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Tight contact structures and genus one fibered knots

JOHN A BALDWIN

We study contact structures compatible with genus one open book decompositions
with one boundary component. Any monodromy for such an open book can be
written as a product of Dehn twists around dual nonseparating curves in the once-
punctured torus. Given such a product, we supply an algorithm to determine whether
the corresponding contact structure is tight or overtwisted for all but a small family of
reducible monodromies. We rely on Ozsváth–Szabó Heegaard Floer homology in our
construction and, in particular, we completely identify the L–spaces with genus one,
one boundary component, pseudo-Anosov open book decompositions. Lastly, we
reveal a new infinite family of hyperbolic three-manifolds with no co-orientable taut
foliations, extending the family discovered by Roberts, Shareshian, and Stein in [24].

57M27, 57R17, 57R58; 57R30

1 Introduction

Let Aut.†; @†/ denote the set of isotopy classes of orientation preserving diffeomor-
phisms of † which restrict the identity on @† (where isotopies also restrict to the
identity on @†). When † is a once-punctured torus, Aut.†; @†/ is generated by
right-handed Dehn twists about dual nonseparating curves, x and y . In an abuse
of notation we denote by 
 the right-handed Dehn twist around the curve 
 � †:
The left-handed Dehn twist around 
 is then denoted by 
�1 . When it is unclear
whether we are talking about a curve or a Dehn twist, we will use the notation D


for the right-handed twist around 
 . Given an open book decomposition .†; �/, we
can express � as a product of Dehn twists, xa1yb1xa2yb2 � � �xanybn , with ai ; bj 2 Z,
where composition is on the left.

There is an equivalence relation on open books given by positive stabilization/destabili-
zation, and Giroux [6], extending results of Thurston and Winkelnkemper [27], showed
that equivalence classes of open books are in one-to-one correspondence with isotopy
classes of contact structures. Therefore, given a contact structure compatible with an
open book, it is natural to ask whether we can infer properties of the contact structure
simply by examining its monodromy. For instance, Giroux proved that a contact
structure is Stein fillable, and hence tight, if it has a compatible open book whose
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monodromy is the product of right-handed Dehn twists [6]. The converse is also true.
In general, however, there are tight contact structures which are not Stein fillable (or
even symplectically fillable, as shown by Etnyre and Honda [4]).

Along these lines, we give an algorithm which explicitly determines when a contact
structure compatible with a genus one open book with one boundary component is
tight and when it is overtwisted. Our algorithm works for all but a small family of
reducible monodromies. The input to the algorithm is a monodromy, written as a word
in the Dehn twists x and y . First, we state the main result when � is pseudo-Anosov.1

Recall that pseudo-Anosov is equivalent, in the case of the once-punctured torus, to
the condition that jtrace.�#/j> 2, where �#W H1.†;Z/ �!H1.†;Z/ is the induced
map on homology. Pseudo-Anosov monodromies are especially interesting because
the associated mapping torus M� is hyperbolic if � is pseudo-Anosov, by a result of
Thurston [25]. We will return to this fact in Section 7. From this point forward, † will
denote a genus one surface with one boundary component. The following is merely a
preliminary theorem which makes subsequent calculation much easier.

Theorem 1.1 Let ı be a curve parallel to the boundary, and let � be pseudo-Anosov.
Then the open book .†; �/ is equal to an open book whose monodromy is of the
following form:

(I) ık �xa1y�b1 � � �xany�bn , if trace.�/ > 2

(II) ık �xy2xy2 �xa1y�b1 � � �xany�bn , if trace.�/ < �2

Here k 2 Z; ai ; bj 2 Z�0 , and ai ¤ 0¤ bj for some i; j .

The pseudo-Anosov version of our main theorem is:

Theorem 1.2 Let � be a pseudo-Anosov, boundary-fixing automorphism of the once-
punctured torus. If � is of type I then the contact structure compatible with .†; �/
is tight if and only if k � 1. Likewise, if � is of type II then the contact structure
compatible with .†; �/ is tight if and only if k � 0.

We generalize both of these theorems in later sections to account for all monodromies.

To place this result in its proper context, it is necessary to discuss the recent work of
Honda, Kazez, and Matić. In late 2005, they found a general criterion for the tightness of
an open book, introducing the notion of right-veering diffeomorphisms [9]. Their result

1Throughout, when we say that � is pseudo-Anosov we really mean that � is isotopic to a pseudo-
Anosov diffeomorphism via a free isotopy – that is, one which does not necessarily restrict to the identity
on @† .
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is an improvement over Goodman’s sobering arc criterion for overtwistedness [7]. In
particular, they prove that a contact structure � is tight if and only if all of its compatible
open books .†; �/ have right-veering � .

In general, however, it is very difficult to prove statements about all open books
compatible with a given contact structure. Our paper succeeds in characterizing tightness
for contact structures in terms of a single compatible open book, when the open book
has genus equal to one and one boundary component, for almost all monodromies.
Honda, Kazez, and Matić have since succeeded in characterizing tightness in terms of
a single compatible open book (of genus one with one boundary component), for all
monodromies. Their results are phrased in terms of the fractional Dehn twist coefficient
of � , and can be found in [8; 9; 10]. Our approach is entirely different, and it is unique
in the fact that we provide an explicit algorithm for detecting tightness when given a
monodromy written as a product of Dehn twists of the sort described above. Moreover,
our method leads very naturally to the discovery of a new family of hyperbolic three-
manifolds with no taut foliations, as well as to a complete identification of Heegaard
Floer homology L–spaces among those three-manifolds which contain a genus one
fibered knot with pseudo-Anosov monodromy. In particular we are able to verify, for
three-manifolds which contain a genus one fibered knot, a conjecture of Ozsváth and
Szabó about L–spaces whose first homology groups have order one. In addition, an
understanding of the Heegaard Floer homology groups of some of these L–spaces
facilitates the computation of the Hopf invariants of their related contact structures.

Another interesting and related project is to identify those monodromies that give tight
contact structures (denote this set by Tight.†; @†/), but which cannot be expressed
as the product of right-handed Dehn twists along curves on the once-punctured torus
(denote this set by DehnC.†; @†/). This is the central topic of [10], and it is a step
towards characterizing monodromies which produce tight, but not Stein fillable contact
structures. An advantage of our explicit approach is that it allows us to easily identify
a large family of monodromies in Tight.†; @†/�DehnC.†; @†/. The reader should
compare these monodromies with those found in [10].

1.1 Organization

The organization of this paper is as follows: In Section 2, we prove a generalization
of Theorem 1.1 by somewhat tedious manipulations in Aut.†; @†/. In Section 3,
we calculate the Ozsváth–Szabó contact invariants for the type II monodromies of
Theorem 1.1 and we prove half of Theorem 1.2. In Section 4, we complete the proof of
Theorem 1.2 using Goodman’s criterion for overtwistedness. In addition, we generalize
Theorem 1.2, giving a characterization of tightness for all genus one, one boundary

Algebraic & Geometric Topology, Volume 7 (2007)



704 John A Baldwin

component open books, with a small family of exceptions. Section 5 is a discussion
of the Hopf invariants and spinc structures associated to these contact structures. In
Section 6, we analyze Tight.†; @†/�DehnC.†; @†/. Finally, in Section 7 we classify
L–spaces which have genus one, one boundary component open book decompositions.
This involves a comparison with some of Roberts’ results on taut foliations [22; 23].
Moreover, we identify an infinite family of hyperbolic L–spaces obtained by surgery
on the bindings of these open books. Section 8 is an Appendix containing the proof of
Lemma 3.6.

Acknowledgements I wish to thank Shaffiq Welji, Elisenda Grigsby, Jiajun Wang,
Matt Hedden, and Joan Licata for helping me understand Heegaard Floer homology. I
am also grateful to John Etnyre and Rachel Roberts for enlightening e-mail discussions.
Most of all, I am indebted to my advisor, Peter Ozsváth, who suggested that I study the
Heegaard Floer homology of these open books. Rarely have I left his office without a
new idea.

2 Proof of Theorem 1.1

2.1 Useful notation and the mapping class group

This section is devoted to proving a generalization of Theorem 1.1. The details are
somewhat tedious, so feel free to skip ahead to the statement of Theorem 2.6. As
mentioned in the Introduction, the mapping class group, Aut.†; @†/, of the once-
punctured torus is generated by right-handed Dehn twists about dual nonseparating
curves, x; y �†. We orient x and y so that i.x;y/DC1, where i is the intersection
form on H1.†;Z/. Also, we let ı denote a curve in † parallel to the boundary. Given
an open book .†; �/, where � is a word in Aut.†; @†/, it is useful to know how we
can change � and preserve the open book. We will use the following relations from
Aut.†; @†/:

� xyx D yxy

� .xy2xy2/2 D .xy/6 D ı

� If 
 and � are disjoint curves in †, then 
� D �
 .

