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Representations of surface groups and right-angled Artin
groups in higher rank

STEPHEN WANG

We give concrete constructions of discrete and faithful representations of right-angled
Artin groups into higher-rank Lie groups. Using the geometry of the associated
symmetric spaces and the combinatorics of the groups, we find a general criterion for
when discrete and faithful representations exist, and show that the criterion is satisfied
in particular cases. There are direct applications towards constructing representations
of surface groups into higher-rank Lie groups, and, in particular, into lattices in
higher-rank Lie groups.

20F36; 53C35

1 Introduction

The study of embeddings of surface groups � D�1.†g/, where †g is a closed surface
of genus g , in Lie groups has a long history, and has been recently the subject of study
from a variety of different viewpoints.

The most basic example is when the Lie group G D PSL.2;R/, in which case the
faithful, discrete representations inside Hom.�;G/=G give Teichmüller space. Hitchin
[11] expanded the notion of Teichmüller space to representations into G D SL.n;R/,
showing in that case that Hom.�;G/=G has a distinguished connected component,
topologically a ball, containing Teichmüller space. He also calculated the number of
connected components in the whole representation space. Other examples include real
projective structures on surfaces (see Choi and Goldman [3]), Kähler geometry and
bounded cohomology (see Burger, Iozzi and Wienhard [1]), and Anosov flows and
hyperconvex curves in projective space (see Labourie [13]).

Looking at the representation variety is also a key component in studying vector bundles
over surfaces and surface bundles over surfaces. In addition, when the images of the
representations lie in a lattice ƒ in G , one obtains examples of essential surfaces
inside a locally symmetric space, generalizing the study of closed geodesics to higher
dimensional submanifolds. However, while much has been proven about general
properties of Hom.�;G/=G , such as the number of connected components, or the
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nature of certain types of embeddings, there has not been very much attention paid
towards constructing explicit examples of such objects, save in some special cases.

This paper focuses on the general problem of constructing explicit examples of discrete,
faithful representations of surface groups into all sorts of Lie groups, or, even better, into
lattices. One can then hope to calculate numerical invariants of those representations,
such as Toledo invariants (when the associated symmetric space is Hermitian), to
determine which components of the representation variety these representations belong
to. We apply techniques and results of geometric group theory, combined with an
understanding of the geometry of symmetric spaces, to the problem.

The main part of this work is the construction of numerous new explicit examples of
discrete, faithful representations of surface groups into semisimple Lie groups of higher
rank. We also construct new representations into lattices in semisimple Lie groups. The
method developed can also be adapted to representations of other groups of interest
in geometric group theory, such as the fundamental groups of closed hyperbolic 3-
and 4-manifolds (see Crisp–Wiest [5] and Januskiewicz–Świa̧tkowski [12]), and graph
braid groups [4].

We examine the topic of representations of surface groups using the technique of
right-angled Artin groups. Given a finite graph H D .V;E/, we define the right-angled
Artin group A.H / to be the group given by the presentation

hsvjv 2 V I Œsv; sw �D 1 if vw 2Ei:

Despite their simple presentations, these groups exhibit a number of interesting proper-
ties, and have been the subject of an increasing amount of study in recent years (see,
for example, Charney [2]).

The focus on right-angled Artin groups is useful in studying surface groups because of
the work of John Crisp and Bert Wiest [4], who have shown that all fundamental groups
of closed, oriented surfaces embed in some right-angled Artin group. In particular, the
fundamental group of any closed oriented surface of genus at least 2 embeds into the
Artin group A.C5/, where Cn denotes the cycle on n vertices.

This is one reason why we primarily focus on Artin groups A.H / where H is a cycle
of at least 5 vertices. Another reason is that, since cycles are subgraphs of almost every
graph, restrictions on the representations of the corresponding subgroups (or the lack
thereof) will translate to information about the full group.

One can show by simple dimension count arguments that representations of A.C5/

exist, but exhibiting faithfulness and, particularly, discreteness requires a stronger
argument. Our construction is explicit, and gives a whole class of discrete, faithful
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representations. In particular, the proof of discreteness exploits the geometry of the
symmetric spaces associated to Lie groups.

The paper is in two main parts. In the first, we prove that if there is an arrangement of
the maximal flats of the symmetric space X DG=K that mimics the structure of the
graph H in a certain sense, then we can find a faithful and discrete representation of
A.H / into G . In the second, we primarily focus on the case where H is a cycle, and
show that such arrangements of flats exist for certain symmetric spaces.

This process yields the following main results:

Theorem 1 There are infinitely many conjugacy classes of discrete, faithful represen-
tations of A.C5/ into SL.n;R/ for n� 3.

