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Noncompact Fuchsian and quasi-Fuchsian surfaces
in hyperbolic 3–manifolds

COLIN ADAMS

Given a noncompact quasi-Fuchsian surface in a finite volume hyperbolic 3–manifold,
we introduce a new invariant called the cusp thickness, that measures how far the
surface is from being totally geodesic. We relate this new invariant to the width of a
surface, which allows us to extend and generalize results known for totally geodesic
surfaces. We also show that checkerboard surfaces provide examples of such surfaces
in alternating knot complements and give examples of how the bounds apply to
particular classes of knots. We then utilize the results to generate closed immersed
essential surfaces.

57M50; 20H10

1 Introduction

Let M be a closed 3–manifold such that the interior of M is hyperbolic of finite volume.
Then M can be realized as the quotient of hyperbolic 3–space H 3 by a discrete group
of isometries � . As is well known, the boundary of M must be a finite collection of
tori. A closed neighborhood of a torus boundary that lifts to a collection of horoballs in
H 3 with disjoint interiors is called a cusp. If a single cusp is expanded until its horoball
covers first become tangent in H 3 , we call it a maximal cusp. When there are multiple
cusps present, we will often start with disjoint cusps and then expand them until they
either touch themselves or each other. A set of cusps such that no additional expansion
is possible is called a maximal set of cusps. Typically, we will use the upper-half-space
model of H 3 without additional comment.

Let S be an essential surface with boundary properly embedded in M. Work of
Thurston [16] (see also Bonahon [4] and Canary, Epstein and Green [5]) implies
there are three possibilities:

(1) S is a virtual fiber, meaning that a finite cover of the manifold is fibered and the
surface is covered by a fiber.

(2) S is accidental, meaning there is a simple closed curve on S that is not parallel
to the boundary of S but that can be homotoped to the boundary ofM .
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(3) S is quasi-Fuchsian.

A surface is quasi-Fuchsian if it is covered by a topological plane in H 3 such that its
limit set on the boundary of H 3 is a topological circle bounding two disks. Unlike
the classical definition, we do not assume that the two disks bounded by the circle are
not interchanged by isometries corresponding to the fundamental group of the surface,
to allow for nonorientable surfaces. In the case that the surface lifts to a collection of
totally geodesic planes, the surface is said to be Fuchsian or totally geodesic.

In the case that M is a nonfibered hyperbolic knot exterior in the 3–sphere, a minimal
genus Seifert surface must be quasi-Fuchsian (see Fenley [9] or Cooper–Long [6] for
a second proof.) In Adams–Schoenfeld [2], examples are given of Fuchsian Seifert
surfaces for hyperbolic knot and link complements in the 3–sphere.

For an alternating knot exterior, any Seifert surface obtained by applying Seifert’s
algorithm to a reduced alternating projection is known to be minimal genus (cf Crowell
[8], Murasugi [13] or Gabai [11]). Thus, if the knot is not fibered, the surface must be
quasi-Fuchsian. (In the case of a special alternating knot, where one of the checkerboard
surfaces is orientable, we will prove that this particular Seifert surface cannot be a
virtual fiber, even if the knot exterior is fibered.)

Definition 1.1 Let S be a properly embedded surface with boundary in a closed 3–
manifold M with hyperbolic interior of finite volume. Then S is said to be free if M �

N.S/ is a handlebody. We say S is totally knotted if M �N.S/ has incompressible
boundary. We say S is semifree if there exists a compressing disc for @.M �N.S//.
Note that free implies semifree.

Definition 1.2 Given a nontrivial, closed curve 
 on the boundary of a fixed cusp C ,
the length of the shortest path on @C that begins and ends on a minimal representative
of 
 , but that is not isotopic into 
 is called the width of 
 , sometimes denoted w
 .
Note that w
 D area.@C /=j
 j.

The width of a surface with one boundary component is the width of its boundary
component, usually in a maximal cusp corresponding to that boundary component. By
the width of a hyperbolic knot K , denoted w.K/, we mean the width of the longitude
of K in a maximal cusp, a Seifert surface being the implied surface.

In the case of a surface that has more than one boundary, but at most one boundary per
cusp, the relative size of the cusps can be chosen so that the width of each boundary
component is identical. The cusps can then be expanded while keeping this true until
two such cusps touch or one such cusp touches itself. The corresponding width is
called the balanced width of the surface.
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When a surface has more than one boundary component in a given cusp, we must be
more careful. That case is addressed in Section 3.

