (the string homology of M ). Using it and
knowledge of the BV operations on HH�.H�.M /;H�.M // , we compute the (mod
2) string homology of M when M is a sphere or a projective space.

55N45, 55P35; 55N91, 55S91, 55T99

1 Introduction

The free loop space LM D Map.S1;M / of a closed n–manifold, M , admits an
action of the circle S1 by rotation of loops. This space and the homotopy orbit space
(or Borel construction)

LMhS1 DLM �S1 ES1

were shown in Chas and Sullivan’s article [4] on string topology to admit remarkable
multiplicative structures inspired by conformal field theory. Furthermore, both spaces
are entwined in the definition of topological cyclic homology given by Bökstedt, Hsiang
and Madsen [1].

The goal of this paper is to compute the homology of these spaces for certain manifolds,
namely spheres and projective spaces. Machinery for computing these (co-)homologies
for general spaces does exist in the literature (see, for instance, Hess [9], Bökstedt and
Ottosen [2], Chen [5]). Our purpose is to explore the link with Deligne’s conjecture and
to illustrate the power of the Batalin–Vilkovisky operations in making these computa-
tions “barehanded.” As such, this paper is similar in spirit to Kallel and Salvatore [11]
where string topology type operations are used to make computations of the homology
of spaces of holomorphic maps.

The central idea is that the homology of LMhS1 may be computed via a spectral
sequence (essentially Connes’ spectral sequence for cyclic homology) if one has knowl-
edge of how the Batalin–Vilkovisky operator � acts on HH�.H�.M /;H�.M //. In
turn, one may often compute � if one understands the other (Gerstenhaber) operations
in Hochschild cohomology.
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In [21] we have computed this Hochschild cohomology when M is a sphere or real,
complex, or quaternionic projective space. Furthermore, we computed certain homology
operations: the one relevant to this paper is the Gerstenhaber bracket (or Browder
operation), a Lie bracket that we will denote Œ � ; � �. This arises in the presence of
an action of the little disks operad C2 on a space (or chain complex). In the case at
hand, this action is given by McClure and Smith’s proof [14] of Deligne’s conjecture.
A cyclic version of Deligne’s conjecture (Kaufmann [12], McClure and Smith [15],
Tradler and Zeinalian [19]) allows us to relate the actions of Œ � ; � � and �, through the
BV formula:

�.xy/D�.x/yC .�1/jxjx�.y/C .�1/jxjŒx;y�

Therefore if we know the value of � and Œ � ; � � on the generators of the algebra, we
may compute � for every class in HH�.H�.M /;H�.M //. As a result, we obtain
the E2 term of Connes’ spectral sequence for these manifolds. A simple argument
shows that for the manifolds under consideration the spectral sequence collapses at
E2 .

In what follows, K denotes one of the division algebras R , C, or H, and d D dimR.K/.
For brevity, define

˛d;n.t/ WD t�d�1
C

td.2n/�3

1� t2
ˇd;n.t/ WD td.2nC1/�3

C
1C td.2n/�2C t�1

1� t2

Theorem 1.1 A computation of the Poincaré series of H S1

� .LM I F2/:

(1) If M D Sk and k > 1, the Poincaré series is:�
1

1� t2.k�1/

� 
tk�1
C

1C t2k�1

1� t2

!
(2) If M DKP2nC1 and n> 0 if K D R, the Poincaré series is: 

td.2nC1/

1� td.2nC2/�2

! 
1� t�2d.nC1/

1� t�2d

! 
t�1
C

td�1C t�d

1� t2

!
(3) If M DKP2n , the Poincaré series is: 

td.2n/

1� t2d.2nC1/�4

!  
1� t�2dn

1� t�2d

!
˛d;n.t/C

 
1� t�2d.nC1/

1� t�2d

!
ˇd;n.t/

!

We note that the Poincaré series for spheres agrees with answers obtained either through
Carlsson–Cohen’s splitting in [3] or the spectral sequence defined by Bökstedt and
Ottosen in [2].
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In Section 2 we introduce a cohomology theory for Frobenius algebras that is dual to
negative cyclic homology. This allows us to dualize Jones’ theorem [10] identifying
H�.LXhS1/ with the negative cyclic homology of the singular cochain algebra C �.X /.
A defect of this result is its limited application to formal manifolds. Still, it allows
a connection with Deligne’s conjecture and string topology type operations which is
employed throughout this article.

