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Coverage in sensor networks via persistent homology

VIN DE SILVA

ROBERT GHRIST

We introduce a topological approach to a problem of covering a region in Euclidean
space by balls of fixed radius at unknown locations (this problem being motivated
by sensor networks with minimal sensing capabilities). In particular, we give a
homological criterion to rigorously guarantee that a collection of balls covers a
bounded domain based on the homology of a certain simplicial pair. This pair of
(Vietoris–Rips) complexes is derived from graphs representing a coarse form of
distance estimation between nodes and a proximity sensor for the boundary of the
domain. The methods we introduce come from persistent homology theory and are
applicable to nonlocalized sensor networks with ad hoc wireless communications.

55M25, 93A15; 55N35

1 Introduction

In topology, coverage problems associated to a collection of (say, convex) sets are
classical and are classically handled by means of nerves and Čech theory; see Bott
and Tu [3]. More recently, coverage problems have arisen in a variety of engineering
contexts associated to networks, communication networks and sensor networks being
prominent examples. Briefly, the sensor network version of the problem is as follows.
Fix a domain D in Euclidean space. Given a collection of points in D (denoted
“nodes”), assume each node’s sensor “covers” a neighborhood of its location: for
simplicity, a ball of fixed radius. One wants to know the extent of coverage by the
nodes’ sensor regions. In this paper we focus attention on the particular class of static,
blanket coverage. By “static” is meant that the nodes are stationary; by “blanket” it is
meant that one wants to determine if the entire domain D is contained in the union of
sensor regions (closed balls) based at the nodes.

This problem is trivial if the location of the nodes is known (eg cell phone towers), and
is both nontrivial and of critical importance if the locations of the nodes are not known
(eg if the sensor nodes are small and/or “scattered” over the domain and acted on by
environmental factors).
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We give an algebraic-topological criterion for certifying coverage based on a coarse
notion of pairwise proximity between nodes, this being modeled on ad hoc wireless
communication links between devices. The criterion is centralized (as opposed to
distributed) and conservative (failure of the criterion does not imply failure of coverage).
This coverage represents a novel application of classical (and fairly trivial) ideas in
homology theory.

1.1 Assumptions

The methods we introduce are meant to work in settings where there are a large number
of nodes with minimal and localized sensing capabilities. They have limited range and
are devoid of localization and orientation capabilities, possessing merely a binary form
of in-range distance measurement. More specifically, each node has a unique ID which
it broadcasts. All other robots within range can “hear” their neighbor as either a strong
or weak signal, depending on the distance to that node. We assume a small amount of
information about the underlying domain D � Rd : one knows only the dimension and
connectivity and that the domain is not too “pinched” or “wrinkled”. It is not necessary
to assume knowledge of the topology of the domain, or of its large-scale geometry
(eg volume).

The precise assumptions are as follows:

(A1) Nodes have radially symmetric coverage domains (a closed ball) of covering
radius rc .

(A2) Nodes broadcast their unique ID numbers. Each node can detect the identity
of any node within radius rs via a strong signal, or via a weak signal within a
larger radius rw .

(A3) The radii of communication rs; rw and the covering radius rc satisfy

rc � rs=
p

2 and rw � rs

p
10:

(A4) Nodes lie in a compact domain D � Rd . Nodes can detect the presence (but not
the location or direction) of the boundary @D within a fence detection radius rf .

(A5) The restricted domain D�Nyr .@D/ is connected, where

Nyr .@D/D fx 2D W kx� @Dk � yrg and yr D rf C rs=
p

2:

(Here jjx� @Djj denotes the distance from x to the closest point of @D .)

(A6) The fence detection hypersurface † D fx 2 D W kx � @Dk D rf g has internal
injectivity radius at least rs=

p
2 and external injectivity radius at least rs .
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Assumptions (A1)–(A4) specify the communication and sensing capabilities of the
nodes. Assumption (A5) is needed to prevent the domain from being too “pinched”. This
is clearly necessary since nodes with neither a map nor coordinates cannot distinguish
between certain pinched domains and a disconnected domain. Assumption (A6) means
that the outermost boundary cannot exhibit large-scale “wrinkling”. This assump-
tion is used in the details of the proof of Theorem 3.4 for eliminating pathological
configurations. See Remark 4.5 for discussion on weakening this condition.

The last assumptions, (A5) and (A6), are the only restrictions on the geometry of the
domain. We emphasize that the number of boundary components is not assumed to
be known: nodes have no information about the boundary other than whether they are
within range rf . This rf is independent of the node-to-node communication radii rs

and rw and the coverage radius rc . The volume of the domain is not assumed to be
known, and convexity is not at all required.

