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Generic representations of orthogonal groups:
the mixed functors

CHRISTINE VESPA

In previous work, we defined the category of functors Fquaq, associated to [, —vector
spaces equipped with a nondegenerate quadratic form. In this paper, we define a
special family of objects in the category Fyuaq, named the mixed functors. We give
the complete decompositions of two elements of this family that give rise to two new
infinite families of simple objects in the category Fquaq-

18A25; 16D90, 20C20

In 1993, Henn, Lannes and Schwartz established a very strong relation between the
Steenrod algebra and the category F(p) of functors from the category £ f of finite
dimensional [F,—vector spaces to the category & of all [, —vector spaces, where [, is
the prime field with p elements [5]. To be more precise, they study the category U/ of
unstable modules over the Steenrod algebra localized away from the nilpotent unstable
modules Ni/; they exhibit an equivalence between the quotient category I/ /Nil and
a full subcategory of the category of functors F(p). This equivalence is very useful
and allows several important topological results to be derived from algebraic results
in the category F(p). For a recent interesting application of this equivalence to the
cohomology of Eilenberg MacLane spaces, we refer the reader to the results obtained
by Powell [9].

An important algebraic motivation for the particular interest in the category F(p)
follows from the link with the modular representation theory and the cohomology of
finite general linear groups. Namely, the evaluation of a functor F, object in F(p), on
a finite dimensional vector space V is a F,[GL(V)]-module. A fundamental result
obtained by Suslin in the appendix of [4] and, independently, by Betley in [2] relates the
calculation of extension groups in the category F(p) with certain stable cohomology
groups of general linear groups.

It is natural to seek to construct other categories of functors that play a similar role for
other families of algebraic groups and, in particular, for the orthogonal groups.

In [12], we constructed the functor category Fguad, Which has some good properties as
a candidate for the orthogonal group over the field with two elements. For instance, the
evaluation functors give rise to a coefficient system that allows us to define a system of
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homology groups. We obtained, in [12], two families of simple objects in Fquaq related,
respectively, to general linear groups and to orthogonal groups. The purpose of this paper
is to define a new family of objects in the category Fquaq, named the mixed functors,
which give rise to new simple objects of Fquaq. The mixed functors are subfunctors of
a tensor product between a functor coming from the category F := F(2) and a functor
coming from the subcategory Fis, of Fquaq defined in [12]. The structure of the mixed
functors is very complex, hence it is difficult to give explicit decompositions in general.
However, we give the complete decompositions of two significant elements of this
family: the functors Mixg ; and Mix ;. These two mixed functors play a central role
in the forthcoming paper [11] concerning the decompositions of the standard projective
objects Py, and Py, of Fquaq. We prove in [11] that these mixed functors are direct
summands of Py, and Pg, . The decomposition of Mixg,; and Mix ; represents a
further step in our project to classify the simple objects of this category.

Recall that in [12] we constructed two families of simple objects in Fgyaq. The first
one is obtained using the fully faithful, exact functor ¢: F — Fquaq, Which preserves
simple objects. By Kuhn [7], the simple objects in F are in one-to-one correspondence
with the irreducible representations of general linear groups. The second family is
obtained using the fully-faithful, exact functor «: Fiso — Fquad Which preserves simple
objects, where Fis, is equivalent to the product of the categories of modules over the
orthogonal groups. The results of this paper are summarized in the following theorem.

Theorem Let o be an element in {0, 1}.

(1) The functor Mixg ; is infinite.

(2) There exists a subfunctor ¥, 1 of Mixy,; such that we have the short exact
sequence
0— 20[,1 d MiXa,I — Za,l — 0.

(3) The functor X4 ; is uniserial with unique composition series given by the de-
creasing filtration given by the subfunctors kX 1 of g 1 :

... C kdEaJ c...C klza,l CkoEa,l = E(x,l

(a) The head of X4; (ie Xq,1/k1Xq,1) is isomorphic to the functor k (is0(x ))
where 180 (x ) 18 a simple object in Fis, .

(b) Ford >0
kiSa1/kay1Ze1 ~ LT

where Lg +1 is a simple object of the category Fquad that is neither in the
image of « nor in the image of k.
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The functor L4+ is a subfunctor of t(A9+") ® k(i50(x.q)), Wwhere AT
is the (d + 1)—st exterior power functor.

This theorem and the forthcoming paper [11] lead us to conjecture that there are only
three types of simple objects in the category Fquaq: those in the image of the functor ¢,
those in the image of the functor « and those which are subfunctors of a tensor product
of the form: ¢(S) ® k(T) where S is a simple object in F and 7 is a simple object
in Figo.

This paper is divided into seven sections. Section 1 recalls the definition of the category
Fquad and the results obtained in [12]. Section 2 gives a general definition of the mixed
functors Mixy, p 5 as subfunctors of the tensor product t(P{}T ) ® k(isop) in Fyuad.
where V' is an object in £ f. Disa quadratic vector space, 1 is an element in the dual
of V® D, PI],C is the standard projective object of F obtained by the Yoneda lemma
and isop is an isotropic functor in Fi,. Section 3 studies the mixed functors Mixy, p
such that dim(D) =1 and dim(V') = 1. We define, in particular, the subfunctor ¥ ;
of the mixed functor Mix,,; given in the second point of the previous theorem. In
Section 4, we deduce a filtration of the functor L(P”:]; ) Rk (is0(x o)) from the polynomial
filtration in the category JF. Section 5 gives a filtration of the functors X 1, defined in
Section 3, and we obtain the existence of a natural map from the subquotients of this
filtration to the functors ¢(A") ® k (iso(x,«)) , by relating this filtration to that introduced
in the previous section. Section 6 gives the structure of the functors ((A") ® k (i50(x ,«)) -
We define the functors L. and prove their simplicity. Section 7 proves the structure of
the functors Mixy, ; given in the previous theorem.

The results contained in this paper extend results obtained in the author’s PhD thesis [13].
The author wishes to thank her PhD supervisor, Lionel Schwartz, for his guidance,
as well as Geoffrey Powell and Aurélien Djament for numerous useful discussions
and Serge Bouc for suggesting that the methods used in the author’s thesis should be
sufficient to establish the uniseriality of the functors Xy 1.

1 The category Fqyad

We recall in this section some definitions and results about the category Fguaq obtained
in [12].

Let &; be the category having as objects finite dimensional [, —vector spaces equipped
with a non degenerate quadratic form and with morphisms linear maps that preserve
the quadratic forms. By the classification of quadratic forms over the field F, (see, for
instance, Pfister [8]) we know that only spaces of even dimension can be nondegenerate
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and, for a fixed even dimension, there are two nonequivalent nondegenerate spaces,
which are distinguished by the Arf invariant. We will denote by Hy (resp. H;)
the nondegenerate quadratic space of dimension two such that Arf(Hy) = 0 (resp.
Arf(Hyp) = 1). The orthogonal sum of two nondegenerate quadratic spaces (V, gy) and
(W, qw) is, by definition, the quadratic space (V & W, gy ow) where qygw (v, w) =
qv (v)+qw (w). Recall that the spaces Hyl Hy and H; L H; are isomorphic. Observe
that the morphisms of &; are injective linear maps and this category does not admit
pushouts or pullbacks. There exists a pseudo pushout in &, that allows us to generalize
the construction of the category of cospans of Bénabou [1] and thus to define the
category 7, in which there exist retractions.