This method ought to be generalizable to arbitrary symmetric spaces, but it sometimes
requires Artin groups on larger cycles than C5 . For certain symmetric spaces, we will
not be able to use our method to embed A.C5/, but only Artin groups on cycles of even
length. It is known that these Artin groups contain some, but not all, surface groups
(see Droms, Servatius and Servatius [6]).

Theorem 2 There are infinitely many conjugacy classes of discrete, faithful represen-
tations of A.C6/ into SO.3; 2/.

It is essential that the Lie groups are of R–rank at least two.

Theorem 3 If G is a simple Lie group of R–rank 1, and H is a non-complete
connected graph, then there is no discrete and faithful embedding of A.H / into G .

It is interesting that this method can also be used to construct representations of surface
groups into lattices in semi-simple Lie groups. These constructions yield examples of
essential surfaces inside locally symmetric spaces.

Theorem 4 There are infinitely many conjugacy classes of representations of A.C5/

into SL.5;Z/.

As a result of Theorem 1, we obtain explicit representations of surface groups.

Theorem 5 For any closed surface group � D �1.†g/ with g � 2 and n� 3, there
are infinitely many conjugacy classes of discrete, faithful representations of � into
SL.n;R/.
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There is a little bit of work required to keep the infinitely many conjugacy classes, but
otherwise this is an immediate corollary. Certain discrete and faithful representations
of surface groups into PSL.3;R/ correspond to convex projective structures on the
surface, and have been extensively studied (see Choi–Goldman [3] and Goldman [10]).
For the most part, however, the techniques used in previous work have not yielded
algebraically explicit examples. Our construction gives a way of constructing these
representations explicitly.

All examples constructed via this method lie in the connected component of the trivial
representation, so these representations do not lie in Hitchin’s Teichmüller component
or have non-zero Toledo invariant (when the target symmetric space is Hermitian).
These are, however, the first class of explicit non-trivial examples of representations,
and it is hoped that the geometric nature of the construction (and, in particular, the ease
in which it yields discreteness) will be helpful in future study of the representation
variety.
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2 Preliminaries

2.1 Symmetric spaces

Throughout this paper, G will denote a connected, semisimple Lie group with no
compact or Euclidean factors, K a maximal compact subgroup of G , and X D G=K

its associated symmetric space of non-compact type.

The rank of X is the largest integer r such that there exists a totally geodesic subspace
of X isometric to Rr . A symmetric space of non-compact type has rank 1 if and
only if its sectional curvatures are negative. A maximal flat in a symmetric space X

is a totally geodesic submanifold F which is isometric to Rr , where r is the rank
of X . Note that, under the identification of TpX with p, TpF is a maximal abelian
subalgebra a� p.

Every geodesic of X is contained in at least one maximal flat. A geodesic  is called
regular if there is exactly one maximal flat containing  ; if there is more than one
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maximal flats containing  , it is singular. Likewise, a point z 2X.1/ is called regular
(resp. singular) if a geodesic  with  .1/D z is regular (resp. singular).

An isometry � of X having the property that there is some geodesic  such that
�. .t//D  .t C t0/ for all t is called axial. In this case, we call  an axis for � and
t0 the translation distance.

For these and other facts on symmetric spaces, see (for instance) Eberlein [9].

2.2 Artin groups

Given a finite graph H D .V;E/, we define the right-angled Artin group A.H / to be
the group given by hsvjv 2 V I Œsv; sw �D 1 if vw 2Ei.

Crisp and Wiest have shown that all but three surface groups embed in some right-angled
Artin group. In particular, for closed orientable surfaces, we have the following:

Theorem 6 (Crisp–Wiest [4]) There is a faithful homomorphism from the fundamen-
tal group of any closed oriented surface †g into the Artin group A.C5/, where Cn

denotes the cycle on n vertices.

Other Artin groups also contain certain surface groups as subgroups:

Theorem 7 (Droms–Servatius–Servatius [6]) If n � 5, then A.Cn/ contains the
surface group �1.†g/, where g D 1C .n� 4/2n�3 .

We will therefore concentrate on the question of finding discrete and faithful rep-
resentations of right-angled Artin groups, particularly A.C5/, into semi-simple Lie
groups.

It will be important that the Lie group be of rank greater than 1. There are examples of
faithful embeddings of A.C5/ into Lie groups of rank 1, but they are far from being
discrete.

Theorem 8 If G is a simple Lie group of R–rank 1, and H is a non-complete
connected graph, then there is no discrete and faithful embedding of A.H / into G .

Proof Let v and w be two adjacent vertices of H , and sv and sw the corresponding
generators of the right-angled Artin group. Given a representation � W A.H /! G ,
we examine the action of �.sv/ on the symmetric space X D G=K , which will be of
negative curvature.
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If �.sv/ fixes some point p 2X , then �.sv/ lies in a subgroup of G which is compact.
Since sv has infinite order in A.H /, this means that � is either non-faithful or has
non-discrete image.

