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Hochschild homology, Frobenius homomorphism and
Mac Lane homology

TEIMURAZ PIRASHVILI

We prove that Hi.A; ˆ.A//D 0 , i > 0 . Here A is a commutative algebra over the
prime field Fp of characteristic p > 0 and ˆ.A/ is A considered as a bimodule,
where the left multiplication is the usual one, while the right multiplication is given
via Frobenius endomorphism and H� denotes the Hochschild homology over Fp . This
result has implications in Mac Lane homology theory. Among other results, we prove
that HML�.A;T /D0 , provided A is an algebra over a field K of characteristic p>0

and T is a strict homogeneous polynomial functor of degree d with 1<d <Card.K/ .

55P43, 16E40; 19D55, 55U10

1 Introduction

In this short note we study Hochschild and Mac Lane homology of commutative algebras
over the prime field Fp of characteristic p > 0. Let us recall that Mac Lane homology
is isomorphic to the topological Hochschild homology (Pirashvili–Waldhausen [13])
and to the stable K–theory as well (Franjou et al [4]).

Let A be a commutative algebra over the prime field Fp of characteristic p > 0 and
let ˆ.A/ be an A–A–bimodule, which is A as a left A–module, while the right
multiplication is given via Frobenius endomorphism. We prove that the Hochschild
homology vanishes Hi.A; ˆ.A//D 0, i > 0. The proof makes use a simple result on
homotopy groups of simplicial rings, which says that if R� is a simplicial ring such
that all rings involved in R� satisfy xm D x , m � 2 identity then �i.R�/ D 0 for
all i > 0. These results has implications in Mac Lane homology theory. We extend
the computation of Franjou–Lannes and Schwartz [6] of Mac Lane (co)homology of
finite fields with coefficients in symmetric Sd and divided �d powers to arbitrary
commutative Fp –algebras, provided that d > 1. As a consequence of our computations
we show that HML�.A;T / D 0, provided T is a strict homogeneous polynomial
functor of degree d > 1 and A is an algebra over a field K of characteristic p > 0

with Card.K/ > d .
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2 When it is too easy to compute homotopy groups

It is well known that the homotopy groups of a simplicial abelian group .A�; @�; s�/ can
be computed as the homology of the normalized chain complex .N�.A�/; d/, where

Nn.A�/D fx 2Anj@i.x/D 0; i > 0g

and the boundary map Nn.A�/!Nn�1.A�/ is induced by @0 . Our first result shows
that if A� has a simplicial ring structure and the rings involved in A� satisfy extra
conditions then homotopy groups are zero in positive dimensions. This fact is an easy
consequence of the following result which is probably well known.

Lemma 1 Let R� be a simplicial object in the category of not necessarily associative
rings and let x;y 2Nn.R�/ be two elements. Assume n > 0 and x is a cycle. Then
the cycle xy 2Nn.R�/ is a boundary.

Proof Consider the element

z D s0.xy/� s1.x/s0.y/:

Then we have
@0.z/D xy � .s0@0.x//y D xy:

Moreover,
@1.z/D xy �xy D 0:

We also have
@2.z/D .s0@1.x//.s0@1.y//�x.s0@1.y//D 0:

Similarly for all i > 2 we have

@i.z/D .s0@i�1.x//.s0@i�1.y//� .s1@i�1.x//.s0@i�1.y//D 0:

Hence z is an element of NnC1.R�/ with @.z/D xy .

Corollary 2 Let R� be a simplicial ring. If the rings involved in R� satisfy xm D x

identity for m� 2, then
�n.R�/D 0; n> 0:
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Proof Take a cycle x 2Nn.R�/, n> 0. Then the class of x D xxm�1 in �n.R�/ is
zero.

Remark A more general fact is true. Let T be a pointed algebraic theory (Schwede
[15]) and let X� be a simplicial object in the category of T–models [15]. Then �1.X�/

is a group object in the category of T–models, while �i.X�/ are abelian group objects
in the category of T–models for all i > 1. Thus �i.X�/D 0, i � 1 provided all group
objects are trivial. This is what happens for the category of rings satisfying the identity
xm D x , m� 2. Another interesting case is the category of Heyting algebras (Esakia
[3]).