In Section 5 we use this construction to give a spectral sequence converging to
H�.LMhS1/. Its origin in cyclic cohomology affords great control on the differentials.
This allows us in Section 7 to show that the spectral sequence collapses at the E2 term.
In Section 6, we compute that E2 term, proving Theorem 1.1.

I would like to thank Igor Kriz and Ralph Kaufmann for several helpful conversations
on this material, as well as the referee, whose suggestions have improved the coherence
and organization of the paper.

2 Cyclic Frobenius cohomology

In this section we will introduce a cohomology theory for associative Frobenius algebras
A which we call cyclic Frobenius cohomology, HC �

F
.A/. It bears the same relation

to cyclic homology that Hochschild cohomology does to Hochschild homology. We
follow Kaufmann’s definition [12] of a version (which we call LB ) of the B operator
for Hochschild cohomology which is incorporated in the definition of HC �

F
.A/. The

hypothesis that A is a Frobenius algebra is required in order to define LB by dualizing
the usual definition of B in Hochschild homology. While we will see that HC �

F
.A/

encodes little more information than HC�� .A/, its virtue for our purposes will be in
computing the homology of LMhS1 .

For our purposes, a Frobenius algebra is an associative, unital, finite dimensional
graded algebra A over a ring k , endowed with a non-degenerate inner product h � ; � i
which is symmetric and invariant:

ha; bi D .�1/jajCjbjhb; ai ; hab; ci D ha; bci

Notice that these facts together imply that hab; ci D hb; cai. The inner product on A

specifies an isomorphism from A to its dual A� , via

a 7! ha; � i:

We will say that the dualizing dimension of A is d if h � ; � i is a graded map of
dimension d ; that is, it restricts to a nondegenerate pairing Ap˝Ad�p! k for each
dimension p .
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Recall the Hochschild chain and cochain complexes of A:

CHn.A;A/DA˝nC1 ; CH n.A;A/D Homk.A
˝n;A/

The Hochschild chain complex is equipped with the differential b :

b.a0˝ � � �˝ an/D

n�1X
iD0

.�1/ia0˝ � � �˝ aiaiC1˝ � � �˝ anC .�1/nana0˝ � � �˝ an�1

We will write Lb for the differential on the Hochschild cochain complex:

Lb.f /.a0˝ � � �˝ an/D a0f .a1˝ � � �˝ an/

C

nX
iD1

.�1/if .a0˝ � � �˝ ai�1ai ˝ � � �˝ an/

C.�1/nC1f .a0˝ � � �˝ an�1/an

for f 2 CH n.A;A/ (see, eg, Loday [13]).

Define zf 2 Homk.A
˝nC1; k/D CHn.A;A/

� as:

zf .a0˝ � � �˝ an/D ha0; f .a1˝ � � �˝ an/i

Since h � ; � i is nondegenerate, f 7! zf is an isomorphism. This allows us to compare
the Hochschild homology and cohomology differentials:

Lemma 2.1 For f 2 CH n�1.A;A/, eLb.f / D b�. zf /; here b� is the linear dual of b .

Proof We compute

eLb.f /.a0˝ � � �˝ an/D ha0; Lb.f /.a1˝ � � �˝ an/i

D ha0; a1f .a2˝ � � �˝ an/i

C

n�1X
iD1

.�1/iha0; f .a1˝ � � �˝ aiaiC1˝ � � �˝ an/i

C.�1/nha0; f .a1˝ � � �˝ an�1/ani

Using the symmetry and invariance of the inner product, this is equal to

ha0a1; f .a2˝ � � �˝ an/iC

n�1X
iD1

.�1/iha0; f .a1˝ � � �˝ aiaiC1˝ � � �˝ an/i

C .�1/nhana0; f .a1˝ � � �˝ an�1/i
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On the other hand,

b�. zf /.a0˝ � � �˝ an/D

n�1X
iD0

.�1/i zf .a0˝ � � �˝ aiaiC1˝ � � �˝ an/

C .�1/n zf .ana0˝ � � �˝ an�1/

Dha0a1; f .a2˝ � � �˝ an/iC

C

n�1X
iD1

.�1/iha0; f .a0˝ � � �˝ aiaiC1˝ � � �˝ an/i

C .�1/nhana0; f .a1˝ � � �˝ an�1/i

Using the operator B from cyclic homology, we may define an adjoint operator
LBW CH n.A;A/! CH n�1.A;A/ by a similar equality:

