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Generic representations of orthogonal groups:
the mixed functors

CHRISTINE VESPA

In previous work, we defined the category of functors Fquad , associated to F2 –vector
spaces equipped with a nondegenerate quadratic form. In this paper, we define a
special family of objects in the category Fquad , named the mixed functors. We give
the complete decompositions of two elements of this family that give rise to two new
infinite families of simple objects in the category Fquad .

18A25; 16D90, 20C20

In 1993, Henn, Lannes and Schwartz established a very strong relation between the
Steenrod algebra and the category F.p/ of functors from the category Ef of finite
dimensional Fp –vector spaces to the category E of all Fp –vector spaces, where Fp is
the prime field with p elements [5]. To be more precise, they study the category U of
unstable modules over the Steenrod algebra localized away from the nilpotent unstable
modules N i l ; they exhibit an equivalence between the quotient category U=N i l and
a full subcategory of the category of functors F.p/. This equivalence is very useful
and allows several important topological results to be derived from algebraic results
in the category F.p/. For a recent interesting application of this equivalence to the
cohomology of Eilenberg MacLane spaces, we refer the reader to the results obtained
by Powell [9].

An important algebraic motivation for the particular interest in the category F.p/
follows from the link with the modular representation theory and the cohomology of
finite general linear groups. Namely, the evaluation of a functor F , object in F.p/, on
a finite dimensional vector space V is a Fp ŒGL.V /�–module. A fundamental result
obtained by Suslin in the appendix of [4] and, independently, by Betley in [2] relates the
calculation of extension groups in the category F.p/ with certain stable cohomology
groups of general linear groups.

It is natural to seek to construct other categories of functors that play a similar role for
other families of algebraic groups and, in particular, for the orthogonal groups.

In [12], we constructed the functor category Fquad , which has some good properties as
a candidate for the orthogonal group over the field with two elements. For instance, the
evaluation functors give rise to a coefficient system that allows us to define a system of
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homology groups. We obtained, in [12], two families of simple objects in Fquad related,
respectively, to general linear groups and to orthogonal groups. The purpose of this paper
is to define a new family of objects in the category Fquad , named the mixed functors,
which give rise to new simple objects of Fquad . The mixed functors are subfunctors of
a tensor product between a functor coming from the category F WDF.2/ and a functor
coming from the subcategory Fiso of Fquad defined in [12]. The structure of the mixed
functors is very complex, hence it is difficult to give explicit decompositions in general.
However, we give the complete decompositions of two significant elements of this
family: the functors Mix0;1 and Mix1;1 . These two mixed functors play a central role
in the forthcoming paper [11] concerning the decompositions of the standard projective
objects PH0

and PH1
of Fquad . We prove in [11] that these mixed functors are direct

summands of PH0
and PH1

. The decomposition of Mix0;1 and Mix1;1 represents a
further step in our project to classify the simple objects of this category.

Recall that in [12] we constructed two families of simple objects in Fquad . The first
one is obtained using the fully faithful, exact functor �W F ! Fquad , which preserves
simple objects. By Kuhn [7], the simple objects in F are in one-to-one correspondence
with the irreducible representations of general linear groups. The second family is
obtained using the fully-faithful, exact functor �W Fiso!Fquad which preserves simple
objects, where Fiso is equivalent to the product of the categories of modules over the
orthogonal groups. The results of this paper are summarized in the following theorem.

Theorem Let ˛ be an element in f0; 1g.

(1) The functor Mix˛;1 is infinite.

(2) There exists a subfunctor †˛;1 of Mix˛;1 such that we have the short exact
sequence

0!†˛;1!Mix˛;1!†˛;1! 0:

(3) The functor †˛;1 is uniserial with unique composition series given by the de-
creasing filtration given by the subfunctors kd†˛;1 of †˛;1 :

: : :� kd†˛;1 � : : :� k1†˛;1 � k0†˛;1 D†˛;1

(a) The head of †˛;1 (ie †˛;1=k1†˛;1 ) is isomorphic to the functor �.iso.x;˛//
where iso.x;˛/ is a simple object in Fiso .

(b) For d > 0

kd†˛;1=kdC1†˛;1 'LdC1
˛

where LdC1
˛ is a simple object of the category Fquad that is neither in the

image of � nor in the image of � .
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The functor LdC1
˛ is a subfunctor of �.ƒdC1/˝ �.iso.x;˛//, where ƒdC1

is the .d C 1/–st exterior power functor.

This theorem and the forthcoming paper [11] lead us to conjecture that there are only
three types of simple objects in the category Fquad : those in the image of the functor �,
those in the image of the functor � and those which are subfunctors of a tensor product
of the form: �.S/˝ �.T / where S is a simple object in F and T is a simple object
in Fiso .

This paper is divided into seven sections. Section 1 recalls the definition of the category
Fquad and the results obtained in [12]. Section 2 gives a general definition of the mixed
functors MixV;D;� as subfunctors of the tensor product �.PF

V
/˝ �.isoD/ in Fquad ,

where V is an object in Ef , D is a quadratic vector space, � is an element in the dual
of V ˝D , PF

V
is the standard projective object of F obtained by the Yoneda lemma

and isoD is an isotropic functor in Fiso . Section 3 studies the mixed functors MixV;D;�

such that dim.D/D 1 and dim.V /D 1. We define, in particular, the subfunctor †˛;1
of the mixed functor Mix˛;1 given in the second point of the previous theorem. In
Section 4, we deduce a filtration of the functor �.PF

F2
/˝�.iso.x;˛// from the polynomial

filtration in the category F . Section 5 gives a filtration of the functors †˛;1 , defined in
Section 3, and we obtain the existence of a natural map from the subquotients of this
filtration to the functors �.ƒn/˝�.iso.x;˛//, by relating this filtration to that introduced
in the previous section. Section 6 gives the structure of the functors �.ƒn/˝�.iso.x;˛//.
We define the functors Ln

˛ and prove their simplicity. Section 7 proves the structure of
the functors Mix˛;1 given in the previous theorem.

The results contained in this paper extend results obtained in the author’s PhD thesis [13].
The author wishes to thank her PhD supervisor, Lionel Schwartz, for his guidance,
as well as Geoffrey Powell and Aurélien Djament for numerous useful discussions
and Serge Bouc for suggesting that the methods used in the author’s thesis should be
sufficient to establish the uniseriality of the functors †˛;1 .

1 The category Fquad

We recall in this section some definitions and results about the category Fquad obtained
in [12].

Let Eq be the category having as objects finite dimensional F2 –vector spaces equipped
with a non degenerate quadratic form and with morphisms linear maps that preserve
the quadratic forms. By the classification of quadratic forms over the field F2 (see, for
instance, Pfister [8]) we know that only spaces of even dimension can be nondegenerate
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and, for a fixed even dimension, there are two nonequivalent nondegenerate spaces,
which are distinguished by the Arf invariant. We will denote by H0 (resp. H1 )
the nondegenerate quadratic space of dimension two such that Arf.H0/ D 0 (resp.
Arf.H1/D 1). The orthogonal sum of two nondegenerate quadratic spaces .V; qV / and
.W; qW / is, by definition, the quadratic space .V ˚W; qV˚W / where qV˚W .v; w/D

qV .v/CqW .w/. Recall that the spaces H0?H0 and H1?H1 are isomorphic. Observe
that the morphisms of Eq are injective linear maps and this category does not admit
pushouts or pullbacks. There exists a pseudo pushout in Eq that allows us to generalize
the construction of the category of cospans of Bénabou [1] and thus to define the
category Tq in which there exist retractions.

Definition 1.1 The category Tq is the category having as objects those of Eq and, for
V and W objects in Tq , HomTq

.V;W / is the set of equivalence classes of diagrams
in Eq of the form V

f
!X

g
 W for the equivalence relation generated by the relation R

defined as follows: .V f
!X1

g
 W / R .V

u
!X2

v
 W / if there exists a morphism ˛

of Eq such that ˛ ıf D u and ˛ ıgD v . The composition is defined using the pseudo
pushout. The morphism of HomTq

.V;W / represented by the diagram V
f
!X

g
 W

will be denoted by ŒV f
!X

g
 W �.