To summarize, the sensor data consists of three ingredients. Each node ascertains a
primary list of node ID numbers associated to a “strong” detection signal, as well as
a secondary list of node ID numbers flagged as coming from the “weak” signal. The
third piece of data associated to each node is a fence-detection binary flag.

Remark 1.1 The numerical constants which appear in assumptions (A3), (A5) and
(A6) are independent of the ambient dimension d . There are tighter constants which
depend on d , and we summarize those results later on (Remark 4.3). Our proofs will
be structured so that we can read off the improved constants without additional analysis.
A resulting complication is that one special case (Remark 2.8) needs to be treated
separately from the main argument.

1.2 Results

Topologists will not be surprised to learn that this coordinate-free data can be sufficient
to rigorously verify coverage of the domain (ignoring regions too close to the boundary).
Our strategy is as follows. The set of nodes X has a distinguished subset Xf of fence
nodes, consisting of those nodes which lie within the fence detection radius rf of @D .
We build a nested collection of graphs:

Rs
� // Rw

Fs

[

OO

� // Fw

[

OO

The graphs Rs and Rw are defined on X in the obvious manner via communication
links: edges are present between nodes which are within distance rs and rw respectively.
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These are communication graphs for the strong and weak signals respectively. The
graphs Fs and Fw are the strong and weak fence subgraphs — the maximal subgraphs
of Rs (respectively Rw ) on the restricted set of vertices Xf .

From these four graphs, we define a system of nested simplicial complexes

Rs
� // Rw

Fs

[

OO

� // Fw

[

OO

called Rips complexes, whose simplices are determined by “filling in” the corresponding
graphs: each is the largest simplicial complex with the corresponding graph as its 1–d
skeleton (ie the flag complex of the graph).

The sensor cover U is the union over X of discs of radius rc . Our results link the
topology of the cover U to the homology of the diagram of Rips complexes.

Main Theorem (Theorem 3.4) For a fixed set of nodes X in a domain D � Rd

satisfying assumptions (A1)–(A6), the sensor cover U contains D �Nyr .@D/ if the
homomorphism

��W Hd .Rs;Fs/!Hd .Rw;Fw/
induced by the inclusion �W .Rs;Fs/ ,! .Rw;Fw/ is nonzero.

Increasingly, homology is a practical tools in applications which require computation
of global structure: see the texts Hatcher [12] and Kaczynski, Mischaikow and Mrozek
[14] for an introduction, the latter containing several current applications in science and
engineering. Such applications include vision and recognition by Allili, Mischaikow and
Tannenbaum [1], hybrid systems and control theory by Ames [2], rigorous verification
of dynamics from experimental data by Mischaikow, Mrozek, Reiss and Szymczak
[19], and global analysis of large data sets by the first author and Carlsson [5]. In the
last example, there is a growing literature on the importance of persistent homology —
homology classes which persist as one changes a parameter in the system. It is this
perspective that inspired the work in this paper.

1.3 Related work

The large literature on coverage problems for networks rests on two pillars of techniques.
The first, the computational geometry approach, takes as its argument the geometric
structure of the nodes — precise coordinates — and returns an auxiliary structure from
which coverage or noncoverage can be deduced. Typical in this approach is the use
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of Delaunay triangulations (in 2–d); see eg Meguerdichian, Koushanfar, Potkonjak
and Srivastava [18], Li, Wan and Frieder [16] and Zhang and Hou [23]. The precision
with which coverage and lack of coverage can be determined is offset by the precision
with which the coordinates of the nodes must be measured; such techniques are thus
inapplicable in the context of coordinate-free sensors. The second approach uses
probabilistic tools. Under assumptions of a uniform random distribution of points and
a domain of known geometry, one can prove results about probability of coverage at a
given density of nodes. Such methods are more appropriate in contexts for which the
coordinates of nodes are unknown; see Koskinen [15], Xue and Kumar [22] and Liu
and Towsley [17]. However, the assumptions on the uniformity of the distribution are
crucial.

Recently, researchers have turned to deterministic approaches for coordinate-free sensor
networks. The line of work begun by Rao et al [20] uses a heat flow to evolve node
positions to virtual coordinates, using a set of fixed landmarks to frame the coordinates.
These virtual coordinates appear useful in routing problems: they seem less useful in
coverage problems, since there is no guarantee that the virtual coordinates are accurate.
A recent use of computational geometry tools by Fekete et al [10] yields distributed
algorithms for interrogating the topology of an unknown domain without information
about node coordinates. These methods are capable of detecting which nodes are
sufficiently within the “interior” of the coverage region.