From the first of these relations, it follows that the word hDxy2xy2D .xy/3 commutes
with every other word in Aut.†; @†/.2 To verify this, we only need to show that h

2The letter h is used to denote this word because h is freely isotopic to the hyperelliptic involution of
† – it represents half a twist around the boundary.
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commutes with both x and y . We show that h commutes with x , and the proof that h

commutes with y is virtually identical:

h �x D xyyxyyx D xyxyxyx D xxyxyxy D xxyyxyy D x � h:

The following notational convention will be useful. Let M.kI b1; :::; bn/ denote the
open book .†; ık �xyb1xyb2 � � �xybn/ for any collection of bi 2Z. Then Theorem 1.1
has the following reformulation:

Theorem 1.1 Let � be pseudo-Anosov. Then the open book .†; �/ is equal to an
open book whose monodromy is of the following form:

(I) M.kI �b1; :::;�bn/, if trace.�/ > 2

(II) M.kI 2; 2;�b1; :::;�bn/, if trace.�/ < �2

Here k 2 Z; bj 2 Z�0 , and bi ¤ 0 for some i .

Below is a list of moves which change the word � , but preserve the open book .†; �/.
Each is obtained from a combination of the relations mentioned above, together with
the observation that .†;w1 �w2/ is the same open book as .†;w2 �w1/; where w1; w2

are words in Aut.†; @†/ – in other words, conjugation does not change the open book.
This is not a manifestation of relations in Aut.†; @†/, but rather it is due to the fact
that the open book .†; �/ is constructed from the mapping torus, M� .

Lemma 2.1 The following moves preserve the open books:

(1) M.kI b1; :::; bn/DM.kI b2; :::; bn; b1/

(2) M.kI b1; :::;
‚ …„ ƒ
bi ; 1; biC1; :::; bn/DM.kI b1; :::;

‚ …„ ƒ
bi C 1; biC1C 1; :::; bn/

(3) M.kIb1; :::;
‚ …„ ƒ
bi ; 2; 2; 2; 2; biC1; :::; bn/

DM.kI b1; :::;
‚ …„ ƒ
bi ; 1; 1; 1; 1; 1; 1; biC1; :::; bn/DM.kC 1I b1; :::; bn/

(4) M.kI b1; :::;
‚ …„ ƒ
bi ; 2; biC1; :::; bn/DM.kI b1; :::;

‚ …„ ƒ
bi ˙m; 2; biC1�m; :::; bn/

(5) M.kI b1; :::;
‚ …„ ƒ
bi ; 2; 2; biC1; :::; bn/DM.kI 2; 2; b1; :::;

‚ …„ ƒ
bi ; biC1; :::; bn/

(6) M.kI b1; :::;
‚ …„ ƒ
bi ; 3; biC1; :::; bn/DM.kI 2; 2; b1; :::;

‚ …„ ƒ
bi � 1; biC1� 1; :::; bn/

Proof of Lemma 2.1 (1), (2), and (3) follow trivially from the relations that we have
discussed above. (4) follows because

M.kI b1; :::; bi ; 2; biC1; :::; bn/DM.kI b1; :::; bi � 1; 1; 1; biC1; :::; bn/

DM.kI b1; :::; bi � 1; 2; biC1C 1; :::; bn/
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on one hand, using moves of type 2. On the other hand,

M.kI b1; :::; bi ; 2; biC1; :::; bn/DM.kI b1; :::; bi ; 1; 1; biC1� 1; :::; bn/

DM.kI b1; :::; bi C 1; 2; biC1� 1; :::; bn/:

(5) follows from repeated applications of (4) or, if you prefer, from the fact that
hD xy2xy2 commutes with x and y , and thus with everything in Aut.†; @†/. (6)
follows from applications of (4) and (5):

M.kI b1; :::; bi ; 3; biC1; :::; bn/DM.kI b1; :::; bi � 1; 1; 2; biC1; :::; bn/

DM.kI b1; :::; bi � 1; 2; 2; biC1� 1; :::; bn/

DM.kI 2; 2; b1; :::; bi � 1; biC1� 1; :::; bn/:

Lemma 2.2 Every open book .†; �/ can be expressed in the form M.kI b1; :::; b2n/

for k; bi 2 Z.

Note that this is weaker than Theorem 1.1 which requires that the bi � 0 and some
bj ¤ 0.

Proof of Lemma 2.2

Claim 2.3 xm D ı�1 �xyxyxyxyxymC1xy D h�1 �yxymC1xy for m 2 Z.

Certainly for mD 1, we have:

x D ı�1
�xyxyxyxyxyxyx D ı�1

�xyxyxyxyxy2xy

D ı�1
� h �xyxy2xy D h�1yxy3xy

Now induct:

xmC1
D xm

�x

D ı�1
�xyxyxyxyxymC1xy � ı�1

�xyxyxyxyxy2xy

D ı�2
�xyxyxyxyxymC1xyxyxyxyxyxy2xy

D ı�2
�xyxyxyxyxymC1

� ı �yxy

D ı�1
�xyxyxyxyxymC2xy

D ı�1
� h �xyxymC1xy

D h�1
�yxymC3xy

Thus, for any � D xa1yb1 � � �xanybn , .†; �/ is equal to the open book

M.�nI 1; 1; 1; 1; a1C1; b1C1; 1; 1; 1; 1; a2C1; b2C1; :::; 1; 1; 1; 1; anC1; bnC1/;
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completing the proof of Lemma 2.2. Note that this can be reduced with a combination
of the moves 2 and 5 of Lemma 2.1 to M.�n=2I a1C 2; b1C 2; :::; anC 2; bnC 2/,
for n even, and M.�n� 1=2I 2; 2; a1C 2; b1C 2; :::; anC 2; bnC 2/, for n odd.

2.2 Proof of Theorem 1.1

Remark 2.4 We can use the comments immediately following Claim 2.3 to give
another move among open books:

M.kI b1; :::; b2n/DM.k � 2nI 1; 1; 1; 1; 2; b1C 1; :::; 1; 1; 1; 1; 2; b2nC 1/

DM.k � nI 3; b1C 2; :::; 3; b2nC 2/:

Therefore, any open book can be written as M.kI b1; :::; b2n/ by Lemma 2.2. Repeated
applications of the above move show that M.kI b1; :::; b2n/DM.d Ip1;p2; :::;pm/

for some d and some collection of pi � 3.

Lemma 2.5 M.kI b1; :::; bn/ can be written as one of the following types of open
books, via the word moves detailed above:

(1) M.d Ip1; :::;pm/, where the pi � 4

(2) M.d I 2; 2;p1; :::;pm/, where the pi � 4

(3) M.d I 2;p1/, where p1 � 2

(4) M.d I 2; 2; 2;p1/, where p1 � 2

(5) M.d Ip1/, where p1 � 1

(6) M.d I 2; 2;p1/, where p1 � 1

Proof of Lemma 2.5 Suppose that our open book is of the form M.d Ip1; :::;pm/

(or M.d I 2; 2;p1; :::;pm/) where the pi � 3. Any open book can be written in this
form by Remark 2.4. We perform the following iteration:

Step 1 If all of the pi � 4, then we can stop as we are in type 1 (or 2). If one of the
pi D 3, and m� 3, then go to Step 2. Otherwise, stop.

Step 2 Apply the word move in Lemma 2.1(6) to obtain M.d I 2; 2;p1; :::;pi�1 �

1;piC1 � 1; :::;pm/ (or M.d C 1Ip1; :::;pi�1 � 1;piC1 � 1; :::;pm//. If neither
pi�1�1 nor piC1�1 is equal to 2 then return to Step 1. If both pi�1�1;piC1�1D 2,
and m� 4 then go to Step 3. If exactly one of pi�1�1;piC1�1 is 2, say pi�1�1D 2,
and m� 4, then go to Step 4. Otherwise, stop.

Step 3 Apply the word moves in Lemma 2.1 to obtain the open book M.d C

1Ip1; :::;pi�2;piC2; :::;pm/ (or M.d C 1I 2; 2;p1; :::;pi�2;piC2; :::;pm/). Return
to Step 1.
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Step 4 Our open book is of the form M.d I 2; 2;p1; :::; 2;piC1�1; :::;pm/ (or M.dC

1Ip1; :::; 2;piC1� 1; :::;pm/) = M.d I 2; 2;p1; :::; 2; 2;piC1� 1Cpi�2� 2; :::;pm/

= M.dC1Ip1; :::;piC1�1Cpi�2�2; :::;pm/ (or M.dC1I 2; 2;p1; :::;piC1�1C

pi�2� 2; :::;pm/). Return to Step 1.

All that remains of the proof is to show that this iteration stops exactly when we
are in one of the types of Lemma 2.5. It stops at Step 1 if we ever reach a point
in which our open book is M.d Ip1; :::;pm/ (or M.d I 2; 2;p1; :::;pm/) where the
pi � 4. Here, we are in type 1 (or 2). It stops at Step 1 if one of the pi D 3, and
mD 2. In this case, the open book looks like M.d I 3;p2/ (or M.d I 2; 2; 3;p2/) =
M.d I 2; 1;p2 � 1/DM.d Ip2 � 1; 2; 1/DM.d Ip2 � 2; 2; 2/DM.d I 2; 2;p2 � 2/

(or M.d C 1Ip2 � 2/), and we are in type 6 (or 5). It stops at Step 1 if one of the
pi D 3, and mD 1, in which case we are in type 5 or 6.

The iteration stops at Step 2 if pi D 3, both pi�1 � 1;piC1 � 1 D 2, and m D 3.
In this case, the open book looks like M.d I 2; 2; 2; 2/ (or M.d C 1I 2; 2/), and we
are in type 3 (or 4). Finally, it stops at Step 2 if one of the pi D 3, exactly one of
pi�1�1;piC1�1 is equal to 2 (say pi�1�1D 2), and mD 3. In this case, the open
book looks like M.d I 2; 2; 2;piC1 � 1/ (or M.d C 1I 2;piC1 � 1/), and we are in
type 3 (or 4).

