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Cohomology of the space of commuting n–tuples in a
compact Lie group

THOMAS JOHN BAIRD

Consider the space Hom.Zn;G/ of pairwise commuting n–tuples of elements in
a compact Lie group G . This forms a real algebraic variety, which is generally
singular. In this paper, we construct a desingularization of the generic component
of Hom.Zn;G/ , which allows us to derive formulas for its ordinary and equivariant
cohomology in terms of the Lie algebra of a maximal torus in G and the action of
the Weyl group. This is an application of a general theorem concerning G –spaces for
which every element is fixed by a maximal torus.

57S99

1 Introduction

Moduli spaces of flat bundles are important in physics, where they form critical level
sets of Lagrangians for a number of important quantum field theories, such as the
Yang–Mills and Chern–Simons theories. In this paper, we consider the moduli space
of flat G–bundles over a compact torus, .S1/n , where G is a compact Lie group.
The fundamental group of .S1/n is isomorphic to Zn , and the holonomy map allows
us to identify the moduli space of flat bundles with Hom.Zn;G/=G , the space of
homomorphisms of the fundamental group into G , modulo conjugation. When n=2,
Hom.Z2;G/=G is isomorphic to the moduli space of semistable holomorphic GC

bundles over an elliptic curve, where GC denotes the complexification of G . The
G–space Hom.Zn;G/ is the moduli space of based flat connections and will be the
principal object of study in this paper.

Because a homomorphism is determined by where it sends generators, we may also
identify Hom.Zn;G/ with f.g1; : : : ;gn/ 2 Gnjgigj D gj gi 8i; j g, the space of
pairwise commuting n–tuples in G . G carries a unique structure as a real algebraic
group and Hom.Zn;G/ inherits the structure of a compact affine real algebraic variety.
G acts regularly on Hom.Zn;G/ by conjugation, and the quotient Hom.Zn;G/=G is
a space with orbifold singularities.

A mistaken assumption about the nature of these spaces led to an undercount of the
number of vacuum states in supersymmetric Yang–Mills theory over spatial .S1/3 by
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Witten in [15]. The source of the error was identified in Witten [16], and motivated a
systematic study of the spaces Hom.Zn;G/=G in Borel–Friedman–Morgan [4] and
Kac–Smilga [12], with particular focus on the case n D 3. In both these papers,
Hom.Zn;G/=G is shown to be describable in terms of the combinatorics of root
systems. One striking result to emerge is that Hom.Zn;G/=G need not be connected,
even when G is simply connected.

The study of the space Hom.Zn;G/ was initiated more recently in Adem–Cohen
[1] in the broader context of Lie subgroups of Gln.C/. Their study was motivated
by connections to orbifolds and pure braid groups. Their method is to consider the
filtration of Hom.Zn;G/ by subspaces Sn.j ;G/ WD f.g1; : : : ;gn/jat least j entries
equal 1Gg, where 1G denotes the identity in G . They show that after suspending once,
Hom.Zn;G/ decomposes up to homotopy equivalence as a wedge of spaces:

(1) †.Hom.Zn;G//�
_

1�k�n

†

�_
.n

k/

Hom.Zk ;G/=Sk.1;G/

�

They proceed to compute homology groups explicitly for Hom.Z2;SU.2//, and
Hom.Z3;SU.2//, though this method has so far not led to general formulas for coho-
mology. See Torres–Giese–Sjerve [14] for a study of the case G D SO.3/, including a
description of connected components, fundamental groups and Z2 homology.

Let Rn;G denote the connected component of Hom.Zn;G/ containing the n–tuple
.1G ; : : : ; 1G/. Rn;G can be characterized as those n–tuples whose entries lie in a
common maximal torus. If G is connected and g 2 G is generic (that is, it has
centralizer a maximal torus), then any commuting n–tuple containing g lies in Rn;G ,
so we will call Rn;G the generic component of Hom.Zn;G/. In many interesting cases
(see Theorem 4.1), Hom.Zn;G/ is connected and so Rn;G D Hom.Zn;G/.