ALB.f / D B�. zf /

Here B� is the linear dual of B . More explicitly, ALB.f /.a0˝ � � �˝ an�1/ is:

n�1X
iD0

.�1/.n�1/i
h1; f .an�i ˝ � � �˝ an�1˝ a0˝ � � �˝ an�i�1/iC

n�1X
iD0

.�1/.n�1/.iC1/
han�i�1; f .1˝ an�i ˝ � � �˝ an�1˝ a0˝ � � �˝ an�i�2/i

Following the “B; b” definition of cyclic homology, we define a (homological) bicom-
plex B�;�.A/, the homology of whose total complex will be HC �

F
.A/:

Definition 2.2 Define the bicomplex B�;�.A/ using the Hochschild cochain complex
CH�.A;A/:

Bp;q.A/ WD CH p�q.A;A/D Homk.A
˝p�q;A/

for p � q � 0 and p � 0. The vertical differential LbW Bp;q.A/ ! Bp;q�1.A/ is
the Hochschild cohomology differential. The horizontal differential LBW Bp;q.A/!

Bp�1;q.A/ is defined above.

This definition requires the following lemma:

Lemma 2.3 B�;�.A/ is a bicomplex; that is, LB2 D 0D Lb2 and LB LbC Lb LB D 0.
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Proof That Lb2 D 0 is well-established. To see that LB2 D 0, note that the definition
of LB implies

CLB. LB.f // D B�.
ALB.f //D B�B�. zf /D 0

Since f 7! zf is an isomorphism, we conclude that LB2 D 0. Similarly, using the
definition of LB and Lemma 2.1 we see that:

CLB. Lb.f //CCLb. LB.f // D B�.
eLb.f //C b�.

ALB.f //D B�b�. zf /C b�B�. zf /D 0

Definition 2.4 The cyclic Frobenius cochain complex of A is defined to be the total
complex

C C �F .A/ WD Tot .B�;�.A//

and its homology, HC �
F
.A/, is the cyclic Frobenius cohomology of A.

It is necessary to make a few remarks about gradings. For two graded vector spaces A

and B , Hom.A;B/ is graded, where the dimension of a homomorphism f W A!B

is dim.f / if

dim.f .a//D dim.a/� dim.f /

for every a. This equips CH p.A;A/ D Homk.A
˝p;A/ with an internal grading.

Therefore B�;�.A/ is triply graded. The total (or topological) degree of an element
f 2 Bp;q.A/D Homk.A

p�q;A/ is

jf j D dim.f /CpC q:

This is the dimension of the class that f represents in C C �
F
.A/, after totalization.

The grading on B�;�.A/ restricts to a grading on B0;�.A/D CH��.A;A/; for f 2
CH q.A;A/, the topological degree is jf j D dim.f /� q .

3 Relation to negative cyclic homology

Recall the definition of the negative cyclic homology HC�� .A/ of an associative algebra
A: it is the homology of the complex C C�� .A/ which is the totalization of a bicomplex
B��;�.A/, with

B�p;q.A/ WD CHq�p.A;A/ ; p � 0:

The vertical differential is the Hochschild homology differential b , and the horizontal
differential is the operator B .

Algebraic & Geometric Topology, Volume 7 (2007)
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Lemma 3.1 There is an isomorphism of bicomplexes

B�;�.A/Š .B��;�.A//�

for any Frobenius algebra A. If the dualizing dimension of A is d , then this isomor-
phism increases total dimension by d . Consequently there is a graded isomorphism

C C �F .A/Š†
d .C C�� .A//

�

and, when working over a field k ,

HC �F .A/Š†
d .HC�� .A//

�:

Proof We will define an isomorphism of bicomplexes which negates bidegrees: for
p � 0

cW Bp;q.A/! .B��p;�q.A//
�

The domain is CH p�q.A;A/ and the range is CHp�q.A;A/
� . So we may define

c.f / WD zf .

It is definitional that c ı LB D B� ı c , and Lemma 2.1 implies that c ı Lb D b� ı c . So
c is a map of bicomplexes. We have already seen that it is an isomorphism by the
nondegeneracy of the inner product. The first isomorphism follows.