Definition 1.1 The category 7 is the category having as objects those of &£; and, for
V and W objects in 7;, Homy, (V, W) is the set of equivalence classes of diagrams
in &; of the form V=X <£W for the equivalence relation generated by the relation R
defined as follows: (VLXléW) R (VS X,<2W) if there exists a morphism «
of & such that wo ' =u and @ o g = v. The composition is defined using the pseudo
pushout. The morphism of Homz, (V, W) represented by the diagram vixEw
will be denoted by [V L X Ew].

By definition, the category Fguaq is the category of functors from 7; to £. Hence
Fquad 1s abelian and has enough projective objects. By the Yoneda lemma, for any
object V' of 7, the functor Py = [F;[Hom7, (V,—)] is a projective object and there
is a natural isomorphism: Homg, ,(Py, F) =~ F(V), for all objects F of Fquaa. The
set of functors { Py|V € S}, named the standard projective objects in Fquaq, is a set of
projective generators of Fqu.q, where S is a set of representatives of isometry classes
of nondegenerate quadratic spaces.

There is a forgetful functor €: 7, — & S in Fquad» defined by (V) = O(V) and
(VLW LW EW)) = py 0 O(F)

where p, is the orthogonal projection from W_LW’ to W and O: £ — &S is the
functor which forgets the quadratic form. By the fullness of the functor € and an
argument of essential surjectivity, we obtain the following theorem.

Theorem 1.2 [12] There is a functor 1. F — Fquad, Which is exact, fully faithful and
preserves simple objects.

In order to define another subcategory of Fyuad, we consider the category £5° having

as objects finite dimensional [F,—vector spaces equipped with a (possibly degenerate)
quadratic form and with morphisms injective linear maps that preserve the quadratic
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forms. A useful relation between the categories &; and Egeg is given by the following
theorem, which can be regarded as Witt’s theorem for degenerate quadratic forms.

Theorem 1.3 Let V be a nondegenerate quadratic space, D and D’ subquadratic
spaces (possibly degenerate) of V and f: D — D’ an isometry. Then, there exists an
isometry f:V — V such that the following diagram is commutative:

f

— sV

o<

HD/

S/
Proof For a proof of this result, refer to Bourbaki [3, Section 4, Theorem 1]. O

The category Sgeg admits pullbacks; consequently the category of spans Sp(égeg) is
defined [1]. By definition, the category Fis, is the category of functors from Sp(c‘fgeg)
to £. As in the case of the category Fquad, the category Fis, is abelian and has enough
projective objects; by the Yoneda lemma, for any object V' of Sp(&?eg) , the functor
Qp = Fa[Homgp(gde) (V, —)] is a projective object in Fiso. The category Fiso is related
to Fquada by the following theorem.

Theorem 1.4 [12] There is a functor «k: Fiso — Fquad, Which is exact, fully-faithful
and preserves simple objects.

We obtain the classification of the simple objects of the category Fis, from the following
theorem.

Theorem 1.5 [12] There is a natural equivalence of categories
'7:iso = l_[ [FZ[O(V)] —mod
Ves

where S is a set of representatives of isometry classes of quadratic spaces (possibly
degenerate) and O(V') is the orthogonal group.

The object of Fis, that corresponds, by this equivalence, to the module F,[O(V)] is the
isotropic functor isoy, defined in [12]. The family of isotropic functors forms a set of
projective generators and injective cogenerators of Fis,. Recall that the isotropic functor
isoy: Sp(é’,(;eg) — & of Fis is the image of Qyp by the morphism ay: Qy — DQy
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which corresponds by the Yoneda lemma to the element (Idy)* of DQy (V), where
(Idp)* is defined by

(Idp)*(Idy]) =1 and (Idy)*([f]) = 0 for all f # Idy

where we denote by [ /] a canonical generator of DQy (V) 2~ F;[Endsp(eie) (V)]. This
definition and that of the functor k: Fiso — Fquad give rise to the following more
concrete definition of the functor isopr which will be useful below.

Proposition 1.6 The following equivalent definition of the functor k (isoy’) holds.

e For W an object of 1,
k(isop ) (W) = Fa[Homgles (V, W)].

e For a morphism m = [WAY&X | in 74 and a canonical generator [h] of
k(isoy)(W), we consider the following diagram in Egeg:

X

£

VT)WT)Y

If the pullback of this diagram in Egeg is V', this gives rise to a unique morphism
h:V — X in Sgeg, such that foh = goh’. In this case, k(isoy)(m)[h] = [I'].
Otherwise, k (isoy)(m)[h] = 0.

Notation In this paper, a canonical generator of x(isop)(W) will be denoted by
[D£>W] or, more simply, by [A].

We end this section by a useful corollary of Theorem 1.4 and Theorem 1.5. For
a €140, 1}, let (x, ) be the degenerate quadratic space of dimension one generated by
x such that ¢g(x) = «.

Corollary 1.7 The functors k(i30(x,0)) and k(is0(y,1)) are simple in Fquaq .

Proof It is a straightforward consequence of the triviality of the orthogonal groups
O(x,0) and O(x,1). |
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2 Definition of the mixed functors

The aim of this section is to define the mixed functors: for this, we consider the functors
t(PjE ) ® k(isop) in Fquaa Where V' is an object in & f, P is the standard projective
object of F obtained by the Yoneda lemma, D is an object in 5 ¢ and 11 F — Fquad
and k: Fiso — Fquad are the functors defined in [12] and recalled brleﬂy in Theorem 1.2
and Theorem 1.4 respectively. A canonical generator of P; (W) ~ Fa[Homgy (V, W)]
will be denoted by [ f].

Notation In this paper, the bilinear form associated to a quadratic space V will be
denoted by By .

Proposition 2.1 Let D be an object in Sgeg, V be an object in £/, n be an element
in the dual of V ® D and W be an object in T;. Then the subvector space of
(L(PIJ,T) ® k(isop))(W) generated by the elements

[/1®[DLw)

such that forallveV, foralld € D, Bw(f(v),h(d))=n(v®d)

defines a subfunctor of L(P{f ) ® k(isop) which will be denoted by Mixy,p , and
called the mixed functor associatedto V, D and .

Proof 1t is sufficient to verify that, for each morphism M = [W£Y<—IZ ] of 7; and
each generator [ /] ® [DLW] of Mixy, p.,(W),

Mixy, p (M) (f1®[D%W]) € Mixy, p (Z).