As motivation to focus on this component, we remark that the space R2n;G is isomorphic
to the moduli space of based flat G –bundles over a genus n Riemann surface, whose
holonomy is reducible to a maximal torus, and that Rn;G is also closely related to
the corresponding space for the closed nonorientable surface RP #.nC1/ . In upcoming
work by the author [3] the results of this paper will be used in the computation of the
cohomology of moduli spaces of flat SU.2/–bundles over nonorientable surfaces.

In this paper, we construct a desingularization of Rn;G , and present a nice formula for
its cohomology ring over fields with characteristic relatively prime to the order of the
Weyl group of G .
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Our formula is a generalization of an old formula (see Greub–Halperin–Vanstone [9])
for the cohomology of G D Hom.Z;G/,

(2) H.G/ŠH.G=T �T /W

where T is a maximal torus in G and W DN.T /=T is the Weyl group. This formula
is a consequence of the observation that the map �W G=T �T !G , which sends .Œg�; t/
to �..Œg�; t//D gtg�1 is “almost” a covering map with covering transformation group
W in a sense we make precise in Section 2. Basically, this means that W acts freely
on G=T �T leaving � invariant and that ��1.g/=W is cohomologically equivalent
to a point for all g 2G .

For example, when G D SU.2/, G=T �T is isomorphic to S2 �S1 and ��1.g/ is
two points unless g D˙1G when ��1.g/Š S2 . The quotient by W D Z2 is RP2

over these exceptional points, which is cohomologically trivial for coefficient fields of
characteristic not equal to 2. Indeed, the space S2 �Z2

S1 is just the real blow up of
SU.2/ over the points ˙1G .

For general n, the formula is

(3) H.Rn;G/ŠH.G=T �T n/W

with the same restriction on the coefficient field. The method of proof is to generalize
this construction of an “almost” covering map to wider class of G –spaces that includes
Rn;G . The main condition for this construction to work is that every stabilizer must
contain a maximal torus of G . As a bonus we also get a formula for the equivariant
cohomology,

(4) HG.Rn;G/ŠHT .T
n/W :

In the case G D SU.2/ and n � 2, Rn;G has 2n isolated singularities at the points
.˙1G/

n . Locally these singularities are cones over S2 �Z2
Sn�1 , where Z2 acts

antipodally on each factor, so these singularities look like the total space of the vector
bundle S2 �Z2

Rn! S2=Z2 D RP2 , quotiented by the zero section. G=T �T n Š

S2� .S1/n , and its quotient S2�Z2
.S1/n is a smooth manifold and can be identified

as the blow up of Rn;G by these zero sections.

Some of the advantages of our approach over the approach in Adem–Cohen [1] are that
we obtain general formulas for the cohomology of Rn;G , and these formulas actually
describe H.Rn;G/ as a ring, not just as a group. One of the disadvantages is that
while we do get some negative results about torsion (H.Rn;G/ has no p–torsion for
primes p that do not divide the order of the Weyl group), the remaining torsion is not
accessible by these methods.

Algebraic & Geometric Topology, Volume 7 (2007)



740 Thomas John Baird

The layout of this paper is as follows:

In Section 2, we define the notion of a cohomological principal bundle. When the
structure group is finite, these are the “almost” covering maps described above, which
have the important property that the cohomology ring of the base is isomorphic to the
invariant subring of the cohomology of the total space. I got the idea for this from
Cappell–Lee–Miller [6] where a construction similar to the one in this paper is used
in the study of the moduli space of flat SU.2/ connections on a Riemann surface.
Cohomological principal bundles also emerge in a different way in the study of SU.2/

connections on nonorientable surfaces in [3] and seem to be a recurring phenomenon
in such problems.

In Section 3, we prove a general result (Theorem 3.3) concerning the cohomology of
spaces admitting G actions for which every point is fixed by a maximal torus.

In Section 4, we apply the theorems proved in Section 3 to the case of commuting
n–tuples, obtaining formulas for the ordinary and equivariant cohomology of Rn;G .

In Section 5, we explore some consequences of these formulas by working out a more
explicit description in the case G D SU.2/ and computing Poincaré polynomials for
G D SU.2/, SU.3/ and SU.4/.

Also included are two appendices reviewing some results that are applied in the paper.
Appendix A is an overview of equivariant cohomology from the Borel model perspective,
and in Appendix B we work out formulas for H.T n/ and H.G=T / as modules of the
Weyl group.