In [6], the authors detail an approach to coverage in the case of coordinate-free sensors
using homology of Rips complexes. The primary differences in [6] from the present
work are as follows:

(1) Nodes communicate within a single fixed radius; the dual radii rs and rw are
not used.

(2) There is a pre-established set of fence nodes which “know” that they lie exactly
on the boundary of the domain D .

(3) The domain D is 2–d, simply connected, and polygonal; the boundary @D is
canonically identified with the fence complex F �R generated by the fence
nodes.

The homology criterion in this setting of a 2–d domain with controlled boundary is that
the relative homology group H2.R;F/ has a generator Œ˛� with @˛ ¤ 0. The proof
is a simple application of exact sequences, owing to the fact that one has carefully
constrained the nodes on @D . The difficulty in the present paper is to manage arbitrary
collections of nodes which can detect only proximity to the boundary @D . The extension
of the coverage criterion to domains of arbitrary dimensions is not inherently difficult,
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and results in a complication only when trying to compute optimal coefficients (see
equation (4–1), for example).

2 Factoring coverage through communication

Given a collection of nodes X in a domain, we wish to determine the global properties of
U , the union of coverage domains centered at these nodes. However, we are constrained
to use only communication connectivity data between nodes. Mathematically, this
communication data takes the form of the 1–skeleta of the nerves of the covers of the
node locations by balls of radius rs and rw respectively. In this section, we outline the
basic constructions used to form a coverage criterion in the subsequent section.

2.1 Simplicial complexes for covers

The problem of computing the topological type of a union of sets is classical, and easily
handled using the concept of a Čech complex (also called the nerve of the cover).

Definition 2.1 Given a collection of sets U D fU˛g, the Čech complex of U , C .U/,
is the abstract simplicial complex whose k –simplices correspond to nonempty inter-
sections of kC 1 distinct elements of U .

If the cover is good — that is, if the cover sets and all nonempty finite intersections of
cover sets are contractible — then the Čech complex C captures the topology of the
cover: (see eg Hatcher [12])

Theorem 2.2 (The Čech Theorem) The Čech complex of a good cover has the
homotopy type of the union of the cover sets.

Unfortunately, it is highly nontrivial to compute a Čech complex: one needs very
precise data on pairwise distances between nodes. In the context of a sensor network
with minimal range-sensing capabilities, the Čech complex is seemingly unattainable.
Therefore, we consider the following related construction, which is more adapted to
communication network constraints.

The Rips complex associated to a set of points is a notion originally developed by
Vietoris in the earliest development of homology theory [21]. The concept was revived
by Rips’ work in geometric group theory and now generally goes by his name (see
Gromov [11] and Hausmann [13]).
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Definition 2.3 Given a set of points X Dfx˛g�Rn in Euclidean n–space and a fixed
radius � , the Rips complex of X , R�.X /, is the abstract simplicial complex whose
k –simplices correspond to unordered .kC1/–tuples of points in X which are pairwise
within Euclidean distance � of each other.

Definition 2.4 In the setting of our main theorem, Rs , Rw denote the Rips complexes
on X with radii rs; rw respectively.

The Rips complex is ideally suited to communication networks, since the entire complex
is determined by pairwise communication data. Unfortunately, the Rips complex does
not necessarily capture the topology of the union of cover discs: we have traded
computability for accuracy. Figure 1 gives a fundamental class of examples for which
the Rips complex fails to capture the Čech complex.

Figure 1: A class of examples for which the Rips complex Rs detects “phan-
tom” topological features. Take 2k C 2 points equidistributed on a circle
of diameter rsC� where �� 1 . The Čech complex (at the corresponding
radius) is homotopy equivalent to a circle, as the Čech Theorem requires. The
Rips complex however is isomorphic to the boundary of a cross-polytope in
kC1 dimensions. This Rips complex is thus homeomorphic to the sphere Sk

and accordingly is very different from the Čech complex for k> 1 . Illustrated
is the case k D 2 , with Rs an octahedron.

2.2 Simplex geometry

The constants relating the different radii in our theorems derive from the geometry of
regular simplices. Let �d denote the circumradius of a regular d –simplex of unit edge-
length. Then �d D

p
d=2.d C 1/, which increases monotonically to a limit of 1=

p
2
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as d!1. This is the origin of the constant 1=
p

2 which appears in assumptions (A3),
(A5) and (A6). The content of Theorem 2.5 is that regular simplices are worst-case for
the covering problem, which is why the quantities �d are relevant.