Given a boundary curve 
 of a properly embedded quasi-Fuchsian surface S corre-
sponding to a cusp C of the manifold M with hyperbolic interior, lift to H 3 such
that C lifts to a horoball centered at 1. A topological plane P covering S has a
limit point at 1. The limit set of P is a quasi-line in the xy-plane. Let P1 and P2 be
two vertical planes such that they sandwich the limit set L.P / between them and the
Euclidean distance between their boundary lines in the xy-plane is as small as possible.
Note that their boundary lines will be parallel.

Definition 1.3 The cusp thickness of 
 is defined to be the distance between P1 and
P2 as measured in the horizontal plane covering the boundary of the cusp C . Typically,
C will be chosen to be maximal, or to be in a balanced collection of cusps, or to be in
a maximal collection of cusps.

If S has one boundary component 
 , the cusp thickness of S , denoted ct.S/ is the
cusp thickness of 
 . In the case S has more than one boundary component, the cusp
thickness of S is defined to be the maximum of the cusp thicknesses of the boundary
components.

That there exists such a pair of sandwiching planes follows from the fact that the
quotient of the xy-plane by the subgroup of � that fixes1 is a torus, and the quasi-line
projects to a closed curve on that torus which is homotopic to a geodesic curve in the
Euclidean metric inherited by the torus. This implies that the quasi-line must remain a
bounded distance from the Euclidean line in the xy-plane that is the projection of the
cover of the geodesic.

Definition 1.4 Let S be an incompressible boundary incompressible semifree surface
with boundary properly embedded in a 3–manifold M and let D be a compressing
disc for @.M �N.S//. Since S is itself incompressible and boundary incompressible,
@D alternates between n arcs in S and n arcs in the cusp boundaries for some n> 1.
If n cannot be reduced through isotopy while preserving the fact that @D lies in
@.M �N.S//, we say that D is an essential n–gon in the complement of S .

The results appearing in the following theorem were proved in Adams et al [1].

Theorem 1.5 Let S be a totally geodesic surface properly embedded in a closed
3–manifold M , the interior of which is a cusped hyperbolic 3–manifold, such that
S has one or more boundary components, with at most one per cusp. Let w be the
balanced width.
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(1) w � 1.

(2) w D 1 if and only if there exists an essential 3–gon.

(3) If S is semifree, then w < 2.

Here, we prove the following additional facts about totally geodesic surfaces.

Theorem 1.6 Let S be a totally geodesic surface properly embedded in a closed
3–manifold M , the interior of which is a cusped hyperbolic 3–manifold, such that
S has one or more boundary components, with at most one per cusp. Let w be the
balanced width.

(1) S possesses no essential 2–gons.

(2) If S possesses an essential n–gon for n� 3, then w � 2 cos.�=n/.

(3) Let q be the length of the shortest nontrivial curve in the cusp boundary that
is not the boundary of S . Then q �

p
2. If q D

p
2, there exists an essential

3–gon or 4–gon.

Note that Theorem 1.6(2) implies Theorem 1.5(3). As totally geodesic surfaces are
special cases of quasi-Fuchsian surfaces, one would hope to have versions of these
results that apply to this more general category. However, one must use the cusp
thickness invariant to keep track of how far the quasi-Fuchsian surface is from being
totally geodesic.

Theorem 1.7 Let S be a quasi-Fuchsian surface properly embedded in a closed 3–
manifold M , the interior of which is a cusped hyperbolic 3–manifold, such that S has
one or more boundary components, with at most one per cusp. Let w be the balanced
width and ct the cusp thickness corresponding to the cusps giving the balanced width.

(1) wC ct � 1.

(2) If wC ct D 1, then S possesses an essential 3–gon.

(3) If S is semifree, then w� ct < 2.

(4) If S possesses an essential n–gon for n� 2, then w� ct � 2 cos.�=n/.

Note the following immediate corollary:

Corollary 1.8 If a quasi-Fuchsian surface S possesses an essential 3–gon, then
1� ct � w � 1C ct .
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Although we do not explicitly address this here, the results of Theorem 1.6(2), and
Theorem 1.7(3) and (4) also hold for immersed surfaces. There is also a generalization
of Theorem 1.6(3) to quasi-Fuchsian surfaces that yields a lower bound on q in terms
of w and ct . However, due to its technical nature, it is not included.

In the final section we prove the following theorem in order to provide a source of
examples. The method of proof was suggested by Ian Agol.

Theorem 1.9 Let K be an alternating knot in the 3–sphere with hyperbolic comple-
ment. Let S be a checkerboard surface obtained from a reduced alternating projection
of K . Then S is quasi-Fuchsian.