Thus �.sv/ fixes exactly one or two points in X.1/. If it fixes two, then there is some
geodesic  W R!X and some t0 2R such that �.sv/. .t//D  .tC t0/ for all t . This
will be the unique geodesic that is fixed by �.sv/, and thus  will be fixed by �.sw/
as well. There will be some t1 2 R such that �.sw/. .t//D  .t C t1/ for all t .

But this means that, for any � > 0, we can find k; l 2 Z � f0g such that �.sk
v sl
w/

translates  .0/ a distance less than � (possibly 0), so either � is not faithful or it does
not have a discrete image.

We are left with the case where �.sv/ fixes exactly one point x at infinity. The
commutation relations then force every element of the image of � to fix x , so � is
a representation into a horospherical subgroup N of G . But N is a nilpotent group
(see Eberlein [8]) and is therefore amenable; since A.H / contains a non-abelian free
subgroup, it cannot embed faithfully into N .

3 Discrete and faithful representations

Given a connected graph H with no triangle subgraphs, we will show that the right-
angled Artin group A.H / embeds into a higher-rank Lie group G if one can find a
configuration of geodesics and flats in the symmetric space X DG=K that mimics the
graph H . That is to say, if we view the singular geodesics throuigh some point p0 2X

as the vertices of a graph H 0 , and the maximal flats containing p0 as the edges of the
graph, we wish to find an induced subgraph of H 0 which is isomorphic to H . We
will use the terminology of graph theory and say that two geodesics through p0 are
adjacent if they lie in a common maximal flat.

There will be a few technical conditions, so the exact statement is as follows:

Theorem 9 Let X D G=K be a symmetric space of non-compact type of rank at
least 2, and let p0 2X . Suppose that for each vertex v of H , we can find a geodesic
vW R!X with v.0/D p0 with the following properties:

� If vw is an edge of H , then v and w are adjacent, there is exactly one
maximal flat Fvw containing both v and w , and the set of singular geodesics
Svw contained in the copy of R2 � Fvw determined by v and w is finite.

� If vw is not an edge of H , v and w are not adjacent.
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� If v1v2 and w1w2 are disjoint edges in H , then no elements of Sv1v2
and

Sw1w2
are adjacent, with the exception of vi

and wj
if viwj is an edge of H .

� If vw and wx are two edges of H sharing an endpoint, then no element of
Svw �fwg is adjacent to any element of Swx �fwg.

Then there are infinitely many conjugacy classes of discrete, faithful representations
� W A.H /!G .

The proof of the theorem is a modification of the “ping-pong” technique. The classic
“ping-pong” argument was first used to prove that two elements ˛; ˇ in SL.2;R/

generated a free subgroup. It employed four open sets U˛;U˛�1 ;Uˇ;Uˇ�1 � H2.1/

and showed that a word in ˛ and ˇ sent a base point z 2 H2.1/ to the open set
corresponding to the first letter in the word, utilizing the fact that ˛ and ˇ had disjoint
repelling and attracting fixed sets.

Our proof follows the same spirit, but there are complicating factors due to the fact that
A.H / is not free and the more intricate geometry of higher rank symmetric spaces.
For instance, our open sets will necessarily intersect one another, and we will be unable
to use separate open sets for a generator and its inverse.

We begin the proof with a lemma.

Lemma 10 Let gD kC p be the Cartan decomposition given by a point p0 2X , and
let A 2 p be a non-zero vector. Let F denote the union of all maximal flats containing
the geodesic  .t/ D exp.tA/p . Let z0 2 X.1/; then limt!1 exp.tA/z0 will exist,
and lie in F.1/.

Proof Let z be any accumulation point of the sequence fexp.tA/z0g, and let y D

 .�1/. Since X is non-positively curved, the function f .t/D†.t/.y; z0/ will be
non-increasing, and therefore there is some ˇ such that limt!�1 f .t/D ˇ .

We claim that †.t0/.y; z/D ˇ for all t0 . Indeed, for any � > 0,

ˇ� � �†.�t/.y; z0/� ˇ

for t � 0 so, applying the isometry exp..t C t0/A/, we see that

ˇ� � �†.t0/.y; exp..t C t0/A/z0/� ˇ

for t� 0. Hence †.t0/.y; z/ must lie in the interval Œˇ��; ˇ�. Since � was arbitrary,
†.t0/.y; z/D ˇ , and the claim is proven.

That the claim implies the lemma is precisely Claim E5 in Eberlein [7].
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Let feig denote the set of edges of H , and Si the corresponding sets of singular
geodesics defined in the statement of the theorem, and denote the unique maximal flat
containing the geodesics of Si be denoted by Fi . Let S be the union of all Si , and
let F. / denote the union of all flats containing  .