Consider the following diagram in £y

Z
l,
DT)WT)Y

If the pullback of this diagram in 8 “®is D, namely if koh(D) C I(Z), this gives
rise to a unique morphism 4’, from D to Z in 6’ ¢ such that k oh = [ o/’ that is,
the following diagram commutes:

h/
D

Id

~<—N

D—mW ——

h —k
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In this case, by Proposition 1.6, we have
. h )%
Mixy,p (M)(f1®[D=>W]) = (proko f1Q[D=Z])

where p; is the orthogonal projection associated to /. For an element v in V and d
in D, we have

By (f(v).h(d)) = By (ko f(v).k oh(d)).

Since the pullback of the diagram considered previously is D, we have koh(D) Cl(Z).
Consequently,

By (f(v).h(d)) = Bz(pioko f(v). prokoh(d)) = Bz(pioko f(v),h(d)).

Thus, if By (f(=).h(=)) = n then Bz(p; ok o f(=).h'(—)) = n. Therefore the
element ([p;oko f]1® [Dh—>Z]) belongs to Mixy, p ,(Z).

Otherwise by Proposition 1.6 we have
. h
Mixy, p (M) ([f]® [D=>W]) = 0. 0

Remark The terminology “mixed functors” is chosen to reflect the fact that these
functors are subfunctors of a tensor product of a functor coming from the category F
and a functor coming from the category Fiso.

We obtain the following decomposition of the functors L(PIJ,T )®k(isop).

Lemma 2.2 For D an object in Egeg and V an object in £/ we have

L(PIJ,E) ® k(isop) = @ Mixy, p 5.
ne(VeD)*

Proof For two different elements 1 and " in (V ® D)*, we have
Mixy, p »(W) N Mixy, p (W) = {0}
for W an object in 7. Thus, we have the decompositions
(P @(isop)) W) = ( @D Mixy,p, )W),
ne(V®D)*
for all objects W in 7. Since Mixy, p , is a subfunctor of t(P{f) ® k(isop) by

Proposition 2.1, we deduce the result. O

Remark In the definition of the mixed functors, we don’t impose the condition
h(D)N f(V) = {0}. Nevertheless, we can define similar functors with this condition,
which give rise to quotient functors to the mixed functors defined in Proposition 2.1.
These functors will be useful for a later general study of the mixed functors.
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3 The functors Mixy, p , such that dim(D)=1 and dim(}')=1

The aim of this section is to give some general results about the four simplest mixed
functors of Fquaq obtained in the case of dim(D) = dim(V') = 1. The motivation
of the particular interest in this case is the study of the projective generators Pp,
and Py, of Fquuq. In fact, we prove in [11], that the mixed functors that are direct
summands of these two standard projective generators of Fqu,q verify the conditions
dim(D) =dim(V) = 1.

When V' and D are spaces of dimension one, we will denote by Mix, g, where a and
B are elements of {0, 1}, the functor Mixy, p , such that V >~ F,, D >~ (x,«) and
n = B. We have the following result.

Lemma 3.1 Let W be an object in T, if [ /] ® [(x, oz)L W] is a canonical generator
of Mix, g(W), then [ f +h(x)]®[(x, a)LW] is a canonical generator of Mixy g(W).

Proof This is a straightforward consequence of the fact that the bilinear form associated
to a quadratic form is alternating. a

In order to make this symmetry clearer in the set of canonical generators of Mixy, g(W)
and to introduce an action of the symmetric group &, on this set, we use a slightly
different description of the canonical generators of Mixy g(W) corresponding to a
reindexing of these canonical generators.

Definition 3.2 For « and § elements of {0, 1}, we consider the following set:
N«Zﬂ ={(w;,w7) | wy € W,wy € W, qg(w; +w2) =a, B(w;,w,y) = B}.
We have the following result.
Lemma 3.3 For D ~ (x,«) and n = 8, we have
Mixg, g (W) ~ F[ N 5]

where W' is an object in T .

Furthermore, for a morphism m = [WAY(EX | in 7, and a canonical generator
[(wy,wy)] of [Fz[NaVZg], we consider the diagram in Sgeg

X

E

(x’a)l*)W*f)Y
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where [ is the morphism of Egeg given by I(x) = w; + w,. If the pullback of this
diagram in Sgeg is (x, ) then Mixq g(m)[(w1, w2)]=[(pgo f(w1), pgo f(w2)] where
Dg is the orthogonal projection associated to g . Otherwise, Mixy g(m)[(w1, wz)] = 0.

Proof The generator of the vector space V' of dimension one will be denoted by a.
There is an isomorphism

fw: Mixg g(W) — F2[N5]
/1®[(x.a) W] [(f (@) + h(x). f(@))].
of which the inverse is given by
Si': Fa[ Ny gl = Mixg, g (W)
[(wr. w)] > K] ®[(x.) W]

where k: V — W is defined by k(a) = w, and /: (x, o) — W is defined by /(x) =
wy + ws.

The second statement of the lemma is only a translation of the definition of the mixed

functors on the sets of morphisms in terms of the sets N aW . a

Notation Henceforth, we will use the basis given by the set NaWB to represent the

elements of Mixy g(W).

Thus, the canonical generator [f] ® [(x, a)AW] of Mixq g(W) is represented by
[(f(@)+h(x), f(a)]and [ f+h(x)]R[(x, a)LW], which is also a canonical generator
of Mix, g(W) by Lemma 3.1, is represented by [(f(a). f(a) + h(x))].

We have the following lemma.
Lemma 3.4 The symmetric group &, acts on the functor Mixg g.

Proof Let W be an object of 7;. Define an action of &, = {Id, 7} on Mixy g(W)
by
T [(wr, wa)] = [(w2, wy)]-
We leave the reader to verify that the linear maps
w- Mixa’lg(W) — Mixa’ﬂ(W)
[(wy, w2)] = [(w2, wy)]

define a natural transformation. O
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This lemma allows us to define an object in Fguaq by considering the invariants by this
action.

Definition 3.5 Let ¥, g be the subfunctor of Mix, g defined by considering the
invariants of Mix, g(W) by the action of the symmetric group &,.

In the following, we will focus on study the functors Mixg ; and Mix; ;. These two
functors are particularly interesting since they are direct summands of Py, and Pp,
(see [11]).

We have the following lemma.

Lemma 3.6 Let W be an object in 7, and [(w, w,)] be a generator of Mix, ;1 (W),
then the vectors w; and w, are linearly independent.

Proof This is a straightforward consequence of the fact that the bilinear form B is
alternating. O

We deduce the following lemma.

Lemma 3.7 Let W be an object in T, the action of G, on the set of canonical
generators of Mixg,1 (W) is free.

Proof For a canonical generator [(wq, wz)] of Mixq,;(W), since the vectors w; and
w, are linearly independent by Lemma 3.6, we have w; # w,. Hence, the action of
S, is free. O

Remark We deduce from Lemma 3.6 that the two functors Mixg, 1, coincide with the
functors mentioned in the last remark of the Section 2.