Corollary 1.10 A hyperbolic alternating knot or link possesses a quasi-Fuchsian
surface with w� ct � 1.

Proof Every reduced projection of an alternating knot or link possesses 2–gon or
3–gon regions. By Theorem 1.7(4), the complementary checkerboard surface must
satisfy w� ct � 1.

Corollary 1.11 A hyperbolic 2–bridge knot or link possesses a quasi-Fuchsian surface
such that w � ct and ct � 0:5.

Proof Any 2–bridge knot or link possesses a reduced alternating projection with at
least one bigon. The complementary checkerboard surface is quasi-Fuchsian with an
essential 2–gon. Thus w � ct � 2 cos.�=2/ D 0. With Theorem 1.7(1), this yields
2ct � wC ct � 1, and hence ct � 0:5.

Example 1.12 (Totally geodesic surfaces) In the standard alternating projection of
the Borromean rings, each of the two checkerboard surfaces are quasi-Fuchsian with
an essential 3–gon, so 1� ct � w � 1C ct , where w is the balanced width. In fact,
the methods of Adams–Schoenfeld [2] imply these surfaces are totally geodesic (or
this can be seen directly from the decomposition of the Borromean rings complement
into ideal regular right-angled octahedra). Hence ct D 0 and w D 1. Note that in this
case, for the balanced cusps, q D

p
2. Hence, Theorem 1.6(3) cannot be improved.

Similarly, we can consider the alternating links created from the 1–skeleton of the
cubeoctahedron and the icosidodecahedron by replacing each vertex with a crossing in
an alternating manner. In each case, the methods of [2] imply that both checkerboard
surfaces are totally geodesic with ct D 0, and such that they intersect each other at
right angles. For the first link, the first of these surfaces possesses an essential 3–gon
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and therefore wD 1 for it. The second surface has an essential 4–gon which lies on the
first surface and one can then see, by symmetry of this 4–gon in the link complement
that w D

p
2 for the second surface. For the second link, one surface again has an

essential 3–gon and so w D 1 for it. The second surface has an essential 5–gon and
w D .1C

p
5/=2.

Example 1.13 (The knot 818 ) In the usual projection of the knot 818 , both checker-
board surfaces are nonorientable with no essential bigons in their complements. The
surfaces have slopes ˙8. In each case, one can calculate from Jeffrey Weeks’s computer
program SnapPea [17] that the width of the surface is approximately 0.192655592.
Therefore in each case, ct must be at least 0.81. In fact, there is a symmetry of the knot
that takes one surface to the other, so they both have the same cusp thickness.

In Freedman–Freedman [10], the authors introduced the idea of attaching immersed
annuli to the boundaries of existing surfaces to obtain closed essential immersed surfaces
that lift to embedded surfaces in finite covers. In Cooper–Long–Reid [7], this type of
construction was utilized to show that a compact connected irreducible 3–manifold
with infinite fundamental group and incompressible boundary must either be covered
by F � I for some surface F or it must contain a closed immersed essential surface
that lifts to am embedded surface in some n–fold cover. In the case of a cusped finite
volume hyperbolic 3–manifold M with a properly embedded orientable quasi-Fuchsian
surface S of width w and cusp thickness ct , the preceding theorems yield this same
result, since there exists a positive integer n such that nw � ct � 2. Hence in the
corresponding n–fold cover M 0 obtained by cutting M open along S , and gluing
together n copies of the resulting manifold, annuli can be glued to the boundary of lifts
of S so that the resulting embedded closed surface is incompressible and its projection
to M is essential. In the following theorem, we determine bounds for n when ct < 1.

Theorem 1.14 Let M be a cusped hyperbolic manifold with quasi-Fuchsian surface
S of width w and cusp thickness ct . If for any integer n > 1, ct � .n� 2/=.nC 1/,
then M contains a closed immersed essential surface S 00 with n� 1 order two disjoint
closed singular curves. When S is orientable, S 00 lifts to an embedded surface in an
n–fold cover.

Note that in the case S is totally geodesic, the 2–fold cover suffices.

Acknowledgements Thanks to Ian Agol, Joseph Masters and Alan Reid for their
generous help.
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2 Proofs

The existence of an essential n–gon for a Fuchsian or quasi-Fuchsian surface implies
that in the universal cover, there is a cyclic collection of circles or quasi-circles in the
limit set of the pre-image of the surface, such that each one shares a point with the
next, where each of these shared points corresponds to a parabolic fixed point for � .