2.3 Optimal factorization of the Rips complex

Since we assume that sensors can ascertain communication links, it follows that the
1–dimensional skeleton of the Čech complex can be determined directly from the sensor
data. In the best of worlds, the Vietoris–Rips complex of the communication graph
would suffice to capture the Čech complex: unfortunately, this is not true. However,
one can squeeze the Čech complex (something not obtainable from the network graph
alone) in between Rs and Rw (something determined by the communication graph
and thus computable at the “hardware” level). In this subsection, we detail this nesting
and prove optimality.

Theorem 2.5 Let X be a set of points in Rd and C �.X / the Čech complex of the
cover of X by balls of radius �=2. Then there is chain of inclusions

R�.X /� C �0.X /�R�0.X / whenever
�0

�
�

s
2d

d C 1
D 2�d :

Moreover, this ratio is the smallest for which the inclusions hold in general.

Proof The second inclusion is trivial because the criterion for inclusion of a simplex
in R�0 is weaker than the criterion for inclusion of a simplex in C �0 (if the balls of
radius �0=2 centered at the vertices have a common intersection then each pair of
vertices is separated by distance at most �0 ).

The first inclusion is equivalent to the following assertion: if a collection of points
in Rd is such that every pair is separated by a distance at most � , then the balls of
radius �0=2 centered on these points have a common intersection. Proving this for a
set of kC 1 points implies that every k –simplex of R� belongs also to C �0 .

We will prove it first for a set of d 0 C 1 points fx0;x1; : : : ;xd 0g, where d 0 � d .
Consider the function f W Rd ! R defined as

f .y/D max
0�i�d 0

kxi �yk:

This is continuous and moreover f .y/!C1 as kyk!1, so it follows that f has
a global minimum f .y0/, say. Define the critical vertices to be those points xi for
which kxi �y0k D f .y0/.
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Note that there is no vector v which separates, in the sense that v � .xi �y0/ > 0 for
each critical vertex xi . For such a vector we could calculate that

kxi �y0k
2
D kxi � .y0C�v/k

2
C 2�v � .xi �y0/

> kxi � .y0C�v/k
2

for all �>0 and therefore f .y0C�v/<f .y0/ for 0<��1, contradicting minimality.
Since no separating vector exists, y0 must lie in the convex hull of the critical vertices.

It is convenient to make the translation yxi D xi � y0 . We can now find a convex
combination a0yx0C a1yx1C � � �C ad 00 yxd 00 D 0 for some d 00 � d 0 , after relabeling so
that x0;x1; : : : ;xd 00 are critical vertices, the coefficients ai are strictly positive, and
a0 is the largest of the terms a0; a1; : : : ; ad 00 . Then �yx0 D

Pd 00

iD1.ai=a0/yxi and so
we have:

�f .y0/
2
D�kyx0k

2
D

d 00X
iD1

.ai=a0/yx0 � yxi

At least one of the d 00 terms on the right-hand side must satisfy .ai=a0/yx0 � yxi �

�f .y0/
2=d 00 , which can be weakened and rearranged to f .y0/

2=d � �yx0 � yxi . We
also know that f .y0/

2 D kyx0k
2 D kyxik

2 . Putting this together,

f .y0/
2 .1C .2=d/C 1/� kyx0k

2
� 2yx0 � yxi Ckyxik

2

D kyx0� yxik
2
D kx0�xik

2
� �2

f .y0/�
�

2

s
2d

d C 1
�
�0

2
:and hence

It follows that the balls of radius �0=2 centered on the given d C 1 points must meet
at y0 .

For a set of greater than dC1 points, the result follows by applying Helly’s theorem [8].
This asserts that a collection of k � d C 2 convex sets in Rd has a nonempty common
intersection provided only that the same is true for each subset of size dC1. If we have
k points spanning a simplex in R� , we have just established that each set of d C 1 of
the �0=2–balls at these vertices must have a nonempty intersection. By Helly’s theorem,
the same is true for the entire set of k balls. Hence the vertices span a simplex in C �0 .
The lower bound on �0=� is tight in the case of a regular d –simplex.

2.4 Sensor complexes

In order to determine coverage, it is necessary to know that there are no “holes”in the
interior of the cover; as well, one must check that the cover extends sufficiently far out
to the boundary of the domain. This latter condition prompts the following:
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Definition 2.6 Given a system with fence-detection as per assumption (A4), define
the strong and weak fence subcomplexes, Fs �Rs and Fw �Rw respectively, to be
the maximal subcomplexes of Rs and Rw whose vertices lie within distance rf of
the @D .

Lemma 2.7 Under the assumptions of our main theorem (in particular rc � rs=
p

2),
any collection of nodes in D which form a simplex of Rs has its convex hull entirely
contained within U .