To obtain the degree shift, notice that, if f 2Hom.A˝n;A/, then zf 2Hom.A˝nC1; k/

has dimension

dim. zf /D dim.f /C d:

This implies the second isomorphism in the statement of the lemma; the third follows
from the second via the Universal Coefficient Theorem.

4 Topological Applications

Throughout this paper, for a space X , C �.X / will denote the singular cochain algebra,
equipped with the cup product of cochains; this descends to the singular cohomology
H�.X /. We will grade C �.X / and H�.X / negatively. Poincaré duality is used to
prove the following classical fact about the homology of manifolds.

Proposition 4.1 The singular cohomology algebra H�.M I k/ of a k –oriented closed
n–manifold M is a Frobenius algebra of dualizing dimension �n.
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Proof It is well-established that H�.M / admits a graded commutative, associative
cup product ^. The inner product is the intersection form: Let ŒM � 2Hn.M / be the
fundamental class of M . Then for a; b 2H�.M /, the inner product is defined to be
the evaluation of the cup product on the fundamental class:

ha; bi WD .a^ b/.ŒM �/

That h � ; � i is graded symmetric and invariant follows from the graded commutativity
and associativity of the cup product.

To show that the inner product is nondegenerate, for each a 2 H k.M /, we must
produce a class b 2H n�k.M / for which hb; ai ¤ 0. Choose b to be any cohomology
class which is nonzero on the homology class

a_ ŒM � 2Hn�k.M /

Then hb; ai D .b ^ a/.ŒM �/D b.a_ ŒM �/¤ 0

Recall that for a ring k , a manifold M is called k –formal (or just formal when k is
understood) if there is a quasi-isomorphism of differential graded algebras

C �.M I k/'H�.M I k/

where we give H�.M I k/ the zero differential.

Theorem 4.2 Let k be a field. If M is a simply connected, compact, k –formal
manifold of dimension n, the cyclic Frobenius cohomology of its cohomology algebra
is isomorphic to its string homology:

HC �F .H
�.M I k//Š†�nH S1

� .LM I k/

Proof Jones has shown in [10] that

HC�� .C
�.X //ŠH�

S1.LX /

for any simply connected space X . Recall that negative cyclic homology is an invariant
of the quasi-isomorphism type of a differential graded algebra over a field (see, eg [13,
Theorem 5.3.5]). If X is k –formal, we may therefore replace C �.X / with H�.X /.
Taking X to be a compact manifold M (whose cohomology is of finite type), and
using Lemma 3.1 above, we see that

HC �F .H
�.M I k//Š .HC�� .H

�.M I k//� Š .HC�� .C
�.M I k//� ŠH S1

� .LM I k/
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One would like a version of this result without an appeal to formality. It seems clear
that for such a result, one needs to replace H�.M / with some version of the cochain
complex of M . This suggests the need for a homotopy theoretic notion of a Frobenius
algebra in which a version of C �.M / would be a prime example. Tradler and Zeinalian
have introduced such a notion, Vk –algebras, in [18] and study Deligne conjecture
type operations on the Hochschild cochain complex of a Vk –algebra. We expect that
it is possible to extend the definition of cyclic Frobenius cohomology, given here for
strict Frobenius algebras, to a class of Vk –algebras. For our purposes we shall only be
considering formal manifolds, and therefore will not explore such subtleties.

We refer the reader to the work of Xiaojun Chen [5] where a very similar model for the
S1 –equivariant chain complex of LM that may avoid such difficulties is developed
using methods of rational homotopy theory and Brown’s twisting cochains.

5 Connes’ spectral sequence

In this section, we study a natural spectral sequence for cyclic Frobenius cohomology.
One may filter C C �.A/ by vertical stripes in the bicomplex B�;�.A/. This, in turn,
produces a spectral sequence that computes HC �

F
.A/:

Proposition 5.1 There is a spectral sequence converging to HC �
F
.A/. The E1 –term

of this spectral sequence is given by

E
p;q
1
DHH p�q.A;A/I p � 0

with differential

d1 WE
p;q
1
DHH p�q.A;A/!HH p�q�1.A;A/DE

p�1;q
1

given by the map � WD LB� induced by LB in Hochschild cohomology.

In the dual case, the analogous spectral sequence for cyclic homology was considered by
Connes and called Connes’ spectral sequence in Weibel [20]. We keep that terminology
here.