We give the following general result about the free actions of the group G,.

Lemma 3.8 If A is a finite set equipped with a free action of the group &, then there
exists a short exact sequence of G, —modules:

0 — Fa[A]92 — Fo[A] — F2[A]®2 — 0.
Proof We deduce from the action of G, on A, the existence of the canonical inclusion

I]:Z[A]GZ;f>[F2[A] of the invariants in F;[A4]. The norm I]:Z[A]li;[Fz[A] induces a linear
map [F,[A]£> F[A]®2 such that the composition

F,[A4]S2¢ 4 FalA] —

Fo[A]®2

is trivial. We verify that this defines a short exact sequence. a
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We deduce the following proposition.

Proposition 3.9 There exists a short exact sequence

(3—1) 0— Ea,l e Mixa,l —> Ea,l — 0.
Proof This is a straightforward consequence of Lemma 3.7 and Lemma 3.8. |

Notation We will denote by [{w;,w;,}] the image of the element [(w;,w,)] of
Mixg,1 (W) in X4 1 (W) by the surjection Mixg 1 (W) —= X4 1(W).

Remark Lemma 3.7 has no analogue for the functors Mixg ¢ and Mix; ¢ since, in
these two cases, the action of the group &, is not free. Nevertheless, we can apply
similar arguments to the functors Mifo’0 such that Mixy o — Mixﬁxﬁo mentioned
in the last remark of Section 2. In fact the condition 2(D) N f(V) = {0} implies the
freedom of the action of the group G, on these functors.

Remark It is shown in [11] that the functors Mixg ; and Mix; ; are indecomposable.
Consequently, the short exact sequence (3—1) is not split for the functors Mixo,; and
Min R

4 Study of the functor t(P[Ff ) ® K (iS0(x,a))

By Proposition 2.1, the functor Mix ; is a subfunctor of L(P[{Z) ® K (180(x,q)) - Conse-
quently, in order to obtain the decomposition of Mixy, 1, we study, in this section, the
functor L(P[F];) ® Kk (i30(x ) -

4.1 Filtration of the functors ¢(P) ® k (is0(x,«))

We define, below, the filtration of the functors L(P[Ffz ) ® K (is0(x,q)) induced by the
polynomial filtration of the functor P[g; in the category JF. First we recall the essential
results concerning the polynomial functors in the category . We refer the interested
reader to Henn, Lannes and Schwartz [5], Kuhn [6] and Schwartz [10] for details on
the subject.

Notation Henceforth, in order to simplify the notation, we will denote the functor

L(P[g;) ® k(is0(x,q)) by Pr ® isoy and, if F # PJZ, we will denote the functor
L(F) ® k(is0(x,q)) by F ®is0g.

Algebraic € Geometric Topology, Volume 7 (2007)



Generic representations of orthogonal groups: the mixed functors 391

Definition 4.1 Let F be an object in F and d an integer, the functor g4 F is the
largest polynomial quotient of degree d of the functor F.

Notation We denote by k; F the kernel of F —— g4 F .
We have the following result.

Proposition 4.2 The functors ki F define a decreasing filtration of the functor F,
indexed by natural numbers.

Thus, for the standard projective functor Pr, we have the short exact sequence

(4-1) 0 kg Pr — P 2% gqPr — 0.

Furthermore, the decreasing filtration of Py given by the functors k; Py is separated
(thatis (kg Pr =0).

We recall below the description of the vector space kg Pr(V) for V an object in £/ .

Proposition 4.3 The vector space k; Pr(V') is generated by the elements

P

zZeL

where L is a subvector space of V' of dimension d + 1.

Notation The subvector space of V' or subquadratic space of (V, ¢gy) generated by
V1, ...V, Will be denoted by Vect(vy,...v,).

The subquotients of the filtration of the functor Pr are given in the following proposition.

Proposition 4.4 [7, Theorem 7.8] For d a nonnegative integer, there exists a short
exact sequence

(4_2) 0—>kd+1Pﬂ:—>deﬂ:ﬁ>Ad+l—)O

where A4 T js the (d + 1)—th exterior power and the map g4 is defined in the following
way: for V an object in £/ and L the subvector space of V of dimension d + 1

generated by the elements [y, ...,l541 of V, we have
(gd)V(Z[Z]) =LA ANlgy.
zeL
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By taking tensor product with the isotropic functors isoy , Proposition 4.2 and the short
exact sequences (4—1) and (4-2) give rise to the following result.

Corollary 4.5 (1) For d an integer, the functors (k4 Pr) ® isoy define a decreasing
separated filtration of the functor Pr ® isoy, .

(2) There exist the following short exact sequences in Fquad :

Sfa®isoq

(4-3) 0 — (kg Pr)®is0y — Pr ® is0q ——— (¢4 Pr) ® isog — 0

gd ®isoy

(4-4) 00— (kgy1 Pr)®isog — (kg Pr) ® isog (A1) ® isog — 0.

Remark We obtain similar results by taking the tensor product between the short
exact sequence (4-2) and the isotropic functors isop . This will be useful for a general
study of the mixed functors.

S Filtration of the functors X, ;

In this section, we define a filtration of the functors X, ; that we will relate below to
the filtration of P ® iso, obtained in the previous section.

Definition 5.1 For V' an object of 7; and d an integer, let kX, 1 (V) be the sub-
vector space of X 1(V') generated by the elements

D lx+zy+2

zEL

where [{x, y}] € Z4.1(V) and L is a subvector space of Vect(x+y)* of dimension d.

Proposition 5.2 The spaces k;X4,1(V), for V an object in 1y, define a subfunctor
of Ea,l .

Proof For a morphism 7" in Homy, (V, W), it is straightforward to check, by defini-
tion of Mixy,1(7), that the image of k;3, 1(V) by
a1 (T): kgZa,1 (V) = Za1 (W)

is a subvector space of kg Xy 1 (W). O

Proposition 5.3 The functors k;%,,; define a separated decreasing filtration of the
functor X 1 :

o ChkgXe1 C...Ck12g1 CkoZg,1 = 2g.1-
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Proof To show that the filtration is decreasing, it is sufficient to prove, for an object
V of 71y, that there is an inclusion of vector spaces

kd—i—lza,l(V) - kdza,l(V)-

We consider a generator of kg412q,1(V): v=> . [{x+z y+z}] where [{x, y}]
is in X4 (V) and L is the subvector space of Vect(x + y)* of dimension d + 1
generated by the elements /1, ..., /;41. We also consider the following decomposition
into direct summands: £ = Vect(/y,...,l;) & Vect(lg4) = L' & Vect(lz41). By
considering separately the elements z in £ with an nonzero component on /;; and
those with a zero component on /;4 1, we obtain

v=) lx+zy+20+ ) Ux+lapr +2,0+lapr + 23

zel/ zel’

By definition of kzX 1, we have

Yserlix+zy+z ek 1 (V)
and Yoreclix+tlapi+z.y+lar1 + 2}l €kgZo (V)
since [{x +g4+1, Y +1g41}] € Zo,1 (V). Consequently v € kg Xy 1 (V).