3 Hochschild homology with twisted coefficients

In what follows the ground field is the prime field Fp of characteristic p > 0. All
algebras are taken over Fp and they are assumed to be associative. For an algebra R and
an R–R–bimodule B we let H�.R;B/ and H�.R;B/ be the Hochschild homology
and cohomology of R with coefficients in B . Let us recall that

H�.R;B/D TorR˝Rop

� .R;B/

and
H�.R;B/D Ext�R˝Rop .R;B/:

Moreover, let C�.R;B/ be the standard simplicial vector space computing Hochschild
homology

��.C�.R;B//Š H�.R;B/:

Recall that Cn.R;B/D B˝R˝n , while

@0.b; r1; : : : ; rn/D .br1; : : : ; rn/;

@i.b; r1; : : : ; rn/D .b; r1; : : : ; ririC1; : : : ; rn/; 0< i < n

and
@n.b; r1; : : : ; rn/D .rnb; r1; : : : ; rn�1/:

Here b 2 B and r1; : : : ; rn 2R.

Let n� 1 be a natural number and let A be a commutative Fp –algebra. The Frobenius
homomorphism gives rise to the functors ˆn from the category of A–modules to the
category of A–A–bimodules, which are defined as follows. For an A–module M the
bimodule ˆn.M / coincides with M as a left A–module, while the right A–module
structure on ˆn.M / is given by

maD apn

m; a 2A; m 2M:
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Having A–A–bimodule ˆn.M / we can consider the Hochschild homology H�.A;

ˆn.M //. In this section we study these homologies. In order to state our results we
need some notation. We let  n.A/ be the quotient ring A=.a� apn

/, n � 1 which
is considered as an A–module via the quotient map A �  n.A/. Thus  n is the
left adjoint of the inclusion of the category of commutative Fp –algebras with identity
xm D x;mD pn to the category of all commutative Fp –algebras.

Example 3 Let n� 1. If K is a finite field with q D pd element then  n.K/DK

if nD dt , t 2 N and  n.K/D 0 if n 6D dt , t 2 N.

Lemma 4 Let A is a commutative algebra over a field K of characteristic p > 0 with
Card.K/ > pn . Then  n.A/D 0, n� 1.

Proof By assumption there exists k 2K such that kpn

�k is an invertible element
of K . It follows then that the elements of the form apn

� a generates whole A.

Theorem 5 Let A be a commutative Fp –algebra and n� 1. Then

Hi.A; ˆ
n.A//D 0

for all i > 0 and
H0.A; ˆ

n.A//Š  n.A/:

Proof The proof consists of three steps.

Step 1 The theorem holds if ADFp Œx� In this case we have the following projective
resolution of A over A˝AD Fp Œx;y�:

0! Fp Œx;y�
�
! Fp Œx;y�

�
! Fp Œx�! 0:

Here �.x/D �.y/D x and � is induced by multiplication by .x�y/. Hence for any
A–A–bimodule B , we have Hi.A;B/D 0 for i > 1 and

H0.A;B/Š Coker.u/ and H1.A;B/Š ker.u/;

where uW B! B is given by u.b/D xb � bx . If B D ˆn.Fp Œx�/, then uW Fp Œx�!

Fp Œx� is the multiplication by .xpn

� x/ and we obtain H1.A; ˆ
n.A// D 0 and

H0.A; ˆ
n.A//D  n.A/

Step 2 The theorem holds if A is a polynomial algebra Since Hochschild ho-
mology commutes with filtered colimits it suffices to consider the case when A D

Fp Œx1; : : : ;xd �. By the Künneth theorem for Hochschild homology (see Mac Lane
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[10, Theorem X.7.4]) we have H�.A; ˆ
n.A//D H�.FŒx�; ˆ

n.FŒx�//˝d and the result
follows.