The following theorem generalizes Theorem 1.1.

Theorem 2.6 Any open book can be written as .†; �/, where � is one of the following
types:

(A) ıd �xa1y�1 � � �xany�1 , where the ai � 0, some aj ¤ 0

(B) ıd �xy2xy2 �xa1y�1 � � �xany�1 , where the ai � 0, some aj ¤ 0

(C) ıd �ym , for m 2 Z

(D) ıd �xy2xy2 �ym , for m 2 Z

(E) ıd �xmy�1 , where m 2 f�1;�2;�3g

(F) ıd �xy2xy2 �xmy�1 , where m 2 f�1;�2;�3g

Only types A and B are pseudo-Anosov.

Proof of Theorem 2.6 We simply need to show that monodromies of the open books
in types 1–6 of Lemma 2.5 can be expressed as monodromies of types A–F. Using
repeated applications of Claim 2.3, for m even, we can write

xyp1 � � �xypm D ı
m
2 �y�1xp1�3y�1xp2�4

� � �y�1xpm�1�4y�1xpm�3y�1x�1:
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To see this, simply substitute xpi�sDh�1yxypiC2�sxy for each i into the expression
on the right and simplify, using the fact that h commutes with everything. Likewise,
for m odd, we can write

xyp1 � � �xypmD ı
mC1

2 �y�1xp1�3y�1xp2�4
� � �y�1xpm�1�4y�1xpm�3

� .y�1x�1/4:

Then we can substitute these identities into to the monodromies of types 1, 2, 5,
and 6, apply some of the relations discussed earlier, and see which of the types A–F
we get. For monodromies of types 3 and 4, the reduction is easier. Observe that
xy2xyp1 D y0xy2xyp1 D y2xy2x � yp1�2 D xy2xy2 � yp1�2 , and substitute. We
give the results of these substitutions below.

(1) M.d Ip1; :::;pm/D .†; �/ where

� D

(
ıdCm

2 �xp1�4y�1 � � �xpm�4y�1 if m is even

ıdCm�1
2 �xy2xy2 �xp1�4y�1 � � �xpm�4y�1 if m is odd

(2) M.d I 2; 2;p1; :::;pm/D .†; �/ where

� D

(
ıdCm

2 �xy2xy2 �xp1�4y�1 � � �xpm�4y�1 if m is even

ıdCmC1
2 �xp1�4y�1 � � �xpm�4y�1 if m is odd

(3) M.d I 2;p1/D .†; �/ where � D ıd �xy2xy2 �yp1�2

(4) M.d I 2; 2; 2;p1/D .†; �/ where � D ıdC1 �yp1�2

(5) M.d Ip1/D .†; �/ where � D ıd �xy2xy2 �xp1�4y�1

(6) M.d I 2; 2;p1/D .†; �/ where � D ıdC1 �xp1�4y�1

Proof of Theorem 1.1 The proof of Theorem 1.1 is finished by the observation that
only monodromies of types A and B are pseudo-Anosov. This is seen by computing
trace.�#/ for each of these types. If we let .Œx�; Œy�/ be our basis for H1.†;Z/, then

.xm/# D

�
1 m

0 1

�
; .ym/# D

�
1 0

�m 1

�
; ı# D

�
1 0

0 1

�
; .xy2xy2/# D

�
�1 0

0 �1

�
The various word moves that we have illustrated certainly preserve trace.�#/. So, for
an arbitrary � 2Aut.†; @†/ it is clear that trace.�#/ > 2 if and only if .†; �/ is equal
to an open book with type A monodromy. Likewise, trace.�#/ < �2 if and only if
.†; �/ is equal to an open book with type B monodromy. Since these type A and B
monodromies have the properties required by Theorem 1.1, the proof is complete.

Remark 2.7 Note that types C and D are reducible, while types E and F are periodic.
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3 Computing the contact invariants

3.1 The contact invariant and surgery exact triangles

To a contact three-manifold .Y; �/, Ozsváth and Szabó associate a class c.�/ 2
bHF .�Y /=f˙1g, which is an invariant of the contact structure � up to isotopy [15].
We will use Z2 coefficients throughout to avoid ambiguity in sign. This invariant
encodes information related to the tightness of � . For instance, Ozsváth and Szabó
prove that if � is overtwisted, then c.�/D 0. On the other hand, if � is Stein fillable or
strongly fillable, then c.�/¤ 0 [15; 17]. The precise relationship between c.�/ and the
tightness of � is still unknown – there are tight contact structures with vanishing contact
invariant, as shown by Ghiggini [5]. In fact, Lisca and Stipsicz conjecture that the
contact invariant vanishes for contact structures with positive Giroux torsion [12]. Yet,
we show that if .Y; �/ is compatible with a genus one, one boundary component open
book .†; �/ (where � is a monodromy of Theorem 2.6 and � is not xy2xy2 � y�k

for some k > 4) then c.�/D 0 if and only if � is overtwisted.3 The contact invariant
is defined in terms of a compatible open book decomposition, c.†; �/, and it satisfies
the following property [15, Theorem 4.2]:

Theorem 3.1 If .†; �/ is an open book decomposition for Y, and 
 � Y �B is a
curve supported in a page of the open book (B is the binding), which is not homotopic
within the page to the boundary, then .†; t�1


 ��/ induces an open book decomposition
of YC1.
 /, and under the map

FW W
bHF .�Y / �!bHF .�YC1.
 //

obtained by the two-handle addition (and summing over all spinc structures), we have
that

FW .c.†; �//D˙c.†; t�1

 ��/:

In particular, this tells us that if c.†; �/¤ 0, then c.†; t
 ��/¤ 0, where .†; t
 ��/
is the induced open book decomposition of Y�1.
 /.

In this section, we compute the contact invariants c.†; �/, where � is a monodromy of
type II in Theorem 1.1. Borrowing the notation from Section 2, the following theorem
holds.

Theorem 3.2 If bj 2 Z�0 and some bi ¤ 0 then c.M.0I 2; 2;�b1; :::;�bn//¤ 0.

3Again, we should note that Honda, Kazez, and Matić have since shown this for all monodromies of
Theorem 2.6.
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Recall that in Aut.†; @†/, we have ı D .xy/6 D .xy2xy2/2 . Then Theorem 3.2 and
Theorem 3.1 imply that for k � 1,

c.M.kI �b1; :::;�bn//¤ 0:

Hence, the contact structure compatible with M.kI �b1; :::;�bn/ is tight for k � 1.
In exactly the same way M.kI 2; 2;�b1; :::;�bn/ is tight for k � 0. This proves half
of Theorem 1.2.

Before we give the proof of Theorem 3.2, we must examine the Heegaard Floer homol-
ogy of the three-manifolds underlying these open books. In the language of Heegaard
Floer homology, a rational homology 3–sphere Y is an L–space if bHF .Y; s/ Š Z

for every spinc –structure s on Y . Ozsváth and Szabó show that L–spaces are closed
under surgeries in the following sense [16, Proposition 2.1]:

Theorem 3.3 Suppose K � Y is a knot with framing � and

jH1.Y�.K//j D jH1.Y /jC jH1.Y�C�.K//j

where � denotes the meridian for the knot, Y�.K/ is the 3–manifold obtained from Y

by performing surgery on Y along K with framing �, and jGj is the order of the group
G if this order is finite. Then, if Y and Y�C�.K/ are both L–spaces, so is Y�.K/.
Furthermore, the map

FW W
bHF .Y / �! bHF .Y�.K//

obtained by the two-handle addition (and summing over all spinc structures) is injective.

The surgery diagrams for these genus one, one boundary component open books
are easy to describe – see Figure 1 for an example. Let �M .kI a1; :::; am/ denote the
oriented three-manifold underlying the open book M.kI a1; :::; am/. Then the manifold�M .0I 2; 2;�b1; :::;�bn/ has the surgery diagram illustrated in Figure 2 (this diagram
resembles Figure 1 after an isotopy of the surgery curves). The knot K in Figure 2 lies
in a page of the open book M.0I 2; 2;�b1; :::;�bn/, and C1–surgery on K yields
the manifold �M .0I 2; 2;�b1; :::;�bn � 1/ with induced open book decomposition
M.0I 2; 2;�b1; :::;�bn� 1/: Then, by Theorem 3.2, the map

FW W
bHF .� �M .0I 2; 2;�b1; :::;�bn// ! bHF .� �M .0I 2; 2;�b1; :::;�bn� 1//

c.M.0I 2; 2;�b1; :::;�bn// 7! c.M.0I 2; 2;�b1; :::;�bn� 1//:takes
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�1–surgery on each C1–surgery on each

0

0

�1

C1

�1

Figure 1: Surgery diagram for the open book with monodromy � D xy�4x�1y3x

The manifolds � �M .0I 2; 2;�b1; :::;�bn/ and � �M .0I 2; 2;�b1; :::;�bn� 1/ fit into
a surgery exact triangle:

bHF .� �M .0I 2; 2;�b1; :::;�bn//
FW //

((QQQQQQQQQQQQ
bHF .� �M .0I 2; 2;�b1; :::;�bn� 1//

vvmmmmmmmmmmmm

bHF .Q.b1C 1; b2; :::; bn�2; bn�1C 1//

Q.b1; :::; bn/ is defined to be the three-manifold given by the surgery diagram in
Figure 3. After a sequence of blowdowns and handleslides it can be shown that
Q.b1C 1; b2; :::; bn�2; bn�1C 1/ is the manifold obtained by 0–surgery on the knot
K in � �M .0I 2; 2;�b1; :::;�bn� 1/.