In several of the subsequent proofs, we will take advantage of the following simple
geometric lemma.

Lemma 2.1 If H1 and H2 are horocycles with disjoint interiors centered at two of the
vertices of an ideal triangle T as in Figure 1, and a1 and a2 are the lengths of H1\T

and H2\T respectively, then a1 � 1=a2 with equality when the two horocycles are
tangent.

H3

H2

a2

a3

a1

T

0 x

1

H1

Figure 1: Distance on the tangent horocycles are reciprocals.

Proof For convenience, H1 has been normalized to have height 1. From the figure,
it follows that a1 D x . Reflecting the picture across a semicircular geodesic with
endpoints at x and �x , the horocycle H3 centered at 0 is sent to a horocycle centered
at 1 with Euclidean height x2 . The arc H3\T is sent to a horizontal line segment
in this horocycle of Euclidean length x and height x2 . Hence, it has hyperbolic length
a3 D x=x2 D 1=x . It is at least as large as a2 .

Proof of Theorem 1.6(1) An essential 2–gon implies that two quasi-circles share
two distinct parabolic fixed points. Since in this case the surface is Fuchsian, the
quasi-circles are actual circles, which, because the surface is embedded, cannot cross
one another. Therefore, they must be identical, a contradiction.
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Proof of Theorem 1.6(2) Given an essential n–gon, S lifts to a collection of geo-
desic planes, the limit sets of which contain a cyclic collection of n circles, meeting
consecutively at parabolic fixed points. Choose one of the parabolic fixed points to be
at 1. Two geodesic planes covering the surface are vertical half-planes with boundary
lines L1 and L2 that are connected by a sequence of n� 2 pairwise tangent circles
C1; : : : ;Cn�2 . The distance between the two vertical planes in the corresponding
horizontal horosphere H (normalized to have height 1) is w . This distance is also
bounded by the sum of the diameters of the circles between them. The diameter of
each successive circle is determined by the diameter of the previous circle, w and the
size of the horosphere at the tangency point corresponding to the cusps. If the centers
of the circles are not all in a line perpendicular to the boundaries of the two vertical
planes, we can slide L2 away from L1 while maintaining the size and tangencies of
the circles, and the size of the horospheres at each point of tangency until the chain of
circles becomes taut, all centered along a line. Then it is still the case that the distance
on each spherical horosphere between the two geodesic planes that share its limit point
is exactly w . However, the distance on the horizontal horosphere between the two
vertical planes has increased to a value we call z . Hence, from now on, we assume that
the centers of all of the circles are in a line, and we need only consider what occurs
for a chain of geodesics sharing endpoints (an ideal n–gon) with horocycles at those
endpoints in the hyperbolic plane.

As in Figure 2, we decompose the n–gon N into n� 2 ideal triangles, and label the
horocyclic lengths as shown. Note that biC b0i Dw . From Lemma 2.1, we have that
w � 1=b1 , biC1 � 1=b0i and b0

n�3
� 1=w . Hence, we obtain:

w �
1

b1

D
1

w� b0
1

�
1

w� 1
b2

� � � � �
1

w� 1

w�::: 1
w�1=w

We are interested in values of w where the function

fk.w/D
1

w� 1

w�::: 1
w�1=w

�w

is nonnegative. The function fk.w/ can be seen to be decreasing since f1.w/D 1=w

and fn.w/D 1=.w� fn�1.w// then has negative derivative. Since fk.w/ becomes
negative for large enough w , the largest value for w that satisfies the inequality occurs
when the inequality becomes an equality. This happens when each horocycle is tangent
to the two adjacent horocycles. Since z �w , the maximum w occurs when zDw and
the horizontal horosphere is tangent to the two horospheres on the end. This case occurs
for a regular horocyclic n–gon with tangent horocyclic edges of length w . Elementary
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w

b1 b0
1

b2 b0
2 b3

b0
3

bN b0
N

w

Figure 2: Decompose the n–gon into N ideal triangles, where N D n� 3 .

hyperbolic geometry can then be used to show that the length of the horocyclic edges
is given by w D 2 cos .�=n/.

Proof of Theorem 1.6(3) Choose H to be a horosphere covering the cusp boundary,
centered at 1, normalized to have Euclidean height 1 and let A be another horosphere
covering the cusp boundary tangent to H and with center x .