We collect information about the differentials in the spectral sequence that will allow
us to prove that it collapses for the manifolds under consideration. The first statement
below is standard; the second follows from the fact that LB raises topological degree by
one.
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Lemma 5.2 The r th differential in Connes’ spectral sequence for HC �
F
.A/ is of

bidegree .�r; r � 1/. That is,

dr W E
p;q
r !Ep�r;qCr�1

r

maps from a subquotient of HH p�q.A;A/ to a subquotient of HH p�qC1�2r .A;A/.
Moreover, dr is of topological degree C1 as a map between subquotients of
HH�.A;A/.

The first step in computing HC �
F
.A/ with these methods is to compute the differential

d1 D�. Recall that, through the work of Gerstenhaber [8], HH�.A;A/ is equipped
with a product � and a Lie bracket Œ � ; � � which make it into a Gerstenhaber algebra.
These operations interact with � in the following fashion:

Theorem 5.3 If A is a Frobenius algebra, the operations � , Œ � ; � � and � make
HH�.A;A/ into a Batalin–Vilkovisky algebra; that is, � satisfies the BV formula:

�.xy/D�.x/yC .�1/jxjx�.y/C .�1/jxjŒx;y�

This is [12, Corollary 3.8], which Kaufmann describes as a folk theorem. See also
[19, Corollary 3.4] or [17, Theorem 3.1] for a different approach to the cyclic Deligne
conjecture which yields the same BV–structure.

Our interest is in the Frobenius algebra A D H�.M /. To compute the E2 term
of Connes’ spectral sequence, we must determine the action of the operator � on
HH�.H�.M /;H�.M //. This is accomplished in the following section. For multi-
plicative generators of HH�.H�.M /;H�.M //, the action of � is determined through
direct computations or filtration arguments. It is extended to all of the Hochschild
cohomology by the BV formula and a computation of the bracket from [21].

It is worth emphasizing that we are using a particular BV algebra structure on
HH�.A;A/, where the product is the cup product of Hochschild cochains, the bracket
is the Gerstenhaber bracket, and � is the map induced by LB . An alternate BV algebra
structure (which we will not use) employs Chas–Sullivan’s string topology operations;
these make †�nH�.LM / a BV–algebra. Recall Cohen–Jones’ isomorphism [6]:

HH�.C �.M /;C �.M //ŠH�.LM�TM /Š†�nH�.LM /

and the isomorphism HH�.C �.M /;C �.M // Š HH�.H�.M /;H�.M // (of Ger-
stenhaber algebras) for formal manifolds (this uses the work of Felix–Menichi–Thomas
[7]). One may thereby compare the BV structures coming from the cyclic Deligne
conjecture and string topology. A recent paper by Menichi [16] implies that they are
not equivalent, even for manifolds as simple as S2 .
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6 A computation of the E2 term of Connes’ spectral sequence

We recall from [21] the following computations:

(1) If k>1, HH�.H�.Sk/;H�.Sk// is isomorphic as an algebra to F2Œx; v�=.x
2/,

where the dimensions of x and v are �k and k � 1, respectively. The Gersten-
haber bracket is given by Œx; v�D 1.

(2) Let K be one of R, C, or H, and let d D dimR.K/. For n odd (and greater
than 1 if K D R),

HH�.H�.KPn/;H�.KPn//D F2Œx; v; t �=.x
nC1; v2

�
nC 1

2
txn�1/

and for n even,

HH�.H�.KPn/;H�.KPn//D F2Œx;u; t �=.x
nC1;u2; txn;uxn/

where the topological dimensions of x;u; v , and t are �d , �1, d � 1, and
d.nC 1/� 2 respectively. Their Hochschild degrees are 0; 1; 1, and 2. The
bracket is given on generators by

Œx; v�D 1; Œx;u�D x; Œx; t �D 0; Œv; t �D 0; Œu; t �D t:

In general, we will use the notation M to refer to any of the manifolds Sk (k > 1),
RPn (n> 1), CPn , or HPn .

Lemma 6.1 � vanishes on algebra generators of HH�.H�.M /;H�.M //.

Corollary 6.2

(1) In HH�.H�.Sk/;H�.Sk//, �.xavb/D abxa�1vb�1 .

(2) Depending upon the parity of n, monomials in HH�.H�.KPn/;H�.KPn//

may be written as xavbtc or xaubtc (where b D 0; 1). Then:

�.xavbtc/D abxa�1tc and �.xaubtc/D .aC c/bxatc

Proof Assuming Lemma 6.1 we will prove part (1). Part (2) is somewhat tedious and
proved in the same fashion.