Our calculation of the contact invariants depends on the following three lemmas:

Lemma 3.4 For bj 2 Z�0 and some bi ¤ 0, Q.b1; :::; bn/ is an L–space.

Lemma 3.5 For bj 2 Z�0 and some bi ¤ 0, � �M .0I 2; 2;�b1; :::;�bn/ is an L–
space.
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�1

�1 �1 �1 �1 �1

�1 �1 �1 �1

0

0

1 1 1 1 1 1

K
bn bn�1 b1

Figure 2: Surgery diagram for the 3–manifold �M .0I 2; 2;�b1; :::;�bn/

Lemma 3.6 For bj 2 Z�0 and some bi ¤ 0,

jH1.� �M .0I 2; 2;�b1; :::;�bn� 1//j DjH1.� �M .0I 2; 2;�b1; :::;�bn//j

C jH1.Q.b1C 1; b2; :::; bn�2; bn�1C 1//j:

Theorem 3.2 follows immediately:

Proof of Theorem 3.2 M.0I 2; 2;�1;

m‚…„ƒ
0; :::; 0/ DM.0I 2; 2; 0� 1; 0; :::; 0/ D � � � D

M.0I 2; 2; 0; :::; 0;�1/ is the open book given by the monodromy xy2xy2 �xy�1xmD

xxyxyxy �y�1xmDx2yxyxmC1Dx3yxmC2 . And .†;x3yxmC2/D .†;yxmC5/.
But then M.0I 2; 2;�1; 0; :::; 0/ is Stein fillable since it can be written as an open book
whose monodromy consists solely of right-handed Dehn twists. Hence,

c.M.0I 2; 2;�1; 0; :::; 0//¤ 0:

Lemma 3.4–Lemma 3.6, together with Theorem 3.3 imply that FW is injective. Con-
sequently,

c.M.0I 2; 2;�b1; :::;�bn//¤ 0 H) c.M.0I 2; 2;�b1; :::;�bn� 1//¤ 0:
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1 1 1

�1 �1 �1 �1 �1 �1 �1

0

K

bn bn�1 b1

Figure 3: Surgery diagram for the 3–manifold Q.b1; :::; bn/

Since c.M.0I 2; 2;�1; 0; :::; 0//¤0, we can induct (as in the later proofs of Lemma 3.4
and Lemma 3.5) to show that c.M.0I 2; 2;�b1; :::;�bn//¤ 0 for bj 2 Z�0 and some
bi ¤ 0, completing the proof of Theorem 3.2.

3.2 Proof of Lemma 3.4–Lemma 3.6

Lemma 3.6 follows from direct computation: we compare the determinants of the
linking matrices of the surgery diagrams for the manifolds � �M .0I 2; 2;�b1; :::;�bn/,
� �M .0I 2; 2;�b1; :::;�bn � 1/, and Q.b1C 1; b2; :::; bn�2; bn�1C 1/. We save this
proof for the Appendix.

Proof of Lemma 3.5 Proving Theorem 3.2, we noted that M.0I 2; 2;�1;

m‚…„ƒ
0; :::; 0/ is

the open book .†;yxmC5/ for some m. But then,

� �M .0I 2; 2;�1; 0; :::; 0/D� �M .0I 2; 2; 0� 1; 0; :::; 0/

D � � � D � �M .0I 2; 2; 0; :::; 0;�1/

D�L.mC 5; 1/

which is an L–space, as shown by Ozsváth and Szabó in [16]. Our proof proceeds by in-
duction on the bi . Suppose that bi�1 for some i and either bj >1 for some j , or bk¤

0 for some k ¤ i (otherwise, � �M .0I 2; 2;�b1; :::;�bn/D� �M .0I 2; 2;�1; 0; :::; 0/),
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then

� �M .0I 2; 2;�b1; :::;�bn/D� �M .0I 2; 2;�biC1; :::;�bn;�b1; :::;�bi/

and by induction, we know that � �M .0I 2; 2;�biC1; :::;�bn;�b1; :::;�.bi � 1// is an
L–space. Since Q.biC1C 1; :::; bn; b1; :::; bi�1C 1/ is an L–space we can conclude,
by Lemma 3.4 and Theorem 3.3, that

� �M .0I 2; 2;�b1; :::;�bn/D� �M .0I 2; 2;�biC1; :::;�bn;�b1; :::;�bi/

is an L–space.

Proof of Lemma 3.4 This proof is virtually identical in technique to that of Lemma 3.5.
Q.b1; :::; bn�1; bnC 1/ is the manifold obtained by performing �1–surgery on the
knot K in Q.b1; :::; bn/ (see Figure 3). Meanwhile, Q.b1; :::; bn�2; bn�1C 1/ is the
manifold obtained by performing 0–surgery on the knot K . The following claim is
the analogue of Lemma 3.6 for these manifolds Q.

Claim 3.7 For bj 2 Z�0 and some bi ¤ 0 then

jH1.Q.b1; :::; bn�1; bnC1//jDjH1.Q.b1; :::; bn//jCjH1.Q.b1; :::; bn�2; bn�1C1//j:

Again, this is proved directly by comparing the determinants of the linking matrices for
these three manifolds. By Theorem 3.3, if Q.b1; :::; bn�2; bn�1C1/ and Q.b1; :::; bn/

are L–spaces, then so is Q.b1; :::; bn�1; bnC1/. To complete the proof of Lemma 3.4,
we proceed by induction, as before.

Observe that Q.0; a1; :::; am/ D Q.a1; :::; am/ D Q.a1; :::; am; 0/, and Q.1/ D S3 ,
an L–space. Now, we induct on n and on bn simultaneously. Consider Q.b1; :::; bn/.
If bn D 0 (or b1 D 0), then Q.b1; :::; bn/ D Q.b1; :::; bn�1/ (or Q.b2; :::; bn/) and
we can conclude by our induction on n that Q.b1; :::; bn/ is an L–space. If bn ¤ 0

and b1 ¤ 0, then by our induction on bn , Q.b1; :::; bn�1; bn� 1/ is an L–space; and
by induction on n, Q.b1; :::; bn�2; bn�1 C 1/ is an L–space. Combining this with
Claim 3.7 and Theorem 3.3, we can conclude that Q.b1; :::; bn/ is also an L–space.
This completes the proof of Lemma 3.4, and, consequently, ties up the remaining loose
end in the proof of Theorem 3.2 as well as half of Theorem 1.2.

Remark 3.8 There is actually a much shorter proof of Lemma 3.4: from their surgery
diagrams, it is easy to see that these Q manifolds have planar open book decompositions
with monodromies which are composed of right-handed Dehn twists. In [21] Ozsváth
and Szabó show that such three-manifolds are L–spaces.
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Remark 3.9 Using the inductive techniques above, we can prove that the manifolds�M .0I �b1; :::;�bn/ are also L–spaces for bj 2 Z�0 and some bi ¤ 0. Again, this
follows more easily from the observation that �M .0I �b1; :::;�bn/ is the double cover
of S3 branched along the closed 3–braid specified by the word �1�

�b1
2 : : : �1�

�bn
2 ,

where �1 and �2 are the standard generators of the braid group on three strands. This
3–braid is alternating, and it is shown by Ozsváth and Szabó in [19] that the double
cover of S3 branched along an alternating link is an L–space.

Remark 3.10 Since Y is an L–space if and only if �Y is an L–space, we can
conclude that the three manifolds �M .0I 2; 2;�b1; :::;�bn/ are L–spaces, for bj 2Z�0

and some bi ¤ 0.

4 Overtwistedness and sobering arcs

In this section, we prove the second half of Theorem 1.2; that is, for bj 2Z�0 and some
bi ¤ 0, M.kI �b1; :::;�bn/ is overtwisted if k < 1 and M.kI 2; 2;�b1; :::;�bn/ is
overtwisted if k < 0. These statements follow directly from Goodman’s sobering arc
criterion for overtwistedness [7]. First, a bit of background material.

Given two properly embedded oriented arcs ˛ , ˇ with common boundary points in †,
let ˇ0 be an arc transverse to ˛ that minimizes intersections with ˛ over boundary-
fixing isotopies of ˇ . Then let ialg.˛; ˇ/ denote the oriented intersection number of
˛ with ˇ0 , summed over points in the interiors of the arcs. Let igeom.˛; ˇ/ be the
unsigned number of interior intersection points of ˛ and ˇ0 . And let iı.˛; ˇ/ be
one-half the oriented sum of intersections at the boundaries of the arcs ˛ and ˇ0 . In
our case, suppose ˛ is an arc in the page † of an open book, .†; �/. Give the arc
�.˛/ the orientation which is opposite the pushed-forward orientation of ˛ .

Definition 4.1 A properly embedded arc ˛ �† is sobering for the monodromy � if

ialg.˛; �.˛//C igeom.˛; �.˛//C iı.˛; �.˛//� 0

and ˛ is not isotopic to �.˛/.