One verifies easily that the filtration is separated. a

In the following result, we relate the filtration of the functors X, ; and the filtration of
Pr ® isoy obtained from the polynomial filtration in Corollary 4.5.

Lemma 5.4 The composition

fu®isoy

kdzaJ( Eot,l( Mixa,lc—> Pr ® isoq —— q4 Pr ® is04y

is zero.

Proof Let V' be an object in 7; and v a generator of k;X4 (V). Then v =
Y seclly + 2.+ z}] where [{y,y'}] € £4,1(V) and L is the subvector space of
Vect(y + »')% of dimension d.

Let & be the element of Homgl ((x, ), V) such that i(x) = y 4+ ', we have:
Y4+ +h el =) (y+z+[+ D +2]+[2) @[]

zeL zeL

S +aA+ED @B+ ) (V' +2+ D e

zeLl zeLl
= Y EFen+ Y 19K
z/eLDVect(y) z"’e L Vect(y')
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By Proposition 4.3 we have:

> [lekgPe(V) and > [lekaPr(V)
z/'e L Vect(y) z"e LD Vect(y”)
Hence f; ® isoq(v) = 0. m|

We have the following result.
Proposition 5.5 (1) There exists a monomorphism i;: kgXy1 — kg Pr @ isoq.
(2) There exists a natural map
kiSa1/kaviZa1 — AT ®isog
induced by iy: kgXq,1 — kg Pr ®is0y .
Proof The first point is a direct consequence of Lemma 5.4 and the short exact
sequence (4-3).

We deduce the second point from the following commutative diagram given by the first
point and from the short exact sequence (4—4).

0 ——kqgy1Z01 —kgZg1 —— (kgZq1/kar1Z0,1) — 0

(5-1) id+1£ idf l

0 —> kg4+1Pr®isoq — kg Pr ® isog p Ad+1®isoa

00O

d ®isoy

Hence, to obtain the composition factors of the functors Mix,, ; we study the functors
A" ® isoy in the following section.

Remark We obtain that the natural map k2 1/ kg1 Za,1 — AT Qiso, is a
monomorphism as a consequence of Theorem 7.1.

To conclude this section, we prove that the functors Mix, ; are infinite. For this, we
need the following lemma.

Lemma 5.6 Let V' be an object in 7, of dimension greater than d + 1 such that
Xa,1(V) # {0}, let [{y, y'}] be a canonical generator of X 1(V) and let vy, ...v, be
d linearly independent elements in Vect(y + y')*. Then

(ga®isoa)oig( Y. Ur+z+2)=viA . AvAG+Y) @

z€Vect(V1,...,0q)

where i, is the monomorphism from kg2 1 to kg Pr ® iso, defined in the first point
of Proposition 5.5 and h the element of Homg, ((x,a), V') such that h(x) = y + ).
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Proof We have, by definition of i; and g4 ® isoq,

(ga®isoa)oia( D [y+zy +2))

z€Vect(V15...,0q)

=(ga®isoa)( Y (r+zl+D +2) @)
zeVect(vy,...,0q)

=(WA...AVGAYF+VIA...AVg AY) R [h]

=V A AV A +Y)R[N] m]
Proposition 5.7 The functors Mixy,; are infinite.

Proof It is sufficient to prove that the quotients of the filtration of ¥, ; are nonzero.
For an object V' in 7, of dimension greater than d, the space ¥ ;(Hp-LV') contains
the nonzero element [{aq, bo}]. Hence, the element of kX 1 (HoLV)

X = Z [{ao +z,bo + z}]

z€Vect(vy,...,U4)

verifies (gg ®isog)oig(x) =viA...AVvgA(ag+bo) R[I]#O

by Lemma 5.6. Consequently, (g4 ®isoy)oigz(kgX1,1) # {0} and, by the commutativity
of the diagram (5-1) given in the proof of the second point of Proposition 5.5, we have

kaZi1/kas1Z1,1 #10}.

In the same way, by considering the element

> Hao+z.ao+bo+z}]€kgZo (HoLV),

z€Vect(vy,...,0q)

we show that kg2 1/kg+1%0,1 # {0}. O

6 Structure of the functors A” ® iso,

By the second point of Proposition 5.5, there exists a natural map from the subquotients
kgXa,1/kq+12Xq,1 of the filtration of the functor X ; by the functors k; X4 1 to the
functors A9t is0y . The aim of this section is to study the functors A” & Iso, in
order to obtain the composition factors of the functors X, ;. It is divided into two
subsections: the first concerns the decompositions of the functors A" ® Iso, by the
functors denoted by L, and the second concerns the simplicity of the functors L[ .
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6.1 Decomposition

In order to identify the composition factors of the functor A" ® Isoy, we define the
following morphisms of Fgyaq.

Lemma 6.1 (1) Foran object V in T, the linear maps

Wy isog (V) — (A ®is0g) (V)

defined by 1y ([, @) V) = h(x) ® [(x, ) 55V

for a canonical generator [(x, oz)i> V] in isoq (V') give rise to a monomorphism 4 from
isog to Al @ isog of Fauad-

(2) For an object V' in I, the linear maps

vy (A ®is0g) (V) — isog (V)

defined by vy (w ®[(x, a)LV]) = B(w, h(x))[(x, a)LV]
for a canonical generator [(x, a)£> V] in isoq (V') give rise to an epimorphism v from

Al ® isoq to isoy of Fquad-

Proof (1) We check the commutativity of the following diagram, for a morphism
T =[VL X EW] of Homz, (V. W):
isoa (V) —~> (A ® isoq)(V)
iso (T) l l (A®isoy)(T)
isoq (W) e (A ®isoq) (W)
For a canonical generator [(x, oz)L V] of isoq (V), we denote by P the pullback of

the diagram (x, )5 X <EW . If P = (x,a), we denote by A’ the morphism making
the following diagram commutative:

h/

(x,a) w

Idl g

(X»W)TVT)X
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We have

(A ®isoq)(T) 0 puy ([(x. ) > V]) = (A @ is0q) (1) ((x) ® [(x, ) > V])

| pgo foh(x)® [(x,oz)ﬂW] if P=(x,q)
- 0 otherwise

4 : _
and uw OiSOa(T)([(X’O‘)LV]) = Kw { [(x’a?) ") i)ftlf;r:vi(sz’a)

(K ®[(x.)BW) if P = (x. )
- 0 otherwise.

By commutativity of the previous cartesian diagram, we have g o/’ = f o h hence, by
composition with pg, we obtain: 4’ = pg o f oh. Consequently, the linear maps
give rise to a nonzero natural map p: isog — A ®iso, . We deduce from the simplicity
of the functors iso, given in Corollary 1.7 that the natural map p is a monomorphism
in ]:quad .