First notice that from the Leibniz formula

Œ˛; ˇ �D Œ˛; ˇ� C Œ˛;  �ˇ;

it follows that

(�) Œ˛; ˇp �D pŒ˛; ˇ�ˇp�1:
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So taking aD 0 in part (1), we know that

�.vb/D�.v/vb�1
C v�.vb�1/C Œv; vb�1�

The first term is 0 by Lemma 6.1, and the third by (�). Therefore �.vb/ D 0 by
induction. So

�.xvb/ D �.x/vbCx�.vb/C Œx; vb �

D bŒx; v�vb�1

D bvb�1

Part (1) follows.

Proof of Lemma 6.1 The operator � (induced by LB ) lowers the Hochschild degree
by 1: if ˛ 2HH p.R;R/, �.˛/ 2HH p�1.R;R/. Automatically, we thereby obtain

�.x/D 0;

since x 2HH 0.H�.M /;H�.M //.

The element v has Hochschild degree 1 and topological degree d � 1, where d is as
above if M DKPn and d D k if M D Sk . Therefore �.v/ has Hochschild degree 0

and topological degree d > 0. Since there are no elements in HH 0.H�.M /;H�.M //

of positive topological degree, �.v/D 0.

Similarly, �.t/ 2HH 1.H�.KPn/;H�.KPn// has topological degree d.nC 1/� 1.
If nonzero, �.t/ may be written as

�.t/D

�
xkv if n is odd,
xku if n is even.

In the first case, the topological degree of xkv is �kd C d � 1, so we must have
k D�n< 0, which is impossible. Similarly, if n is even, k D�n� 1< 0.

Finally, to show that �.u/ D 0 we use the description of � as induced by the LB
operator. In [21] we found that a representative for the class u is the function u 2

CH 1.F2Œx�=x
nC1; F2Œx�=x

nC1/ given by

uW xm
7!mxm

hence:
ALB.u/.xm/ D h1;u.xm/iC hxm;u.1/i

D mh1;xmiC hxm; 0i

D m � xm.ŒKPn�/

For xm.ŒKPn�/ to be nonzero, mD n. Since n is even, the product is zero.
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Proof of Theorem 1.1 Using Corollary 6.2 we will compute the Poincaré series of
the E2 term of Connes’ spectral sequence. Lemma 7.1 then gives us Theorem 1.1. For
brevity, we only do this computation for M DKP2nC1 . The computations for other
manifolds are similar; the case for spheres is easier, the case for even projective spaces
is more tedious.

Write LDE
0;�
1
DHH��.H�.M /;H�.M // for the first column of the E1 term of

spectral sequence. Recall that E
p;q
1
D HH p�q.H�.M /;H�.M //, so that the pth

column of the spectral sequence is E
p;�
1
D†pL. Therefore the E1 term of the spectral

sequence may be written

L †L
�oo †2L

�oo � � �
�oo

where each L is a column, and we are using the identification d1D� from Proposition
5.1.

Examine the action of the operator � on L. There are three types of classes:

(1) Classes a for which �.a/¤ 0. We say these “survive alone.”

(2) Classes b for which �.b/D 0 and there is a class b0 with �.b0/D b . We say
these are “hit.”

(3) Classes c for which �.c/ D 0 that are not in the image of �. We say these
classes “propagate a stripe.”

Classes a which survive alone give rise to an element of E
0;�
2

(of topological degree
jaj). Classes b which are hit do not give rise to any element of E2 . Classes c which
propagate a stripe give a class in E

p;�
2

(of topological degree jcjC2p ) for each p � 0.

Examining Corollary 6.2, we see that for every k and c , x2kC1vtc survives alone,
x2kvtc , and x2kC1tc propagate a stripe, and all other monomials are hit.

The dimension of x2kC1vtc is

jx2kC1vtc
j D �1C k.�2d/C c.d.2nC 2/� 2/

so the Poincaré series of the space that they span is:

t�1
nX

kD0

1X
cD0

tk.�2d/tc.d.2nC2/�2/
D t�1

 
1� t�2d.nC1/

1� t�2d

!�
1

1� td.2nC2/�2

�
This is exactly the contribution to E

0;�
2

of the elements that survive alone.

