Hochschild homology, Frobenius homomorphism and Mac Lane homology

TEIMURAZ PIRASHVILI

We prove that $H_i(A, \Phi(A)) = 0$, i > 0. Here *A* is a commutative algebra over the prime field \mathbb{F}_p of characteristic p > 0 and $\Phi(A)$ is *A* considered as a bimodule, where the left multiplication is the usual one, while the right multiplication is given via Frobenius endomorphism and H_{\bullet} denotes the Hochschild homology over \mathbb{F}_p . This result has implications in Mac Lane homology theory. Among other results, we prove that $HML_{\bullet}(A, T) = 0$, provided *A* is an algebra over a field *K* of characteristic p > 0 and *T* is a strict homogeneous polynomial functor of degree *d* with 1 < d < Card(K).

55P43, 16E40; 19D55, 55U10

1 Introduction

In this short note we study Hochschild and Mac Lane homology of commutative algebras over the prime field \mathbb{F}_p of characteristic p > 0. Let us recall that Mac Lane homology is isomorphic to the topological Hochschild homology (Pirashvili–Waldhausen [13]) and to the stable *K*-theory as well (Franjou et al [4]).

Let *A* be a commutative algebra over the prime field \mathbb{F}_p of characteristic p > 0 and let $\Phi(A)$ be an A-A-bimodule, which is *A* as a left *A*-module, while the right multiplication is given via Frobenius endomorphism. We prove that the Hochschild homology vanishes $H_i(A, \Phi(A)) = 0$, i > 0. The proof makes use a simple result on homotopy groups of simplicial rings, which says that if R_{\bullet} is a simplicial ring such that all rings involved in R_{\bullet} satisfy $x^m = x$, $m \ge 2$ identity then $\pi_i(R_{\bullet}) = 0$ for all i > 0. These results has implications in Mac Lane homology theory. We extend the computation of Franjou–Lannes and Schwartz [6] of Mac Lane (co)homology of finite fields with coefficients in symmetric S^d and divided Γ^d powers to arbitrary commutative \mathbb{F}_p -algebras, provided that d > 1. As a consequence of our computations we show that $HML_{\bullet}(A, T) = 0$, provided *T* is a strict homogeneous polynomial functor of degree d > 1 and *A* is an algebra over a field *K* of characteristic p > 0with Card(K) > d.

Published: 2 August 2007

DOI: 10.2140/agt.2007.7.1071

Many thanks to referee for his valuable comments and to Petter Andreas Bergh for his remarks. The author was partially supported by the grant from MEC, MTM2006-15338-C02-02 (European FEDER support included).

2 When it is too easy to compute homotopy groups

It is well known that the homotopy groups of a simplicial abelian group $(A_{\bullet}, \partial_{\bullet}, s_{\bullet})$ can be computed as the homology of the normalized chain complex $(N_{\bullet}(A_{\bullet}), d)$, where

$$N_n(A_{\bullet}) = \{ x \in A_n | \partial_i(x) = 0, i > 0 \}$$

and the boundary map $N_n(A_{\bullet}) \rightarrow N_{n-1}(A_{\bullet})$ is induced by ∂_0 . Our first result shows that if A_{\bullet} has a simplicial ring structure and the rings involved in A_{\bullet} satisfy extra conditions then homotopy groups are zero in positive dimensions. This fact is an easy consequence of the following result which is probably well known.

Lemma 1 Let R_{\bullet} be a simplicial object in the category of not necessarily associative rings and let $x, y \in N_n(R_{\bullet})$ be two elements. Assume n > 0 and x is a cycle. Then the cycle $xy \in N_n(R_{\bullet})$ is a boundary.