Step 3 The theorem holds for arbitrary A We use the same method as used in the
proof by Loday [9, Theorem 3.5.8]. First we choose a simplicial commutative algebra
L� such that each Ln is a polynomial algebra, n � 0 and �i.L�/D 0 for all i > 0,
�0.L�/DA. Such a resolution exists thanks to (Quillen [14]). Now consider the bisim-
plicial vector space C�.L�; ˆ

n.L�//. The s th horizontal simplicial vector space is the
simplicial vector space L˝sC1

� . By the Eilenberg–Zilber–Cartier and Künneth theorems
it has zero homotopy groups in positive dimensions and �0.L

˝sC1
� /DA˝sC1 . On the

other hand the t th vertical simplicial vector space of C�.L�; ˆ
n.L�/// is isomorphic

to the Hochschild complex C�.Lt ; ˆ
n.Lt /// which has zero homology in positive

dimensions by the previous step. Hence both spectral sequences corresponding to the
bisimplicial vector space C�.L�; ˆ

n.L�// degenerate and we obtain the isomorphism

H�.A; ˆ
n.A//Š ��. 

n.L�//:

Now we can use Corollary 2 to finish the proof.

Corollary 6 Let A be a commutative Fp –algebra, M be an A–module and n � 1.
Then there exist functorial isomorphisms

H�.A; ˆ
n.M //Š TorA

� . 
n.A/;M /; n� 0

and

H�.A; ˆn.M //Š Ext�A. 
n.A/;M /; n� 0:

In particular, if A is a commutative algebra over a field K of characteristic p > 0 with
Card.K/ > pn , then

H�.A; ˆ
n.M //D 0D H�.A; ˆn.M //:

Proof Observe that C�.A; ˆ
n.A// is a complex of left A–modules. By Theorem 5 it

is a free resolution of  n.A/ in the category of A–modules. Hence it suffices to note
that

C�.A; ˆ
n.M //ŠM ˝A C�.A; ˆ

n.A//;

C �.A; ˆn.M //Š homA.C�.A; ˆ
n.A//;M /;

where C � denotes the standard complex for Hochschild cohomology. The last assertion
follows from Lemma 4.
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Example 7 It follows for instance that Hi.A; ˆn.M //D 0, i > 0, provided M is an
injective A–module and n� 1. In particular Hi.A; ˆn.A//D 0 if A is a selfinjective
algebra. On the other hand if A D Fp Œx1; : : : ;xd � then Hi.A; ˆn.A// D 0, i 6D d ,
n� 1 and Hd .A; ˆn.A//D  n.A/, n� 1.

4 Application to Mac Lane cohomology

We recall the definition of Mac Lane (co)homology. For an associative ring R we let
F.R/ be the category of finitely generated free left R–modules. Moreover, we let
F.R/ be the category of all covariant functors from the category F.R/ to the category
of all R–modules. The category F.R/ is an abelian category with enough projective
and injective objects. By definition (Jibladze–Pirashvili [8]) the Mac Lane cohomology
of R with coefficient in a functor T 2 F.R/ is given by

HML�.R;T / WD Ext�F.R/.I;T /;

where I 2 F.R/ is the inclusion of the category F.R/ into the category of all left R–
modules. One defines Mac Lane homology in a dual manner (see Pirashvili–Waldhausen
[13, Proposition 3.1]). For an R–R–bimodule B , one considers the functor B˝R .�/

as an object of the category F.R/. For simplicity we write HML�.R;B/ instead of
HML�.R;B˝R .�//. There is a binatural transformation

HML�.R;B/! H�.R;B/

which is an isomorphism in dimensions 0 and 1.

In the rest of this section we consider Mac Lane (co)homology of commutative Fp –
algebras.