By definition, the category Fquad is the category of functors from Tq to E . Hence
Fquad is abelian and has enough projective objects. By the Yoneda lemma, for any
object V of Tq , the functor PV D F2ŒHomTq

.V;�/� is a projective object and there
is a natural isomorphism: HomFquad.PV ;F /' F.V /, for all objects F of Fquad . The
set of functors fPV jV 2 Sg, named the standard projective objects in Fquad , is a set of
projective generators of Fquad , where S is a set of representatives of isometry classes
of nondegenerate quadratic spaces.

There is a forgetful functor �W Tq! Ef in Fquad , defined by �.V /DO.V / and

�.ŒV
f
!W?W 0

g
 W �/D pg ıO.f /

where pg is the orthogonal projection from W?W 0 to W and OW Eq ! Ef is the
functor which forgets the quadratic form. By the fullness of the functor � and an
argument of essential surjectivity, we obtain the following theorem.

Theorem 1.2 [12] There is a functor �W F!Fquad , which is exact, fully faithful and
preserves simple objects.

In order to define another subcategory of Fquad , we consider the category Edeg
q having

as objects finite dimensional F2 –vector spaces equipped with a (possibly degenerate)
quadratic form and with morphisms injective linear maps that preserve the quadratic
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forms. A useful relation between the categories Eq and Edeg
q is given by the following

theorem, which can be regarded as Witt’s theorem for degenerate quadratic forms.

Theorem 1.3 Let V be a nondegenerate quadratic space, D and D0 subquadratic
spaces (possibly degenerate) of V and f W D!D0 an isometry. Then, there exists an
isometry f W V ! V such that the following diagram is commutative:

V
f // V

D
?�

OO

f

// D0
?�

OO

Proof For a proof of this result, refer to Bourbaki [3, Section 4, Theorem 1].

The category Edeg
q admits pullbacks; consequently the category of spans Sp.Edeg

q / is
defined [1]. By definition, the category Fiso is the category of functors from Sp.Edeg

q /

to E . As in the case of the category Fquad , the category Fiso is abelian and has enough
projective objects; by the Yoneda lemma, for any object V of Sp.Edeg

q /, the functor
QV D F2ŒHomSp.Edeg

q /.V;�/� is a projective object in Fiso . The category Fiso is related
to Fquad by the following theorem.

Theorem 1.4 [12] There is a functor �W Fiso! Fquad , which is exact, fully-faithful
and preserves simple objects.

We obtain the classification of the simple objects of the category Fiso from the following
theorem.

Theorem 1.5 [12] There is a natural equivalence of categories

Fiso '
Y
V 2S

F2ŒO.V /��mod

where S is a set of representatives of isometry classes of quadratic spaces (possibly
degenerate) and O.V / is the orthogonal group.

The object of Fiso that corresponds, by this equivalence, to the module F2ŒO.V /� is the
isotropic functor isoV , defined in [12]. The family of isotropic functors forms a set of
projective generators and injective cogenerators of Fiso . Recall that the isotropic functor
isoV W Sp.Edeg

q /! E of Fiso is the image of QV by the morphism aV W QV !DQV
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which corresponds by the Yoneda lemma to the element .IdV /
� of DQV .V /, where

.IdV /
� is defined by

.IdV /
�.ŒIdV �/D 1 and .IdV /

�.Œf �/D 0 for all f ¤ IdV

where we denote by Œf � a canonical generator of DQV .V /' F2ŒEndSp.Edeg
q /.V /�. This

definition and that of the functor �W Fiso ! Fquad give rise to the following more
concrete definition of the functor isoV which will be useful below.

Proposition 1.6 The following equivalent definition of the functor �.isoV / holds.

� For W an object of Tq ,

�.isoV /.W /D F2ŒHomEdeg
q
.V;W /�:

� For a morphism m D ŒW
f
!Y

g
 X � in Tq and a canonical generator Œh� of

�.isoV /.W /, we consider the following diagram in Edeg
q :

X

g

��
V

h

// W
f

// Y

If the pullback of this diagram in Edeg
q is V , this gives rise to a unique morphism

h0W V !X in Edeg
q , such that f ıhD g ıh0: In this case, �.isoV /.m/Œh�D Œh

0�:

Otherwise, �.isoV /.m/Œh�D 0:

Notation In this paper, a canonical generator of �.isoD/.W / will be denoted by
ŒD

h
!W � or, more simply, by Œh�.

We end this section by a useful corollary of Theorem 1.4 and Theorem 1.5. For
˛ 2 f0; 1g, let .x; ˛/ be the degenerate quadratic space of dimension one generated by
x such that q.x/D ˛ .

Corollary 1.7 The functors �.iso.x;0// and �.iso.x;1// are simple in Fquad .

Proof It is a straightforward consequence of the triviality of the orthogonal groups
O.x; 0/ and O.x; 1/.

Algebraic & Geometric Topology, Volume 7 (2007)



Generic representations of orthogonal groups: the mixed functors 385

2 Definition of the mixed functors

The aim of this section is to define the mixed functors: for this, we consider the functors
�.PF

V
/˝ �.isoD/ in Fquad where V is an object in Ef , PF

V
is the standard projective

object of F obtained by the Yoneda lemma, D is an object in Edeg
q , and �W F !Fquad

and �W Fiso!Fquad are the functors defined in [12] and recalled briefly in Theorem 1.2
and Theorem 1.4 respectively. A canonical generator of PF

V
.W /' F2ŒHomEf .V;W /�

will be denoted by Œf �.

Notation In this paper, the bilinear form associated to a quadratic space V will be
denoted by BV .

Proposition 2.1 Let D be an object in Edeg
q , V be an object in Ef , � be an element

in the dual of V ˝ D and W be an object in Tq . Then the subvector space of
.�.PF

V
/˝ �.isoD//.W / generated by the elements

Œf �˝ ŒD
h
!W �

such that for all v 2 V; for all d 2D; BW .f .v/; h.d//D �.v˝ d/

defines a subfunctor of �.PF
V
/˝ �.isoD/ which will be denoted by MixV;D;� and

called the mixed functor associated to V , D and �.

Proof It is sufficient to verify that, for each morphism M D ŒW
k
!Y

l
 Z� of Tq and

each generator Œf �˝ ŒD h
!W � of MixV;D;�.W /,

MixV;D;�.M /.Œf �˝ ŒD
h
!W �/ 2MixV;D;�.Z/:

Consider the following diagram in Edeg
q :

Z

l
��

D
h

// W
k

// Y

If the pullback of this diagram in Edeg
q is D , namely if k ı h.D/ � l.Z/, this gives

rise to a unique morphism h0 , from D to Z in Edeg
q , such that k ı hD l ı h0 that is,

the following diagram commutes:

D
h0 //

Id
��

Z

l
��

D
h

// W
�k

// Y
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In this case, by Proposition 1.6, we have

MixV;D;�.M /.Œf �˝ ŒD
h
!W �/D .Œpl ı k ıf �˝ ŒD

h0
!Z�/

where pl is the orthogonal projection associated to l . For an element v in V and d

in D , we have
BV .f .v/; h.d//D BY .k ıf .v/; k ı h.d//:

Since the pullback of the diagram considered previously is D , we have kıh.D/� l.Z/:

Consequently,

BV .f .v/; h.d//D BZ .pl ı k ıf .v/;pl ı k ı h.d//D BZ .pl ı k ıf .v/; h0.d//:

Thus, if BV .f .�/; h.�// D � then BZ .pl ı k ı f .�/; h0.�// D �. Therefore the
element .Œpl ı k ıf �˝ ŒD

h0
!Z�/ belongs to MixV;D;�.Z/.