(2) We check the commutativity of the following diagram, for a morphism 7' =
(VL X EW] of Homg, (V, W):
(A ®isoq) (V) ——= isoa(V)
(A®isoq)(T) i \Lisoa(T)
(A @isoq)(W) == isoa(W)

With the same notations as above, we have:

is0g (') o vy (v @ [h]) = isoq (T') (B(h(x), v)[h])

| B(h(x),v)[A'] if P >~ Vect(x)
o { 0 otherwise

L _ pgo f(v)®[h'] if P~ Vect(x)
v o (A @ison)(T)(v @ [H]) = v { R
| B(h'(x), pgo f(v)[h'] if P >~ Vect(x)
N 0 otherwise
We also have:
B(h(x),v) = B(f oh(x), f(v)) since f preserves quadratic forms
= B(goh'(x), f(v)) by commutativity of the cartesian diagram
= B(goh'(x),gopgof(v)) by orthogonality of W and L
= B(h'(x), pg o f(v)) since g preserves quadratic forms.
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Hence, the linear maps vy define a natural map v: A! ®isoq — isog, which is clearly
nonzero. We deduce from the simplicity of the functors iso, given in Corollary 1.7,
that v is an epimorphism of Fyaq. O

The natural maps p and v defined in the previous lemma allow us to define the
following morphisms in Fquad-

Definition 6.2 Let n be a nonnegative integer.

(1) The natural map ji,: A" ®isoq — A"T! ®isoy is obtained by the composition

. 1®u . m®1 .
A" ®is0y —> A" Q@ Al ®is0oy —> A" @ isog
where m: A" @ A! — A" is the product in the exterior algebra.

(2) The natural map vy: A"t ®is0y — A" ® isogy is obtained by the composition
A" ®iso, ﬂ A" ® Al ®iso, ﬂ A" ® isog
where A: A"t — A" ® Al is the coproduct.
We have the following proposition.
Proposition 6.3 The following sequence is an exact complex:

. Mn . Mn+1 .
> AN ®Ris0y —> A" ®isoy ——> A2 Qisoy — . ..

Proof We prove, according to the definition, that the kernel of (u,+1)y is the vector
space generated by the set

{vi A... A vy AN(x) ® [h] for [h] a generator of isoy(V); vy, ..., v, elements in V}

and this space coincide with the image of (uy)y . |
Proposition 6.3 justifies the introduction of the following functor.

Definition 6.4 The functor K] is the kernel of the map u, from A" ® isoy to
A" ®iso0g .

As observed in the proof of Proposition 6.3, we have the following characterization of
the spaces K (V).
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Lemma 6.5 For an object V in 7, the space K[}(V) is generated by the elements
zAh(x) ®[h]

where [h] is a canonical generator of the space isoy(V) and z is an element in

AL (V).

The result below is a straightforward consequence of Proposition 6.3.

Corollary 6.6 For n a nonzero integer, we have the short exact sequence

0— K" - A" ®isoy — K"t 0.

Remark We will prove that this short exact sequence is not split in a subsequent paper
concerning the calculation of Homg,,,(A" ® is0y, A" ® is0g).

We next explain how to decompose the functors K[.. We begin by investigating the
case of the functor K.

Lemma 6.7 The functor K is equivalent to the functor isoy .

Proof Let V be an object in 7. A basis of the vector space K} (V) is given by
the set of elements of the following form: /(x) & [h] for [h] a canonical generator of
isoq (V). Then we define the linear map
KL(V) 2 isou (V)
h(x) ® [h]+— [h]

and we leave the reader to check that o is an isomorphism and that these linear maps
are natural. O

In order to identify the composition factors of the functors K, for n > 1, we need the
following lemma.

Lemma 6.8 For n a nonzero integer, the morphism v,: A"t! ® iso, — A" ® is04
induces a morphism v,{( : Kit1 — K™ making the following diagram commute:

K

1 n n
Knt k!

| |

A" ®is0y SRS A" ® 180

%
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Proof For an object V in 7, and vy A...A v, Ah(x) ®[h] a generator of KX T1(V),
we have

(War)(1 AL AV AR(X) R [A])

= (Z VIA. . AVA. . AUy AR(X)R B(v;, h(x))[h])+v1A. AV QB(h(x), h(x))[h].

i=1

Since B is alternating, we have B(h(x),h(x)) = 0. Hence,
Wap)Wi A AV AR(X) ® [h])
=Y VI ALLATIAL AV ARX) ® B(vi, h(x))[h] € Ki(V).

We deduce the existence of the induced morphism vX . O

This lemma justifies the introduction of the following definition.

K" —

Definition 6.9 For n > 2 aninteger, let L}, be the kernel of the morphism v f_ - Kg

Kn—l
.
We have the following characterization of the spaces L}, (1) which is useful below.

Lemma 6.10 For an object V' in 7y, the space L[, (V') is generated by the elements
of the form

z ANh(x) @[hl],
where [h] is a canonical generator of the space isoy (V) and z is an element of
A" (Veet(h(x))1).

Proof Let V be an object in 7;. Since the space L, (V) is a subvector space of
K2 (V), we deduce from Lemma 6.5 that the vector space L, (V) is generated by the
elements of the following form: z A h(x) ® [A].

For a given canonical generator [/4] of isoy(V'), since the quadratic space V' is nonde-
generate, there is an element w in V' such that

B(h(x),w) = 1.

Let W be the space Vect(/(x), w) and V =~ W LW~ be an orthogonal decomposition
of the space V. The canonical generator z A h(x) ® [h] of K[;(V') can be written in
the form

ZARX)@[h]+ 2" Aw A h(x) ®[h]
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where z/ € A" Y (W) and 27 € A" 2(W).

Let x be an element of L} (V). Then

x= Y pAh@MBl= D @ Ahx) &[]+ 2 AwAh(x) ®[h)
[#1eG (isoa (V) (k€6 (isoa (V)
where G(isox(V)) is the set of the canonical generators of isoy (V). Consequently,
vE @ Ah(x) ) =0
since z € A" YWY € AP 1(Veet(h(x))1) and
vE @I AwAR(x) @[h]) =z} Ah(x) @ [h].

Since the element x is in the kernel of v,{{_ 1

x= Y zZAh(x) @]
[h1€G (isoa (V)

for zj € A"~ ' (WL) € A" (Vect(h(x))L). o

we deduce that z;l/ = 0. Hence

We have the following lemma.

.. n+2 . Vn+1 n+1 . Vn n . .
Lemma 6.11 The composition A ®isoy ——> A ® 1504 —> A" ® iS04 IS
zero.

Proof Let V' be an object in 7; and let vi A ... A V42 ® [h] be an element of
A2 ®isoq (V). Then

VpOVy41 (Ul AN oAV ® [h])
n+2
- vn<Z (V1 A~ AT A AVpsa ®B(v,~,h(x))[h]))

i=1

n+2
=3 (v1 Ar ABIAATIA L AUpgr ® B(v,-,h(x))B(vj,h(x))[h]>
j#ii=1
=0
since the characteristic is equal to 2. a

We deduce the following result.