In the case that the point of tangency is not in the surface, There must exist two
hemispheres covering S , the boundaries of which are two circles both passing through
x , and neither circle containing the other. The distance between these planes on A

must be w . Lemma 2.1 implies that if the diameter of one is d , the diameter of the
other is 1=.w � 1=d/. There are also parallel vertical planes covering S spaced a
Euclidean distance w apart. None of these can intersect either of the hemispheres other
than on their boundary. In particular, the diameters of the two hemispheres must both
be at most w . The smallest possible value of w for this to be true occurs when the two
hemispheres have equal diameter, which corresponds to d D 2=w . Then the smallest
w occurs when the hemispheres each touch two vertical planes separated by a distance
of w , so 2=w D w and we find w �

p
2. The length q must always be at least as

large as w .

In the case q D
p

2, then q D w and both hemispheres touch each of the vertical
planes. Hence the point of contact of one hemisphere with one vertical plane must be a
parabolic fixed point y and the distance on the corresponding horosphere H 0 between
the vertical plane and the hemisphere must be exactly w D

p
2. However, since H

has height 1 and the diameter of the hemisphere is
p

2, the distance on H 0 between
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the two planes is at most 1=
p

2, a contradiction. So when the point of tangency is not
in the surface, q >

p
2.

In the case that the point of tangency is in the surface,there exists a vertical plane P

covering S with boundary line containing x . Then there must exist hemispheres P1

and P2 covering S of diameter 1=w to either side of P , both tangent to P at x . The
parabolic isometry T corresponding to q must translate the xy-plane a distance w
perpendicular to P and a distance e parallel to P , as in Figure 3. So q2 D w2C e2 .

P1

P

P2

x
w=2

e q

w � 1=w w=2

w

Figure 3: Proving q �
p

2

There are two possibilities. First, T .P1/ is P2 . In this case, there are parabolic
isometries identifying P to T .P /, P to P2 and P2 to T .P /. These force an ideal
edge in the manifold to be identified to itself with reverse orientation, generating an
isometry in � with a fixed point, a contradiction.

Second, T .P1/ does not overlap P2 in its interior. So if w <
p

2, e > 0 to prevent
the two hemispheres from overlapping. As in Figure 3, we see that

1

w2
� e2

C

�
w�

1

w

�2
:

Hence e2 � 2�w2 , and q �
p

2.

In the case q D
p

2, the planes P2 and T .P1/ touch one another. This produces an
obvious essential 4–gon that is the projection of the 4–gon with boundary contained
in four horospheres and the cyclic collection of four pairwise tangent totally geodesic
planes appearing in Figure 3.

Note that the case q D
p

2 is realized by the balanced cusps for the Borromean rings
complement.
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Proof of Theorem 1.7(1) Suppose wCct �1. Choose H to be a horosphere covering
the cusp boundary, centered at 1, normalized to have Euclidean height 1 and let A be
another horosphere covering the cusp boundary tangent to H and with center x .

Suppose first that the center of A does not lie on a quasi-line for S . Note that any disk
of diameter wC ct on a horosphere covering a cusp must intersect both sandwiching
planes for some quasi-circle passing through its center. Since the disk on A of diameter
wC ct centered at the point of tangency must intersect a pair of planes P1 and P2

sandwiching a limiting quasi-circle Q, Lemma 2.1 implies the diameter of each of
these hemispheres is at least 1. Hence each hemisphere must intersect a pair of vertical
planes sandwiching a quasi-line L. One of the boundaries of the two circles lies inside
the disk bounded by Q. This forces Q to cross L, contradicting the fact the surface is
embedded.

Suppose now that the center of A does lie on a quasi-line L0 corresponding to S .
Let P be one of the two geodesic planes through x that sandwich L0 . Then there
exists a hemisphere P 0 sandwiching a quasi-circle Q through x that is a distance w
on A from P such that the circle bounding P 0 is contained in the disk bounded by
Q. The diameter of P 0 is the smallest possible when P is a vertical plane. In this
case, the diameter of P 0 is exactly 1=.wC ct/� 1. Since the point x is between two
vertical planes sandwiching L0 which themselves are a distance ct apart, and which
are a distance w � ct from the first of another such pair of vertical planes P 00

1
and

P 00
2

sandwiching a quasi-line L1 , the plane P 0 will intersect both of P 00
1

and P 00
2

. If
wCct < 1, then Q is forced to cross L1 contradicting the fact S is embedded. Hence,
the only possibility is that Q just touches each of L1 and L0 at points that are also
touching the outside vertical sandwiching planes and wC ct D 1.