Lemma 8 For any commutative Fp –algebra A one has an isomorphism

HML2i.A; ˆ
n.A//D  n.A/; i � 0; n� 1;

and
HML2iC1.A; ˆ

n.A//D 0; i � 0; n� 1:

Proof According to (Pirashvili [12, Proposition 4.1]) there exists a functorial spectral
sequence

E2
pq D Hp.A;HMLq.Fp;B//H) HMLpCq.A;B/:

Here B is an A–A–bimodule. By the well-known computation of Breen [2], Bökstedt
[1] (see also Franjou–Lannes–Schwartz [6]) we have

HML2i.Fp;B/D B
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and
HML2iC1.Fp;B/D 0:

Now we put B D  n.A/ and use Theorem 5 to get E2
pq D 0 for all p > 0. Hence the

spectral sequence degenerates and the result follows.

We now consider Mac Lane cohomology with coefficients in strict polynomial func-
tors (Friedlander–Suslin [7]). Let us recall that the strict homogeneous polynomial
functors of degree d form an abelian category Pd .A/ and there exist an exact functor
i W Pd .A/!F.A/ (Franjou et al [5]). For an object T 2Pd .A/ we write HML�.A;T /

instead of HML�.A; i.T //. Projective generators of the category Pd are tensor products
of the divided powers, while the injective cogenerators are symmetric powers. Let us
recall that the d th divided power functor �d 2F.A/ and d -th symmetric functors Sn

are defined by
�d .M /D .M˝d /†d ; Sn.M /D .M˝d /†d

:

Here tensor products are taken over A, †d is the symmetric group on d letters, which
acts on the d -th tensor power by permuting of factors, M 2 F.A/ and X G (resp. XG )
denotes the module of invariants (resp. coinvariants) of a G –module X , where G is a
group.

For a functor T 2 F.A/ we let zT 2 F.Fp/ be the functor defined by

zT .V /D T .V ˝A/:

According to Pirashvili–Waldhausen [13, Theorem 4.1] the groups HMLi.Fp; zT / have
an A–A–bimodule structure. The left action comes from the fact that T has values in
the category of left A–modules, while the right action comes from the fact that T is
defined on F.A/. In particular it uses the action of T on the maps laW X !X , where
a 2A, X 2 F.A/ and la is the multiplication on a. Since T .la/D lad if T is a strict
homogeneous polynomial functor of degree d Friedlander–Suslin [7], the bimodule
HMLi.Fp; zT / is of the form ˆn.M / provided d D pn .

Theorem 9 Let d > 1 be an integer and let A be a commutative Fp –algebra. Then
HML�.A; �

d /D 0 if d is not a power of p . If d D pn and n> 0, then

HMLi.A; �
d /D 0 if i 6D 2pnt; t � 0

and
HMLi.A; �

d /D  n.A/ if i D 2pnt; t � 0:

In particular HML�.A; �
d /D0 provided A is an algebra over a field K of characteristic

p > 0 with Card.K/ > d .
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Proof According to Pirashvili–Waldhausen [13, Theorem 4.1] and Pirashvili [12]
there exists a functorial spectral sequence:

E2
pq D Hp.A;HMLq.Fp; zT //H) HMLpCq.A;T /:

For T D�n
A

one has zT D�n
Fp
˝A. Here we used the notation �n

A
in order to emphasize

the dependence on the ring A. By the result of Franjou, Lannes and Schwartz [6],
HMLi.Fp; zT / vanishes unless d D pn and i D 2pnt , t � 0. Moreover in these
exceptional cases HMLi.Fp; zT / equals to ˆn.A/ (as an A–A–module). Hence the
spectral sequence together with Theorem 5 gives the result.

Corollary 10 Let A be a commutative algebra over a field K of characteristic p > 0

with Card.K/ > d > 1. If T is a strong homogeneous polynomial functor of degree d .
Then

HML�.A;T /D 0D HML�.A;T /:

Proof We already proved that the result is true if T is a divided power. By the
well-known vanishing result (Pirashvili [11]) the result is also true if T D T1˝ T2

with T1.0/D 0D T2.0/. Since any object of Pd has a finite resolution which consists
with finite direct sums of tensor products of divided powers [7] the result follows.
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