Otherwise by Proposition 1.6 we have

MixV;D;�.M /.Œf �˝ ŒD
h
!W �/D 0:

Remark The terminology ”mixed functors” is chosen to reflect the fact that these
functors are subfunctors of a tensor product of a functor coming from the category F
and a functor coming from the category Fiso .

We obtain the following decomposition of the functors �.PF
V
/˝ �.isoD/.

Lemma 2.2 For D an object in Edeg
q and V an object in Ef we have

�.PF
V /˝ �.isoD/D

M
�2.V˝D/�

MixV;D;�:

Proof For two different elements � and �0 in .V ˝D/� , we have

MixV;D;�.W /\MixV;D;�0.W /D f0g

for W an object in Tq . Thus, we have the decompositions�
�.PF

V /˝ �.isoD/
�
.W /D

� M
�2.V˝D/�

MixV;D;�

�
.W /;

for all objects W in Tq . Since MixV;D;� is a subfunctor of �.PF
V
/˝ �.isoD/ by

Proposition 2.1, we deduce the result.

Remark In the definition of the mixed functors, we don’t impose the condition
h.D/\f .V /D f0g. Nevertheless, we can define similar functors with this condition,
which give rise to quotient functors to the mixed functors defined in Proposition 2.1.
These functors will be useful for a later general study of the mixed functors.
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3 The functors MixV;D;� such that dim.D/D1 and dim.V /D1

The aim of this section is to give some general results about the four simplest mixed
functors of Fquad obtained in the case of dim.D/ D dim.V / D 1. The motivation
of the particular interest in this case is the study of the projective generators PH0

and PH1
of Fquad . In fact, we prove in [11], that the mixed functors that are direct

summands of these two standard projective generators of Fquad verify the conditions
dim.D/D dim.V /D 1.

When V and D are spaces of dimension one, we will denote by Mix˛;ˇ , where ˛ and
ˇ are elements of f0; 1g, the functor MixV;D;� such that V ' F2 , D ' .x; ˛/ and
�D ˇ . We have the following result.

Lemma 3.1 Let W be an object in Tq , if Œf �˝ Œ.x; ˛/ h
!W � is a canonical generator

of Mix˛;ˇ.W /, then Œf Ch.x/�˝ Œ.x; ˛/
h
!W � is a canonical generator of Mix˛;ˇ.W /.

Proof This is a straightforward consequence of the fact that the bilinear form associated
to a quadratic form is alternating.

In order to make this symmetry clearer in the set of canonical generators of Mix˛;ˇ.W /

and to introduce an action of the symmetric group S2 on this set, we use a slightly
different description of the canonical generators of Mix˛;ˇ.W / corresponding to a
reindexing of these canonical generators.

Definition 3.2 For ˛ and ˇ elements of f0; 1g, we consider the following set:

N W
˛;ˇ D f.w1; w2/ j w1 2W; w2 2W; q.w1Cw2/D ˛; B.w1; w2/D ˇg:

We have the following result.

Lemma 3.3 For D ' .x; ˛/ and �D ˇ , we have

Mix˛;ˇ.W /' F2ŒN
W
˛;ˇ �

where W is an object in Tq .

Furthermore, for a morphism m D ŒW
f
!Y

g
 X � in Tq and a canonical generator

Œ.w1; w2/� of F2ŒN
W
˛;ˇ
�, we consider the diagram in Edeg

q

X

g

��
.x; ˛/

l

// W
f

// Y
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where l is the morphism of Edeg
q given by l.x/ D w1Cw2 . If the pullback of this

diagram in Edeg
q is .x; ˛/ then Mix˛;ˇ.m/Œ.w1; w2/�D Œ.pgıf .w1/;pgıf .w2/� where

pg is the orthogonal projection associated to g . Otherwise, Mix˛;ˇ.m/Œ.w1; w2/�D 0:

Proof The generator of the vector space V of dimension one will be denoted by a.
There is an isomorphism

fW W Mix˛;ˇ.W /! F2ŒN
W
˛;ˇ �

Œf �˝ Œ.x; ˛/
h
!W � 7! Œ.f .a/C h.x/; f .a//�;

of which the inverse is given by

f �1
W W F2ŒN

W
˛;ˇ �!Mix˛;ˇ.W /

Œ.w1; w2/� 7! Œk�˝ Œ.x; ˛/
l
!W �

where kW V !W is defined by k.a/D w2 and l W .x; ˛/!W is defined by l.x/D

w1Cw2 .

The second statement of the lemma is only a translation of the definition of the mixed
functors on the sets of morphisms in terms of the sets N W

˛;ˇ
.

Notation Henceforth, we will use the basis given by the set N W
˛;ˇ

to represent the
elements of Mix˛;ˇ.W /.

Thus, the canonical generator Œf �˝ Œ.x; ˛/ h
!W � of Mix˛;ˇ.W / is represented by

Œ.f .a/Ch.x/; f .a//� and ŒfCh.x/�˝Œ.x; ˛/
h
!W �, which is also a canonical generator

of Mix˛;ˇ.W / by Lemma 3.1, is represented by Œ.f .a/; f .a/C h.x//�.

We have the following lemma.

Lemma 3.4 The symmetric group S2 acts on the functor Mix˛;ˇ .

Proof Let W be an object of Tq . Define an action of S2 D fId; �g on Mix˛;ˇ.W /

by
� � Œ.w1; w2/�D Œ.w2; w1/�:

We leave the reader to verify that the linear maps

�W W Mix˛;ˇ.W /!Mix˛;ˇ.W /

Œ.w1; w2/� 7! Œ.w2; w1/�

define a natural transformation.
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This lemma allows us to define an object in Fquad by considering the invariants by this
action.

Definition 3.5 Let †˛;ˇ be the subfunctor of Mix˛;ˇ defined by considering the
invariants of Mix˛;ˇ.W / by the action of the symmetric group S2 .

In the following, we will focus on study the functors Mix0;1 and Mix1;1 . These two
functors are particularly interesting since they are direct summands of PH0

and PH1

(see [11]).

We have the following lemma.

Lemma 3.6 Let W be an object in Tq and Œ.w1; w2/� be a generator of Mix˛;1.W /,
then the vectors w1 and w2 are linearly independent.

Proof This is a straightforward consequence of the fact that the bilinear form B is
alternating.

We deduce the following lemma.

Lemma 3.7 Let W be an object in Tq , the action of S2 on the set of canonical
generators of Mix˛;1.W / is free.

Proof For a canonical generator Œ.w1; w2/� of Mix˛;1.W /, since the vectors w1 and
w2 are linearly independent by Lemma 3.6, we have w1 ¤w2 . Hence, the action of
S2 is free.

Remark We deduce from Lemma 3.6 that the two functors Mix˛;1 , coincide with the
functors mentioned in the last remark of the Section 2.

We give the following general result about the free actions of the group S2 .

Lemma 3.8 If A is a finite set equipped with a free action of the group S2 then there
exists a short exact sequence of S2 –modules:

0! F2ŒA�
S2 ! F2ŒA�! F2ŒA�

S2 ! 0:

Proof We deduce from the action of S2 on A, the existence of the canonical inclusion
F2ŒA�

S2
f
,!F2ŒA� of the invariants in F2ŒA�. The norm F2ŒA�

1C�
�!F2ŒA� induces a linear

map F2ŒA�
g
!F ŒA�S2 such that the composition

F2ŒA�
S2

� � f // F2ŒA�
g // F2ŒA�

S2

is trivial. We verify that this defines a short exact sequence.
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We deduce the following proposition.

Proposition 3.9 There exists a short exact sequence

(3–1) 0!†˛;1!Mix˛;1!†˛;1! 0:

Proof This is a straightforward consequence of Lemma 3.7 and Lemma 3.8.

Notation We will denote by Œfw1; w2g� the image of the element Œ.w1; w2/� of
Mix˛;1.W / in †˛;1.W / by the surjection Mix˛;1.W / // // †˛;1.W /:

Remark Lemma 3.7 has no analogue for the functors Mix0;0 and Mix1;0 since, in
these two cases, the action of the group S2 is not free. Nevertheless, we can apply
similar arguments to the functors Mix0˛;0 such that Mix˛;0 // // Mix0˛;0 mentioned
in the last remark of Section 2. In fact the condition h.D/\f .V /D f0g implies the
freedom of the action of the group S2 on these functors.