I would like to thank Lisa Jeffrey and Paul Selick for all of their suggestions and
guidance, as well as Fred Cohen and Eckhard Meinrenken for helpful conversations.
Thanks also to the reviewer for helpful comments.

2 Cohomological principal bundles

Let f W X ! Y be a continuous map between topological spaces X and Y , and let
� be a topological group acting freely on the right of X , such that X ! X=� is a
principal bundle.

Definition 1 We say .f W X ! Y; �/ is a cohomological principal bundle for the
cohomology theory H if:

(i) f is a closed surjection
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(ii) f descends through the quotient to a map h

(5)

X

�
��

f

""DD
DD

DD
DD

D

X=�
h // Y

(iii) H.h�1.y//ŠH.pt/ for all y 2 Y

Let H.X;F / denote sheaf cohomology of the constant sheaf FX , where F is a field
(in all applications we have in mind, sheaf cohomology is isomorphic to singular
cohomology). To prove Proposition 2.3 we will require the following two standard
results (see Bredon [5, 11.7 and 19.2]):

Theorem 2.1 (Vietoris–Begle mapping theorem) Let hW Z ! Y be a closed sur-
jection, where Z is a paracompact Hausdorff space. Suppose that for all y 2 Y ,
H.f �1.y/;F /ŠH.pt;F /. Then

(6) f �W H.Y;F /!H.Z;F /

is an isomorphism.

Theorem 2.2 Let X be a topological space, let � be a finite group acting on X and
let � W X !X=� denote the quotient map onto the orbit space X=� . If F is a field
satisfying gcd.char.F /; #�/D 1, then

(7) ��W H.X=�;F /!H.X;F /�

is an isomorphism, where H.X;F /� denotes the ring of � invariants.

Combining Theorem 2.1 and Theorem 2.2, we get:

Proposition 2.3 Let � be a finite group of order N, let X be a paracompact Hausdorff
space and let .f W X ! Y; �/ be a cohomological principal bundle for H.�;F /, where
gcd.char.F /;N /D 1. Then f � induces an isomorphism

(8) f �W H.Y;F /ŠH.X;F /�

where H.X;F /� denotes the ring of � invariants.

Proof Since X is a paracompact Hausdorff space, X=� is as well. The induced map
hW X=�! Y satisfies the conditions of the Vietoris mapping theorem, so

(9) h�W H.Y;F /ŠH.X=�;F /:
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On the other hand, by Theorem 2.2, ��W H.X=�;F / Š H.X;F /� . Since f � D
�� ı h� this completes the proof.

Though Proposition 2.3 suffices for our purposes, it will more convenient to use the
following corollary.

Corollary 2.4 Let � be a compact Lie group with N connected components, and
let �0 be the identity component. Let .f W X ! Y; �/ be a cohomological principal
bundle for H.�;F /, where gcd.char.F /;N /D 1 and X is a paracompact Hausdorff
space. Then H.Y;F /ŠH.X=�0;F /

�=�0 .

Proof f descends to a map gW X=�0! Y and the residual action of �=�0 acts on
X=�0 making the pair into a cohomological covering map. Since X ! X=�0 is a
principal bundle, it is a closed map and thus X=�0 is paracompact Hausdorff (see
Engelking [8] 5.1). The result then follows from Proposition 2.3.

3 Cohomology of G–spaces with stabilizers containing a max-
imal torus

Let G be a connected compact group, T a maximal torus of G and X a space on
which G acts. If every point x 2X is fixed under this action by some maximal torus
of G , then because all maximal tori in G are conjugate, every G orbit must intersect
the T fixed point set X T . It follows that the map

(10) �W G �X T
!X; �..g;x//D g �x

is surjective. G acts on G �X T by g � .h;x/D .gh;x/, and � is equivariant for this
action. The normalizer of T in G , denoted N.T /DNG.T /, acts freely on G �X T

from the right by

(11) .g;x/ � nD .gn; n�1
�x/

leaving � invariant and commuting with the G action. We will show in Theorem 3.3
that under very mild conditions the pair .�W G �X T !X;N.T // is a cohomological
principal bundle. We begin with a couple of lemmas.