Lemma 6.12 The map vX: K'+1 — K" factors through L.
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Proof By Lemma 6.8, the following diagram is commutative:

K K

v
n+1 n n n—1 n—1
Ke Ky Kg

| | |

A" ®isoy e A" ® isoy e A" 1 ®iso,

Consequently, we deduce from Lemma 6.11, that vf_ o v,{{ = 0. Hence, there is a

1
morphism 7X: K7+1 — L” making the following diagram commutative:

K€+1
k-
L
L =Ker(vy—1) K? - K11 |
Vn—1

Then, we have the following proposition.

Proposition 6.13 For n a nonzero integer, there is a short exact sequence:
n+1 n+1 n
O0—-L," —K,7 — L,—0.
Proof It is sufficient to prove that the natural map vX: K”+1 — L" constructed in
the proof of the previous Lemma is an epimorphism of Fgyaq.

Let V' be an object in 7gand let vy A...Av,—1 Ah(X) ®[h] be a generator of L2 (V).
By definition of L[, (V) we have B(v;,h(x)) =0 forall i in {1,...,n—1}. Since
h(x) is a nonzero element in the nondegenerate quadratic space V, there is an element
v in V such that B(v, i(x)) = 1. Then, we prove that the element

VI AL AU— AVAR(X) ® [h] of KETL(V)
verifies
(T}',{()V(vl A AU 1 AVARX) QA = vi A AV AR(X) ® [A].

Hence, 7K

. 1S surjective. m|

Remark Proposition 6.13 is equivalent to the following statement: the complex

v Vi
Y G ¢ iy ¢

18 exact.
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6.2 Simplicity of the functors L}

In this section, we prove the following result, where the functors L, are the subfunctors
of A" ®iso, defined in Definition 6.9.

Theorem 6.14 The functors L}, are simple.
To prove this theorem, we need the following fundamental lemma.

Lemma 6.15 If J is a subfunctor of L},, then for any object V' in 7, either J(V) =
{0}, or J(V)=L.(V).

Proof Let J be a subfunctor of L and V' be an object in 7. Suppose that J (V) #
{0} and denote by y a nonzero element of J(V'). We have

(6-1) y= >  arhx)e[h
[#l€G(isoa (V)

where z, is an element of A”~!(Vect(h(x))™) by Lemma 6.10 and G(isog (V) is the
set of canonical generators of the space isoq (V).

The proof is divided into three steps; in the first one we prove that there exists a
generator [/1] of isoy (V') such that z; A h(x) @ [h] € J(V). We deduce, in the second
part, that for all other generator [/’] of isoy (V) we have a nonzero element of the
form z/ AW (x) ® [7'] in J(V). Finally, we prove that for each element of the form
Vi A ... Avp—y in A" 1 (Vect(h(x))L) and each canonical generator [4] of isog(V),
the element vy A...Av,—1 Ah(Xx) ® [h] belongs to J(V'). This will prove that the two
spaces J(V') and L[ (V) are isomorphic, by the characterization of the space L[ (V')
given in Lemma 6.10.

(1) Let [h] be a canonical generator of isoy (V) such that, in the decomposition
of y given in (6-1) the element z; A h(x) ® [A] is nonzero. Since the space V is
nondegenerate, there exists an element v in V' such that B(v, 2(x)) = 1. We deduce a
symplectic decomposition of V' of the form

(6-2) V = Vect(h(x),v)LVect(vi,w;)L... LVect(vy, wn) = Vect(h(x),v)LV’.

We consider the morphism of &;, where we denote by {alg , b’g } a symplectic basis of
the k—th copy of Hj in (Ho)l(2m+1);

[V — VL(Hp)*@m+h
h(x) — h(x)
v —> v+a(1)
Vg > U —i—a(z)k
Wy > wg +a§k+1
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for k an integer between 1 and m, which allows us to define the following morphism
in7;: T = [VL V L(Hp)L@m+D 7] We deduce from the two cartesian diagrams
below:

(x,@) 1%

! :

(x,0) =V — V L(Hy)+@m+D

and, for h; # h,

10} 1%

y :

(¥.0) =V —= V L(Ho) - @+ D
that J(T)(») = z4 Ah(x) ®[h] € J(V), since €(T) = 1dy.

(2) Let [/A'] be a canonical generator of isoy (V') different from [h]. We have the
equality ¢(7'(x)) = ¢((h(x)) = «, hence the linear isomorphism denoted by /', from
(h(x),a) to (A’ (x),®) is a morphism in Egeg. So, we can apply Theorem 1.3 to
obtain the existence of a morphism f* of Homg, (V, V') making the following diagram

commutative:

S
Vv

v

(h(x). o) — = (H(x). @)

We deduce the following cartesian diagram:

h/

(x, )

. F

(X,W)TV?V

Consequently, by the consideration of the morphism 7" = [Vi> V<I—dV], we obtain

J(T)(zp A(x) @A) = A"H(f)(zp) AR (x) @ [H] € J(V).

(3) By the point (1) of the proof, there is a nonzero element of the form z A h(x) ® [A]
in J(V). We want to prove that, for each element of the form vy A ... A v,
in A"~ (Vect(h(x))1) and each canonical generator [/i] of isoq(V), the element
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Vi A...AVy—1 AN(X) ®[h] belongs to J (V). According to the proof of Lemma 6.10,
it is sufficient to prove that the element vy A ... A v,—1 A h(x) ® [h] belongs to
J(V) for vi A ... Av,_q in A""1(V') where V' is the space considered in the
decomposition (6-2). By simplicity of the functor A”~! in F, we have the existence
of an endomorphism g of €(V’) such that

AN @) @) =v1 A Avp_.
We deduce that
J(Id7, (Vect(h(x),v)) Lig)(z Ah(x) ®[h]) =vi A... Avp_1 AR(X) ®[H]

where 7 is an antecedent of g € Endg/(e(V”)) by the forgetful functor €: T, — & f
which is full by [12, Proposition 3.5] and Id7, (Vect(h(x), v))Ltg is the orthogonal
sum of the morphisms of 7. m|

Proof of Theorem 6.14 Let J be a nonzero subfunctor of L, and V' be an object in
74 such that the space J(V') is nonzero. By Lemma 6.15, we have J(V) = L3 (V).
We prove, in the following, that for all object W in 7, J(W) = L3 (W).

Let W be a fixed object in 7. The proof is divided into two parts.
(1) Let us prove that J(VLW) >~ LI(VLW).

Let i be the canonical inclusion from V to VLW and T = [VQVJ.W&VJ_W] be
the morphism of 7;. We have the following cartesian diagram:

(x.a) ioh Viw

N P

(X,Ol) T> Vv *z> V1iw

Since WViWwlyiwlvievLviwdy 1w =1dy

we deduce that the space J(V LW) is nonzero. Hence, by Lemma 6.15, we have
JVIW)~LL(VLIW).