Remark It is shown in [11] that the functors Mix0;1 and Mix1;1 are indecomposable.
Consequently, the short exact sequence (3–1) is not split for the functors Mix0;1 and
Mix1;1 .

4 Study of the functor �.P F
F2
/˝�.iso.x;˛//

By Proposition 2.1, the functor Mix˛;1 is a subfunctor of �.PF
F2
/˝�.iso.x;˛//. Conse-

quently, in order to obtain the decomposition of Mix˛;1 , we study, in this section, the
functor �.PF

F2
/˝ �.iso.x;˛//.

4.1 Filtration of the functors �.P F
F2
/˝�.iso.x;˛//

We define, below, the filtration of the functors �.PF
F2
/˝ �.iso.x;˛// induced by the

polynomial filtration of the functor PF
F2

in the category F . First we recall the essential
results concerning the polynomial functors in the category F . We refer the interested
reader to Henn, Lannes and Schwartz [5], Kuhn [6] and Schwartz [10] for details on
the subject.

Notation Henceforth, in order to simplify the notation, we will denote the functor
�.PF

F2
/ ˝ �.iso.x;˛// by PF ˝ iso˛ and, if F ¤ PF

F2
, we will denote the functor

�.F /˝ �.iso.x;˛// by F ˝ iso˛ .
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Definition 4.1 Let F be an object in F and d an integer, the functor qdF is the
largest polynomial quotient of degree d of the functor F .

Notation We denote by kdF the kernel of F // // qdF .

We have the following result.

Proposition 4.2 The functors kdF define a decreasing filtration of the functor F ,
indexed by natural numbers.

Thus, for the standard projective functor PF , we have the short exact sequence

(4–1) 0! kdPF! PF

fd
�! qdPF! 0:

Furthermore, the decreasing filtration of PF given by the functors kdPF is separated
(that is

T
kdPF D 0).

We recall below the description of the vector space kdPF.V / for V an object in Ef .

Proposition 4.3 The vector space kdPF.V / is generated by the elementsX
z2L

Œz�

where L is a subvector space of V of dimension d C 1.

Notation The subvector space of V or subquadratic space of .V; qV / generated by
v1; : : : vn will be denoted by Vect.v1; : : : vn/.

The subquotients of the filtration of the functor PF are given in the following proposition.

Proposition 4.4 [7, Theorem 7.8] For d a nonnegative integer, there exists a short
exact sequence

(4–2) 0! kdC1PF! kdPF

gd
��!ƒdC1

! 0

where ƒdC1 is the .dC1/–th exterior power and the map gd is defined in the following
way: for V an object in Ef and L the subvector space of V of dimension d C 1

generated by the elements l1; : : : ; ldC1 of V , we have

.gd /V

�X
z2L

Œz�
�
D l1 ^ : : :^ ldC1:
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By taking tensor product with the isotropic functors iso˛ , Proposition 4.2 and the short
exact sequences (4–1) and (4–2) give rise to the following result.

Corollary 4.5 (1) For d an integer, the functors .kdPF/˝ iso˛ define a decreasing
separated filtration of the functor PF˝ iso˛ .

(2) There exist the following short exact sequences in Fquad :

0! .kdPF/˝ iso˛! PF˝ iso˛
fd˝iso˛
�����! .qdPF/˝ iso˛! 0(4–3)

0! .kdC1PF/˝ iso˛! .kdPF/˝ iso˛
gd˝iso˛
������! .ƒdC1/˝ iso˛! 0:(4–4)

Remark We obtain similar results by taking the tensor product between the short
exact sequence (4–2) and the isotropic functors isoD . This will be useful for a general
study of the mixed functors.

5 Filtration of the functors †˛;1

In this section, we define a filtration of the functors †˛;1 that we will relate below to
the filtration of PF˝ iso˛ obtained in the previous section.

Definition 5.1 For V an object of Tq and d an integer, let kd†˛;1.V / be the sub-
vector space of †˛;1.V / generated by the elementsX

z2L
ŒfxC z;yC zg�;

where Œfx;yg� 2†˛;1.V / and L is a subvector space of Vect.xCy/? of dimension d .

Proposition 5.2 The spaces kd†˛;1.V /, for V an object in Tq , define a subfunctor
of †˛;1 .

Proof For a morphism T in HomTq
.V;W /, it is straightforward to check, by defini-

tion of Mix˛;1.T /, that the image of kd†˛;1.V / by

†˛;1.T /W kd†˛;1.V /!†˛;1.W /

is a subvector space of kd†˛;1.W /:

Proposition 5.3 The functors kd†˛;1 define a separated decreasing filtration of the
functor †˛;1 :

: : :� kd†˛;1 � : : :� k1†˛;1 � k0†˛;1 D†˛;1:
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Proof To show that the filtration is decreasing, it is sufficient to prove, for an object
V of Tq , that there is an inclusion of vector spaces

kdC1†˛;1.V /� kd†˛;1.V /:

We consider a generator of kdC1†˛;1.V /: v D
P

z2LŒfxC z;yC zg� where Œfx;yg�
is in †˛;1.V / and L is the subvector space of Vect.x C y/? of dimension d C 1

generated by the elements l1; : : : ; ldC1 . We also consider the following decomposition
into direct summands: L D Vect.l1; : : : ; ld /˚ Vect.ldC1/ D L0 ˚ Vect.ldC1/: By
considering separately the elements z in L with an nonzero component on ldC1 and
those with a zero component on ldC1 , we obtain

v D
X
z2L0

ŒfxC z;yC zg�C
X
z2L0

ŒfxC ldC1C z;yC ldC1C zg�:

By definition of kd†˛;1 , we haveP
z2L0 ŒfxC z;yC zg� 2 kd†˛;1.V /P

z2L0 ŒfxC ldC1C z;yC ldC1C zg� 2 kd†˛;1.V /and

since ŒfxC ldC1;yC ldC1g� 2†˛;1.V /. Consequently v 2 kd†˛;1.V /:

One verifies easily that the filtration is separated.

In the following result, we relate the filtration of the functors †˛;1 and the filtration of
PF˝ iso˛ obtained from the polynomial filtration in Corollary 4.5.

Lemma 5.4 The composition

kd†˛;1
� � // †˛;1

� � // Mix˛;1 � � // PF˝ iso˛
fd˝iso˛// qdPF˝ iso˛

is zero.

Proof Let V be an object in Tq and v a generator of kd†˛;1.V /. Then v DP
z2LŒfy C z;y0 C zg� where Œfy;y0g� 2 †˛;1.V / and L is the subvector space of

Vect.yCy0/? of dimension d .

Let h be the element of HomEdeg
q
..x; ˛/;V / such that h.x/D yCy0 , we have:X

z2L
.ŒyC z�C Œy0C z�/˝ Œh�D

X
z2L

.ŒyC z�C Œz�C Œy0C z�C Œz�/˝ Œh�

D

X
z2L

.ŒyC z�C Œz�/˝ Œh�C
X
z2L

.Œy0C z�C Œz�/˝ Œh�

D

X
z02L˚Vect.y/

Œz0�˝ Œh�C
X

z002L˚Vect.y0/

Œz00�˝ Œh�
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By Proposition 4.3 we have:X
z02L˚Vect.y/

Œz0� 2 kdPF.V / and
X

z002L˚Vect.y0/

Œz00� 2 kdPF.V /

Hence fd ˝ iso˛.v/D 0:

We have the following result.

Proposition 5.5 (1) There exists a monomorphism id W kd†˛;1! kdPF˝ iso˛ .

(2) There exists a natural map

kd†˛;1=kdC1†˛;1!ƒdC1
˝ iso˛

induced by id W kd†˛;1! kdPF˝ iso˛ .

