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A note on spaces of asymptotic dimension one

KOJI FUJIWARA

KEVIN WHYTE

Let X be a geodesic metric space with H1.X / uniformly generated. If X has
asymptotic dimension one then X is quasi-isometric to an unbounded tree. As a
corollary, we show that the asymptotic dimension of the curve graph of a compact,
oriented surface with genus g � 2 and one boundary component is at least two.

51F99; 20F69, 54F45, 57M50

1 Introduction

Our main results show that, under fairly weak restrictions, a geodesic metric space of
asymptotic dimension one is quasi-isometric to a tree. Before stating precise results
we review some definitions.

If X is a set and X D[iOi a covering, we say that the multiplicity of the covering is
at most n if any point x 2X is contained in at most n elements of fOigi .

Recall that the covering dimension of a topological space X is the minimal d such
that every open covering has a refinement with multiplicity at most d C 1. The notion
of asymptotic dimension is a coarse analogue introduced by Gromov in [8]:

Let X be a metric space, and X D [iOi a covering. For D � 0, we say that the
D–multiplicity of the covering is at most n if for any x 2 X , the closed D–ball
centered at x intersects at most n elements of fOigi . The multiplicity is exactly the
0–multiplicity.

The asymptotic dimension of the metric space X is at most n if for any D � 0, there
exists a covering X D[iOi such that the diameter of Oi is uniformly bounded (that
is, there exists C such that for all i , diam Oi � C ), and the D–multiplicity of the
covering is at most nC1. We say that the asymptotic dimension of X , asdim X , is n

if the asymptotic dimension of X is at most n, but it is not at most n�1. If such n

does not exist, then we define the asymptotic dimension of X to be infinite.

It is easy to see that if two metric spaces are quasi-isometric, then they have the same
asymptotic dimension. A geodesic metric space has asymptotic dimension zero if and
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only if it is bounded. Since unbounded trees have asymptotic dimension one, all spaces
quasi-isometric to unbounded trees also have asymptotic dimension one [8].

Let X be a geodesic metric space. We say H1.X / is uniformly generated if there is
an L> 0 so that H1.X / is generated by loops of length at most L.

Theorem 1.1 Let X be a geodesic metric space with H1.X / uniformly generated. If
X has asymptotic dimension one then X is quasi-isometric to an unbounded tree.

Remark This theorem relies on a result of Manning [11] characterizing spaces quasi-
isometric to trees, see Theorem 2.2. The restriction on H1.X / is essential, see Example
2.4.

Let G be a finitely generated group, and � the Cayley graph with respect to a finite
generating set. Since the asymptotic dimension is invariant by quasi-isometry, the
asymptotic dimension of G , asdim G , is defined to be the asymptotic dimension of � .

Corollary 1.2 Let G be a finitely presented group. The asymptotic dimension of G

is one if and only if G contains a non-trivial free group as a subgroup of finite index.

The assumption that G is finitely presented is necessary. The following example is
suggested by D Osin to us. We are informed by Dranishnikov that Corollary 1.2 has
been known in work of Januszkiewicz and Swiatkowski [10] (see also Dranishnikov
[4]) and that this example is also in Gentimis [7].

Example 1.3 Let G DA oZ be the wreath product such that A is a non-trivial finite
group. Then, asdim G D 1 but G does not contain a free group as a subgroup of finite
index. G is finitely generated, but not finitely presented.

By definition, G is the semidirect product of AZ and Z, AZ Ì Z, such that the action
of Z is the obvious action of shifting the indexes of the direct product, N D AZ , of
countable copies of A. There is an exact sequence 1! N ! G ! Z! 0. Note
that N is a locally finite (that is, any finitely generated subgroup is finite) countable
group, which is not finitely generated. Therefore G does not contain a free group
as a subgroup of finite index. We want to show that asdim G D 1. Indeed, the
notion of asymptotic dimension is extended to a countable group, and it is shown
that asdim G D sup asdim F , where sup is taken over all finitely generated subgroups
F < G , see Dranishnikov and Smith [5]. Since N is locally finite, asdim N D 0.
The Hurewicz type formula for asymptotic dimension is also extended [5] and we get
asdim G � asdim N C asdim Z D 1. Also, since Z < G , 1 � asdim G . It is easy to
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see that if K and L are finitely generated, then the wreath product K oL is finitely
generated. If both K;L are finitely presented, K oL is finitely presented if and only if
K is trivial or L is finite, see Baumslag [1]. Therefore, G is finitely generated, but
not finitely presented.

It is natural to ask the following question:

Question 1.4 Suppose G is a finitely generated group which is torsion free. If
asdim G D 1, then is G a free group?