See Figure 4 for an illustration of sobering arcs. Goodman showed the following:

Theorem 4.2 If there is a sobering arc ˛ �† for the monodromy � , then the open
book .†; �/ is overtwisted.
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x

y

˛
�.˛/

Figure 4: A sobering arc in ˛ �† for the monodromy � D y�4 . Here y is
a longitude and x a meridian.

Remark 4.3 Whenever a monodromy consists of at least one left-handed Dehn
twist around y and arbitrarily many right-handed Dehn twists around x , it is clear
that an arc ˛ which crosses the curve y once and does not cross x is sobering, as
ialg.˛; �.˛//C igeom.˛; �.˛//D 0, and iı.˛; �.˛//D�1:

Remark 4.4 If ˛ is an arc for the monodromy � with

ialg.˛; �.˛//C igeom.˛; �.˛//C iı.˛; �.˛//D�1

then ˛ also satisfies

ialg.˛; h
�1
��.˛//C igeom.˛; h

�1
��.˛//C iı.˛; h

�1
��.˛//D�1

where hD xy2xy2 . This is because h�1 is isotopic to a left-handed half Dehn twist
around the boundary.

Proof of Theorem 1.2 The open book M.0I �b1; :::;�bn/ has monodromy which is
the composition of left-handed Dehn twists around the curve y with right-handed Dehn
twists around the curve x , and is thus overtwisted by Remark 4.3. M.kI �b1; :::;�bn/

has monodromy as in the case kD 0, composed with ık Dh2k . Hence, by Remark 4.4,
for k < 0, M.kI �b1; :::;�bn/ is overtwisted.
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Now consider the open book M.kI 2; 2;�b1; :::;�bn/. This open book has the same
monodromy as the open book M.0I �b1; :::;�bn/, composed with h2kC1 . So when
k < 0, M.kI 2; 2;�b1; :::;�bn/ is overtwisted by Remark 4.3 and Remark 4.4.

We generalized Theorem 1.1 in Theorem 2.6. Here we give the corresponding general-
ization of Theorem 1.2.

Theorem 4.5 A–F correspond to the monodromies of Theorem 2.6.

(A) Tight if and only if d � 1.

(B) Tight if and only if d � 0.

(C) Tight if and only if either d > 0 or d D 0 and m� 0.

(D) Tight if d > 0 or d D 0 and m� �4; overtwisted if d < 0.4

(E) Tight if and only if d � 1.

(F) Tight if and only if d � 0.

Proof of Theorem 4.5 For types A and B, this statement is simply Theorem 1.2. The
proof for types C–F is a combination of Goodman’s sobering arc criterion (Theorem 4.2),
Remark 4.3 and Remark 4.3, and Theorem 3.2, Theorem 3.1, and Theorem 1.2.

Type C If d > 0, then ıd � ym D ıd�1 � y2xy2 � xy2xy2 � xym . Since we have
c.†;xy2xy2 �xym/¤ 0 for any m (by Theorem 3.2), we conclude by Theorem 3.1
that c.†; ıd �ym/¤ 0, hence this open book is tight.

If d < 0, then an arc ˛ which crosses x once and does not intersect y is sobering
for the monodromy ıd � ym . Hence, the corresponding open book is overtwisted by
Theorem 4.2.

If d D 0, then c.†;ym/¤ 0 if m> 0 since the contact structure is Stein fillable. For
m D 0, we have the empty monodromy. Stabilizing once, we find that this is Stein
fillable, hence tight. When m< 0, c.†;ym/ is overtwisted by Remark 4.3.

Type D If d > 0, then ıd �xy2xy2 �ym D ıd�1 �xy2xy2 �xy2xy2 �y2xy2xym D

ıd�1 �xy2xy2 �y2xy2 �xy2xy2 �xym . Since c.†;xy2xy2 � xym/ ¤ 0 for any m,
we conclude by Theorem 3.1 that c.†; ıd �ym/¤ 0, hence this open book is tight.

If d < 0, then the curve ˛ which intersects x once and does not intersect y is sober-
ing for the monodromy ıd �xy2xy2 �ym D h2dC1 �ym , as h2dC1 is some nonzero
number of left-handed half Dehn twists around the boundary.

4Honda, Kazez, and Matić have since shown that these open books have nonvanishing contact invariant
and are therefore tight if and only if d � 0 .
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If dD0, then ıd �xy2xy2�ymDy2xy2x�ym . Note that y2xy2x�x�1ymDy2xy2Cm ,
and .†;y2xy2Cm/ D .†;xy4Cm/, which is Stein fillable for m � �4. So, since
c.†;y2xy2x � x�1ym/ ¤ 0 for m � �4, we can conclude by Theorem 3.1 that
c.†;y2xy2x �ym/¤ 0 for m� �4. Our methods are inconclusive when m< �4.

Type E If d �1, then we have ıd �xmy�1D ıd�1 �yx2yx2yx2yx2 �xmy�1D ıd�1 �

yx2yx2yx2yx2Cmy�1: And the open book .†; ıd�1 � yx2yx2yx2yx2Cmy�1/D

.†; ıd�1 � x2yx2yx2yx2Cm/D .†; ıd�1 � yx2yx2yx4Cm/; which is Stein fillable
for m� �3.

If d D 0, then ıd � xmy�1 D xmy�1 . Since m 2 f�1;�2;�3g, the arc ˛ which
intersects the curve x once and does not intersect y is sobering for this monodromy �
with

ialg.˛; �.˛//C igeom.˛; �.˛//C iı.˛; �.˛//D�1:

If d < 0, then ıd � xmy�1 D h2k � xmy�1 is then overtwisted as the arc ˛ above is
sobering for this monodromy by Remark 4.4.

Type F If d � 0, then ıd � xy2xy2 � xmy�1 D ıd � yx2yx2 � xmy�1 D ıd �

yx2yx2Cmy�1: And, .†; ıd �yx2yx2Cmy�1/D .†; ıd �x2yx2Cm/D .†;yx4Cm/;

which is Stein fillable for m� �3.

If d < 0, then ıd �xy2xy2 �xmy�1 D h2dC1 �xmy�1 , and the arc ˛ that was used in
the proof of overtwistedness for type E monodromies where d D 0 is also sobering for
this monodromy by Remark 4.4.

Remark 4.6 In light of Remark 2.7, the proof of Theorem 4.5 shows that, for periodic
monodromy, tight is equivalent to Stein fillable. Compare this with the results detailed
in Section 6.

Remark 4.7 The proof also shows that tightness is equivalent to the nonvanishing of
the contact invariant for all genus one, one boundary component open books which are
not equivalent to .†;xy2xy2 �yk/ where k < �4. In particular this implies that, for
tight contact structures compatible with these open books, contact �1–surgery on a
Legendrian knot is also tight. This follows from Theorem 3.1 and the fact that for any
Legendrian knot K in a contact three-manifold .Y; �/, there exists a compatible open
book for which K lies in page of the open book so that the contact framing is equal to
the framing induced by the page [3, Corollary 4.23].

Remark 4.8 It is also interesting to examine our results in the context of the following
question, posed by Ozsváth and Szabó in [15]: For a fibered knot K � Y , and n large
enough, it is clear that induced open book on Y�1=n.K/ is Stein fillable. But what
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is the minimal value of n for which the induced open book on Y�1=n.K/ is tight?
In the genus one case, we have answered this question in Theorem 4.5 for almost all
monodromies.

5 Spinc structures and Hopf invariants

In this section, we use the fact that the manifolds � �M .0I 2; 2;�b1; :::;�bn/ are L–
spaces (when some bi ¤ 0) to compute the Hopf invariants of the contact structures
associated to the open books M.0I 2; 2;�b1; : : : ;�bn/. If � is a monodromy, let
M.�/ denote the open book .†; �/, and let �M .�/ denote the three-manifold underly-
ing this open book. The primary theorem of this section is the following.

Theorem 5.1 The Hopf invariant of the two-plane field associated to the contact
structure given by the monodromy � D xy2xy2 � xa1y�b1 � � �xany�bn is h.�/ D

1=2C 1=4 �
Pn

iD1 .bi � ai/: Here, the ai ; bi � 0 and ai ¤ 0¤ bj for some i; j .

The proof of this theorem begins with the observation below.

Theorem 5.2 Let � be the monodromy given by �D xy2xy2 �xa1y�b1 � � �xany�bn ,
where ai ¤ 0 ¤ bj for some i; j , and let Y denote �M .�/. Then c.M.�// 2
bHF .�Y; sc/ where sc is a self-conjugate spinc structure on �Y . That is, sc D xsc .

Proof of Theorem 5.2 The result follows from examining the knot Floer homology
1HFK.�Y;K/, where K is the binding of the open book decomposition M.�/ of Y .
1HFK.�Y;K;�1/ is generated by a single element which represents c.M.�//, and
which is nontrivial in bHF .�Y; sc/. There is a conjugation symmetry in knot Floer
homology [18] from which we can conclude that 1HFK.�Y;K; 1/ is generated by a
single element in the conjugate spinc structure xsc . If sc ¤ xsc , then the knot Floer
homology in the spinc structures sc and xsc must look like the picture in Figure 5.

However, since knot Floer homology is the E1 term in a spectral sequence that
converges to bHF .�Y /, and since c.M.�// is the sole generator of bHF .�Y; sc/

(recall that � �M .xy2xy2 �xa1y�b1 � � �xany�bn/ is an L–space), there cannot be any
nontrivial elements of 1HFK.�Y;K; 0/ in the spinc structure sc . By conjugation
symmetry, this implies that there cannot be any nontrivial elements of 1HFK.�Y;K; 0/

in the spinc structure xsc . That is to say nD 0 and the knot Floer homology in these
two spinc structures must look like that depicted in Figure 6.