Proof The first point is a direct consequence of Lemma 5.4 and the short exact
sequence (4–3).

We deduce the second point from the following commutative diagram given by the first
point and from the short exact sequence (4–4).

(5–1)

0 // kdC1†˛;1 //
� _

idC1

��

kd†˛;1 //
� _

id

��

.kd†˛;1=kdC1†˛;1/ //

��

0

0 // kdC1PF˝ iso˛ // kdPF˝ iso˛
gd˝iso˛

// ƒdC1˝ iso˛ // 0

Hence, to obtain the composition factors of the functors Mix˛;1 we study the functors
ƒn˝ iso˛ in the following section.

Remark We obtain that the natural map kd†˛;1=kdC1†˛;1 ! ƒdC1 ˝ iso˛ is a
monomorphism as a consequence of Theorem 7.1.

To conclude this section, we prove that the functors Mix˛;1 are infinite. For this, we
need the following lemma.

Lemma 5.6 Let V be an object in Tq of dimension greater than d C 1 such that
†˛;1.V /¤ f0g, let Œfy;y0g� be a canonical generator of †˛;1.V / and let v1; : : : vd be
d linearly independent elements in Vect.yCy0/? . Then

.gd ˝ iso˛/ ı id

� X
z2Vect.v1;:::;vd /

ŒfyC z;y0C zg�
�
D v1 ^ : : :^ vd ^ .yCy0/˝ Œh�

where id is the monomorphism from kd†˛;1 to kdPF˝ iso˛ defined in the first point
of Proposition 5.5 and h the element of HomEq

..x; ˛/;V / such that h.x/D yCy0 .
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Proof We have, by definition of id and gd ˝ iso˛ ,

.gd ˝ iso˛/ ı id

� X
z2Vect.v1;:::;vd /

ŒfyC z;y0C zg�
�

D .gd ˝ iso˛/
� X

z2Vect.v1;:::;vd /

.ŒyC z�C Œy0C z�/˝ Œh�
�

D .v1 ^ : : :^ vd ^yC v1 ^ : : :^ vd ^y0/˝ Œh�

D v1 ^ : : :^ vd ^ .yCy0/˝ Œh�

Proposition 5.7 The functors Mix˛;1 are infinite.

Proof It is sufficient to prove that the quotients of the filtration of †˛;1 are nonzero.
For an object V in Tq of dimension greater than d , the space †1;1.H0?V / contains
the nonzero element Œfa0; b0g�. Hence, the element of kd†1;1.H0?V /

x D
X

z2Vect.v1;:::;vd /

Œfa0C z; b0C zg�

verifies .gd ˝ iso˛/ ı id .x/D v1 ^ : : :^ vd ^ .a0C b0/˝ Œh�¤ 0

by Lemma 5.6. Consequently, .gd˝iso˛/ıid .kd†1;1/¤f0g and, by the commutativity
of the diagram (5–1) given in the proof of the second point of Proposition 5.5, we have
kd†1;1=kdC1†1;1 ¤ f0g.

In the same way, by considering the elementX
z2Vect.v1;:::;vd /

Œfa0C z; a0C b0C zg� 2 kd†0;1.H0?V /;

we show that kd†0;1=kdC1†0;1 ¤ f0g.

6 Structure of the functors ƒn˝ iso˛

By the second point of Proposition 5.5, there exists a natural map from the subquotients
kd†˛;1=kdC1†˛;1 of the filtration of the functor †˛;1 by the functors kd†˛;1 to the
functors ƒdC1˝ iso˛ . The aim of this section is to study the functors ƒn˝ Iso˛ in
order to obtain the composition factors of the functors †˛;1 . It is divided into two
subsections: the first concerns the decompositions of the functors ƒn˝ Iso˛ by the
functors denoted by Ln

˛ , and the second concerns the simplicity of the functors Ln
˛ .
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6.1 Decomposition

In order to identify the composition factors of the functor ƒn˝ Iso˛ , we define the
following morphisms of Fquad .

Lemma 6.1 (1) For an object V in Tq , the linear maps

�V W iso˛.V /! .ƒ1
˝ iso˛/.V /

defined by �V .Œ.x; ˛/
h
!V �/D h.x/˝ Œ.x; ˛/

h
!V �

for a canonical generator Œ.x; ˛/ h
!V � in iso˛.V / give rise to a monomorphism � from

iso˛ to ƒ1˝ iso˛ of Fquad .

(2) For an object V in Tq , the linear maps

�V W .ƒ
1
˝ iso˛/.V /! iso˛.V /

defined by �V .w˝ Œ.x; ˛/
h
!V �/D B.w; h.x//Œ.x; ˛/

h
!V �

for a canonical generator Œ.x; ˛/ h
!V � in iso˛.V / give rise to an epimorphism � from

ƒ1˝ iso˛ to iso˛ of Fquad .

Proof (1) We check the commutativity of the following diagram, for a morphism
T D ŒV

f
!X

g
 W � of HomTq

.V;W /:

iso˛.V /
�V //

iso˛.T /
��

.ƒ1˝ iso˛/.V /

.ƒ˝iso˛/.T /
��

iso˛.W /
�W

// .ƒ1˝ iso˛/.W /

For a canonical generator Œ.x; ˛/ h
!V � of iso˛.V /, we denote by P the pullback of

the diagram .x; ˛/
f ıh
�!X

g
 W . If P D .x; ˛/, we denote by h0 the morphism making

the following diagram commutative:

.x; ˛/
h0 //

Id
��

W

g

��
.x; ˛/

h

// V
f

// X
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We have

.ƒ1
˝ iso˛/.T / ı�V .Œ.x; ˛/

h
!V �/D .ƒ1

˝ iso˛/.T /.h.x/˝ Œ.x; ˛/
h
!V �/

D

�
pg ıf ı h.x/˝ Œ.x; ˛/

h0
!W � if P D .x; ˛/

0 otherwise

�W ı iso˛.T /.Œ.x; ˛/
h
!V �/D �W

�
Œ.x; ˛/

h0
!W � if P D .x; ˛/

0 otherwise
and

D

�
h0.x/˝ Œ.x; ˛/

h0
!W � if P D .x; ˛/

0 otherwise:

By commutativity of the previous cartesian diagram, we have g ıh0 D f ıh hence, by
composition with pg , we obtain: h0 D pg ı f ı h. Consequently, the linear maps �W

give rise to a nonzero natural map �W iso˛!ƒ1˝iso˛ . We deduce from the simplicity
of the functors iso˛ given in Corollary 1.7 that the natural map � is a monomorphism
in Fquad .

(2) We check the commutativity of the following diagram, for a morphism T D

ŒV
f
!X

g
 W � of HomTq

.V;W /:

.ƒ1˝ iso˛/.V /
�V //

.ƒ˝iso˛/.T /
��

iso˛.V /

iso˛.T /
��

.ƒ1˝ iso˛/.W / �W

// iso˛.W /

With the same notations as above, we have:

iso˛.T / ı �V .v˝ Œh�/D iso˛.T /.B.h.x/; v/Œh�/

D

�
B.h.x/; v/Œh0� if P ' Vect.x/

0 otherwise

�W ı .ƒ
1
˝ iso˛/.T /.v˝ Œh�/D �W

�
pg ıf .v/˝ Œh

0� if P ' Vect.x/
0 otherwise

D

�
B.h0.x/;pg ıf .v//Œh

0� if P ' Vect.x/
0 otherwise

We also have:

B.h.x/; v/ D B.f ı h.x/; f .v// since f preserves quadratic forms
D B.g ı h0.x/;f .v// by commutativity of the cartesian diagram
D B.g ı h0.x/;gıpgıf .v// by orthogonality of W and L

D B.h0.x/;pg ıf .v// since g preserves quadratic forms:
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Hence, the linear maps �W define a natural map �W ƒ1˝ iso˛! iso˛ , which is clearly
nonzero. We deduce from the simplicity of the functors iso˛ given in Corollary 1.7,
that � is an epimorphism of Fquad .