Remark 2.8 It follows from Lemma 2.7 that Theorem 3.4 is true in the trivial situation
where D�Nyr .@D/ is entirely contained inside some d –simplex of Rs .

The lemma can be read out of the following more precise result.

Lemma 2.9 Let p belong to the convex hull of points x0;x1; : : : ;xk 2 Rd and
suppose that kxi � xjk � � for all i; j . Then kp� xik � �

p
2d=.d C 1/D ��d , for

some i .

Proof By Theorem 2.5, the balls of radius ��d centered at the points xi are guaranteed
to meet at a common point y . Let p D a0x0 C a1x1 C � � � C akxk be a convex
combination of the nodes (so the ai are nonnegative and sum to unity). We rearrange
this as 0 D a0yx0C a1yx1C � � � C ak yxk where yxi D xi � p . Taking the dot product
with yy D y �p we find that 0D a0yx0 � yyC a1yx1 � yyC � � � C ak yxk � yy so for some i

we must have yxi � yy � 0. In that case,

.��d /
2
� kxi �yk2 D kyxi � yyk

2
D kyxik

2
� 2yxi � yyCkyyk

2

� kyxik
2
D kxi �pk2:

Remark 2.10 If k < d then we can work in a k –dimensional affine subspace of Rd

and conclude that kp�xik � �
p

2k=.kC 1/D ��k for some i .

3 A homological criterion for coverage

Our criterion for coverage is based on the homology of the inclusion map

�W .Rs;Fs/ ,! .Rw;Fw/:

We claim that coverage is implied by having a nonzero generator for the top-dimensional
relative homology group Hd .Rs;Fs/ which persists (remains nonzero) under the
induced homomorphism �� to Hd .Rw;Fw/.
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3.1 Intuition and persistence

With the assumptions (A5) and (A6), the top dimensional relative homology group
Hd .D;Nyr .@D// has rank one. Furthermore, Hd .U [Nyr .@D/;Nyr .@D// is nonzero
if and only if U contains D �Nyr .@D/. However, we cannot compute U directly.
The simplicial complex which captures the topology of U — the Čech complex —
is impossible to compute without coordinates or at least accurate distances between
sensors. Rips complexes are, in contrast, very manageable merely with communication
data (and hence computable on the hardware level). Thus, it would make sense to hope
that if Hd .Rs;Fs/ is nonzero, then D�Nyr .@D/� U .

But this is not always the case. Consider the 2–d setting of Figure 2, in which there
is a cycle of points within Fs all of which are attached to a single vertex in Rs �Fs .
This cycle is such that two of the edges are of length rs , while the other two edges are
of length �� rs As such, neither of the diagonals is of length rs and is therefore not
present in Fs . This system has H2.Rs;Fs/¤ 0: there exist “fake” relative 2–cycles
which do not imply coverage of the entire domain. Other fake cycles can be generated
from the examples of Figure 1 in any dimension.

Figure 2: A fake generator for H2.Rs;Fs/ which is annihilated by inclusion
�� into H2.Rw;Fw/ . The strip illustrated is a collar of radius rf .

Note, however, what happens to this relative 2–cycle under increasing the communica-
tion radius from rs to rw , then the 1–cycle in Fs is “filled in” by diagonals, and the
image of this fake class under �� is the zero element of H2.Rw;Fw/. Assuming that
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these points are a portion of a larger subset of nodes, it is not necessarily the case that
H2.Rw;Fw/D 0, since there may be a new fake 2–cycle which comes into existence
at the longer communication lengths: but the original fake 2–cycle is annihilated by �� .

3.2 Preliminary lemmas

All of the difficulty in proving coverage comes from the analysis of the cover near the
boundary @D . For applications to sensor networks, we wish to minimize constraints on
the number and types of boundary components. As a result, we can guarantee coverage
only outside of a neighborhood of the boundary. We begin with some technical results
concerning the geometry of how the fence nodes are situated.

Lemma 3.1 Let Nyr .@D/DRd � .D�Nyr .@D// denote the extended collar of D . For
any collection of nodes in D which form a simplex of Fs , its convex hull lies within
Nyr .@D/, or else we are in the trivial case described in Remark 2.8.

The following proof is valid whenever yr � rf C rs

p
.d � 1/=2d D rf C rs�d�1 .

Proof It suffices, by Carathéodory’s Theorem [8], to show that the d –dimensional
skeleton of Fs lies within Nyr .@D/. First consider the .d�1/–skeleton. For k � d�1

let x0;x1; : : : ;xk 2Xf define a k –simplex � in Fs . By Remark 2.10, for any p 2 �

there is an xi such that kxi �pk � rs�d�1 . Then

kp� @Fk � kxi � @FkCkp�xik � rf C rs�d�1

so p 2Nyr .@D/.