Proof Consider the element

$$z = s_0(xy) - s_1(x)s_0(y).$$

Then we have

$$\partial_0(z) = xy - (s_0\partial_0(x))y = xy.$$

Moreover,

$$\partial_1(z) = xy - xy = 0.$$

We also have

$$\partial_2(z) = (s_0 \partial_1(x))(s_0 \partial_1(y)) - x(s_0 \partial_1(y)) = 0.$$

Similarly for all i > 2 we have

$$\partial_i(z) = (s_0 \partial_{i-1}(x))(s_0 \partial_{i-1}(y)) - (s_1 \partial_{i-1}(x))(s_0 \partial_{i-1}(y)) = 0.$$

Hence z is an element of $N_{n+1}(R_{\bullet})$ with $\partial(z) = xy$.

Corollary 2 Let R_{\bullet} be a simplicial ring. If the rings involved in R_{\bullet} satisfy $x^m = x$ identity for $m \ge 2$, then

$$\pi_n(R_{\bullet}) = 0, \quad n > 0.$$

Proof Take a cycle $x \in N_n(R_{\bullet})$, n > 0. Then the class of $x = xx^{m-1}$ in $\pi_n(R_{\bullet})$ is zero.

Remark A more general fact is true. Let **T** be a pointed algebraic theory (Schwede [15]) and let X_{\bullet} be a simplicial object in the category of **T**-models [15]. Then $\pi_1(X_{\bullet})$ is a group object in the category of **T**-models, while $\pi_i(X_{\bullet})$ are abelian group objects in the category of **T**-models for all i > 1. Thus $\pi_i(X_{\bullet}) = 0$, $i \ge 1$ provided all group objects are trivial. This is what happens for the category of rings satisfying the identity $x^m = x$, $m \ge 2$. Another interesting case is the category of Heyting algebras (Esakia [3]).

3 Hochschild homology with twisted coefficients

In what follows the ground field is the prime field \mathbb{F}_p of characteristic p > 0. All algebras are taken over \mathbb{F}_p and they are assumed to be associative. For an algebra R and an R-R-bimodule B we let $H_{\bullet}(R, B)$ and $H^{\bullet}(R, B)$ be the Hochschild homology and cohomology of R with coefficients in B. Let us recall that

$$\mathsf{H}_{\bullet}(R,B) = \mathsf{Tor}_{\bullet}^{R \otimes R^{op}}(R,B)$$

and

$$\mathsf{H}^{\bullet}(R, B) = \mathsf{Ext}^{\bullet}_{R \otimes R^{op}}(R, B).$$

Moreover, let $C_{\bullet}(R, B)$ be the standard simplicial vector space computing Hochschild homology

$$\pi_{\bullet}(C_{\bullet}(R,B)) \cong \mathsf{H}_{\bullet}(R,B).$$

Recall that $C_n(R, B) = B \otimes R^{\otimes n}$, while

$$\begin{aligned} \partial_0(b, r_1, \dots, r_n) &= (br_1, \dots, r_n), \\ \partial_i(b, r_1, \dots, r_n) &= (b, r_1, \dots, r_i r_{i+1}, \dots, r_n), \quad 0 < i < n \end{aligned}$$

and

$$\partial_n(b, r_1, \ldots, r_n) = (r_n b, r_1, \ldots, r_{n-1}).$$

Here $b \in B$ and $r_1, \ldots, r_n \in R$.

Let $n \ge 1$ be a natural number and let A be a commutative \mathbb{F}_p -algebra. The Frobenius homomorphism gives rise to the functors Φ^n from the category of A-modules to the category of A-A-bimodules, which are defined as follows. For an A-module M the bimodule $\Phi^n(M)$ coincides with M as a left A-module, while the right A-module structure on $\Phi^n(M)$ is given by

$$ma = a^{p^n}m, a \in A, m \in M.$$

Having A-A-bimodule $\Phi^n(M)$ we can consider the Hochschild homology $H_{\bullet}(A, \Phi^n(M))$. In this section we study these homologies. In order to state our results we need some notation. We let $\psi^n(A)$ be the quotient ring $A/(a-a^{p^n}), n \ge 1$ which is considered as an A-module via the quotient map $A \twoheadrightarrow \psi^n(A)$. Thus ψ^n is the left adjoint of the inclusion of the category of commutative \mathbb{F}_p -algebras with identity $x^m = x, m = p^n$ to the category of all commutative \mathbb{F}_p -algebras.