The natural maps � and � defined in the previous lemma allow us to define the
following morphisms in Fquad .

Definition 6.2 Let n be a nonnegative integer.

(1) The natural map �nW ƒ
n˝ iso˛!ƒnC1˝ iso˛ is obtained by the composition

ƒn
˝ iso˛

1˝�
���!ƒn

˝ƒ1
˝ iso˛

m˝1
���!ƒnC1

˝ iso˛

where mW ƒn˝ƒ1!ƒnC1 is the product in the exterior algebra.

(2) The natural map �nW ƒ
nC1˝ iso˛!ƒn˝ iso˛ is obtained by the composition

ƒnC1
˝ iso˛

�˝1
���!ƒn

˝ƒ1
˝ iso˛

1˝�
���!ƒn

˝ iso˛

where �W ƒnC1!ƒn˝ƒ1 is the coproduct.

We have the following proposition.

Proposition 6.3 The following sequence is an exact complex:

: : :!ƒn
˝ iso˛

�n
��!ƒnC1

˝ iso˛
�nC1

����!ƒnC2
˝ iso˛! : : :

Proof We prove, according to the definition, that the kernel of .�nC1/V is the vector
space generated by the set

fv1 ^ : : :^ vn ^ h.x/˝ Œh� for Œh� a generator of iso˛.V /I v1; : : : ; vn elements in V g

and this space coincide with the image of .�n/V .

Proposition 6.3 justifies the introduction of the following functor.

Definition 6.4 The functor Kn
˛ is the kernel of the map �n from ƒn ˝ iso˛ to

ƒnC1˝ iso˛ .

As observed in the proof of Proposition 6.3, we have the following characterization of
the spaces Kn

˛.V /.
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Lemma 6.5 For an object V in Tq , the space Kn
˛.V / is generated by the elements

z ^ h.x/˝ Œh�

where Œh� is a canonical generator of the space iso˛.V / and z is an element in
ƒn�1.V /:

The result below is a straightforward consequence of Proposition 6.3.

Corollary 6.6 For n a nonzero integer, we have the short exact sequence

0!Kn
˛!ƒn

˝ iso˛!KnC1
˛ ! 0:

Remark We will prove that this short exact sequence is not split in a subsequent paper
concerning the calculation of HomFquad.ƒ

n˝ iso˛; ƒm˝ iso˛/.

We next explain how to decompose the functors Kn
˛ . We begin by investigating the

case of the functor K1
˛ .

Lemma 6.7 The functor K1
˛ is equivalent to the functor iso˛ .

Proof Let V be an object in Tq . A basis of the vector space K1
˛.V / is given by

the set of elements of the following form: h.x/˝ Œh� for Œh� a canonical generator of
iso˛.V /. Then we define the linear map

K1
˛.V /

�V
�! iso˛.V /

h.x/˝ Œh� 7�! Œh�

and we leave the reader to check that �V is an isomorphism and that these linear maps
are natural.

In order to identify the composition factors of the functors Kn
˛ for n> 1, we need the

following lemma.

Lemma 6.8 For n a nonzero integer, the morphism �nW ƒ
nC1˝ iso˛ ! ƒn˝ iso˛

induces a morphism �K
n W K

nC1
˛ !Kn

˛ making the following diagram commute:

KnC1
˛ � _

��

�K
n // Kn

�̨ _

��
ƒnC1˝ iso˛ �n

// ƒn˝ iso˛
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Proof For an object V in Tq and v1^ : : :^vn^h.x/˝ Œh� a generator of KnC1
˛ .V /,

we have

.�nV /.v1 ^ : : :^ vn ^ h.x/˝ Œh�/

D

� nX
iD1

v1^: : :^yvi^: : :^vn^h.x/˝B.vi ; h.x//Œh�
�
Cv1^: : :^vn˝B.h.x/; h.x//Œh�:

Since B is alternating, we have B.h.x/; h.x//D 0. Hence,

.�nV /.v1 ^ : : :^ vn ^ h.x/˝ Œh�/

D

nX
iD1

v1 ^ : : :^ yvi ^ : : :^ vn ^ h.x/˝B.vi ; h.x//Œh� 2Kn
˛.V /:

We deduce the existence of the induced morphism �K
n .

This lemma justifies the introduction of the following definition.

Definition 6.9 For n�2 an integer, let Ln
˛ be the kernel of the morphism �K

n�1
W Kn

˛!

Kn�1
˛ .

We have the following characterization of the spaces Ln
˛.V / which is useful below.

Lemma 6.10 For an object V in Tq , the space Ln
˛.V / is generated by the elements

of the form
z ^ h.x/˝ Œh�;

where Œh� is a canonical generator of the space iso˛.V / and z is an element of
ƒn�1.Vect.h.x//?/:

Proof Let V be an object in Tq . Since the space Ln
˛.V / is a subvector space of

Kn
˛.V /, we deduce from Lemma 6.5 that the vector space Ln

˛.V / is generated by the
elements of the following form: z ^ h.x/˝ Œh�.

For a given canonical generator Œh� of iso˛.V /, since the quadratic space V is nonde-
generate, there is an element w in V such that

B.h.x/; w/D 1:

Let W be the space Vect.h.x/; w/ and V 'W?W ? be an orthogonal decomposition
of the space V . The canonical generator z ^h.x/˝ Œh� of Kn

˛.V / can be written in
the form

z0 ^ h.x/˝ Œh�C z00 ^w^ h.x/˝ Œh�
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where z0 2ƒn�1.W ?/ and z00 2ƒn�2.W ?/.

Let x be an element of Ln
˛.V /. Then

x D
X

Œh�2G.iso˛.V //

zh ^ h.x/˝ Œh�D
X

Œh�2G.iso˛.V //

.z0h ^ h.x/˝ Œh�C z00h ^w^ h.x/˝ Œh�/

where G.iso˛.V // is the set of the canonical generators of iso˛.V /. Consequently,

�K
n�1.z

0
h ^ h.x/˝ Œh�/D 0

since z0
h
2ƒn�1.W ?/�ƒn�1.Vect.h.x//?/ and

�K
n�1.z

00
h ^w^ h.x/˝ Œh�/D z00h ^ h.x/˝ Œh�:

Since the element x is in the kernel of �K
n�1

, we deduce that z00
h
D 0. Hence

x D
X

Œh�2G.iso˛.V //

z0h ^ h.x/˝ Œh�

for z0
h
2ƒn�1.W ?/�ƒn�1.Vect.h.x//?/.

We have the following lemma.

Lemma 6.11 The composition ƒnC2 ˝ iso˛
�nC1

���! ƒnC1 ˝ iso˛
�n
�! ƒn ˝ iso˛ is

zero.

Proof Let V be an object in Tq and let v1 ^ : : : ^ vnC2 ˝ Œh� be an element of
ƒnC2˝ iso˛.V /. Then

�nı�nC1

�
v1 ^ : : :^ vnC2˝ Œh�

�
D �n

� nC2X
iD1

�
v1 ^ : : :^ yvi ^ : : :^ vnC2˝B.vi ; h.x//Œh�

��

D

X
j¤i

nC2X
iD1

�
v1 ^ : : :^ yvi ^ : : :^ yvj ^ : : :^ vnC2˝B.vi ; h.x//B.vj ; h.x//Œh�

�
D 0

since the characteristic is equal to 2.

We deduce the following result.

Lemma 6.12 The map �K
n W K

nC1
˛ !Kn

˛ factors through Ln
˛ .

Algebraic & Geometric Topology, Volume 7 (2007)



402 Christine Vespa

Proof By Lemma 6.8, the following diagram is commutative:

KnC1
˛ � _

��

�K
n // Kn

�̨ _

��

�K
n�1 // Kn�1

˛ � _

��
ƒnC1˝ iso˛ �n

// ƒn˝ iso˛ �n�1

// ƒn�1˝ iso˛

Consequently, we deduce from Lemma 6.11, that �K
n�1
ı �K

n D 0. Hence, there is a
morphism z�K

n W K
nC1
˛ !Ln

˛ making the following diagram commutative:

KnC1
˛

z�K
n

xx
�K

n

��

0

##GGGGGGGG

Ln
˛ D Ker.�n�1/ // Kn

˛
�K

n�1

// Kn�1
˛

Then, we have the following proposition.