Lemma 3.1 Let G act on X from the left and let x 2 X T . Then g � x 2 X T if and
only if g 2N.T /G0

x , where G0
x is the identity component of the stabilizer Gx .
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Proof If g �x 2X T , then g�1tg �x D x for all t 2 T , so

(12) g�1Tg �Gx :

Since T is maximal in G , it is also maximal in Gx , so for some h2G0
x , h�1g�1TghD

T , and thus g 2N.T /G0
x . The other direction is clear.

Let WG WDNG.T /=T denote the Weyl group of G .

Lemma 3.2 Let .�W G �X T ! X;N.T // be defined as above. For every x 2 X ,
H.��1.x/=N.T /;F /ŠH.pt;F /, for F satisfying gcd.char.F /; #WG/D 1.

Proof We may assume by equivariance that x 2X T . Then

(13) ��1.x/D f.g;y/jg �y D xg D f.g;y/jy 2X T ;g�1x D yg ŠG0
xN.T /

where this last isomorphism follows from the preceding lemma. It follows that

(14) ��1.x/=N.T /ŠG0
xN.T /=N.T /ŠG0

x=NG0
x
.T /:

Now since #WG0
x

divides #WG , we deduce from Proposition A.4 that

(15) H.G0
x=NG0

x
.T /;F /ŠH.pt;F /

completing the proof.

Theorem 3.3 Let G be a compact, connected Lie group with maximal torus T , acting
on a paracompact Hausdorff space X . Suppose that for every point x 2X , Gx contains
a maximal torus of G . Then .�W G �X T !X;N.T // is a cohomological principal
bundle for H.�;F /, where gcd.char.F /; #WG/D 1. In particular

(16) H.X;F /ŠH.G=T �X T ;F /WG :

Proof First note that since X T is a closed subset of X it inherits a paracompact
Hausdorff topology. The only conditions in Definition 1 that are not immediate are (iii),
which follows from Lemma 3.2, and closedness of the map � . But � is a restriction of
the action map G �X !X which is easily shown to be closed, so � is also closed.

The final assertion follows from Corollary 2.4

It is helpful to consider two extreme cases of this theorem.
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Example 1 Suppose that G acts trivially on X . Then X DX T and G �N.T /X T D

G=N.T /�X . By Proposition A.4, we know that G=N.T / has trivial cohomology, so
by the Kunneth theorem H.X;F /ŠH.G=N.T /�X;F /ŠH.G=T �X T ;F /WG .

Example 2 Suppose that G acts so that Gx is a maximal torus for every x 2X . By
Lemma 3.1 we deduce that each orbit must intersect X T precisely #WG times. It
follows easily that G=T �X T !X is a covering space map with deck transformation
group WG , and thus H.G=T �X T ;F /WG ŠH.X;F /.

Corollary 3.4 Let G act on X satisfying the hypotheses of Theorem 3.3. Then
dim H.X;C/D dim H.X T ;C/.

Proof It is a general property proven using characters, that if V is a finite dimen-
sional representation of a finite group � , then dim.C� ˝ V /� D dim V . Because
H.G=T;C/Š CW as a left W representation (see Proposition B.1) it follows that

(17) dim H.X;C/D dim.H.G=T;C/˝H.X T ;C//W D dim H.X T ;C/:

This completes the proof

When X is a smooth compact manifold or more generally when the set of infinitesimal
stabilizers of the action is finite, Corollary 3.4 combined with Proposition A.3 implies
that the action is T equivariantly formal (see Appendix A for a review of equivariant
cohomology). We adopt the convention that equivariant cohomology is assumed to be
taken with complex coefficients unless otherwise stated, that is, HG.�/DHG.�;C/.

Now if we have a G equivariant map �W Y ! X between G–spaces Y and X , we
obtain a map between homotopy quotients �G W YG!XG . If � induces an isomorphism
H.X;C/ŠH.Y;C/, we see by considering the Serre spectral sequences of the standard
fibrations of XG and YG over BG that ��

G
W HG.X /ŠHG.Y /.

Theorem 3.5 Let G act on X satisfying the hypotheses of Theorem 3.3. Then
HG.X /ŠHT .X

T /W D .H.X T /˝HT /
W .