Proof of Theorem 1.7(2) As in the proof of the previous result, if wCct D 1, it must
be the case that two quasi-lines L0 and L1 both touch a quasi-circle Q at parabolic
fixed points. Hence there is a 3–gon with edges in the corresponding three topological
planes and in the three horospheres corresponding to the parabolic fixed points they
share. This projects to an essential 3–gon in the manifold.

Proof of Theorem 1.7(3) Let D be an essential n–gon that compresses the boundary
of M �N.S/. The boundary of D consists of 2n arcs, alternating between lying in
@M and lying in S . Note that n � 2 by the boundary-incompressibility of S . Lift
D to a disk D0 in H 3 so that one of the horospheres that intersects @D0 is centered
at 1. Then in the chain of horospheres intersecting @D0 , there must be a smallest
one, or at the very least one that is as small as its neighbors and smaller than one of
its neighbors. Call this horosphere A and its two neighbors A0 and A00 . Let d be the
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Euclidean diameter of A. The distance from the center of A to the centers of each of
A0 and A00 must be at least d and greater than d for one of them, say for A00 . This is
because the corresponding three horoballs must have disjoint interiors and if one of
them had center closer than d to the center of A, it would have to be smaller than A

to avoid overlapping it on its interior.

The centers of A0 and A00 must lie on quasi-circles L0 and L00 which are limit sets of
topological planes covering S such that each of L0 and L00 pass through the center of
A. That they lie on different quasi-circles follows from the fact that n is minimal.

There are geodesic planes with limiting circles passing through the center of A, two
sandwiching L0 , call them P 0

1
and P 0

2
and two sandwiching L00 , call them P 00

1
and

P 00
2

. The distance on A between the planes in a pair must be v , where v � ct . Let P 0
2

and P 00
2

be the two planes, one from each pair, that have largest diameter.

The fact that the center of A must be a distance at least d from the center of A0 and
more than d from A00 implies that the diameter of P 0

2
must be at least d and the

diameter of P 00
2

must be greater than d . This implies that the distance on A from P 0
2

to the peak of A is at most 1 and the distance on A from P 00
2

to the peak of A is less
than 1.

If one of the hemispheres is contained in the half-space bounded by the other, then the
distance between them on A is less than 1. This implies wC ct < 1, and therefore
w � ct < 2. On the other hand, if neither hemisphere is contained in the half-space
bounded by the other, the distance on A between these two planes is less than 2. But
in this case, the distance between them on A is exactly w � v , yielding w � v < 2.
This implies w� ct < 2, as we wished to show.

Proof of Theorem 1.7(4) Let D be an essential n–gon that compresses the boundary
of M �N.S/. Lift D to a disk D0 in H 3 so that one of the horospheres that intersects
@D0 , call it H0 , is centered at 1. Then @D0 consists of 2n arcs, alternating between a
cyclic sequence of horospheres covering the cusps and a cyclic sequence of topological
planes covering the surface, with limit sets of subsequent planes sharing parabolic fixed
points corresponding to the horospheres. Let L0 and Ln�1 be the quasi-lines that are
the limit sets of the two topological planes that share the parabolic fixed point at 1.
Let L1; : : : ;Ln�2 be the quasi-circles that are the limit sets of the chain of topological
planes. Then Li shares a parabolic fixed point xiC1 with LiC1 , where xi is the center
of the horosphere Hi covering the cusps. Corresponding to the choice of a parabolic
fixed point x and limit set Li containing that point, there are two sandwiching geodesic
planes with limit sets passing through x that yield the cusp thickness. For xi and Li ,
let PO

i be the outer plane with circle limit set containing Li and P I
i be the inner
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plane with limit set contained inside the topological disk bounded by Li . For xiC1

and Li , define the outer plane to be QO
i and the inner plane to be QI

i . In the case
of x0 D1, define PO

0
, P I

0
, QO

n�1
and QI

n�1
so that PO

0
and QO

n�1
are adjacent in

H . See Figure 4.

Note that the distance on Hi between QO
i and PO

iC1
is exactly w� ct .

w�ct

P I
0

P O
0

QO
4

QI
4

P O
1

P I
1

QI
1

x1

x2
x3

x4L1 L2 L3

L4L0

Q0
1

Figure 4: Lifting an essential n–gon for a quasi-Fuchsian surface

Note also that the disks bounded by PO
i and QO

i both contain Li . As in the proof of
Theorem 1.6(3), we will move all the points of tangency between the geodesic planes
to lie in a line perpendicular to the boundary lines of PO