Two geodesics ; � are adjacent if and only if F. /.1/ and F.�/.1/ are disjoint.
Therefore, for each geodesic  2 S , we can find an open set U �X.1/ containing
F. /.1/ such that SU \ SU� ¤ ∅ iff there is some i such that ; � 2 Si . Let
Ui D

T
2Si

U ; this will be an open set containing Fi.1/.

Let z 2X.1/ be a point not contained in the closure of any of the U .

Lemma 11 It is possible to find real numbers tv such that the isometries �v D
exp.tvAv/ have the following properties:

� If  2 S is not adjacent to v , then �k
v .U /� Uv

for all k 2 Z� .

� For any k 2 Z� , �k
v .z/ 2 Uv

.

� If ei D vw is an edge in H , and  2 S is adjacent to neither v nor w , then
for any k; l 2 Z� , �k

v ı�
l
w.U /�

S
�2Si

U� .

� If ei D vw is an edge in H , then for any k; l 2 Z� , �k
v ı�

l
w.z/ 2

S
�2Si

U� .

Proof The first two conditions are satisfied as long as the tv are large enough, by the
lemma.

To show that the second two are satisfiable, for a given edge ei D vw , let h � p be
the subspace generated by Av and Aw , and let � W h! X.1/ be given by �.A/ D
exp.A/.z0/, for some z0…

S
�2Si

U� . We will show that ��1.
S
�2Si

U�/ has a bounded
open set in h as its complement. This will suffice, for then we can simply pick tv and
tw such that ��1.

S
�2Si

U�/� faAvC bAwjjaj> 1 or jbj> 1g.

To do so, we simply apply the lemma to each geodesic exp.tA/.p0/, where A 2 h has
length 1. All but finitely many will be regular geodesics, and for these there is some
minimum TA such that exp.tA/.z0/�Ui whenever jt j>TA . If exp.tA/.p0/D�2Si ,
then we can still find some TA such that exp.tA/.z0/ � U� when jt j > TA . Thus
along any one-dimensional subspace of h, the image of � will eventually land inS
�2Si

U� . The function A! TA will be continuous, and thus there is some T such
that �.A/�

S
�2Si

U� whenever jAj> T .

Once we have chosen our �v , we then define the representation � W A.H /! G by
�.sv/D �v . If vw is an edge of H , we know that v and w are adjacent, and thus
�v and �w commute. Therefore the relations of A.H / are satisfied, and this is a group
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homomorphism. To show that the image of � is faithful and discrete, we will show
that if h is a non-identity element of A.H /, then �.h/.z/ 2

S
�2Si

U� for some i .

For each element h 2A.H /, let `.h/ denote the minimum integer n such that h has a
representation hD s

k1
v1

s
k2
v2
: : : s

kn
vn

as a product of generators of A.H / (where the ki

can be either positive or negative integers).

By induction on n, we will show that any element h has a representation as a word in
the generators hD s

k1
v1

s
k2
v2
: : : s

kn
vn

where nD `.h/ and either �.h/.z/ 2Uv1
if v1v2 is

not an edge of H , or �.h/.z/ 2
S
�2Si

U� if v1v2 D ei is an edge of H .

When `.h/D 1, this is true by our choice of the �v . Now assume that this is true for
all n<m, and suppose that `.h/Dm. Pick a representation hD s

k1
v1

s
k2
v2
: : : s

km
vm

. By
transposing commuting generators, it might be possible to switch s

k1
v1

to a position
farther right; suppose that the farthest right it can go is position j , in the word
hD s

l1
w1

s
l2
w2
: : : s

lm
wm

. Thus we know that swi
commutes with swj

for all i < j , and
since there are no triangles in H , swi

does not commute with swiC1
if i < j � 1.

Also, by our induction hypothesis, we can transpose commuting generators so that the
word hj D s

ljC1

wjC1
: : : s

lm
wm

has the property that �.hj /.z/ is in UwjC1
if wjC1wjC2

is not an edge of H , or
S
�2Si

U� if wjC1wjC2 is the edge ei of H . We know that
wjwjC1 cannot be an edge of H (else we could do another transposition to get the
original left-most generator sv1

farther right). Therefore, if j D 1, we must have
�.h/.z/ 2 Uw1

, and we are done.

If j � 2, we see that �lj�1

wj�1
ı�

lj
wj

must take �.hj /.z/ into
S
�2Si

U� , where wj�1wj

is the edge ei of H . If j D 2, we are then done. If j > 2, since wiwiC1 is not an edge
of H for i < j � 1, we can therefore conclude that �.h/.z/ 2 Uw1

. This concludes
the induction argument.