Now suppose p lies in some d –simplex � but is not in the .d � 1/–skeleton. Then �
is not degenerate, and p must lie in its interior. Since D�Nyr .@D/D D�Nyr .@D/
is connected and does not meet @� , it is either entirely contained in the interior of �
or it is disjoint from � . Thus, either we are in the trivial situation of Remark 2.8, or
p 2Nyr .@D/.

Remark 3.2 The proof is easier if we are not concerned with obtaining optimal
dimension-dependent bounds. We can simply say that for any simplex � (regardless of
its dimension) and p 2 � there is a vertex xi such that kxi �pk � rs=

p
2. There is

no need to discuss the .d � 1/–skeleton or to mention Remark 2.8.

The last and most technical lemma is a variant of Theorem 2.5 adapted to a .d � 1/–
cycle in a thickened hypersurface in Rd of thickness �. By this we mean a domain
homeomorphic to a closed .d � 1/–dimensional manifold cross an interval, which can
be foliated by line segments of length no more than �.
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Lemma 3.3 Let S � Rd be a thickened hypersurface of thickness � and let X � S
denote a collection of points which forms a .d � 1/–cycle Œ � 2 Hd�1.R�.X //, for
some � > 0 such that  is contained entirely within S . If Œ �D 0 in Hd�1.S/, then
Œ �D 0 in the �0 Rips complex R�0.X /, where

�0 D

r
�2C 2�2

d � 1

d
D

q
�2C .2�d�1�/

2:

Proof Denote by  the cycle as a geometric .d �1/–cycle in S and let U 0 denote the
union over X of balls of radius �0=2. For our choice of �0 it follows from Remark 2.10
and Pythagoras’ theorem that U 0 contains the set U obtained by covering every point
of  (simplices as well as vertices) with a ball of radius �=2.

Assume by way of contradiction that Œ � ¤ 0 in Hd�1.R�0.X // yet is trivial in
Hd�1.S/. From Theorem 2.5, R�.X /� C �0.X /�R�0.X /. Thus,  is a nontrivial
cycle in C �0.X /. By the Čech Theorem and Alexander duality, there exists a point
p 2 S �U 0 enclosed by  .

Since S has thickness �, there is a line segment ` in S of length at most � passing
through p and connecting the two boundary components of S . As  is trivial in
Hd�1.S/, the two endpoints of ` are homologically not enclosed by  , unlike p . For
this reason ` must cross  at least once on each side of p . Thus ` intersects U in at
least two disjoint segments. Each such segment has length at least �=2, which is a
contradiction.

3.3 The coverage criterion

The following theorem is our principal coverage criterion:

Theorem 3.4 For a fixed set of nodes X in a domain D � Rd satisfying assumptions
(A1)–(A6), the sensor cover U contains D�Nyr .@D/ if the homomorphism

��W Hd .Rs;Fs/!Hd .Rw;Fw/

induced by the inclusion �W Rs ,!Rw is nonzero.

Proof We may assume that we are not in the situation covered by Remark 2.8, where
the theorem is trivially true.

Consider the simplicial realization map � W Rs ! D which sends vertices of Rs to
the points X �D and which sends a k –simplex of Rs to the (potentially degenerate)
k –simplex given by the convex hull of the vertices implicated. Since the exceptional
case is excluded, Lemma 3.1 implies that � takes the pair .Rs;Fs/ to .Rd ;Nyr .@D//;
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we therefore construct the following diagram from the long exact sequences of the
pairs:

(3–1)

Hd .Rs;Fs/
ı� //

��
��

Hd�1.Fs/

��
��

Hd .Rd ;Nyr .@D//
ı� // Hd�1.Nyr .@D//

Here, ı� acts on a class Œ˛� 2 Hd .Rs;Fs/ by taking the boundary: ı�Œ˛� D Œ@˛� in
Hd�1.Fs/. The diagram of (3–1) is commutative: ı��� D ��ı� . The homology class
��ı�Œ˛� measures the degree of @˛ , or how many times the boundary of ˛ “wraps
around” the extended collar Nyr .@D/.

Now let Œ˛� 2Hd .Rs;Fs/ be a class for which ��Œ˛�¤ 0.

Case 1 ��ı�Œ˛�¤ 0.