0
and QO

n�1
, without changing

the sizes of the geodesic planes or the horospheres. To do so, suppose we have already
lined up x1; : : : ;xi�1 . Then xi lies on @PO

i , and inside @QO
i . Similarly, xiC1 lies

on @QO
i , and inside @PO

i . The point xi will remain fixed, but otherwise, we will
rotate @PO

i and all of the circles, tangency points and horospheres corresponding to
indices greater than i , so that their relation to one another does not change, but so
that a diameter of @QO

i intersects xi . Now, fixing the position of @QO
i , we rotate

the tangency point xiC1 around @QO
i , pulling along @PO

iC1
, HiC1 and all of the

circles, horospheres and tangency points with indices greater than i C 1. Repeating
this process, we have ultimately moved PO

0
and QO

n�1
further apart and lined up all

of the tangency points on a line perpendicular to both, while preserving the sizes of the
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horospheres and sandwiching geodesic planes. Note that we no longer respect the limit
sets of the preimages of the original quasi-Fuchsian surface in this process. Let the
new distance between PO

0
and QO

n�1
on H be denoted z , which is at least w � ct .

An upper bound for z is realized when the fixed points for the horospheres occur at the
farthest possible point to the right, which is on the boundary of PO

i . However, if @QO
i

is greater than @PO
i ,then @PO

iC1
will be smaller than it could be. Hence, for maximal

z , it must be that PO
i DQO

i . Then, exactly as in the proof of Theorem 1.6, but with
w� ct replacing w , we see that w� ct � 2 cos .�=n/.

3 Surfaces with multiple boundaries on a cusp

Let S be a quasi-Fuchsian surface with multiple boundary components on a cusp C .
Let H be a horosphere covering C centered at 1 in the upper-half-space model of
H 3 . The surface S lifts to a collection of topological planes. Certain of those planes
have 1 as a limit point, so their limit sets appear as quasi-lines in the xy-plane. Let L1

and L2 be two quasi-lines separated by no others. Each of L1 and L2 are sandwiched
by vertical geodesic planes P 0

1
, P 00

1
and P 0

2
, P 00

2
, each pair yielding the respective

cusp thickness of the quasi-line. Define P1 and P2 to be the two planes equidistant
between P 0

1
, P 00

1
and P 0

2
, P 00

2
respectively. Define the relative width of L1 and L2 to

be the distance in H between P1 and P2 . Define the minimum (maximum) width in
this cusp to be the minimum (maximum) of the relative width over all pairs of adjacent
quasi-lines corresponding to this cusp. If there are boundary components on more
than one cusp, choose cusp sizes so that the minimum (maximum) widths match and
then expand the cusps until two cusps touch or until one cusp touches itself. Define
the balanced minimum (maximum) width of the surface to be the resulting minimum
(maximum) width. We denote the balanced minimum width by wmin and the balanced
maximum width by wmax . Note that in the case there is only one boundary component
on a cusp, the balanced minimum and maximum widths revert to the balanced width
previously defined.

In the case that the surface is separating, denote each of the resulting components by I
and II. There must be an even number of boundary components on each cusp and we
can define, as above, both a minimum and maximum width for each component. These
are denoted wI

min; w
I
max; w

II
min; w

II
max .

Define the cusp thickness of the surface to be the maximum of the cusp thickness over
all boundary components.

The proofs for the following theorem are a direct generalization of the proofs of
Theorem 1.7.
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Theorem 3.1 Let S be a quasi-Fuchsian surface properly embedded in a closed 3–
manifold M , the interior of which is a cusped hyperbolic 3–manifold, such that S has
more than one boundary component on at least one cusp.

(1) wmaxC ct � 1.

(2) If S is semifree, then wmin� ct < 2.

(3) If S possesses an essential n–gon for n� 2, then wmin� ct � 2 cos.�=n/.

In the case S separates, the results hold for the wmax and wmin defined to each side.

Example 3.2 Let M be a noncompact hyperbolic 3–manifold containing an embedded
quasi-Fuchsian quadruply-punctured sphere or twice-punctured torus S . Then the
hyperbolic structure on S must respect certain symmetries of S that permute the
boundary components. (See Ruberman [14].) In particular, this implies that the
boundary components of S all have the same cusp thickness.

In the case of a twice-punctured torus in a knot complement with meridional boundary
components, it will be the case that wI

min D w
I
max D w

I and wII
min D w

II
max D w

II since
the cusp boundary is only cut into two pieces. For the quadruply-punctured sphere, it
is possible to have four different max and min width values.

4 Checkerboard surfaces

In this section, we prove that a checkerboard surface generated by a reduced alternating
knot or link diagram for a hyperbolic knot or link is always quasi-Fuchsian. Hence the
results of Theorem 1.7 apply to such a surface.