Example 3 Let $n \ge 1$. If K is a finite field with $q = p^d$ element then $\psi^n(K) = K$ if n = dt, $t \in \mathbb{N}$ and $\psi^n(K) = 0$ if $n \ne dt$, $t \in \mathbb{N}$.

Lemma 4 Let A is a commutative algebra over a field K of characteristic p > 0 with $Card(K) > p^n$. Then $\psi^n(A) = 0$, $n \ge 1$.

Proof By assumption there exists $k \in K$ such that $k^{p^n} - k$ is an invertible element of *K*. It follows then that the elements of the form $a^{p^n} - a$ generates whole *A*. \Box

Theorem 5 Let *A* be a commutative \mathbb{F}_p -algebra and $n \ge 1$. Then

 $\mathsf{H}_i(A, \Phi^n(A)) = 0$

for all i > 0 and

$$H_0(A, \Phi^n(A)) \cong \psi^n(A).$$

Proof The proof consists of three steps.

Step 1 The theorem holds if $A = \mathbb{F}_p[x]$ In this case we have the following projective resolution of A over $A \otimes A = \mathbb{F}_p[x, y]$:

$$0 \to \mathbb{F}_p[x, y] \xrightarrow{\eta} \mathbb{F}_p[x, y] \xrightarrow{\epsilon} \mathbb{F}_p[x] \to 0.$$

Here $\epsilon(x) = \epsilon(y) = x$ and η is induced by multiplication by (x - y). Hence for any A - A-bimodule B, we have $H_i(A, B) = 0$ for i > 1 and

$$H_0(A, B) \cong Coker(u)$$
 and $H_1(A, B) \cong ker(u)$,

where $u: B \to B$ is given by u(b) = xb - bx. If $B = \Phi^n(\mathbb{F}_p[x])$, then $u: \mathbb{F}_p[x] \to \mathbb{F}_p[x]$ is the multiplication by $(x^{p^n} - x)$ and we obtain $H_1(A, \Phi^n(A)) = 0$ and $H_0(A, \Phi^n(A)) = \psi^n(A)$

Step 2 The theorem holds if A is a polynomial algebra Since Hochschild homology commutes with filtered colimits it suffices to consider the case when $A = \mathbb{F}_p[x_1, \dots, x_d]$. By the Künneth theorem for Hochschild homology (see Mac Lane

[10, Theorem X.7.4]) we have $H_{\bullet}(A, \Phi^n(A)) = H_{\bullet}(\mathbb{F}[x], \Phi^n(\mathbb{F}[x]))^{\otimes d}$ and the result follows.

Step 3 The theorem holds for arbitrary A We use the same method as used in the proof by Loday [9, Theorem 3.5.8]. First we choose a simplicial commutative algebra L_{\bullet} such that each L_n is a polynomial algebra, $n \ge 0$ and $\pi_i(L_{\bullet}) = 0$ for all i > 0, $\pi_0(L_{\bullet}) = A$. Such a resolution exists thanks to (Quillen [14]). Now consider the bisimplicial vector space $C_{\bullet}(L_{\bullet}, \Phi^n(L_{\bullet}))$. The *s*th horizontal simplicial vector space is the simplicial vector space $L_{\bullet}^{\otimes s+1}$. By the Eilenberg–Zilber–Cartier and Künneth theorems it has zero homotopy groups in positive dimensions and $\pi_0(L_{\bullet}^{\otimes s+1}) = A^{\otimes s+1}$. On the other hand the *t* th vertical simplicial vector space of $C_{\bullet}(L_{\bullet}, \Phi^n(L_{\bullet}))$ is isomorphic to the Hochschild complex $C_{\bullet}(L_t, \Phi^n(L_t))$ which has zero homology in positive dimensions by the previous step. Hence both spectral sequences corresponding to the bisimplicial vector space $C_{\bullet}(L_{\bullet}, \Phi^n(L_{\bullet}))$ degenerate and we obtain the isomorphism

$$\mathsf{H}_{\bullet}(A, \Phi^{n}(A)) \cong \pi_{\bullet}(\psi^{n}(L_{\bullet})).$$

Now we can use Corollary 2 to finish the proof.