Proof The G –equivariant map �W G=T �W X T !X induces an isomorphism in C

cohomology, so

(18) HG.X /ŠHG.G=T �W X T /ŠHG.G=T �X T /W :

It follows from a well known formula in equivariant cohomology (equation (28)) that
HG.G=T �X T /ŠHT .X

T /, so we deduce that

(19) HG.X /ŠHT .X
T /W :
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Remark 1 This theorem can also be proven by showing directly that .EG �X T !

XG ;N.T // is a cohomological principal bundle.

Remark 2 By the familiar identity HG.X / Š HT .X /
W , Theorem 3.5 shows that

the localization map i�W HT .X /!HT .X
T / restricts to an isomorphism between the

Weyl invariant subrings.

Just to clarify this theorem, we work out carefully how W acts on HT .X
T /. If E is

the total space of a universal G–bundle, then .G=T �X T /G DE �G .G=T �X T /.
If n 2 N.T / represents an element of W , and .e;g;x/ represents an element of
.G=T�X T /G , then Œ.e;g;x/��Œn�D Œ.e;gn; n�1�x/�. Thus in terms of the identification
with E�T X T the action looks like Œ.e;x/� � Œn�D Œ.e �n; n�1 �x/�. If we turn the right
representation of W on H.X T / into a left representation in the usual way, the action
of W on HT .X

T / is just the tensor product of the representations on H.X T / and
HT .

4 Cohomology of Rn;G

Let G be a connected, compact Lie group and let Rn;G be the identity component of
f.g1; : : : ;gn/ 2Gnjgigj D gj gi 8i; j g Š Hom.Zn;G/, topologized as a subspace of
Gn . The following theorem, paraphrased from Kac–Smilga [12], shows that in many
cases Rn;G is in fact the only component of Hom.Zn;G/.

Theorem 4.1 Let G be a compact, simple Lie group. The space Hom.Zn;G/ is
connected if and only if any of the following conditions are met:

(i) nD 1 and G is connected.

(ii) nD 2 and G is 1–connected.

(iii) n� 3 and G D SU.m/ or Sp.m/ for m� 1.

The following lemma, which is a consequence of classification of components of
Hom.Zn;G/ in [12] and Borel–Friedman–Morgan [4], gives a concrete description of
Rn;G .

Lemma 4.2 For a compact Lie group G , every commuting n–tuple in Rn;G lies in a
maximal torus of G .

It follows that every point in Rn;G is fixed by a maximal torus under the conjugation
action.

Our main result is:
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Theorem 4.3 Let G be a connected, compact Lie group and let T be a maximal torus
in G . The pair .�W G �T n!Rn;G ;N.T // forms a cohomological principal bundle
for cohomology over fields F of characteristic relatively prime to #W , where W is
the Weyl group. In particular, H.Rn;G ;F /ŠH.G=T �T n;F /W .

Proof This is a straightforward application of Theorem 3.3.

We deduce using Theorem 3.5:

Corollary 4.4 HG.Rn;G/ŠHT .T
n/W .

Remark 3 It may be shown (see Schwartz [13]), that the quotient G �N.T / T n is
a nonsingular real algebraic variety. The induced map hW G �N.T / T n ! Rn;G is
surjective, regular and induces birational equivalence. Thus hW G �N.T / T n!Rn;G

is a resolution of singularities for Rn;G .

Remark 4 G acts on G �N.T / T n D G=T �W T n by left multiplication on the G

factor, making h into a G–equivariant map. h descends to an isomorphism between
Gn.G=T �W T n/D T n=W and Rn;G=G .

Since G=T has a CW-structure with only even dimensional Schubert cells, H.G=T;Z/

is torsion free, and H.T n;Z/ is also torsion free. If .char.F /; #W / D 1, it follows
by Lemma 4.6 that dim H k.Rn;G ;F /D dim H k.Rn;G ;C/. The universal coefficient
theorem now applies to prove:

Corollary 4.5 Tor.Zp;H
�.Rn;G ;Z//D 0, for primes p satisfying .p; #W /D 1.