Corollary 1.5 Let X be geodesic metric space which is Gromov hyperbolic. If X

has asymptotic dimension one then X is quasi-isometric to an unbounded tree.

This result does not require that X be proper. One important class of examples which
are not proper are curve complexes. Let SDSg;p be a compact, orientable surface such
that g is the genus and p is the number of the connected components of the boundary
of S . We assume that 3g� 4Cp > 0. The curve complex of S , defined by Harvey
[9], are the flag complexes with 1–skeleton the curve graph of S , C.S/. The curve
graph is the graph whose vertices are isotopy classes of essential, nonperipheral, simple
closed curves in S , with two distinct vertices joined by an edge if the corresponding
curves can be realized by disjoint curves. We remark that the curve complex of S is
quasi-isometric to the curve graph of S , so that they have same asymptotic dimension.

Masur and Minsky [12] show the remarkable result that C.S/ is Gromov hyperbolic.

It is known that C.S/ has finite asymptotic dimension (see Bell and Fujiwara [2]).
Since C.S/ is unbounded it cannot have asymptotic dimension zero. No upper bound
or non-trivial lower bound is known in general. In the case p D 1, Schleimer shows in
[14] that C.S/ is one-ended, from which it follows that it is not quasi-isometric to a
tree. Thus we can improve the lower bound on asymptotic dimension here:

Corollary 1.6 Let S be a compact, oriented surface with genus g � 2 and one
boundary component. Let C.S/ be the curve graph of S . Then the asymptotic
dimension of C.S/ is at least two.
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2 Proofs

Theorem 1.1 follows from two key ingredients. The first is the classical argument that
surfaces have covering dimension two (see, for instance, Munkres [13, Section 55]).
The fact we need is the following:

Lemma 2.1 Let S be a compact surface with boundary S1 . Let A, B , and C be
points on @S , dividing it into arcs AB , AC , and BC . If fOigi is an open cover of S

with multiplicity two then there is some i for which Oi intersects all three segments
AB , AC , and BC .

The second ingredient is a characterization of spaces quasi-isometric to trees due to
Manning:

Theorem 2.2 (Manning [11, Theorem 4.6]) Let Y be a geodesic space. Suppose
that there exists a constant K with the following property:

Let a; b be points in Y , 
 a geodesic from a to b , and ˛ a path from a to b . Then the
K–ball at the midpoint m of the geodesic 
 has non-empty intersection with ˛ .

Then Y is quasi-isometric to a simplicial tree.

Before we start proving Theorem 1.1, we show one lemma. This lemma, essentially
contained in Block and Weinberger [3], explains the role of the uniform generation
assumption:

Lemma 2.3 Let X be a complete geodesic metric space. The following are equivalent:

� X has uniformly generated H1 .

� X is quasi-isometric to a complete geodesic metric space, Y , with H1.Y /D 0.

(These are also equivalent to the condition H
uf
1
.X / D 0 which is the form which

appears in [3].)
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Proof Let Y be a complete geodesic metric space with H1.Y /D0, and let f WX!Y

be a .K;C /–quasi-isometry. Suppose l is any loop in X . Divide l into segments
Œa0; a1�; Œa1; a2�; : : : ; Œan�1; an�, where a0 D an and the length of each segment is at
most 1.

Let bi D f .ai/. We have d.bi ; biC1/�KCC . For each i choose a geodesic segment
in Y connecting bi to biC1 . Call the resulting loop l 0 . By assumption, l 0 bounds, so
we have l 0 D @S for some surface S mapping to Y . Triangulate S so that the image
of each simplex has diameter at most 1 in Y . For each vertex v in S let ˛.v/ be a
point of X which maps close to the image of v in Y . For each edge e of S with
endpoints u and v , choose a geodesic segment, ˛.e/, in X connecting ˛.u/ to ˛.v/.

Thus we have ˛ mapping the one-skeleton of S to X . For each simplex � of S we
have a loop in X of length at most D (depending only on K and C ). The boundary
component of S is mapped to a loop l 00 which is within Hausdorff distance D of l .
The map ˛ exhibits that l 00 is a sum of classes of length at most D , and the condition
on Hausdorff distance implies the same for l � l 00 . Thus l is a sum of loops of length
at most D , proving that H1.X / is uniformly generated.

Conversely, suppose H1.X / is generated by loops of length at most D . Let A be a
maximal collection of points in X with d.a; a0/�D for all a¤ a0 . Let RD 3D , and
let Y be the space:

X [a2A cone.B.a;R//

In words, Y is X with each R–ball centered at a 2A coned to a point. We give Y

the induced path metric where each cone line has length R. The inclusion of X is then
isometric, and has coarsely dense image, and so is a quasi-isometry. By construction,
any loop l in X of length at most D is contained B.a;R/ for some a, and hence is
null homotopic in Y . Since these generate H1.X /, we have H1.X /!H1.Y / is the
zero map.