By commutativity of (3–1), ı���Œ˛�D ��ı�Œ˛�¤ 0. Hence, ��Œ˛�¤ 0. Assume that U
does not contain D�Nyr .@D/ and choose p2D�.Nyr .@D/[U/. Since, by Lemma 2.7,
every point in �.Rs/ lies within U , this implies that � W .Rs;Fs/! .Rd ;Nyr .@D//
factors through the pair .Rd �p;Nyr .@D//. However, Hd .Rd �p;Nyr .@D//D 0 since,
by Alexander duality, Hd .Rd �p;Nyr .@D//DH 0.Rd �Nyr .@D/;p/, which vanishes
since Rd �Nyr .@D/ is connected. This gives the contradiction ��Œ˛� D 0. Thus U
contains D�Nyr .@D/ after all.

Case 2 ��ı�Œ˛�D 0.

We demonstrate that this case is impossible under the hypothesis ��Œ˛� ¤ 0. We
construct the following commutative diagram with three rows, the top and bottom
of which come from the long exact sequence of the pairs .Rs;Fs/ and .Rw;Fw/
respectively. The middle row comes from the pair .Rm;Fm/ — the Rips and Fence
complexes computed at the “midrange” signal of radius

rm D rs

s
7d � 5C 2

p
2d.d � 1/

2d
:
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The inclusion map �W .Rs;Fs/ ,! .Rw;Fw/ factors through the pair .Rm;Fm/.

(3–2)

Hd .Rs/
j� //

��
��

Hd .Rs;Fs/
ı� //

��
��

Hd�1.Fs/

��
��

Hd .Rm/
j� //

��
��

Hd .Rm;Fm/
ı� //

��
��

Hd�1.Fm/

��
��

Hd .Rw/
j� // Hd .Rw;Fw/

ı� // Hd�1.Fw/

Represent the relative homology class Œ˛� by an explicit cycle ˛ , comprised of simplices
in Rs�Fs . We claim that the geometric .d�1/–cycle �.@˛/ is contained in a particular
shell S , defined as follows. Let † denote the hypersurface(s) of points at the precise
fence detection radius:

†D fx 2D W kx� @Dk D rf g:

Let S denote the set of points in Rd within distance rs

p
.d � 1/=2d of † on the interior

side (ie the side of † corresponding to the interior of D ), and within distance rs of †
on the exterior side. It is helpful to define a signed distance function jh.x/j D d.x; †/

with h.x/ positive if and only if x is on the exterior side; then S is defined by the
inequalities �rs

p
.d � 1/=2d � h.x/� rs .

Let � be a simplex in the geometric .d � 1/–cycle @˛ . Since � 2 Fs , each vertex xi

satisfies h.xi/ � 0. On the other hand, � is a face of some d –simplex � 2Rs �Fs

from the cycle ˛ . Since � 62 Fs the other vertex y of � must be on the interior side
of †, so h.y/ < 0.

For all p 2 � we have

h.p/� h.y/Ckp�yk � h.y/Cmax
i
.kxi �yk/ < 0C rs D rs :

Next, by Remark 2.10, we have kp�xik � rs

p
.d � 1/=2d for some i . Therefore

h.p/� h.xi/�kp�xik � 0� rs

p
.d � 1/=2d D�rs

p
.d � 1/=2d :

These inequalities prove that � � S ; and in general this shows that the geometric
realization of @˛ is entirely contained in S .

From (A6), we know that S is a disjoint collection of thickened .d � 1/–dimensional
surfaces in Rd each of thickness at most

�D rs

�
1C

r
d � 1

2d

�
:
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Since ��ı�Œ˛�D 0, we know that the cycle @˛0 is nullhomologous within S . Apply
Lemma 3.3 with � D rs , � as above, and

�0 D

r
�2C 2�2

d � 1

d
D rs

s
7d � 5C 2

p
2d.d � 1/

2d
;

to conclude that by increasing the radius from rs to rm , the cycle @˛0 becomes trivial.
Hence, ��ı�Œ˛�D 0 2Hd�1.Fm/.

We may now rule out Case 2 as follows. By hypothesis, Œ˛� 2Hd .Rs;Fs/ is nonzero,
as is ����Œ˛� 2 Hd .Rw;Fw/. In the present case, ��ı�Œ˛� D 0 in Hd�1.Fm/. Com-
mutativity of (3–2) implies that ı���Œ˛�D 0. By exactness of this row, ��Œ˛�D j�Œ��

for some Œ�� 2Hd .Rm/. Theorem 2.5 implies that the map ��W Hd .Rm/!Hd .Rw/
factors through the homology of the Čech complex Cw D Cw.X / of the cover of X
with balls of radius rw=2:

��W Hd .Rm/!Hd .Cw/!Hd .Rw/:

From the Čech Theorem, Cw has the homotopy type of a subset of Rd . Any such
subset has vanishing homology in dimension d ; hence Hd .Cw/D 0. We conclude
that ��Œ��D 0. It follows from commutativity of (3–2) that

0D j�.��Œ��/D ��.j�Œ��/D ��.��Œ˛�/¤ 0:

Contradiction. Case 2 is impossible under the assumption that

rw � rs

 s
2d

d C 1

! s
7d � 5C 2

p
2d.d � 1/

2d

!
D rs

s
7d � 5C 2

p
2d.d � 1/

d C 1

which is satisfied for any value of d when, as in (A3), rw � rs

p
10.