Lemma 4.6 Let � be a finite group acting linearly on a free, finitely generated Z–
module M ŠZn . Given any field F , there is an induced linear action on MF DM˝F .
If gcd.char.F /; #�/D 1, then dimF ..MF /

�/D rankZ.M
�/

Proof Because M � is a saturated sublattice of M (in the sense that ˛m 2M � for
nonzero ˛ 2 Z implies m 2M ), it follows that any basis of M � extends to a basis of
M .

Let  W M ! M ˝ F sends m to m ˝ 1 and let V WD spanF f�.M
�/g. Then

dimF .V /D rankZM � and V � .MF /
� . In fact, we will show V D .MF /

� , thus
proving the theorem.
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Because #� is invertible in F , we can define a projection operator P W MF !M �
F

by

(20) P .x/D
1

#�

X
g2�

gx:

The image of P is spanned by vectors
P

g2� g .m/D  .
P

g2� gm/, which all lie
in V which proves that V D .MF /

� completing the proof.

In view of Corollary 4.5, little will be lost by focusing on the characteristic zero case
from now on.

The first homology group H1.T
n;R/ is canonically isomorphic to the Lie algebra,

Lie.T n/D tn . It follows that H�.T n/Š
V

t�n with its usual grading. It is also well
known that the equivariant cohomology of a point HT .pt;R/ is canonically isomorphic
to the symmetric algebra S t� , with grading deg.S it/D 2i (see Appendix A for more
details). Combining this with Theorem 4.3 and Corollary 4.4 results in the simple
formulas

HG.Rn;G ;R/Š
�^

t�n˝S t�
�W

(21)

H.Rn;G ;R/Š
�^

t�n˝S t�
�W.D

S t�WC
E

(22)

where hS t�WCi denotes the ideal generated by the image of the ring of positive degree
elements in S t�W ŠHG .

5 Examples

Throughout this section we will always assume cohomology to be taken with coefficients
in C.

5.1 G D SU.2/

We begin with the case GDSU.2/. In this case both H.Rn;G/ and HG.Rn;G/ admit
simple, explicit descriptions. Here, t is one dimensional so that t�n˝C Š Cn and
W Š Z2 acts by multiplication by f˙1g. G=T Š CP1 and W acts as an orientation
reversing involution. Letting y denote a generator of H 2.G=T /, we have

(23) H.G=T �T n/Š
^

Cn
˝CŒy�=hy2

D0i
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where y has degree 2 and Cn has degree 1. Identifying H.Rn;SU.2// with the Weyl
invariant subring gives

(24) H.Rn;SU.2//Š
�
˚i even

^i
Cn
�
˚

�
˚i odd

^i
Cn
˝y

�
:

We can easily compute Betti numbers to be dim H d .Rn;SU.2// D
�

n
d

�
if d is even,

and
�

n
d�2

�
if d is odd.

Similarly, the SU.2/ equivariant cohomology of Rn;SU.2/ is isomorphic to

(25) HG.Rn;SU.2//Š˚iCj�0 mod 2

�^i
Cn
�
˝yj

�

^
Cn
˝CŒy�

where the generators of the exterior algebra have order 1 and that of the polynomial
algebra has order 2.

5.2 Poincaré polynomials

The computation of the Poincaré polynomial of Rn;G can be organized using polyno-
mials with character coefficients. If a group W acts on a graded vector space ˚Vi

with character �i on Vi , then the Poincaré polynomial of the representation is
P

i �
i t i .

Direct sums and tensor products of graded representations pass to sums and products
of their Poincaré polynomials. The ordinary Poincaré polynomial of the invariant part
of the representation can be extracted by taking the inner product of the coefficients
with the character of the trivial representation.

For example, when G D SU.2/, the character table for W D S2 is

(1) (12)
�1 1 1
�2 1 �1

and the formula for the Poincaré polynomial of Rn;SU.2/ is

Pt .H.Rn;SU.2///D h�1; .�1C�2t/n.�1C�2t2/i

D
1
2

�
.1C t/n.1C t2/C .1� t/n.1� t2/

�
D

1
2

X
i

�
n
i

��
.1C .�1/i/t i

C .1� .�1/i/t iC2
�

which concurs with our earlier calculation.