The dimension of x2kvtc is

jx2kvtc
j D .2k/.�d/C d � 1C c.d.2nC 2/� 2/:
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Similarly, the Poincaré series of the family hx2kvtci is

td�1

 
1� t�2d.nC1/

1� t�2d

!�
1

1� td.2nC2/�2

�
and for the family hx2kC1tci:

t�d

 
1� t�2d.nC1/

1� t�2d

!�
1

1� td.2nC2/�2

�
Each element of dimension q in the latter two families gives rise to a sequence of
classes in E

p;�
2

of dimension qC2p for each p � 0. So in counting their contribution
to E2 , we must multiply the answer by

1X
kD0

t2k
D

1

1� t2

Adding these three series gives us the Poincaré series for E2 : 
t�1
C

td�1C t�d

1� t2

! 
1� t�2d.nC1/

1� t�2d

!�
1

1� td.2nC2/�2

�
Recall that the spectral sequence computes a desuspension of H S1

� .LM /; one needs
to multiply this series by tdim M D td.2nC1/ to get the correct answer.

7 Collapse of the spectral sequence

We complete the proof of Theorem 1.1 with the following result:

Lemma 7.1 For the manifolds M considered in this paper, Connes’ spectral sequence
for HC �

F
.H�.M // collapses at the E2 –term.

Proof From Lemma 5.2 we know that all differentials dr in the spectral sequence are
of the form

subquotient subquotient
of �! of

HH k.H�.M /;H�.M // HH kC1�2r .H�.M /;H�.M //

of topological degree C1. We will show that if r > 1, such a map is 0 by examining
the range of topological degrees of the source and target. For simplicity, we take
M DKPn with n odd; the proofs for even projective spaces and spheres are similar.
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If kD2l is even, then we showed in [21] that HH k.H�.M /;H�.M // is concentrated
in topological degrees

l.d.nC 1/� 2/� jd I j 2 f0; : : : ; ng;

and if k D 2l C 1 is odd, it lies in dimensions

l.d.nC 1/� 2/C d � 1� jd I j 2 f0; : : : ; ng:

Consider dr as a mapping from a subquotient of HH 2l to a subquotient of
HH 2lC1�2r , and let ˛ lie in the domain. The smallest possible dimension for ˛
is

l.d.nC 1/� 2/� nd D .l � 1/nd C ld � 2l

(realized by the element xnt l ) and therefore, the dimension of dr .˛/ is

jdr .˛/j D j˛jC 1� .l � 1/nd C ld � 2l C 1:

We claim that this is larger than the dimension of any element in the range. The largest
possible dimension in the range is

.l � r/.d.nC 1/� 2/C d � 1 D lnd C ld � 2l C .�rnd � rd C 2r C d � 1/

D .l � 1/nd C ld � 2l C 1C .r � 1/.2� d � nd/

(realized by the element vt l�r ). Since d; n� 1, but not d D nD 1 (in which case we
would be considering RP1 D S1 ), and r > 1,

.r � 1/.2� d � nd/ < 0

so jdr .˛/j> jˇj for every ˛ 2HH 2l and ˇ 2HH 2lC1�2r .

To check that dr is 0 as a map from a subquotient of HH 2lC1 to a subquotient of
HH 2lC2�2r takes only a little more work. First we notice that the element of the
domain of lowest dimension, xnvt l does not lie in E2 , since

�.xnvt l/D xn�1t l
¤ 0

so the smallest dimension of an element ˛ for which dr .˛/ might be nonzero is

l.d.nC 1/� 2/C d � 1� d.n� 1/

corresponding to xn�1vt l . The class of largest possible dimension in the range of
dr is t lC1�r , of dimension .l C 1� r/.d.nC 1/� 2/. The difference in dimension
between dr .˛/ and the largest possible target is then

jt lC1�r
j � jdr .˛/j � jt

lC1�r
j � jdr .x

n�1vt l/j D .2dn� d � 2/� r.dnC d � 2/:
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Since r � 2,

jt lC1�r j � jdr .˛/j D .2dn� d � 2/� r.dnC d � 2/

� .2dn� d � 2/� 2.dnC d � 2/

D 2� 3d

< 0

since d > 1. So again, jdr .˛/j> jˇj for every ˛ 2HH 2lC1 and ˇ 2HH 2lC2�2r .
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