4 Remarks

Remark 4.1 This is by no means a sharp criterion. It is first of all clearly possible to
have the criterion always fail for injudicious choices of rf , rc , or rw . For example, if
rw is extremely large, then all nodes will be in (weak) communication and the complex
Rw will be a single high-dimensional simplex with vanishing homology. Likewise, if
rc is much larger than the bound in assumption (A3), then there will be many instances
of coverage without a homological forcing.

This being said, we note that even if one chooses the minimal acceptable bounds from
assumption (A3), it is still not hard to arrange the points to cover D�Nyr .@D/ without
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the homological criterion detecting this. The companion paper [6] gives a detailed
examination in the single-radius case which is generally applicable in this setting.

Remark 4.2 The complexes .Rm;Fm/ used in case 2 of the proof of Theorem 3.4
are purely auxiliary: there is no need to ever compute these objects. They are required
to determine the degree of the boundary of the relative cycle in the collar of the domain.
As can be seen from the convolutions of the midrange signal construction, this is a
delicate task.

Remark 4.3 One can improve the constants of assumptions (A3), (A5) and (A6) by
using the expressions in the proof which depend on the dimension d . Specifically, we
have:

(A3) The radii of communication rs; rw and the covering radius rc satisfy

(4–1) rc � rs

s
d

2.d C 1/
and rw � rs

s
7d � 5C 2

p
2d.d � 1/

d C 1
;

where d is the dimension of the domain.

(A5) The restricted domain D�Nyr .@D/ is connected, where

Nyr .@D/D fx 2D W kx� @Dk � yrg and yr D rf C rs

r
d � 1

2d
:

(A6) The fence detection boundary fx 2D W kx� @Dk D rf g has internal injectivity
radius at least rs

p
.d � 1/=.2d/ and external injectivity radius at least rs .

For example, in the case d D 2, the constants for (4–1) become:

rc � rs

r
1

3
and rw � rs

r
13

3
:

The latter inequality is a significant improvement over the
p

10 bound for arbitrary d .

Remark 4.4 We note that if the homological criterion is satisfied with a class Œ˛� in
Hd .Rs;Fs/, then the cover is generated only by the vertices implicated in the chain ˛ .
Thus, by minimizing the choice of generator ˛ within its persistent homology class, we
can relax the redundancy of the cover. This has clear implications to issues of power
conservation in sensor networks; see our paper [6] for details.
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Remark 4.5 The precise statement of (A6) in terms of injectivity radii requires the
curve to be smooth. From the proof of Theorem 3.4, it is clear that the crucial condition
is to have the shell S represent annular domains of thickness bounded by 3

2
rs . In

practice, having D piecewise-linear is admissible: even though the injectivity radii
degenerate to zero, the set S is still an annular region(s) of width bounded by some
larger length, depending on the sharpness of the curves. For a piecewise-linear @D ,
an increase in rw based on the angle of the sharpest corner in the outermost boundary
component makes the criterion rigorous.

Remark 4.6 The coverage criterion presented here is a very specific type of coverage:
stationary blanket coverage. There are interesting questions involving, eg barrier
coverage (in which one want the cover to separate a given domain) and sweeping
coverage (in which the nodes move and “sweep” a cover over time). The paper [6]
gives homological criteria for these settings and more in the simpler case of d D 2 and
controlled boundary nodes. We believe that the techniques of the current paper may be
used to derive a persistent homology criterion applicable to these broader problems.
The primary difficulty is in controlling what happens near the boundary of the domain.

Remark 4.7 We note that homology is (unlike homotopy groups!) computable,
and that the coverage criterion of Theorem 3.4 can be checked in practice. We do
not emphasize here the computational issues. Is suffices to note that we have used
the computational homology software package Plex [4]. Simulations have been
written using MATLAB as the frontend (primarily for generating the simplicial complexes
from various point-data sets, and for data formatting and visualization.) The current
implementation of Plex computes the dimensions of persistent homology groups
(using algorithms as in Edelsbrunner, Letscher and Zomorodian [9] and Carlsson and
Zomorodian [24]), which is enough to check whether the homomorphism �� in the
criterion of Theorem 3.4 is nonvanishing.
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