For G D SU.3/, the character table for W D S3 is
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(1) (12) (123)
�1 1 1 1
�2 1 �1 1
�3 2 0 �1

and the Poincaré polynomial is

Pt .H.Rn;SU.3///D
˝
�1; .�1C�3tC�2t2/n.�1C�3t2

C�3t4
C�2t6/

˛
D

1
6

�
.1CtCt2/n.1Ct2

Ct4
Ct6/C3.1�t2/n.1�t6/C2.1�tCt2/n.1�t2

�t4
Ct6/

�
For G D SU.4/, the character table for W D S4 is

(1) (12) (123) (1234) (12)(34)
�1 1 1 1 1 1
�2 1 �1 1 �1 1
�3 2 0 �1 0 2
�4 3 1 0 �1 �1

�5 3 �1 0 1 �1

and the Poincaré polynomial of Rn;SU.4/ is

Pt .H.Rn;SU.4///D
˝
�2; .�1C�4tC�5t2

C�2t3/n

.�1C�4t2
C.�3C�4/t

4
C.�4C�5/t

6
C.�3C�5/t

8
C�5t10

C�2t12/
˛
:

Appendix A Equivariant cohomology

In this section, we briefly review equivariant cohomology from the Borel model per-
spective. Our main sources are Atiyah–Bott [2] and Hsiang [11].

Let G be a compact, connected Lie group and X a topological space with continuous
left G action. We define the equivariant cohomology HG.X / to be the singular
cohomology over C of the space XG obtained from a universal G –space EG by the
mixing construction:

(26) XG WDEG �G X

In (26) G acts on EG from the right, and EG�G X denotes the quotient of EG�X

by the relation .e;gx/ � .eg;x/. XG projects naturally onto the classifying space
BG DEG=G forming a fibre bundle with fibre X . We will call this the standard fibre
bundle.
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We adopt the notation HG WDH.BG;C/. The standard fibre bundle � W XG ! BG

induces a natural map ��W HG!HG.X /, making HG.X / into an HG –module.

The Serre spectral sequence of the standard fibration is frequently used to compute
HG.X /. If this spectral sequence collapses at the E2 page, then HG.X /ŠH.X /˝C

HG as HG –modules and we say that the action is formal. When the action is formal,
the Leray–Hirsch theorem implies that

(27) HG.X /=hH
C

G
i ŠH.X /

where hHC
G
i denotes the ideal in HG.X / generated by the image of the positive degree

ideal in HG under �� . We will use the following simple criterion for formality.

Proposition A.1 Let G be a compact, connected Lie group, and X a space such that
H i.X /D 0 for i odd. Then any action of G on X is formal.

Proof According to [2], H i
G
D 0 for odd i , so that the Serre spectral sequence of the

standard fibration satisfies E
p;q
2
D 0 unless p and q are even. Thus all subsequent

differentials must be zero and the spectral sequence collapses at E2 .

Let T D .S1/m be a torus. Let X be a smooth compact manifold on which T

acts smoothly, or more generally let the set of infinitesimal stablizers of the action
be finite. The fixed point set X T includes into X by the map i , inducing a map
i�W HT .X /!HT .X

T /. The localization theorem [2] states:

Theorem A.2 The kernel and cokernel of i� are torsion HT –modules.

Combining the localization theorem with the Serre spectral sequence of the standard
fibration gives (see Guillemin–Sternberg [10]):

Proposition A.3 With conditions as in Theorem A.2, the action of T on X is formal
if and only if dim H.X T /D dim H.X /.

When G is a connected, compact Lie group with maximal torus T , any G –space X

becomes a T –space by restricting the action. EG also forms a model for ET under
the restricted action, and there is a natural map �W XT !XG , which is a fibre bundle
with fibre G=T . In fact, there is a natural identification

(28) XT Š .X �G=T /G

where G acts by left multiplication on the homogeneous space G=T , and G acts on
the product X �G=T via the diagonal action. Under this identification, the fibre bundle
is just the projection map .X �G=T /G!XG .

Algebraic & Geometric Topology, Volume 7 (2007)



Cohomology of the space of commuting n–tuples in a compact Lie group 751

The homotopy quotient XT retains a natural action of the Weyl group W DN.T /=T

and we obtain an isomorphism

(29) ��W HG.X /ŠHT .X /
W :

In fact by Proposition A.4, .�W XT ! XG ;W / is a cohomological principal bundle,
so this formula follows from Proposition 2.3.