(2) Let us prove that J(W) >~ L2 (W).

According to Lemma 6.15, it is sufficient to prove that if L},(W) is nontrivial then
J(W) is not zero. Let j be the canonical inclusion from W to V1 W .

We deduce from

WVIWSyiwdwlowLviwdy 1w =1dy
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the existence of the surjection L (V LW) — L7 (W). Furthermore, by the first point
of the proof, we have J(VLW) = LZ(VLW). This gives rise to the following
commutative diagram:

J(VLW)

|

L (VAW) —s LI(W)

J(W)

Consequently, by a diagram chasing argument, we obtain that if L (W) is nonzero
then J(W) is nonzero. a

We prove in the following proposition that this gives rise to two families of non
isomorphic functors.

Proposition 6.16 The functors in the union of the family {L{ | n € N} and the family
{L" | n € N} are pairwise nonisomorphic.

Proof For a fixed «, there exists, for any integer 7, a minimal integer d(n) such that

LI (HE™) #£ 0.

Let k& be an integer different from n, if |[n — k| > 2, the integers d(n) and d (k) allow
us to distinguish the simple functors L}, and L’a‘, in the contrary case, we prove that
the dimensions of the spaces L (H, Ld(m) and L’; (Hd‘d () are different. This proves

R

that the simple functors L and Lg are not isomorphic.

Furthermore, two simple functors S and S in Fquaq are not isomorphic if there exists
a morphism 7" in 7, such that S$1(7") = 0 and S»>(T") # 0. Moreover, the morphisms
T constructed in the first point of the proof of Lemma 6.15 verify

LA(T)#0 and Lf, ,(T)=0
where (o + 1) is the reduction mod 2 of o + 1.

More precisely, if we consider a nonzero element zp A (x) ® [h] of Lg (V) and the
morphism 7' = [VLV L(Hy)L@m+D Ly ] where

[V — VL(Hy)temtD

h(x) —> h(x)

v > v—i—a(l)

Vg > Vg +a%k
Wi > wg —I—ang

Algebraic € Geometric Topology, Volume 7 (2007)



Generic representations of orthogonal groups: the mixed functors 407

for k an integer between 1 and m. We deduce from following cartesian diagram

(x,@) 14

! :

(X.0) 5=V —— V L(Ho)+@m+D

that L"(T) # 0.

In the other hand, for any nonzero element z,, A h;(x) ® [h;] of Lé‘aﬂ)(V), we have

hi # h since o # (@ + 1). So we deduce from the following cartesian diagram

10} V

y :

(x,(x¢+1)) 4>h- 1% 4>f VJ_(HO)J_(Zm-H)

that L’(‘aH)(T) =0. o

7 The composition factors of the functors Mixy,; and Mix;

We prove in this section that the functors Mixg,; and Mix ; are uniserial (ie the lattice
of its subfunctors is totally ordered) and the composition factors of the functor Mixg_;
are the functors Lg and those of Mix ; are the functors L’l’. For that, we identify the
subquotient kg Xy 1/kg412q,1 of the filtration of the functor X, ; by the functors
kqXq,1 introduced in Proposition 5.2 with the functor Lz *1 defined in Definition 6.9.
This gives rise to the following result.

Theorem 7.1 The functor X 1 is uniserial and its unique composition series is given
by the decreasing filtration by the functors k X4 1

. C kdza,l C...Cky Za,l C koza,l = Ea,l
which verifies

kaZe1/kas1Sa1 ~ LI

Remark Remark that the strategy of the following proof of the uniseriality of X
is close to the proof of Lemma 6.15.
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Proof To prove that the functor X ; is uniserial, it is sufficient to prove that if J is
a nonzero subfunctor of X, ; then there exists an integer d such that J = k;3, ;.

Let V' be an object in 7, such that J(V') # 0 and v be a nonzero element of J(V),
we have

b= 3 apeytx »)]
{x,y}edy
where Ay = {{x,y}|x e V,y e V,q(x + y) =«a, B(x,y) = 1}. One verifies easily
that for {x,y}€ Ay and [ €V, {x+1, y+1} € Ay if and only if / € (Vect(x, y))* or
| =x+y+1" where I’ € (Vect(x, y))t. Since {x+(x+y+1"), y+(x+y+1) =
{(y+U',x+1'} ={x+1, y+1'}, after reordering we obtain

n

(7-1) v=) "> lxi+1yi+1]

i=1leL;

where for all i {x;, yi} € Ay ,fori # j, xi+yi #xj+yj and L; is a subvector space
of (Vect(x;, yi))* of dimension r;. We consider a vector space V', an element v’ of
J(V’) and an element {x’, y’} in Ay such that the dimension r’ of £’ is minimal.
We deduce from the decomposition (7-1) that J C k, 2 ;.

To prove that k, 24 1 C J, we consider the following decomposition of v' € J(V’):

P
V=D [ Y+ Y ( 3l + 1y +z}])

Iec’ j=1 leL;

where for all j xj + y; # x’ + /. By definition of £, ; and Mixy 1, we have a
natural map o: J — Pr ® iso, such that

p
op W)=Y (" + 1T+ + DR+ 1+ Y > (Ixj + 11+ [y + ) R[x; +;]
ler’ j=1leL;

where, by abuse, we denote by v the linear map F, — V' determined by v. Let
S e(V') — €(V') be the linear map such that f(x'+y") = x'+y" and f(xj+y;) =
xj+yj+m for m a nonzero element of £;. Since € is full by [12, Proposition 3.5],
we obtain the existence of a morphism 7" in Homy, (V', V') such that €(T) = /. We
deduce that

(Pr ®isoa)(T)oy (V') = Y (X' + 11+ + 1) @ ¥+ ¥']
rec
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and, consequently
JM)W)= Y X' +1.y +1'e J(V))
e’
where £’ is a subvector space of (Vect(x’, y"))* of dimension r’.
Let W be an object of 7y, Y ;< [{wi + 1, wy +[}], where L is a subvector space of
Vect(wy, w,)* of dimension r’, be a generator of krXg1(W)and g: (V') —> (W)

be the linear map such that g(x’ + ') = w; + w, and g send a basis of £’ to a basis
of L. By the fullness of € we obtain a morphism 7" in Homy, (V', W) such that

JI( Dl + 1y + 1/}]) = lwy +Lows + 131 € J(W).
et leL
Hence J =k, Zq.1.
By Lemma 5.6, we have
(g4 ®isoa) 0ig(kqZar) C LT,
Consequently, by the commutative diagram (5—1) given in the proof of the second point

of Proposition 5.5 we have the natural map

0: kgSa1/kar1Za,n — LI

which is nontrivial by Lemma 5.6. Since the quotients k24, 1/k4412q,1 are nonzero
by Proposition 5.7 and the functors Lz"'l are simple by Theorem 6.14, the natural
map o is an equivalence. |
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