Corollary 6 Let *A* be a commutative \mathbb{F}_p -algebra, *M* be an *A*-module and $n \ge 1$. Then there exist functorial isomorphisms

$$\mathsf{H}_{\bullet}(A, \Phi^{n}(M)) \cong \mathsf{Tor}_{\bullet}^{A}(\psi^{n}(A), M), \quad n \ge 0$$

and

$$\mathsf{H}^{\bullet}(A, \Phi^{n}(M)) \cong \mathsf{Ext}^{\bullet}_{A}(\psi^{n}(A), M), \quad n \ge 0.$$

In particular, if A is a commutative algebra over a field K of characteristic p > 0 with $Card(K) > p^n$, then

$$\mathsf{H}_{\bullet}(A, \Phi^{n}(M)) = 0 = \mathsf{H}^{\bullet}(A, \Phi^{n}(M)).$$

Proof Observe that $C_{\bullet}(A, \Phi^n(A))$ is a complex of left A-modules. By Theorem 5 it is a free resolution of $\psi^n(A)$ in the category of A-modules. Hence it suffices to note that

$$C_{\bullet}(A, \Phi^{n}(M)) \cong M \otimes_{A} C_{\bullet}(A, \Phi^{n}(A)),$$

$$C^{\bullet}(A, \Phi^{n}(M)) \cong \hom_{A}(C_{\bullet}(A, \Phi^{n}(A)), M),$$

where C^* denotes the standard complex for Hochschild cohomology. The last assertion follows from Lemma 4.

Algebraic & Geometric Topology, Volume 7 (2007)

Example 7 It follows for instance that $H^i(A, \Phi^n(M)) = 0, i > 0$, provided M is an injective A-module and $n \ge 1$. In particular $H^i(A, \Phi^n(A)) = 0$ if A is a selfinjective algebra. On the other hand if $A = \mathbb{F}_p[x_1, \ldots, x_d]$ then $H^i(A, \Phi^n(A)) = 0, i \ne d$, $n \ge 1$ and $H^d(A, \Phi^n(A)) = \psi^n(A), n \ge 1$.

4 Application to Mac Lane cohomology

We recall the definition of Mac Lane (co)homology. For an associative ring R we let $\mathbf{F}(R)$ be the category of finitely generated free left R-modules. Moreover, we let $\mathfrak{F}(R)$ be the category of all covariant functors from the category $\mathbf{F}(R)$ to the category of all R-modules. The category $\mathfrak{F}(R)$ is an abelian category with enough projective and injective objects. By definition (Jibladze-Pirashvili [8]) the *Mac Lane cohomology* of R with coefficient in a functor $T \in \mathfrak{F}(R)$ is given by

$$\mathsf{HML}^{\bullet}(R,T) := \mathsf{Ext}^{\bullet}_{\mathfrak{K}(R)}(I,T),$$

where $I \in \mathfrak{F}(R)$ is the inclusion of the category $\mathbf{F}(R)$ into the category of all left Rmodules. One defines Mac Lane homology in a dual manner (see Pirashvili–Waldhausen [13, Proposition 3.1]). For an R-R-bimodule B, one considers the functor $B \otimes_R (-)$ as an object of the category $\mathfrak{F}(R)$. For simplicity we write $\mathsf{HML}_{\bullet}(R, B)$ instead of $\mathsf{HML}_{\bullet}(R, B \otimes_R (-))$. There is a binatural transformation

$$\mathsf{HML}_{\bullet}(R, B) \to \mathsf{H}_{\bullet}(R, B)$$

which is an isomorphism in dimensions 0 and 1.

In the rest of this section we consider Mac Lane (co)homology of commutative \mathbb{F}_p -algebras.