Proposition A.4 Let G be a compact, connected Lie group with maximal torus T .
Then H.G=NG.T /;F /ŠH.pt;F / for gcd.char.F /; #WG/D 1.

Proof Since G=T has a CW structure with #WG cells (the Schubert cells) all in even
degrees,

(30) H.G=NG.T /;F /DH.G=T;F /WG

has Euler characteristic 1, and is zero in odd degrees, and so must be trivial.

As a graded ring,

(31) HG Š .S t�C/
W

the Weyl invariant part of the symmetric algebra over t�
C

, where tC is the complexified
Lie algebra of a maximal torus in G and we set the degree of t�

C
D 2. This is a

polynomial algebra with even degree generators. For instance, when G D U.N / the
generators are the universal Chern classes fc1; c2; : : : ; cN g.

Appendix B W –module structure of H.T n/ and H.G=T /

Let G be a compact, connected Lie group and T be a maximal torus in G . We assume
throughout this section that H.�/ is singular cohomology over C.

Let tC D t˝C be the complexification of the Lie algebra of T . It is immediately
verified by the reader using invariant de Rham forms that

(32) H.T n/Š
�^

t�C

�˝n

where the degree of t�
C

is 1. The Weyl group W DN.T /=T acts on T n by conjugation,
inducing a W –module structure on H.T n/ which is the same one induced by the
usual action on t�

C
.

The W-module structure of H.G=T / is somewhat more complicated. We will content
ourselves here with determining it as an ungraded representation.
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Proposition B.1 As an (ungraded) left W –module, H.G=T /Š CW , the group ring.

Proof The set N.T /=T DW will come up in this proof both as a group, and as a
subset of G=T . To avoid confusion, we use W when we regard it as a group and
N.T /=T when we regard it a subset.

G , and hence T acts on G=T by multiplication on the left. G=T possesses a CW
structure of even dimensional Schubert cells, so by Proposition A.1 we know that the
T action is formal and that

(33) HT .G=T /ŠH.G=T /˝HT

as HT –modules. More precisely, the natural map �W HT .G=T /!H.G=T / is surjec-
tive. A linear section sW H.G=T /!HT .G=T / which respects the grading determines
an isomorphism zsW H.G=T /˝HT !HT .G=T / by

(34) zs.x; ˛/D s.x/˛:

The fixed point set of the T action on G=T is N.T /=T . Because HT .G=T / is a free
HT –module, the localization map i�W HT .G=T /! HT .N.T /=T / is an inclusion
whose cokernel is a torsion HT –module. Since T acts trivially on N.T /=T ,

(35) HT .N.T /=T /ŠH.N.T /=T /˝HT

canonically as rings. Now W acts on the right of G=T , preserving N.T /=T , and
commuting with the T action, so it induces an action on HT .G=T / and HT .N.T /=T /

which is equivariant for i� . By choosing the section s to be W –equivariant also, we
find that in terms of the equations (33) and (35), W acts trivially on the HT factor.
Let QT denote the quotient field of HT . Tensoring equations (33) and (35) by QT

gives an isomorphism of W representations:

(36) H.G=T /˝C QT ŠH.N.T /=T /˝C QT

But this proves the theorem, because QT is a field extension of C.

For an alternative proof, see Chriss–Ginzburg [7] chapter 6.

Theorem B.2 As graded rings and W modules, H.G=T /ŠHT =hH
WC
T
i

Proof H.G=T / is trivial in odd degrees, so by equation (27) and Proposition A.1 we
know

(37) H.G=T /ŠHG.G=T /=hHC
G
i

On the other hand, by equation (28) we know HG.G=T /ŠHT , and by equation (29)
that HC

G
ŠH WC

T
, which verifies the formula.

Algebraic & Geometric Topology, Volume 7 (2007)



Cohomology of the space of commuting n–tuples in a compact Lie group 753

We point out a consequence of this theorem.

Corollary B.3 S t�
C
Š CW ˝ .S t�

C
/W as an ungraded W representation, under the

usual left action.
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