It remains to be shown that we can get infinitely many conjugacy classes. In the proof of
Lemma 11, we were free to choose the tv , the translation length of the axial isometries
�v , to be any numbers, as long as they were sufficiently large. Given finitely many
discrete and faithful representations �i , there are only countably many translation
lengths of axial isometries in their images, so as long as we choose a tv distinct from
all of them, we are guaranteed a new conjugacy class.

4 Finding geodesic configurations

Since the result of Crisp and Wiest holds for a right-angled Artin group on a 5-cycle, we
are interested in finding arrangements of 5 singular geodesics that have the properties
required by the theorem in the previous chapter.
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4.1 The model group

Theorem 12 Let X D SL.3;R/=SO.3/, and p0 2 X . Then there are infinitely
many conjugacy classes of sets of 5 geodesics through p0 satisfying the conditions of
Theorem 9 for the graph H D C5 .

Our goal is to find a different flat F12 which intersects the original flat F01 in one
of the singular geodesics 1 , choose a different singular geodesic 2 in F12 , find
another flat F23 which intersects F12 in 2 , and so on, until we are able to find a flat
F40 which intersects F01 in a geodesic 0 , completing the cycle. To find successive
flats, we will apply “rotations” around the singular geodesics - that is, isometries fixing
the geodesic pointwise - to move one flat to the next (see diagram). We will see that
the condition that this process cycle back around to the original flat essentially is a
condition on the product of the chosen rotations.

//////////////////////////////////// ////////////////////////////////////

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

�����������������

JJ
0

// 1

%%%%%%%%

��
2

nnnnnnnnnnnnnn

ww
3

DDDDDDDDDDDD

aa
4

F01

F12

\\

Figure 1: Flats and geodesics in a five-cycle configuration

Without loss of generality, we may take p0 to be the identity coset K D SO.3/.

Consider the geodesics �1.t/ D diag.e�2t ; et ; et /p0 , �2.t/ D diag.et ; e�2t ; et /p0 ,
and �3.t/ D diag.et ; et ; e�2t /p0 . These are all contained in a unique common flat
F01 . Let Ai D fg 2Kjg�i D �ig for each i . Note that A1 is the set of rotations in
SO.3/ that fix the x–axis, A2 fixes the y –axis, and A3 the z–axis.

Pick any non-identity elements R1 2A1 and R2 2A2 .

Algebraic & Geometric Topology, Volume 7 (2007)



Representations of surface groups and right-angled Artin groups in higher rank 1109

Let Z be the vector .0; 0; 1/; consider Y DR2R1Z . There is then an R3 2A3 such
that R3Y has second coordinate equal to 0, and thus a unique R4 2 A1 such that
R4R3R2R1Z DZ .

Let 0 D �2 , 1 D �1 , 2 DR4�3 , 3 DR4R3�2 and 4 DR4R3R2�1 .

Note that 1 and 2 both lie in the flat F12 DR4F01 since R4 leaves 1 invariant.
Similarly, 2 and 3 both lie in the flat F23 D R4R3F01 , and 3 and 4 both lie
in F34 D R4R3R2F01 . Since R4R3R2R1 2 A2 , both 4 and 0 are in F40 D

R4R3R2R1F01 .

Thus the five geodesics i satisfy the first condition of Theorem 9. There are finitely
many non-adjacency requirements; to verify that geodesics �1 and �2 are non-adjacent,
we simply need to confirm that axial isometries with �1 and �2 as axes do not commute.

There are ten singular geodesics through p0 in the five flats, namely the five i , plus
�0 D �3 in F01 , �1 D R4�2 in F12 , �2 D R4R3�1 in F23 , �3 D R4R3R2�3 in
F34 , and �4 D R4R3R2R1�3 in F40 . Let T1 D diag.1

4
; 2; 2/, T2 D diag.2; 1

4
; 2/,

and T3 D diag.2; 2; 1
4
/. Table 1 gives axial isometries for each of the geodesics.

Geodesic Isometry
0 T2

1 T1

2 R4T3R�1
4

3 R4R3T2R�1
3

R�1
4

4 R4R3R2T1R�1
2

R�1
3

R�1
4

�0 T3

�1 R4T2R�1
4

�2 R4R3T1R�1
3

R�1
4

�3 R4R3R2T3R�1
2

R�1
3

R�1
4

�4 R4R3R2R1T3R�1
1

R�1
2

R�1
3

R�1
4

Table 1: Singular geodesics and axial isometries

Pairs of geodesics that we need to be non-adjacent are i and j if j � 1¤˙1 (mod
5), �i and �j for any i ¤ j , and �i and j if j � i ¤ 0; 1 (mod 5).