Lemma 8 For any commutative \mathbb{F}_p -algebra A one has an isomorphism

$$\mathsf{HML}_{2i}(A, \Phi^n(A)) = \psi^n(A), \quad i \ge 0, n \ge 1,$$

and

$$\text{HML}_{2i+1}(A, \Phi^n(A)) = 0, \quad i \ge 0, n \ge 1.$$

Proof According to (Pirashvili [12, Proposition 4.1]) there exists a functorial spectral sequence

$$E_{pq}^2 = H_p(A, HML_q(\mathbb{F}_p, B)) \Longrightarrow HML_{p+q}(A, B).$$

Here *B* is an A-A-bimodule. By the well-known computation of Breen [2], Bökstedt [1] (see also Franjou–Lannes–Schwartz [6]) we have

$$\mathsf{HML}_{2i}(\mathbb{F}_p, B) = B$$

and

$$\mathsf{HML}_{2i+1}(\mathbb{F}_p, B) = 0.$$

Now we put $B = \psi^n(A)$ and use Theorem 5 to get $E_{pq}^2 = 0$ for all p > 0. Hence the spectral sequence degenerates and the result follows.

We now consider Mac Lane cohomology with coefficients in strict polynomial functors (Friedlander–Suslin [7]). Let us recall that the strict homogeneous polynomial functors of degree d form an abelian category $\mathfrak{P}_d(A)$ and there exist an exact functor $i: \mathfrak{P}_d(A) \to \mathfrak{F}(A)$ (Franjou et al [5]). For an object $T \in \mathfrak{P}_d(A)$ we write $\mathsf{HML}_{\bullet}(A, T)$ instead of $\mathsf{HML}_{\bullet}(A, i(T))$. Projective generators of the category \mathfrak{P}_d are tensor products of the divided powers, while the injective cogenerators are symmetric powers. Let us recall that the d th divided power functor $\Gamma^d \in \mathfrak{F}(A)$ and d-th symmetric functors S^n are defined by

$$\Gamma^{d}(M) = (M^{\otimes d})^{\Sigma_{d}}, \quad S^{n}(M) = (M^{\otimes d})_{\Sigma_{d}}.$$

Here tensor products are taken over A, Σ_d is the symmetric group on d letters, which acts on the d-th tensor power by permuting of factors, $M \in \mathbf{F}(A)$ and X^G (resp. X_G) denotes the module of invariants (resp. coinvariants) of a G-module X, where G is a group.

For a functor $T \in \mathfrak{F}(A)$ we let $\tilde{T} \in \mathfrak{F}(\mathbb{F}_p)$ be the functor defined by

$$\tilde{T}(V) = T(V \otimes A).$$

According to Pirashvili–Waldhausen [13, Theorem 4.1] the groups $\mathsf{HML}_i(\mathbb{F}_p, \tilde{T})$ have an A-A-bimodule structure. The left action comes from the fact that T has values in the category of left A-modules, while the right action comes from the fact that T is defined on $\mathbf{F}(A)$. In particular it uses the action of T on the maps $l_a: X \to X$, where $a \in A, X \in \mathbf{F}(A)$ and l_a is the multiplication on a. Since $T(l_a) = l_{a^d}$ if T is a strict homogeneous polynomial functor of degree d Friedlander–Suslin [7], the bimodule $\mathsf{HML}_i(\mathbb{F}_p, \tilde{T})$ is of the form $\Phi^n(M)$ provided $d = p^n$.

Theorem 9 Let d > 1 be an integer and let A be a commutative \mathbb{F}_p -algebra. Then $HML_{\bullet}(A, \Gamma^d) = 0$ if d is not a power of p. If $d = p^n$ and n > 0, then

$$\mathsf{HML}_i(A, \Gamma^d) = 0 \text{ if } i \neq 2p^n t, t \geq 0$$

and

$$\mathsf{HML}_i(A, \Gamma^d) = \psi^n(A) \text{ if } i = 2p^n t, t \ge 0.$$

In particular HML_• $(A, \Gamma^d) = 0$ provided A is an algebra over a field K of characteristic p > 0 with Card(K) > d.