Proposition 6.13 For n a nonzero integer, there is a short exact sequence:

0!LnC1
˛ !KnC1

˛ !Ln
˛! 0:

Proof It is sufficient to prove that the natural map z�K
n W K

nC1
˛ !Ln

˛ constructed in
the proof of the previous Lemma is an epimorphism of Fquad .

Let V be an object in Tq and let v1^ : : :^vn�1^h.x/˝ Œh� be a generator of Ln
˛.V /.

By definition of Ln
˛.V / we have B.vi ; h.x// D 0 for all i in f1; : : : ; n� 1g. Since

h.x/ is a nonzero element in the nondegenerate quadratic space V , there is an element
v in V such that B.v; h.x//D 1. Then, we prove that the element

v1 ^ : : :^ vn�1 ^ v^ h.x/˝ Œh� of KnC1
˛ .V /

verifies

.z�K
n /V .v1 ^ : : :^ vn�1 ^ v^ h.x/˝ Œh�/D v1 ^ : : :^ vn�1 ^ h.x/˝ Œh�:

Hence, z�K
n is surjective.

Remark Proposition 6.13 is equivalent to the following statement: the complex

: : :!KnC1
˛

�K
n
��!Kn

˛

�K
n�1
���!Kn�1

˛ ! : : :

is exact.
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6.2 Simplicity of the functors Ln
˛

In this section, we prove the following result, where the functors Ln
˛ are the subfunctors

of ƒn˝ iso˛ defined in Definition 6.9.

Theorem 6.14 The functors Ln
˛ are simple.

To prove this theorem, we need the following fundamental lemma.

Lemma 6.15 If J is a subfunctor of Ln
˛ , then for any object V in Tq , either J.V /D

f0g, or J.V /DLn
˛.V /.

Proof Let J be a subfunctor of Ln
˛ and V be an object in Tq . Suppose that J.V /¤

f0g and denote by y a nonzero element of J.V /. We have

(6–1) y D
X

Œh�2G.iso˛.V //

zh ^ h.x/˝ Œh�

where zh is an element of ƒn�1.Vect.h.x//?/ by Lemma 6.10 and G.iso˛.V // is the
set of canonical generators of the space iso˛.V /.

The proof is divided into three steps; in the first one we prove that there exists a
generator Œh� of iso˛.V / such that zh ^ h.x/˝ Œh� 2 J.V /. We deduce, in the second
part, that for all other generator Œh0� of iso˛.V / we have a nonzero element of the
form z0 ^ h0.x/˝ Œh0� in J.V /. Finally, we prove that for each element of the form
v1 ^ : : :^ vn�1 in ƒn�1.Vect.h.x//?/ and each canonical generator Œh� of iso˛.V /,
the element v1^ : : :^vn�1^h.x/˝ Œh� belongs to J.V /. This will prove that the two
spaces J.V / and Ln

˛.V / are isomorphic, by the characterization of the space Ln
˛.V /

given in Lemma 6.10.

(1) Let Œh� be a canonical generator of iso˛.V / such that, in the decomposition
of y given in (6–1) the element zh ^ h.x/˝ Œh� is nonzero. Since the space V is
nondegenerate, there exists an element v in V such that B.v; h.x//D 1. We deduce a
symplectic decomposition of V of the form

(6–2) V D Vect.h.x/; v/?Vect.v1; w1/? : : :?Vect.vm; wm/D Vect.h.x/; v/?V 0:

We consider the morphism of Eq , where we denote by fak
0
; bk

0
g a symplectic basis of

the k –th copy of H0 in .H0/
?.2mC1/ :

f W V �! V?.H0/
?.2mC1/

h.x/ 7�! h.x/

v 7�! vC a1
0

vk 7�! vk C a2k
0

wk 7�! wk C a2kC1
0
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for k an integer between 1 and m, which allows us to define the following morphism
in Tq : T D ŒV

f
!V?.H0/

?.2mC1/ i
 -V �: We deduce from the two cartesian diagrams

below:
.x; ˛/

Id
��

// V � _

i
��

.x; ˛/
h

// V
f

// V?.H0/
?.2mC1/

and, for hi ¤ h,
f0g

Id
��

// V � _

i
��

.x; ˛/
hi

// V
f

// V?.H0/
?.2mC1/

that J.T /.y/D zh ^ h.x/˝ Œh� 2 J.V /, since �.T /D IdV .

(2) Let Œh0� be a canonical generator of iso˛.V / different from Œh�. We have the
equality q.h0.x//D q..h.x//D ˛ , hence the linear isomorphism denoted by f , from
.h.x/; ˛/ to .h0.x/; ˛/ is a morphism in Edeg

q . So, we can apply Theorem 1.3 to
obtain the existence of a morphism f of HomEq

.V;V / making the following diagram
commutative:

V
f // V

.h.x/; ˛/
?�

OO

f

// .h0.x/; ˛/
?�

OO

We deduce the following cartesian diagram:

.x; ˛/

Id
��

h0 // V

Id
��

.x; ˛/
h

// V
f

// V

Consequently, by the consideration of the morphism T D ŒV
f
!V

Id
 V �, we obtain

J.T /.zh ^ h.x/˝ Œh�/Dƒn�1.f /.zh/^ h0.x/˝ Œh0� 2 J.V /:

(3) By the point (1) of the proof, there is a nonzero element of the form z^h.x/˝ Œh�

in J.V /. We want to prove that, for each element of the form v1 ^ : : : ^ vn�1

in ƒn�1.Vect.h.x//?/ and each canonical generator Œh� of iso˛.V /, the element
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v1^ : : :^vn�1^h.x/˝ Œh� belongs to J.V /. According to the proof of Lemma 6.10,
it is sufficient to prove that the element v1 ^ : : : ^ vn�1 ^ h.x/ ˝ Œh� belongs to
J.V / for v1 ^ : : : ^ vn�1 in ƒn�1.V 0/ where V 0 is the space considered in the
decomposition (6–2). By simplicity of the functor ƒn�1 in F , we have the existence
of an endomorphism g of �.V 0/ such that

ƒn�1.g/.z/D v1 ^ : : :^ vn�1:

We deduce that

J.IdTq
.Vect.h.x/; v//?tg/.z ^ h.x/˝ Œh�/D v1 ^ : : :^ vn�1 ^ h.x/˝ Œh�

where tg is an antecedent of g 2 EndEf .�.V
0// by the forgetful functor �W Tq! Ef

which is full by [12, Proposition 3.5] and IdTq
.Vect.h.x/; v//?tg is the orthogonal

sum of the morphisms of Tq .

Proof of Theorem 6.14 Let J be a nonzero subfunctor of Ln
˛ and V be an object in

Tq such that the space J.V / is nonzero. By Lemma 6.15, we have J.V /DLn
˛.V /.

We prove, in the following, that for all object W in Tq , J.W /DLn
˛.W /.

Let W be a fixed object in Tq . The proof is divided into two parts.

(1) Let us prove that J.V?W /'Ln
˛.V?W /.

Let i be the canonical inclusion from V to V?W and T D ŒV
i
!V?W

Id
 V?W � be

the morphism of Tq . We have the following cartesian diagram:

.x; ˛/

Id
��

iıh // V?W

Id
��

.x; ˛/
h

// V
i

// V?W

Since ŒV?W
Id
!V?W

i
 V � ı ŒV

i
!V?W

Id
 V?W �D IdV

we deduce that the space J.V?W / is nonzero. Hence, by Lemma 6.15, we have
J.V?W /'Ln

˛.V?W /.

(2) Let us prove that J.W /'Ln
˛.W /.