Yet, this last picture is not possible either, for there is also a symmetry under orienta-
tion reversal, 1HFKd .Y;K/D 1HFK�d .�Y;K/, which respects spinc structures but
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1

0

�1

n

n

sc xsc

Figure 5: Possible Knot Floer homology in the spinc structures sc and xsc .
The filtration is given on the left. The dots represent generators.

1

0

�1

sc xsc

Figure 6: Another possibility for the knot Floer homology?

reverses the sign of the filtration. If our knot Floer homology 1HFK.�Y;K/ looks like
that depicted in Figure 6, then 1HFK.Y;K/ looks the same, only with the filtrations
changing sign. This follows from the orientation reversal symmetry and Universal
Coefficient Theorem, as we are using Z2 coefficients. Then the map

1HFK .Y;K;�1/!bHF .Y /

is nontrivial: there cannot be any higher differentials in the spectral sequence, so the
generator of 1HFK .Y;K;�1/ must survive in bHF .Y /. However, this is the statement
that the contact invariant c.M.��1// for the corresponding contact structure on �Y

is nontrivial. Yet, this contact structure is overtwisted by Goodman’s sobering arc
criterion since

��1
D ybnx�an : : :yb1x�a1 �y�1x�1y�2x�1

D ybnx�an : : :yb1x�a1 � h�1;

so we arrive at a contradiction.
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Consequently, it must be the case that sc D xsc . This finishes the proof of Theorem 5.2.
With a bit more work, it is possible to show that 1HFK.�Y;K/ looks like that depicted
in Figure 7 in the spinc structure sc D xsc . The d1 differentials are shown in this figure

1

0

�1

sc D xsc

d1

Figure 7: The knot Floer homology in the spinc structure sc D xsc

and there can be no higher differentials in the related spectral sequence.

We now compute the absolute grading of c.M.xy2xy2 �xa1y�b1 � � �xany�bn//. By
the naturality of the contact invariant, discussed in Section 3, there is a map

FW W
bHF .� �M .xy2xy2

�xa1y�b1 � � �xany�bn//

!bHF .� �M .xy2xy2
�xa1y�b1 : : :xany�bn�1//

where FW (summing over all spinc structures) maps

c.M.xy2xy2
�xa1y�b1 � � �xany�bn// 7! c.M.xy2xy2

�xa1y�b1 : : :xany�bn�1//:

Now, for a spinc structure s on the cobordism W ,

FW ;xs D JFW ;sJ

where JW bHF .X; t/!bHF .X;xt/ is the isomorphism on homology exhibited in Sec-
tion 3 of [20]. Therefore,

FW ;xs.c.M.xy2xy2
�xa1y�b1 � � �xany�bn///

D FW ;s.c.M.xy2xy2
�xa1y�b1 � � �xany�bn///;

as the spinc structure associated to c.M.xy2xy2 � xa1y�b1 � � �xany�bn// is self-
conjugate. So, if s ¤xs , the contributions of these two maps cancel when we sum over
spinc structures. In fact the only contributions which are not cancelled out are those
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coming from the maps FW ;s , where s D xs on W . For such s , c1.s/D�c1.s/, hence
c1.s/

2 D 0. The grading shift of the map FW ;s is given by

c1.s/
2� 3� � 2�

4

which in this case is 1=4: the cobordism is gotten by two-handle addition, so �D 1;
in addition, this cobordism is negative definite (it cannot be positive definite as the
map on bHF is nonzero, and it cannot be indefinite because all three terms in the
associated surgery exact triangle involving these two manifolds are rational homology
three-spheres), so � D �1. Therefore, since c.xy2xy2 � xa1y�b1 � � �xany�bn/¤ 0,
we may conclude that

gr.c.M.xy2xy2
�xa1y�b1 : : :xany�bn�1///

� gr.c.M.xy2xy2
�xa1y�b1 � � �xany�bn///D 1=4:

When nD 1, a1 D 1D b1 , � �M .xy2xy2 �xy�1/D�L.5; 1/, and there is only one
self-conjugate spinc structure s0 on �L.5; 1/. Moreover, the absolute grading of the
generator of bHF .�L.5; 1/; s0/ is �1 [14]. Hence, gr.c.M.xy2xy2 �xy�1///D�1,
and, by induction, we obtain the formula

gr.c.M.xy2xy2
�xa1y�b1 � � �xany�bn///D�1C 1=4 �

nX
iD1

.bi � ai/:
5

By [15], the absolute grading of the contact invariant gr.c/ and the Hopf invariant of the
corresponding two-plane field h.�/ are related by the expression h.�/D�gr.c/�1=2.
This concludes the proof of Theorem 5.1.

6 Tight.†; @†/ versus DehnC.†; @†/

Let Tight.†; @†/ denote the set of monodromies on † which correspond to tight con-
tact structures, and let DehnC.†; @†/ denote the set of monodromies whose conjugate
(by some element in Aut.†; @†/) can be expressed as the product of right-handed
Dehn twists. As was mentioned before, a contact structure is Stein fillable if and only
if it is compatible with some open book whose monodromy is expressible as a product
of right-handed Dehn twists. We should point out that there do exist Stein fillable

5In this induction, we also need to use the maps

FW 0 W cHF .� �M .xy2xy2
�xa1y�b1 � � �xany�bn//! cHF .� �M .xy2xy2

�xa1y�b1 : : :xan�1y�bn//;

which behave in the same way as the maps FW described above.
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contact structures which are compatible with genus one, one boundary component open
books, but whose monodromy cannot be taken to be in DehnC.†; @†/. One such
example is the contact structure compatible with the empty monodromy on †. After
one stabilization, we see that this contact structure is Stein fillable. On the other hand, it
follows from the lemma below that the empty monodromy cannot be written as a product
of right-handed Dehn twists around curves in †. Despite this discrepancy between
Stein fillable and DehnC.†; @†/, an analysis of Tight.†; @†/�DehnC.†; @†/ seems
to be an appropriate first step in the identification of tight but not Stein fillable contact
structures which are compatible with genus one, one boundary component open books.

This program was initiated by Honda, Kazez, and Matić in [10]. In their paper, the
authors do not explicitly study Tight.†; @†/. Instead, they investigate Veer.†; @†/,
which is the monoid of right-veering diffeomorphisms of †. They have since shown
that Veer.†; @†/ D Tight.†; @†/ when † is the once-punctured torus [8; 9; 10].
The authors are able to identify infinitely many pseudo-Anosov monodromies in
Veer.†; @†/ � DehnC.†; @†/. Their analysis makes use of the fact that a genus
one, one boundary component open book is the double cover of S3 branched along
a closed three-braid. Then, via a combination of the Rademacher function and
the rotation number, they find three-braids which correspond to monodromies in
Veer.†; @†/�DehnC.†; @†/.

Our result very closely parallels that of [10] but it is simpler in its statement and proof.
We need only one lemma to identify infinitely many monodromies in Tight.†; @†/�
DehnC.†; @†/.

Lemma 6.1 If a monodromy � D xa1yb1 � � �xanybn is in DehnC.†; @†/ and can
be written as the product of k right-handed Dehn twists about homologically nontrivial
simple closed curves in †, then

nX
iD1

ai C bi D k:

Writing ı D .xy/6 , we can easily identify infinitely many � 2 Tight.†; @†/ �
DehnC.†; @†/ by combining Lemma 6.1 with Theorem 4.5. For instance, mon-
odromies of the form � D ık � xy2xy2 � xa1y�b1 � � �xany�bn are in Tight.†; @†/
when the ai ; bi � 0, k � 0, and ai ¤ 0¤ bj for some i; j , by Theorem 4.5. On the
other hand, according to Lemma 6.1, � … DehnC.†; @†/ if

6C 12kC

nX
iD1

ai �

nX
iD1

bi :
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Proof of Lemma 6.1 The lemma follows from the well-known fact that fD
f
�1 D

Df .
/ (see, for example, [13]) where, in this notation, D
 represents a right-handed
Dehn twist around the curve 
 and f W †! † is an orientation-preserving homeo-
morphism. Keeping with this notation for right-handed Dehn twists (until the end of
this section), we need only to check that, when ˛ is a homologically nontrivial curve,
D˛ DD

a1
x D

b1
y � � �D

an
x D

bn
y for some collection of ai ; bj such that

Pn
iD1ai C bi D 1.

This is all we need to check because the relations in Aut.†; @†/ between words in
Dx and Dy are generated by the relation DxDyDx D DyDxDy , which preserves
sums of exponents.

In order to check this, observe that since ˛ is homologically nontrivial, we can find
an orientation-preserving homeomorphism f so that f .x/ is isotopic to ˛ . Then, we
have that f �1Dxf DD˛ . Writing f as a word in the Dehn twists Dx and Dy , we
are done.