Recall that we have complete freedom to choose R1 and R2 in A1 and A2 respectively,
but once they are chosen, R3 and R4 are determined. Since commuting is an analytic
condition, if we see that these pairs of isometries do not commute for one particular
choice of R1 and R2 , then they will not commute for almost any choice of R1 and
R2 .
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We make the choices

R1 D

0B@ 1 0 0

0 1
2

p
3

2

0 �
p

3
2

1
2

1CA ;R2 D

0B@
p

2
2

0
p

2
2

0 1 0

�

p
2

2
0
p

2
2

1CA :
This means that R3 and R4 are the following:

R3 D

0BB@
q

2
5

q
3
5

0

�

q
3
5

q
2
5

0

0 0 1

1CCA ;R4 D

0BB@
1 0 0

0

q
5
8
�

q
3
8

0

q
3
8

q
5
8

1CCA :
Verification that the approprate pairs of matrices in Theorem 12 do not commute is
done by explicitly calculating their commutators. These are relegated to a separate
appendix which is published on the author’s web site.

Theorem 13 For any closed hyperbolic surface group � and n� 3, there are infinitely
many conjugacy classes of discrete, faithful representations of � into SL.n;R/.

The only thing remaining to prove in this theorem is that we can obtain infinitely
many conjugacy classes. This is not immediate, since representations of A.C5/ which
are not conjugate might still yield representations of a �1.†/ which are conjugate.
However, the flexibility of our construction proves that you can in fact guarantee
different conjugacy classes for the surface groups.

Take any discrete, faithful representation � W A.C5/! G given by our construction.
Pick x 2 X D G=K . Since � is discrete, we know that for any r > 0, the set
Br D fa 2A.C5/jd.�.a/x;x/ < rg is finite.

Let a1; a2; : : : a5 be the generators of A.C5/. Then the representation �n given by
�n.ai/D �.ai/

n will be discrete and faithful. The image of �n will be the image of�
restricted to the subgroup An of A.C5/ generated by the an

i ; we can choose n large
enough so that An\Br D feg, since Br is finite.

Thus for every r , we can find a discrete, faithful representation � W A.C5/!G such
that minfd.x; �.a/x/ja 2A.C5/�fegg> r .

Now suppose that we have a finite set of representations �1 : : : �nW �1.†/! G . Take
some a 2 �1.†/ � A.C5/ and let r D max d.x; �i.a/x/. If � W A.C5/ ! G is a
discrete, faithful representation such that minfd.x; �.a/x/ja 2A.C5/�fegg> r , then
� restricted to �1.†/ cannot be conjugate to any of the �i .
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4.2 Other groups

The example of SL.3;R/ serves as a model for embeddings of Artin groups on cycles
into other Lie groups of rank 2.

Crisp and Wiest’s result about embedding surface groups holds only for A.C5/, so
if the cycle is larger than C5 we would not be able to embed all surface groups into
G via this Artin group technique. However, we would still be able to embed certain
surface groups, thanks to the result of Droms, Servatius and Servatius.

For instance, we have the following:

Theorem 14 There are infinitely many conjugacy classes of discrete, faithful repre-
sentations of A.C6/ and �1.†17/ into SO.3; 2/.

Here the symmetric space is X D SO.3; 2/=SO.3/�SO.2/, again of rank 2.

Let p0 be the identity coset K D SO.3/�SO.2/. We wish to find a collection of six
geodesics through p0 satisfying the conditions of Theorem 9.

Let a be the abelian subalgebra of g generated by the two elements

Y0 D

0BBBB@
0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

1CCCCA ;Y1 D

0BBBB@
0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

1CCCCA :

Then exp.a/p0 is a flat F01 in X , and 0.t/D exp.tY0/p0 and 1.t/D exp.tY1/p0

are singular geodesics in F01 and are perpendicular. The other singular geodesics in
F01 through p0 are the angle bisectors �0 , �1 of the right angles formed by 0 and 1 .
Thus if T0D exp.aY0/ and T1D exp.aY1/, T0T1 and T0T �1

1
are axial isometries of

X whose axes are these singular geodesics �0 and �1 . We choose aD log.2C
p

3/,
so

T0 D

0BBBBB@
2 0 0

p
3 0

0 1 0 0 0

0 0 1 0 0
p

3 0 0 2 0

0 0 0 0 1

1CCCCCA IT1 D

0BBBBB@
1 0 0 0 0

0 2 0 0
p

3

0 0 1 0 0

0 0 0 1 0

0
p

3 0 0 2

1CCCCCA :
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�������������������������

??T0T1

// T0

?????????????????????????

��
T0T �1

1

OO
T1

Figure 2: Singular geodesics in a flat in SO.3; 2/=SO.3/�SO.2/

Let A0 and A1 be the subgroups of K fixing 0 and 1 , respectively. There are
isomorphisms �i between SO.2/ and each of the Ai ; they are defined by

�0W

�
a b

�b a

�
2 SO.2/ 7�!