Note that work of Menasco [12] shows that a nontrivial alternating knot or link has
hyperbolic complement if and only if it is neither obviously composite in any alternating
diagram, nor an obvious 2–braid in its alternating diagram. Hence, one can immediately
determine whether or not a given alternating knot or link is hyperbolic.

Proof of Theorem 1.9 A method for decomposing a knot or link complement into
octahedra placed between the crossings was introduced by Dylan Thurston. It is
described in detail in Yokota [18]. Each octahedron has two ideal vertices and four
nonideal vertices. Truncating the octahedra at their ideal vertices and splitting each along
a square through the four nonideal vertices yields a decomposition of the link exterior
M into a collection of cubes. For a reduced alternating projection, this collection
satisfies the necessary conditions to be a nonpositively curved cubing (denoted np
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cubing) as in Aitchison–Rubenstein [3]. Take the collection of two squares in each
cube, each of which bisects the cube, and is parallel to a pair of opposite faces and
intersects one of the toroidal boundary components. Together these squares glue up to
produce the two checkerboard surfaces, denoted S1 and S2 .

Double the manifold across the toroidal boundary components. The resulting manifold
M 0 inherits an np cubing, and S1 and S2 double to closed surfaces S 0

1
and S 0

2
that

are totally geodesic in the new np cubing. Hence, in particular, S 0
1

and S 0
2

must be
�1 –injective in M 0 . This implies That S1 and S2 are �1 –injective in M as well.

If either S1 or S2 is accidental, a nontrivial nonboundary parallel curve on it is
homotopic into the boundary torus. The doubled surface then has two distinct nontrivial
curves homotopic to one another, contradicting the fact it is �1 –injective in M 0 . So
each checkerboard surface must be either quasi-Fuchsian or a virtual fiber. Suppose for
S1 it is the latter. Then S 0

1
is a virtual fiber in M 0 . Hence it lifts to a fiber S 00

1
in a

finite cover M 00 . The manifold M 00 inherits an np cubing as well, and S 00
1

consists
of a collection of squares bisecting the cubes in this cubing. Note that the essential
tori across which we doubled to create M 0 lift to a finite collection of essential tori in
M 00 , cutting M 00 into pieces, each of which has a hyperbolic metric of finite volume.

As in [3], let C be the union of all the line segments in the squares that bisect the square
and are parallel to the edges. The union of C is a collection of immersed geodesics in
the polyhedral metric.

Cutting M 00 open along S 00
1

yields S 00
1
� I . The collection of immersed geodesics

formed by C appear on both S1�0 and S1�1. They can be extended into the interior
of S 00

1
� I by taking the squares bisecting cubes in the cubing of S 00

1
� I that have

boundary in these geodesics and then continuing to glue on squares until finished.

As in [3], one can show the result is homeomorphic to C �I and intersects both S 00
1
�0

and S 00
1
� 1 in C . Hence M 00 must be a fiber bundle with periodic monodromy. Thus,

as in Scott [15], it has either Euclidean or H 2 �R geometry, contradicting the fact it
is cut into a finite number of hyperbolic pieces by a finite collection of essential tori.

5 Applications

Proof of Theorem 1.14 Theorem 1.7(1) says wCct � 1. Since ct � .n�2/=.nC1/,
w � 1� .n� 2/=.nC 1/D 3=.nC 1/ and hence nw� ct � 2.

Let S 0 be the orientable surface that forms the boundary of a neighborhood of the
surface S . Take an annulus with one boundary component shared with one of the
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boundaries of S 0 and the other shared with the other boundary component of S 0 such
that the annulus wraps around the cusp boundary n times, intersecting itself along
n � 1 disjoint singular curves. Call the resulting closed immersed surface S 00 . In
the universal cover H 3 , S 00 is covered by a surface obtained as follows. Take the
collection of topological planes that covered S 0 , and remove from each its intersections
with the interiors of horoballs covering the cusps. The resulting boundaries are then
connected in pairs by disks on the horospheres that cover the annuli, each of which
has two ideal points at the center of the horosphere. The surface S 00 compresses if
and only if a quasi-Fuchsian surface with width nw and cusp thickness ct compresses.
But since nw� ct � 2, that surface must be totally knotted by Theorem 1.7(3). So a
connected lift of S 00 cannot have a compressing disk. Hence, S 00 is �1 –injective. The
surface obviously lifts to an embedding in the n–fold cover when S is orientable.
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