Proof According to Pirashvili–Waldhausen [13, Theorem 4.1] and Pirashvili [12] there exists a functorial spectral sequence:

$$E_{pq}^2 = \mathsf{H}_p(A, \mathsf{HML}_q(\mathbb{F}_p, \widetilde{T})) \Longrightarrow \mathsf{HML}_{p+q}(A, T).$$

For $T = \Gamma_A^n$ one has $\tilde{T} = \Gamma_{\mathbb{F}_p}^n \otimes A$. Here we used the notation Γ_A^n in order to emphasize the dependence on the ring A. By the result of Franjou, Lannes and Schwartz [6], $\mathsf{HML}_i(\mathbb{F}_p, \tilde{T})$ vanishes unless $d = p^n$ and $i = 2p^n t$, $t \ge 0$. Moreover in these exceptional cases $\mathsf{HML}_i(\mathbb{F}_p, \tilde{T})$ equals to $\Phi^n(A)$ (as an A - A-module). Hence the spectral sequence together with Theorem 5 gives the result. \Box

Corollary 10 Let *A* be a commutative algebra over a field *K* of characteristic p > 0 with Card(K) > d > 1. If *T* is a strong homogeneous polynomial functor of degree *d*. Then

$$\mathsf{HML}_{\bullet}(A, T) = 0 = \mathsf{HML}^{\bullet}(A, T).$$

Proof We already proved that the result is true if T is a divided power. By the well-known vanishing result (Pirashvili [11]) the result is also true if $T = T_1 \otimes T_2$ with $T_1(0) = 0 = T_2(0)$. Since any object of \mathfrak{P}_d has a finite resolution which consists with finite direct sums of tensor products of divided powers [7] the result follows. \Box

References

- [1] **M Bökstedt**, *The topological Hochschild homology of* \mathbb{Z} *and* \mathbb{Z}/p unpublished manuscript
- [2] L Breen, Extensions du groupe additif, Inst. Hautes Études Sci. Publ. Math. 48 (1978) 39–125 MR516914
- [3] L L Esakia, Heyting algebras I: Duality theory (Russian), Metsniereba, Tbilisi (1985) MR847050
- [4] V Franjou, E M Friedlander, T Pirashvili, L Schwartz, Rational representations, the Steenrod algebra and functor homology, Panoramas et Synthèses 16, Société Mathématique de France, Paris (2003) MR2117525
- [5] V Franjou, E M Friedlander, A Scorichenko, A Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999) 663–728 MR1726705
- [6] V Franjou, J Lannes, L Schwartz, Autour de la cohomologie de Mac Lane des corps finis, Invent. Math. 115 (1994) 513–538 MR1262942
- [7] E M Friedlander, A Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997) 209–270 MR1427618

- [8] M Jibladze, T Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991) 253–296 MR1094244
- [9] J-L Loday, Cyclic homology, second edition, Grundlehren der Mathematischen Wissenschaften 301, Springer, Berlin (1998) MR1600246
- [10] S Mac Lane, *Homology*, Grundlehren der Mathematischen Wissenschaften 114, Springer, Berlin (1963) MR0156879
- [11] T I Pirashvili, *Higher additivizations*, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988) 44–54 MR1029006
- T Pirashvili, Spectral sequence for Mac Lane homology, J. Algebra 170 (1994) 422– 428 MR1302848
- [13] T Pirashvili, F Waldhausen, Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992) 81–98 MR1181095
- [14] D Quillen, On the (co-) homology of commutative rings, from: "Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968)", Amer. Math. Soc., Providence, R.I. (1970) 65–87 MR0257068
- [15] S Schwede, Stable homotopy of algebraic theories, Topology 40 (2001) 1–41 MR1791267

Department of Mathematics, University of Leicester Leicester, LE1 7RH, UK

tp59@le.ac.uk

Received: 14 March 2007