0BBBB@
1 0 0 0 0

0 a b 0 0

0 �b a 0 0

0 0 0 1 0

0 0 0 0 1

1CCCCA 2A0

�1W

�
a b

�b a

�
2 SO.2/ 7�!

0BBBB@
a 0 b 0 0

0 1 0 0 0

�b 0 a 0 0

0 0 0 1 0

0 0 0 0 1

1CCCCA 2A1

Copying our proof of Theorem 12, if we can find R1;R3;R5 2A1 and R2;R4 2A0

such that R5R4R3R2R1 2 A0 , then 0 , 1 , 2 D R50 , 3 D R5R41 , 4 D

R5R4R30 and 5DR5R4R3R21 are six geodesics which are adjacent in a 6-cycle
pattern.

Since �0 and �1 have image only in the first factor of K D SO.3/ � SO.2/, the
condition that R5R4R3R2R1 2A0 is essentially just a requirement that a product of
rotations in R3 be a rotation around the x–axis. Just like in our discussion in the case
of SL.3;R/, we see that given any choice of R1;R2;R3 , we know that we can find
a rotation R4 around the x–axis and a rotation R5 around the y–axis such that the
product R5R4R3R2R1 fixes the x–axis.
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As was the case in Theorem 12, we only need to check non-adjacency for one particular
set of choices of Ri . We choose

R1 D �1

�
3
5

4
5

�
4
5

3
5

�
; R2 D �0

�
4
5

3
5

�
3
5

4
5

�
; R3 D �1

�
�

31
481
�

480
481

480
481

�
31

481

�
:

This forces R4 and R5 to be the following:

R4 D �0

�
4
5

3
5

�
3
5

4
5

�
; R5 D �1

�
3
5

4
5

�
4
5

3
5

�
:

Axial isometries with the i as axes are T0 , T1 , R5T0R�1
5

, R5R4T1R�1
4

R�1
5

,
R5R4R3T0R�1

3
R�1

4
R�1

5
, R5R4R3R2T1R�1

2
R�1

3
R�1

4
R�1

5
. In addition, the extra

singular geodesics in the six flats will have axial isometries listed in the following table,
where Fij denotes the flat containing i and j .

Flat Isometries
F01 T0T1

T0T �1
1

F12 R5T0T1R�1
5

R5T0T �1
1

R�1
5

F23 R5R4T0T1R�1
4

R�1
5

R5R4T0T �1
1

R�1
4

R�1
5

F34 R5R4R3T0T1R�1
3

R�1
4

R�1
5

R5R4R3T0T �1
1

R�1
3

R�1
4

R�1
5

F45 R5R4R3R2T0T1R�1
2

R�1
3

R�1
4

R�1
5

R5R4R3R2T0T �1
1

R�1
2

R�1
3

R�1
4

R�1
5

F50 R5R4R3R2R1T0T1R�1
1

R�1
2

R�1
3

R�1
4

R�1
5

R5R4R3R2R1T0T �1
1

R�1
1

R�1
2

R�1
3

R�1
4

R�1
5

Table 2: Axial isometries by flat

Again, checking the non-adjacency requirements (of which there are 93) is an explicit
computation of commutators of these matrices, and is published in a separate appendix
on the author’s web site.

The proof that there are infinitely many conjugacy classes proceeds in exactly the same
way as in Theorem 12.

We have been unable to find a configuration of five maximal flats in X that satisfy all
of the requirements of Theorem 9. It is possible to find flats satisfying the first two
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conditions, but in every configuration analyzed, there are always other geodesics in the
flats which are adjacent. Changing the Artin group to A.C6/ allows for more freedom
in choosing the rotations around each singular geodesic and allows us to avoid this
problem.

It seems likely that Artin groups on cycles of 6 or more should be flexible enough to
allow representations into most semisimple Lie groups, barring a few obstructions.

For instance, suppose there are only two singular geodesics in a flat through a given
point. This is the case when X D SU.2; n/=S.U.2/�U.n//, for instance. In this
situation, it will be impossible to embed A.Cn/ into the associated Lie group via
this method if n is odd, since there will have to be two adjacent geodesics which are
conjugates of the same geodesic in the original flat.

Another obstruction occurs for non-irreducible symmetric spaces. If X is a product of
rank one symmetric spaces X1 �X2 , no A.Cn/ (for n> 4) will embed faithfully by
this method. In this case, if p0 D .p1;p2/, singular geodesics through p0 are either
f�1g�fp2g or fp1g�f�2g, where �i is a geodesic through pi in Xi , and any geodesic
of the first type will be adjacent to any geodesic of the second, so there is no hope of
satisfying the conditions of Theorem 9 for graphs which are not complete and bipartite.