According to Lemma 6.15, it is sufficient to prove that if Ln
˛.W / is nontrivial then

J.W / is not zero. Let j be the canonical inclusion from W to V?W .

We deduce from

ŒV?W
Id
!V?W

j
 W � ı ŒW

j
!V?W

Id
 V?W �D IdW
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the existence of the surjection Ln
˛.V?W /� Ln

˛.W /: Furthermore, by the first point
of the proof, we have J.V?W / D Ln

˛.V?W /. This gives rise to the following
commutative diagram:

J.V?W / //

'

��

J.W /� _

��
Ln
˛.V?W / // // Ln

˛.W /

Consequently, by a diagram chasing argument, we obtain that if Ln
˛.W / is nonzero

then J.W / is nonzero.

We prove in the following proposition that this gives rise to two families of non
isomorphic functors.

Proposition 6.16 The functors in the union of the family fLn
0
j n 2Ng and the family

fLn
1
j n 2 Ng are pairwise nonisomorphic.

Proof For a fixed ˛ , there exists, for any integer n, a minimal integer d.n/ such that

Ln
˛.H

?d.n/
0 /¤ 0:

Let k be an integer different from n, if jn�kj � 2, the integers d.n/ and d.k/ allow
us to distinguish the simple functors Ln

˛ and Lk
˛ , in the contrary case, we prove that

the dimensions of the spaces Ln
˛.H

?d.n/
0

/ and Lk
˛.H

?d.n/
0

/ are different. This proves
that the simple functors Ln

˛ and Lk
˛ are not isomorphic.

Furthermore, two simple functors S1 and S2 in Fquad are not isomorphic if there exists
a morphism T in Tq such that S1.T /D 0 and S2.T /¤ 0. Moreover, the morphisms
T constructed in the first point of the proof of Lemma 6.15 verify

Ln
˛.T /¤ 0 and Lk

.˛C1/.T /D 0

where .˛C 1/ is the reduction mod 2 of ˛C 1.

More precisely, if we consider a nonzero element zp ^h.x/˝ Œh� of Ln
˛.V / and the

morphism T D ŒV
f
!V?.H0/

?.2mC1/ i
 -V � where

f W V �! V?.H0/
?.2mC1/

h.x/ 7�! h.x/

v 7�! vC a1
0

vk 7�! vk C a2k
0

wk 7�! wk C a2kC1
0
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for k an integer between 1 and m. We deduce from following cartesian diagram

.x; ˛/

Id
��

// V � _

i
��

.x; ˛/
h

// V
f

// V?.H0/
?.2mC1/

that Ln
˛.T /¤ 0.

In the other hand, for any nonzero element zpi
^ hi.x/˝ Œhi � of Lk

.˛C1/
.V /, we have

hi ¤ h since ˛ ¤ .˛C 1/. So we deduce from the following cartesian diagram

f0g

Id
��

// V � _

i
��

.x; .˛C 1//
hi

// V
f

// V?.H0/
?.2mC1/

that Lk
.˛C1/

.T /D 0.

7 The composition factors of the functors Mix0;1 and Mix1;1

We prove in this section that the functors Mix0;1 and Mix1;1 are uniserial (ie the lattice
of its subfunctors is totally ordered) and the composition factors of the functor Mix0;1

are the functors Ln
0

and those of Mix1;1 are the functors Ln
1

. For that, we identify the
subquotient kd†˛;1=kdC1†˛;1 of the filtration of the functor †˛;1 by the functors
kd†˛;1 introduced in Proposition 5.2 with the functor LdC1

˛ defined in Definition 6.9.
This gives rise to the following result.

Theorem 7.1 The functor †˛;1 is uniserial and its unique composition series is given
by the decreasing filtration by the functors kd†˛;1

: : :� kd†˛;1 � : : :� k1†˛;1 � k0†˛;1 D†˛;1

which verifies
kd†˛;1=kdC1†˛;1 'LdC1

˛ :

Remark Remark that the strategy of the following proof of the uniseriality of †˛;1
is close to the proof of Lemma 6.15.
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Proof To prove that the functor †˛;1 is uniserial, it is sufficient to prove that if J is
a nonzero subfunctor of †˛;1 then there exists an integer d such that J D kd†˛;1 .

Let V be an object in Tq such that J.V /¤ 0 and v be a nonzero element of J.V /,
we have

v D
X

fx;yg2AV

˛fx;yg.v/Œfx;yg�

where AV D ffx;ygjx 2 V;y 2 V; q.xC y/D ˛;B.x;y/D 1g. One verifies easily
that for fx;yg 2AV and l 2V , fxCl;yClg 2AV if and only if l 2 .Vect.x;y//? or
l D xCyC l 0 where l 0 2 .Vect.x;y//? . Since fxC .xCyC l 0/;yC .xCyC l 0/g D

fyC l 0;xC l 0g D fxC l 0;yC l 0g, after reordering we obtain

(7–1) v D

nX
iD1

X
l2Li

Œfxi C l;yi C lg�

where for all i fxi ;yig 2AV , for i ¤ j , xiCyi ¤xjCyj and Li is a subvector space
of .Vect.xi ;yi//

? of dimension ri . We consider a vector space V 0 , an element v0 of
J.V 0/ and an element fx0;y0g in AV 0 such that the dimension r 0 of L0 is minimal.
We deduce from the decomposition (7–1) that J � kr 0†˛;1 .

To prove that kr 0†˛;1 � J , we consider the following decomposition of v0 2 J.V 0/:

v0 D
X

l 02L0
Œfx0C l 0;y0C l 0g�C

pX
jD1

� X
l2Lj

Œfxj C l;yj C lg�
�

where for all j xj C yj ¤ x0 C y0 . By definition of †˛;1 and Mix˛;1 , we have a
natural map � W J ! PF˝ iso˛ such that

�V 0.v
0/D

X
l 02L0

�
Œx0C l 0�C Œy0C l 0�

�
˝Œx0Cy0�C

pX
jD1

X
l2Lj

�
Œxj C l �C Œyj C l �

�
˝ŒxjCyj �

where, by abuse, we denote by v the linear map F2 ! V determined by v . Let
f W �.V 0/! �.V 0/ be the linear map such that f .x0Cy0/D x0Cy0 and f .xjCyj /D

xjCyjCm for m a nonzero element of Lj . Since � is full by [12, Proposition 3.5],
we obtain the existence of a morphism T in HomTq

.V 0;V 0/ such that �.T /D f . We
deduce that

.PF˝ iso˛/.T /�V .v
0/D

X
l 02L0

�
Œx0C l 0�C Œy0C l 0�

�
˝ Œx0Cy0�
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and, consequently

J.T /.v0/D
X

l 02L0
Œfx0C l 0;y0C l 0g� 2 J.V 0/

where L0 is a subvector space of .Vect.x0;y0//? of dimension r 0 .

Let W be an object of Tq ,
P

l2LŒfw1C l; w2C lg�, where L is a subvector space of
Vect.w1; w2/

? of dimension r 0 , be a generator of kr 0†˛;1.W / and gW �.V 0/! �.W /

be the linear map such that g.x0Cy0/Dw1Cw2 and g send a basis of L0 to a basis
of L. By the fullness of � we obtain a morphism T 0 in HomTq

.V 0;W / such that

J.T 0/
� X

l 02L0
Œfx0C l 0;y0C l 0g�

�
D

X
l2L

Œfw1C l; w2C lg� 2 J.W /:

Hence J D kr 0†˛;1 .

By Lemma 5.6, we have

.gd ˝ iso˛/ ı id .kd†˛;1/�LdC1
˛ :

Consequently, by the commutative diagram (5–1) given in the proof of the second point
of Proposition 5.5 we have the natural map

� W kd†˛;1=kdC1†˛;1!LdC1
˛ ;

which is nontrivial by Lemma 5.6. Since the quotients kd†˛;1=kdC1†˛;1 are nonzero
by Proposition 5.7 and the functors LdC1

˛ are simple by Theorem 6.14, the natural
map � is an equivalence.
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