Let l be any loop in Y . By compactness of the circle, l only passes through finitely
many cone points. By pushing l off of the cones whose cone points it misses, we
may arrange for l to visit the interior of only finitely many cones. For each such
cone cone.B.a;R//, let u and v be the first and last places l visits this cone. By a
further homotopy we may assume l travels along the cone line from u to the cone
point and then along the cone line back from the cone point to v . Choose a path pa of
length at most 2R in B.a;R/ connecting u and v . Let l 0 be the loop with all the trips
into the cones cut out and replaced with the pa . The disks c.pa/ give a homotopy
between l and l 0 in Y . Since l 0 �X we know Œl �D Œl 0�D 0 in Y . Thus H1.Y /D 0

as claimed.
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Remark The above proof goes through verbatim to show that uniform generation of
�1.X / is equivalent to X quasi-isometric to a simply connected space.

Proof of Theorem 1.1 Using Lemma 2.3, we assume X is quasi-isometric to a
geodesic space Y with H1.Y /D 0. Since Y has asymptotic dimension one there is a
cover Oi of Y with 1–multiplicity two, and all Oi of diameter at most some D <1.
Let Ui be the open subset of Y consisting of the points within a distance of 1 of Oi .
By definition this cover has multiplicity at most two, and each Ui has diameter at most
DC 2.

We check that Manning’s condition holds in Y with K D 3
2
.DC 2/. Let 
 , a, b ,

m, and ˛ be as in the statement of Theorem 2.2. Let l be the loop 
 ı ˛�1 . Since
H1.Y /D 0 there is a surface S with @S D S1 and a continuous map f W S! Y with
f j@S D l . Applying Lemma 2.1 to the covering f �1.Ui/ shows that there is some i

such that Ui has non-trivial intersection with ˛ and with the segments am and mb

of 
 . Since Ui has diameter at most DC 2 this means there are points p on ˛ and
s and t on am and mb which are pairwise within a distance DC 2. Since 
 is a
geodesic, one of s or t must be within 1

2
.DC2/ of m, so ˛ must pass through the K

ball around m as desired. We showed that Y , therefore X as well, is quasi-isometric
to a tree, which is unbounded.

Remark The proof only uses that X has a cover by sets of bounded diameter with
L0 –multiplicity two for L0 large enough to generate all of H1.X /. Since it follows
that X is quasi-isometric to a tree, we know that there are covers by uniformly bounded
sets of L–multiplicity two for all L.

Theorem 1.1 does not hold without the assumption on H1.X /:

Example 2.4 Let X be a graph with vertex set N and two edges connecting n and
nC1, both of length 2n . Thus X is a string of circles of increasing radii, each touching
the next at a single point. It is clear that H1.X / is not uniformly generated and in
particular that X is not quasi-isometric to a tree.

For any D > 0, choose n such that 2n � D . Let U be the union of the vertices
f1; 2; : : : ; ng of X and all adjacent edges except for the 1

2
D–ball around the vertex

nC1. For i > 0 let Ai be the ball of radius D around the vertex nCi , let Bi and Ci

be the subsets of the two edges from nCi to nCiC1 not within 1
2
D of a vertex. It is

easy to see that collection fU;Ai ;Bi ;Cig is a covering of X with D–multiplicity two.
By subdividing the Bi and Ci to a collection of intervals of length 2D covering each,
one gets a covering with D–multiplicity two by sets of diameter at most 2n . Thus X

has asymptotic dimension one.
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Proof of Corollary 1.2 A well known corollary of work of Stallings [15] and Dun-
woody [6] is that a group quasi-isometric to a tree is virtually free. Thus Corollary
1.2 follows immediately from Theorem 1.1 since the fundamental group of the Cayley
graph is generated by translates of the relators, and so is generated by loops of length
at most the length of the longest relator.

Remark In fact, we get something a priori stronger: if � D hF jRi where Rab is a
finitely generated � –module and � has asymptotic dimension one then � is virtually
free. However, since every virtually free group is finitely presented, this does not
include any new examples.

Proof of Corollary 1.5 To prove Corollary 1.5, we need to check that H1.X / is
uniformly generated. For any graph G we have that H1.G/, and, indeed, �1.G/, are
generated by isometrically embedded loops. If we divide such a loop into three equal
pieces we get a geodesic triangle whose sides come close only at the corners. If G is
ı–hyperbolic, this implies any such loop can have length at most 6ı , which proves the
corollary.
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