7 L–spaces and genus one fibered knots

Between Remark 3.9, Remark 3.10, and Lemma 3.5, we have identified three types of L–
spaces with genus one, one boundary component open book decompositions. These are�M .0I 2; 2;�b1; :::;�bn/, � �M .0I 2; 2;�b1; :::;�bn/, and �M .0I �b1; :::;�bn/. By
comparing surgery diagrams, it can be shown that � �M .0I 2; 2;�b1; :::;�bn/ is home-
omorphic to the three-manifold �M .�1I 2; 2;�a1; :::;�am/ for some set of aj 2 Z�0

and some ai ¤ 0. We summarize these statements and more in the following theorem.

Theorem 7.1 For bj 2 Z�0 and some bi ¤ 0, the following are L–spaces. Con-
versely, if Y is an L–space with a genus one, one boundary component open book
decomposition with pseudo-Anosov monodromy, then Y takes one of the following
forms:

(1) �M .0I �b1; :::;�bn/

(2) �M .0I 2; 2;�b1; :::;�bn/

(3) �M .�1I 2; 2;�b1; :::;�bn/

Proof of Theorem 7.1 These manifolds are all L–spaces by arguments identical to
those in the proof of Lemma 3.5. For the converse, let M� denote the mapping torus of
�W †!†. Then M� is a three-manifold with torus boundary. Let �M�.p=q/ denote
the p=q Dehn filling of M� with respect to some framing. Roberts [22] shows that if
� is pseudo-Anosov, then for
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� trace.�/ > 2 and all but one Dehn filling, �M�.p=q/ has a co-orientable taut
foliation, and for

� trace.�/<�2, and p=q2 .�1; 1/ with respect to the framing in [22], �M�.p=q/

has a co-orientable taut foliation.

On the other hand, Ozsváth and Szabó show that L–spaces have no co-orientable taut
foliations [17].

By Theorem 1.1, the three-manifolds with genus one, one boundary component
open book decompositions whose monodromy is pseudo-Anosov with trace > 2

are of the form �M .kI �b1; :::;�bn/, and those with trace < �2 are of the form�M .kI 2; 2;�b1; :::;�bn/. As k varies, these manifolds correspond to different Dehn
fillings of mapping tori of the sort mentioned above. For trace> 2, the k D 0 filling
is an L–space, and therefore has no co-orientable taut foliation. Then according
to Roberts, �M .kI �b1; :::;�bn/ has a co-orientable taut foliation for k ¤ 0, and is
therefore not an L–space.

Suppose that � is the monodromy of the open book M.0I 2; 2;�b1; :::;�bn/. In
the framing in [22], the longitude is the oriented boundary of a page of the open
book and a meridian is chosen which intersects this longitude once. So, a priori,
we know that �M .�1I 2; 2;�b1; :::;�bn/D �M�.1=m/ for some m, with respect to
this framing. Since �M .�1I 2; 2;�b1; :::;�bn/ is an L–space, it must be true that�M .�1I 2; 2;�b1; :::;�bn/ is equal to either �M�.1=1/ or �M �.1=0/ with respect to
this framing, and �M .0I 2; 2;�b1; :::;�bn/ is equal to the other. Then, the manifold�M .�kI 2; 2;�b1; :::;�bn/ is equal to �M �.1=k/ or �M �.1=1 � k/. In either case,
Roberts’ results tell us that �M .�kI 2; 2;�b1; :::;�bn/ must have a co-orientable taut
foliation for k ¤ 1 or 0, and is therefore not an L–space.

These L–spaces can be used to manufacture an infinite family of hyperbolic three-
manifolds with no co-orientable taut foliations. The first such examples were found by
Roberts, Shareshian, and Stein [24] (see also the work of Calegari and Dunfield [2]).
Consider the open book M.0I 2; 2;�b1; :::;�bn/. Since �M .0I 2; 2;�b1; :::;�bn/ is
an L–space and C1–surgery on the binding of M.0I 2; 2;�b1; : : : ; bn/ is an L–space
(as it is equal to �M .�1I 2; 2;�b1; :::;�bn/), we can prove, using the surgery exact
triangle and inductive arguments as before, the theorem below.

Theorem 7.2 p=q–surgery on the binding of M.0I 2; 2;�b1; : : : ; bn/ is an L–space
for p=q � 1.
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According to Thurston [25], if � is pseudo-Anosov, then M� is hyperbolic. In addition,
Thurston’s Hyperbolic Dehn Surgery Theorem [26] guarantees that all but finitely many
Dehn fillings of M� are hyperbolic as well. Let � be the monodromy of the open book
M.0I 2; 2;�b1; : : : ; bn/. Since � is pseudo-Anosov, and different surgeries on the
binding of M.0I 2; 2;�b1; : : : ; bn/ correspond to different Dehn fillings of M� , all
but finitely many of the L–spaces in Theorem 7.2 are hyperbolic. This family is much
larger than the family of examples found in [24]. The examples in [24] can be expressed
as p=q–surgery on the binding of manifolds of the form M.0I 2; 2; 0; 0; :::; 0;�1/ for
p=q � 1 and p odd. These manifolds are obtained as surgeries on the components of
the Borromean rings. More precisely, p=q–surgery on the binding of

M.0I 2; 2;

m‚ …„ ƒ
0; 0; :::; 0;�1/

is the manifold B.p=q; 1;mC 5/. As such, the first homology of the manifolds in
[24] is generated by at most two elements. On the other hand, infinitely many of
the manifolds in Theorem 7.2 have first homology generated by three elements. For
instance, p=q–surgery on the binding of

M.0I 2; 2;

m‚ …„ ƒ
0; 0; :::; 0;�2/

is the manifold B.p=q; 2;mC 3/. To be fair, in [24] the authors prove that these
manifolds have no taut foliations whatsoever, co-orientable or otherwise.

In [11], Kronheimer, Mrowka, Ozsváth, and Szabó exhibit an infinite family of mono-
pole L–spaces (defined similarly in terms of monopole Floer homology) which are
given by rational surgeries on the components of the Borromean rings for which the
surgery coefficient on each component is at least 1. A priori, it is not evident that our
construction supplies any new L–spaces which cannot be expressed as surgeries on
the Borromean rings, although it seems very likely that this is the case.

Remark 7.3 Ozsváth and Szabó conjecture that if jH1.Y IZ/j D 1 and Y is an L–
space, then Y Dn.†.2; 3; 5// # m.�†.2; 3; 5// for some integers n and m. Examining
the first homologies of the open books corresponding to the monodromies of types
A–F, we find that if an integer homology three-sphere Y contains a genus one fibered
knot, then Y is the result of some 1=n–surgery on one of the trefoils or on the figure
eight. (For a break down of jH1.Y IZ/j by monodromy, see [1].) If we additionally
assume that Y is an L–space then it cannot be obtained via surgery on the figure
eight knot [16]. Moreover, it follows from explicit calculations in [14] that under these
constraints, Y can only be S3 , C1–surgery on the right-handed trefoil, or �1–surgery
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on the left-handed trefoil. The latter two surgeries produce the manifolds †.2; 3; 5/
and �†.2; 3; 5/, respectively, yielding the following corollary:

Corollary 7.4 If Y is an L–space, jH1.Y IZ/j D 1, and Y contains a genus one
fibered knot, then either Y D†.2; 3; 5/ or Y D�†.2; 3; 5/.

8 Appendix

Here, we illustrate the proof of Lemma 3.6. The proof is not especially revealing, but
we include it for the sake of completeness.

Proof of Lemma 3.6 Figure 8 gives a surgery diagram for � �M .0I 2; 2;�b1; :::;�bn/.

1

bnC 2
bnC bn�1C 2

bnC � � �C b2C 2
bnC � � �C b1C 2

bnC � � �C b1

bn bn�1
b1 �2

bnC � � �C b1� 4

Figure 8: Surgery diagram for the 3–manifold � �M .0I 2; 2;�b1; :::;�bn/

The linking matrix for � �M .0I 2; 2;�b1; :::;�bn/ is given by:0BBBBBBB@

bnC � � �C b1� 4 bn � � � bnC � � �C b1 bnC � � �C b1� 2

bn bnC 2 � � � bnC 1 bnC 1

bnC bn�1 bnC 1 � � � bnC bn�1C 1 bnC bn�1C 1
:::

:::
:::

:::

bnC � � �C b1 bnC 1 � � � bnC � � �C b1C 2 bnC � � �C b1C 1

bnC � � �C b1� 2 bnC 1 � � � bnC � � �C b1C 1 bnC � � �C b1

1CCCCCCCA
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Then the respective linking matrices for � �M .�1I 2; 2;�b1; :::;�bn/ and Q.b1 C

1; b2; :::; bn�2; bn�1C 1/ are:0BBBBBBBBB@

bnC � � �C b1� 4 bn � � � bnC � � �C b1 bnC � � �C b1� 2 1

bn bnC 2 � � � bnC 1 bnC 1 1

bnC bn�1 bnC 1 � � � bnC bn�1C 1 bnC bn�1C 1 1
:::

:::
:::

:::

bnC � � �C b1 bnC 1 � � � bnC � � �C b1C 2 bnC � � �C b1C 1 1

bnC � � �C b1� 2 bnC 1 � � � bnC � � �C b1C 1 bnC � � �C b1 1

1 1 � � � 1 1 �1

1CCCCCCCCCA
0BBBBBBBBB@

bnC � � �C b1� 4 bn � � � bnC � � �C b1 bnC � � �C b1� 2 1

bn bnC 2 � � � bnC 1 bnC 1 1

bnC bn�1 bnC 1 � � � bnC bn�1C 1 bnC bn�1C 1 1
:::