The general conjecture looks like this:

Conjecture 15 If X D G=K is an irreducible symmetric space of rank at least two,
and given any maximal flat F and point p0 2 F , there are at least three singular
geodesics in F passing through p0 , then there are infinitely many conjugacy classes of
discrete, faithful representations of A.Cn/ into G for any n� 6.

If X DG=K is an irreducible symmetric space of rank two, and given any maximal flat
F and point p0 2 F , there are exactly two singular geodesics in F passing through
p0 , then there are infinitely many conjugacy classes of discrete, faithful representations
of A.C2n/ into G , for any n� 3.

It would be helpful and interesting to find general methods that would allow for attacking
this problem in ways other than a case-by-case analysis.

5 Lattices

We can also embed Artin groups inside some lattices in higher rank Lie groups. Recall
that a lattice in G is a discrete subgroup � � G such that �nG has finite volume.
Embeddings of surface groups into lattices give examples of essential surfaces inside
locally symmetric spaces.
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Theorem 16 There are infinitely many conjugacy classes of representations of A.C5/

into � D SL.5;Z/.

We will find five geodesics to apply the main theorem to.

Let p0 be the identity coset in the symmetric space X D SL.5;R/=SO.5;R/. Fix an
integer n� 2, and let Ai be the following elements of � :

A1 D

0BBBB@
n n�1 0 0 0

nC1 n 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1CCCCA ; A2 D

0BBBB@
1 0 0 0 0

0 1 0 0 0

0 0 n n�1 0

0 0 nC1 n 0

0 0 0 0 1

1CCCCA ;

A3 D

0BBBB@
n 0 0 0 nC1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

n�1 0 0 0 n

1CCCCA ; A4 D

0BBBB@
1 0 0 0 0

0 n n�1 0 0

0 nC1 n 0 0

0 0 0 1 0

0 0 0 0 1

1CCCCA ;

A5 D

0BBBB@
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 n n�1

0 0 0 nC1 n

1CCCCA :
As isometries of X , these are all axial hyperbolic isometries. We see easily that
Ai and Aj commute if and only if i � j � ˙1 (mod 5), so the geodesics i.t/ D

exp.t log Ai/SO.5;R/ mimic the graph C5 in the appropriate way.

The symmetric space is of rank 4, so the requirement that the set of singular directions
in the span of log Ai and log Aj be finite is non-trivial. It is relatively easy to check,
however. The maximal flat containing both 1 and 2 can be taken to the maximal flat
F of diagonal matrices via some element k12 of K which conjugates A1 and A2 to
the matrices

B1 D

0BBBB@
� 0 0 0 0

0 ��1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1CCCCA ; B2 D

0BBBB@
1 0 0 0 0

0 1 0 0 0

0 0 � 0 0

0 0 0 ��1 0

0 0 0 0 1

1CCCCA ;
where � and ��1 are the eigenvalues of the matrix

�
n n�1

nC1 n

�
. In the Lie algebra a

of diagonal traceless matrices, the span corresponds to the subalgebra b of all elements
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of the form 0BBBB@
a 0 0 0 0

0 �a 0 0 0

0 0 b 0 0

0 0 0 �b 0

0 0 0 0 0

1CCCCA :
Since the only singular directions in a are those with equal entries on the diagonal, we
see that there are only 4 singular directions in b, namely those where aD0; bD0; aDb;

or aD�b .

It remains to check the non-adjacency requirements. Let Fij denote the two-plane
containing i and j . Then the singular geodesics through p0 in Fij are precisely the
axes of the isometries Ai , Aj , AiAj , and AiA

�1
j . There are 125 pairs of geodesics

that are supposed to be non-adjacent, but by symmetry arguments we can focus on
those involving one geodesic from F12 and one geodesic from either F23 or F34 .

Since A1 commutes with A2 but not with A3 , it will not commute with either A2A3 or
A2A�1

3
. Neither A1A2 nor A1A�1

2
commute with A3 , so they also will not commute

with A2A3 and A2A�1
3

. Thus all of the pairs of geodesics in F12 and F23 behave
the way they ought.

Checking that no geodesic in F12 is adjacent to one in F34 (save 2 being adjacent
3 ) requires a few more explicit matrix calculations, which we relegate to a separate
appendix on the author’s web site.

Thus the geodesics satisfy the requirements of Theorem 9, and so high enough powers
of the Ai will give a discrete and faithful subgroup of SL.5;Z/ isomorphic to A.C5/.

Note that we could get the image of the representation to lie in any congruence subgroup
that we desire, since for any prime p , arbitrarily high powers of the Ai will be congruent
to the identity modulo p .
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