:::
:::

:::

bnC � � �C b1 bnC 1 � � � bnC � � �C b1C 2 bnC � � �C b1C 1 1

bnC � � �C b1� 2 bnC 1 � � � bnC � � �C b1C 1 bnC � � �C b1 1

1 1 � � � 1 1 0

1CCCCCCCCCA
Denote the determinants of these matrices by A.b1; :::; bn/, A�1.b1; :::; bn/, and
A0.b1; :::; bn/. It is clear that

A�1.b1; :::; bn/CA.b1; :::; bn/DA0.b1; :::; bn/:

By adding the last row to the previous rows, we can also see that

A�1.b1; :::; bn/D�A.b1; :::; bnC 1/:

Thus, we can write

�A.b1; :::; bnC 1/DA0.b1; :::; bn/�A.b1; :::; bn/:

If we can show that �A.b1; :::; bn/ is positive and increasing in the parameter bn , then
we can conclude that A0.b1; :::; bn/ > 0, and the previous equation becomes

j �A.b1; :::; bnC 1/j D jA0.b1; :::; bn/jC jA.b1; :::; bn/j:

This is equivalent to

jA�1.b1; :::; bn/j D jA0.b1; :::; bn/jC jA.b1; :::; bn/j

which is the statement of Lemma 3.6.
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Lemma 8.1 We can write A.b1; :::; bn/D�C.b1; :::; bn/; where C(b_1,...,b_n) is:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

bnC 2 bnC 1 � � � bnC 1 bnC 2

bnC 1 bnC bn�1C 2 � � � bnC bn�1C 1 bnC bn�1C 2

bnC 1 bnC bn�1C 1 � � � bnC bn�1C bn�2C 1 bnC bn�1C bn�2C 2
:::

:::
:::

:::

bnC 1 bnC bn�1C 1 � � � bnC � � �C b2C 2 bnC � � �C b2C 2

bnC 2 bnC bn�1C 2 � � � bnC � � �C b2C 2 bnC � � �C b1C 4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Proof of Lemma 8.1 By moving the first row of A.b1; :::; bn/ to the last row and
then the first column to the last column, we have A.b1; :::; bn/ equals:ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ

bnC 2 bnC 1 � � � bnC 1 bn

bnC 1 bnC bn�1C 2 � � � bnC bn�1C 1 bnC bn�1
:::

:::
:::

:::

bnC 1 bnC bn�1C 1 � � � bnC � � �C b1C 1 bnC � � �C b1

bnC 1 bnC bn�1C 1 � � � bnC � � �C b1 bnC � � �C b1� 2

bn bnC bn�1 � � � bnC � � �C b1� 2 bnC � � �C b1� 4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Next, we perform the following sequence of row and column operations:

(1) Subtract the third from last column from the second from last column.

(2) Subtract the third from last row from the second from last row.

(3) Subtract the third from last column from the last column.

(4) Subtract the third from last row from the last row.

After performing these operations, we see that A.b1; :::; bn/ becomes:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

bnC 2 bnC 1 � � � bnC 1 0 �1

bnC 1 bnC bn�1C 2 � � � bnC bn�1C 1 0 �1
:::

:::
:::

:::
:::

bnC 1 bnC bn�1C 1 � � � bnC � � �C b1C 2 �1 �2

0 0 � � � �1 0 �1

�1 �1 � � � �2 �1 �2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
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Next, we subtract the last column from the columns preceding it, and then subtract the
last row from the rows preceding it. We obtain A.b1; :::; bn/ equals:ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ

bnC 2 bnC 1 � � � bnC 2 0 1

bnC 1 bnC bn�1C 2 � � � bnC bn�1C 2 0 1
:::

:::
:::

:::
:::

bnC 2 bnC bn�1C 2 � � � bnC � � �C b1C 4 0 0

0 0 � � � 0 0 1

1 1 � � � 0 1 �2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Expanding minors, we see that this is �C.b1; :::; bn/.

Now, we verify that C.b1; :::; bn/ is positive and increasing in the parameter bn , where
the bj 2Z�0 and some bi¤0. Once we establish this, Lemma 3.6 follows immediately,
as discussed above. We start with two lemmas.

Lemma 8.2 For b1; :::; bn � 0, D.b1; :::; bn/ > 0, where D.b1; :::; bn/ equals:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

bnC 1 bn � � � bn bn

bn bnC bn�1C 1 � � � bnC bn�1 bnC bn�1

bn bnC bn�1 � � � bnC bn�1C bn�2 bnC bn�1C bn�2
:::

:::
:::

:::

bn bnC bn�1 � � � bnC � � �C b2C 1 bnC � � �C b2

bn bnC bn�1 � � � bnC � � �C b2 bnC � � �C b1C 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Proof of Lemma 8.2 This is clear in the case nD 1. We proceed by induction on n.
D.b1; :::; bn/ equals:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

bnC bn�1C 1 � � � bnC bn�1 bnC bn�1

bnC bn�1 � � � bnC bn�1C bn�2 bnC bn�1C bn�2
:::

:::
:::

bnC bn�1 � � � bnC � � �C b2C 1 bnC � � �C b2

bnC bn�1 � � � bnC � � �C b2 bnC � � �C b1C 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

bn bn � � � bn bn

bn bnC bn�1 � � � bnC bn�1 bnC bn�1

bn bnC bn�1C bn�2C 1 � � � bnC bn�1C bn�2 bnC bn�1C bn�2
:::

:::
:::

:::

bn bnC bn�1C bn�2 � � � bnC � � �C b2C 1 bnC � � �C b2

bn bnC bn�1C bn�2 � � � bnC � � �C b2 bnC � � �C b1C 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
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The first summand is D.b1; ::; bn�2; bn C bn�1/ and is therefore > 0 by induction.
After row and column operations, we can write the second summand as:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

bn 0 0 � � � 0 0

0 bn�1C 1 bn�1 � � � bn�1 bn�1

0 bn�1 bn�1C bn�2C 1 � � � bn�1C bn�2 bn�1C bn�2
:::

:::
:::

:::
:::

0 bn�1 bn�1C bn�2 � � � bn�1C � � �C b2C 1 bn�1C � � �C b2

0 bn�1 bn�1C bn�2 � � � bn�1C � � �C b2 bn�1C � � �C b1C 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

And this is nonnegative by induction. We have shown that we can write

D.b1; :::; bn/DD.b1; ::; bn�2; bnC bn�1/C bn �D.b1; :::; bn�1/:

We use this fact in the next lemma.

Lemma 8.3 For b1; :::; bn � 0, D.b1; :::; bn/�D.b2; :::; bn/� 0.

Proof of Lemma 8.3 For nD 2, this is clear. Again, we proceed by induction. We
can write

D.b1; :::; bn/�D.b2; :::; bn/

DD.b1; ::; bn�2; bnC bn�1/�D.b2; ::; bn�2; bnC bn�1/

C bn �
�
D.b1; :::; bn�1/�D.b2; :::; bn�1/

�
:

By induction, both D.b1; ::; bn�2; bnC bn�1/�D.b2; ::; bn�2; bnC bn�1/ and bn ��
D.b1; :::; bn�1/�D.b2; :::; bn�1/

�
are � 0.

Now we are ready to show that, for b1; :::; bn � 0, C.b1; :::; bn/ is positive and increas-
ing in the parameter bn . This is clear for nD 1. From here, we induct. C.b1; :::; bn/

is:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

bnC bn�1C 2 � � � bnC bn�1C 1 bnC bn�1C 2

bnC bn�1C 1 � � � bnC bn�1C bn�2C 1 bnC bn�1C bn�2C 2
:::

:::
:::

bnC bn�1C 1 � � � bnC � � �C b2C 2 bnC � � �C b2C 2

bnC bn�1C 2 � � � bnC � � �C b2C 2 bnC � � �C b1C 4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
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C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

bnC 1 bnC 1 � � � bnC 1 bnC 2

bnC 1 bnC bn�1C 2 � � � bnC bn�1C 1 bnC bn�1C 2

bnC 1 bnC bn�1C 1 � � � bnC bn�1C bn�2C 1 bnC bn�1C bn�2C 2
:::

:::
:::

:::

bnC 1 bnC bn�1C 1 � � � bnC � � �C b2C 2 bnC � � �C b2C 2

bnC 2 bnC bn�1C 2 � � � bnC � � �C b2C 2 bnC � � �C b1C 4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

The first summand is C.b1; : : : ; bn�2; bn�1C bn/ and is therefore > 0 and increasing
in the variable bn by induction. The second summand can be rewritten as:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

bnC 1 0 0 � � � 0 1

0 bn�1C 1 bn�1 � � � bn�1 bn�1

0 bn�1 bn�1C bn�2C 1 � � � bn�1C bn�2 bn�1C bn�2
:::

:::
:::

:::
:::

0 bn�1 bn�1C bn�2 � � � bnC � � �C b2C 1 bnC � � �C b2

1 bn�1 bn�1C bn�2 � � � bnC � � �C b2 bnC � � �C b1C 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

And this is equal to .bnC1/�D.b1; :::; bn�1/�D.b2; :::; bn�1/Dbn �D.b1; :::; bn�1/C�
D.b1; :::; bn�1/�D.b2; :::; bn�1/

�
. By Lemma 8.2 and Lemma 8.3, this is nonnegative

and increasing in bn . This completes the proof of Lemma 3.6.
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